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Abstract—In the context of mechatronic systems design, this
paper addresses a parameter tolerance synthesis with respect
to specifications including output epistemic uncertainties. The
methodology proposed here concerns uncertainties modelled with
fuzzy logic. The procedure relies on output uncertainties prop-
agation through an inverse model. Design parameter tolerance
is then synthesized. The results are validated injecting designed
parameters in the direct model. The methodology is illustrated
on a linear model with specifications including combined uncer-
tainties.

I. I NTRODUCTION

In the last few decades, mechatronic and its applications
have dramatically changed the world. As a consequence, the
problem of mechatronic system design has drawn more and
more attention.

The sizing problem takes an important place in mechatronic
system design. In the sizing process, possible technical solu-
tions are determined in order to satisfy a set of requirements. A
certain number of sizing methodologies have been proposed
in literature. Roughly speaking, they are classified into two
categories: direct methods (trial - error - correction) and
inverse methods (inputs are deduced from desired outputs).
The direct methods are very popular and are applied at large
scale in industry. However, they are expensive in computa-
tional time. The inverse method provides designers with a less
computational solution for sizing problem. However it may be
difficult to apply, since the invertibility condition of themodel
is required.

It is worth noting that the sizing problem is deterministic.
In reality, there is always a difference between the observed
real system’s performance and the mathematical model’s
performance. There are many reasons for that difference:
variability during manufacturing process, sensors sensibility,
modelling assumptions,etc... The rising question is: which
tolerance can we apply on the design parameters of the
system to keep satisfying the requirements?

In the frame of our work, we are interested inparameter
tolerance synthesis with respect to specifications including
output epistemic uncertainties. The methodology uses bond
graph language (for system modelling, structural analysis

and inverse model generation), and fuzzy logic tools (for
uncertainties representation and propagation).

A mechatronic system is classically represented by its trans-
fer function or its state equations. In order to better adaptthe
modelling to physical phenomena and causalities, we decide,
in this paper, to use bond graph language [1] to represent our
mechatronic model. It is a multi-discipline language, which
facilitates the representation of multi-domain systems. Bond
graph is popularly used in engineering applications [2], [3],
especially in the case of multi-domain physical system [4],
[5]. Its mathematical foundation is established in [6].

The bond graph framework provides users with model
inversion algorithm [7], [8]. This approach reduces the number
of simulating iterations, as well as the calculus time. It has
already been applied in [9], [10], [11]. Based on the concept of
bicausality [12], the bond graph inverse model serves for sizing
purposes while keeping the same structure as the direct model.
The invertibility of a bond graph model is easily checked with
existing procedures based on power lines [8] and causal paths
[11].

Epistemic uncertainties represent the incompleteness of
knowledge about a property or a value, due to insufficiently
accurate data. Epistemic uncertainty usually appears along
with the vagueness in linguistic explanation: for example "x
is about 31". In the simplest form, epistemic uncertainty is
often quantified with interval arithmetic [13], [14]. However,
it is proven to be expensive in computation time and the
propagation result is often over-estimated. Among alternative
epistemic uncertainty quantification methods (e.g. imprecise
probability, Dempster-shafer evidence theory [15], [16]), we
focus here on fuzzy logic [17].

We shall use fuzzy sets to represent outputs uncertainties
specifications. In particular, fuzzy operations handle multiple
uncertainties criteria on one output. Moreover, uncertainties
propagation through inverse model is processed using exten-
sion principle.

The paper is organized as follows. The tolerance synthesis
problem is formulated in section II. Section III presents the
methodology of tolerance synthesis. Section IV illustrates this
methodology on a DC motor where both cases of output mono-



uncertainty and output multi-uncertainties are considered.

II. FORMULATION OF THE PROBLEM

Our goal is to determine the tolerances of design parameters
knowing a fuzzy representation of output uncertainties.

System’s specifications contain the deterministic behaviour
that characterizes the (ideal) scenario to be followed. The
associated set of desired output trajectories is then considered
to be subject to epistemic uncertainties. Output uncertainties
are translated into a family of trajectories living in the
neighbourhood of the desired ones, defining the fuzzy
behaviour. The model gives us the relation between the fuzzy
behaviour and the design parameters, which sets a base of
knowledge for tolerance synthesis.

Let us consider a given mechatronic system. We shall use
fuzzy logic to quantify the output epistemic uncertainties
included in the specifications. Fuzzy logic considers the set in
which the membership is gradual and not necessarily Boolean.

Definition 1: [18]

• If X is a collection of objects denoted generally byx,
then afuzzy set Ã in X is a set of ordered pairs:

Ã = {(x, µÃ(x))|x ∈ X}

µÃ(x) is called the membership function or grade of
membership ofx in Ã that mapsX to the membership
space (such as[0, 1] or R+).

• The support of a fuzzy setÃ, supp(Ã), is the crisp set
of all x ∈ X such thatµÃ(x) > 0.

• The (crisp) set of elements that belong to the fuzzy setÃ
at least to the degreeα is called theα-level set or α-cut.

Aα = {x ∈ X/µÃ{x} ≥ α}

• A fuzzy number ñ is a fuzzy set defined by a normalized,
convex, upper semi-continuous membership function with
bounded support and unique modal value. It represents
an imprecisely known real numberx0. An example of
triangular fuzzy number is depicted in figure1 below.

Fig. 1. Membership function of a triangular fuzzy number

Once the fuzzy output behaviour is quantified, the aim is
to link it with the design parameters. The inverse model gives
us this link with an explicit relation between fuzzy outputs

and design parameters. The fuzzy output behaviour is then
propagated through the inverse model using ZADEH extension
principle.

Theorem 1:Zadeh extension principle [18] Let X be a
Cartesian product of universesX = X1 × · · · × Xr and
Ã1, Ã2, . . . , Ãr be r fuzzy sets inX1, . . . , Xr respectively.f
is a mapping fromX to a universeY , y = f(x1, . . . , xr).
Then the extension principle allows us to define a fuzzy setB̃
in Y by:

B̃ = {(y, µB̃(y))|y = f(x1, . . . , xr), (x1, . . . , xr) ∈ X}

whereµB̃(y) =






sup min
(x1,...,xr)∈f−1(y)

{µÃ1
(x1), . . . , µÃr

(xr)}, if f−1(y) 6= ∅

0 otherwise

wheref−1 is the inverse off .
Propagating fuzzy output behaviour yields the membership

functions of the design parameters. Then, from the supportsof
the parameter membership functions together with the required
satisfaction levels, we are able to determine the tolerances of
design parameters with respect to the specifications.

III. M ETHODOLOGY OF TOLERANCE SYNTHESIS IN THE

PRESENCE OF UNCERTAINTY

We propose here the procedure to process epistemic uncer-
tainties in the problem of parametric tolerance synthesis.

A Modelling: Construct the bond graph of the system,
model the epistemic uncertainties included in the output
specifications with fuzzy logic, determine the set of
design parameters and outputs.

B Adequacy: Check the adequacy between the model
structure and the input/output specifications [19].

C Inversion: Test the structural invertiblity [8] and con-
struct the inverse bond graph model [20], [19].

D Propagation: Compute design parameter uncertainties
by propagating output uncertainties through the inverse
model.

E Tolerance synthesis :Synthesize the tolerance of the
design parameters from their computed uncertainties.

F Validation : Simulate direct model output behaviours
with the synthesized tolerances.

A. System and epistemic uncertainties modelling

We construct the bond graph model based on the physical
phenomena of the (deterministic) mechatronic system. Since
we concentrate on the problem of a parameter tolerance
synthesis, the structure of the model is assumed to be known
and fixed (for instance, there is no black-box, models commu-
tation, discontinuity). From the specifications, we classify the
parameters into two sets: the set of known parameters, and
the set of design parameters (those of interest for tolerance
synthesis). We model the output uncertainties with fuzzy logic
according to the specifications.



B. Adequacy verification

It is necessary to verify that the desired output behaviours
are possible with the model structure and the specified inputs.
For many reasons, some specifications may not be compatible
with the model dynamics, with the model workspace,etc...
A verification of adequacy between the model’s structure and
the specifications is therefore essential. In practice, adequacy
is checked following [19].

C. Inversion

Our approach is based on inverse model in order to get
an explicit relation between the fuzzy outputs and the design
parameters. The direct model outputs will be the inputs of the
inverse model, and the design parameters will be the outputsof
the inverse model. We shall check that the bond graph model is
invertible from the outputs to the set of design parameters.The
bond graph framework provides users with invertibility criteria
[8]. The inverse model with minimum order is obtained from
the bicausal bond graph with the procedure detailed in [19].

D. Propagation

The fuzzy output behaviour propagation is processed us-
ing ZADEH extension principle [18] applied to the out-
puts/parameters relation obtained via the inverse model. As
a result, we obtain the membership functions of the design
parameters according to the fuzzy output behaviours.

E. Tolerance synthesis

The common support of the membership functions of a
parameter contains all the values that satisfy all the fuzzy
output behaviours. The associated membership function is the
base of knowledge for tolerance synthesis. Hence, depend-
ing on the specified satisfaction levels, anα-cut gives the
corresponding tolerance of the parameter. The knowledge of
the parameter membership functions actually gives the system
designer flexibility on the tolerance synthesis sinceα-cuts can
be actualized with respect to the target satisfaction levels.

F. Validation

From the obtained tolerances, we generate sample values of
the design parameters. We then re-inject this set of values into
the direct bond graph model. Simulation results allow to com-
pare the output behaviours with the required specifications.

IV. EXAMPLE

Consider a DC motor rotating a load (Figure2). As an
illustration of our methodology, we process the tolerance
synthesis of the internal resistance of the DC motor. We shall
study a simple output mono-uncertainty case and an output
multi-uncertainties case.

Modelling assumptions:The electrical part contains a volt-
age sourceu, an internal resistanceR and an inductanceL.
The (ideal) electromechanical coupling is characterized by a
torque constantkc. The mechanical part takes into account the
motor axis inertiaJm and the load inertiaJc, a reduction gear
ratio 1/N and the viscous friction coefficientbc on the load
axis.

Fig. 2. Scheme of a DC motor rotating a load.

Data specifications.
L Motor self inductance 0.001[H]
kc Electromechanical coupling 0.031[N.m/A]
Jm Motor axis inertia 1.8× 10−6[kg.m2]
N Gear ratio 1/20
Jc Load inertia 2× 10−4[kg.m2]
bc Viscous friction coefficient 0.0001[N.m/rad.s−1]
u Input voltage 20[V]

Performance specifications.The output angular velocity
Ω is desired to follow a second order step response with an
amplitudeK = 32 rad/s, a damping ratioξ = 24 and an
undamped frequencyωn = 650 s−1.

Uncertainty specifications.The stationary output velocity
can vary in the intervalδK = ±1 rad/s. However, for
system security, it must stay at the worst within70% of the
ideal performance. For the other two parameters, one specifies
δξ = ±3 and δωn = ±30 s−1. These variations form an
envelop that the output trajectory is expected to lie within.

We shall first study the mono-uncertainty case where only
epistemic uncertainty on the amplitudeK is taken into ac-
count. Secondly, we study the multi-uncertainty case where
K, ξ, ωn are considered.

A. The output mono-uncertainty case

Modelling. The bond graph model of the system is given
in figure 3. The internal motor resistanceR is the design

Fig. 3. Causal bond graph representation of a DC motor rotating a charge

parameter and the output is the angular velocityΩ.
The specified uncertain amplitudeK = 32± 1 [rad/s] is

quantified by a symmetric triangular fuzzy numberµK

µK = T (32, 1) .

Adequacy verification.Following the procedure in [19], we
can verify the adequacy of the model with respect to the output



specifications. Note that in this example, adequacy is trivial
since the model leads to second order transfer function and
the output specifications require a second order step response.

Inverse model. The structural analysis of the bond graph
model shows that it is invertible from the outputΩ to the
design parameterR. The bicausal bond graph model is given
in figure 4.

Fig. 4. Bicausal bond graph representation of inverse model

The minimum order inverse model, obtained from [19]
applied to4, is given by

R =
u− L

[

1
kc

(

Jm

n
+ nJc

)

Ω̈− 1
kc

(

bm
n

+ nbc
)

Ω̇
]

− kc

n
Ω

1
kc

(

Jm

n
+ nJc

)

Ω̇ + 1
kc

(

bm
n

+ nbc
)

Ω

= g(u,Ω, Ω̇, Ω̈)
= h(u,K, ξ, ωn) .

(1)
Propagation.Uncertainty on the amplitudeK is propagated

to the internal resistanceR through the inverse modelh given
by (1). Note thatΩ, Ω̇, Ω̈ are functions ofK, hence their
membership functions are deduced fromµK the membership
function ofK. The propagation is then processed by applying
the extension principle on the relation (1). This results in the
membership functionµR which represents the uncertainty on
the design parameterR evolving in time (Figure5).

Fig. 5. Membership function of R evolving in time

Tolerance synthesis.The values ofR that partly satisfy
the specifications are found in the support ofµR. According
to the specifications (at least70% of the desired performance),
we restrict the support to theα-cut of µR at 0.7 as shown in
figure 6. The tolerance ofR is therefore the smallest interval
of the 0.7 α-cut.

However, since the amplitude uncertainty mainly acts on the
steady-state values of the response and little on the transient
response, we shall determine the tolerance ofR from theα-cut
at anad hoctime. In this example, we have chosen 0.1 second.
We then conclude thatR belongs to the interval[30.06, 31.96].
The output trajectory is therefore expected to stay inside our
envelop from 0.1 second.
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Fig. 6. α-cut of µR at 0.7.

Validation. We generate random samples ofR within the
tolerance interval[30.06, 31.96] and inject these values into the
direct model. We notice that the corresponding steady states
(i.e. the stationary angular velocities) lie in the demanded
interval 32± 0.3 (Figure7).

Fig. 7. Simulated trajectories - Variation on K

Moreover, we also notice that some trajectories exceeded
the specified envelop during transient response (Figure8). This
was expected since the tolerance synthesis fulfils requirements
from 0.1 second. After that time, we guarantee that all
trajectories return into the envelop.

We therefore validate the tolerance synthesis onR.

B. The output multi-uncertainty case

Modelling. The modelling assumptions are identical to the
previous case. We thus end with the same bond graph model
given in figure3. The only difference resides in the fact that
we now add the damping ratioξ and the undamped frequency
ωn uncertainties in order to take into account transient re-
sponse uncertainties. The epistemic output specificationsthen
translates into symmetric fuzzy numbers given by

µK = T (32, 0.3), µξ = T (24, 3), µωn
= T (650, 30) .



Fig. 8. Zoom into starting phase - Variation on K

Adequacy verification. As before, adequacy is checked
following the procedure in [19].

Propagation. Uncertainties of the vector(K, ξ, ωn) are
propagated to the design parameterR through the inverse
modelh given in (1). As before, the contribution of the angular
velocity and its derivative are replaced by functions ofK, ξ
andωn, and so do their corresponding membership functions.
The propagation is then processed by applying the extension
principle to the equation1. We obtain the membership function
of R (Figure9)

Fig. 9. Membership functionµR of R evolving in time

Tolerance synthesis.The time evolution of the support ofR
is given in figure10. We shall now synthesize the tolerance as
the intersection of all the supports of the memberships function
of R. That is to say, we consider the smallest interval in time.
We conclude thatR belongs to[25.67, 36.88].
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Fig. 10. Nominal value ofR and support ofµR

Validation. We generate random samples ofR within the

interval [25.67, 36.88] and inject these values into the direct
model. The simulation results are given in figure11. In the
present case, all the trajectories stay in the specified envelop.

Fig. 11. Simulated trajectories - Variation on K,ωn,ξ

Moreover, on the contrary to the previous case, the transient
behaviour is fully fulfilled as shown in figure12. This shows
the necessity to address tolerance synthesis the with respect
to the whole set of specifications. In fact, it is easy to see
that an uncertainty has an effect on all the characteristicsof
the model outputs, not only their stationary values, but also
their transient behaviour. As a consequence, it is reasonable
to uncertainty specifications on all of these output parameters.
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Fig. 12. Zoom into starting phase - Variation on K,ωn, ξ

We furthermore validate the tolerance synthesis onR.

V. CONCLUSION AND OUTLOOK

In this paper, we presented the problem of mechatronic
system design in the presence of epistemic uncertainty, and
particularly the problem of parametric tolerance synthesis.

We chose the bond graph language as the modelling tool,
because of its multi-disciplinary and acausality. The adopted
approach for parametric sizing is the methodology of inver-
sion. That methodology proves its interest over the direct
approach in term of calculation cost. However, it requires the
structure of model to be invertible.

Epistemic uncertainty is modelled by fuzzy numbers and
propagated using the extension principle ofZADEH. This
principle was chosen, for the sake of generality of the method-
ology: the extension principle works for fuzzy sets and, as a
result, is still applicable when the uncertainty becomes more



complex and can no longer be represented by a single fuzzy
number.

The proposed methodology provides designers with the
membership function of the parameter under consideration,
evolving in time, which offers a great flexibility on tolerance
synthesis. It gives also the possibility to treat multiple spec-
ifications at the same time, regarding that we can use fuzzy
operations to combine corresponding membership functions.

The methodology was illustrated via a simple example
of sizing issue on a DC motor. The synthesized tolerance
satisfied the initial specifications and therefore, validated the
methodology.

As we mentioned above, the proposed procedure is used
to deal with epistemic uncertainty in the design process.
However, there are scenarios where aleatory and epistemic
uncertainties coexist in the specifications. We can classify
the uncertainty in the specifications into two types: uncer-
tainty on technical specifications and uncertainty on statistical
specifications. The technical specifications are normally given
from customer’s demand or expert’s experience. They contain
relative ignorance upon information. The statistical specifica-
tions are often given on the manufacturing process. However,
these two types of uncertainty sometimes can not be treated
separately. A common situation is where one may know the
form of the probability distribution for an uncertain variable,
but not be sure about the parameter giving the distribution (in-
exact expectation and variation of a distribution, for example).
Another situation is where the two types of uncertainty cross
over in a complex specification. For example:"60 % of the
designed componentsx satisfies more than 90% of technical
demand, and has a cheap fabrication cost.". In this case,"
satisfies technical demand"and "has cheap fabrication cost"
are two epistemic uncertainties on the specification and"60
% of the designed components"is statistical uncertainty. This
type of uncertainty can not be handled by either fuzzy logic
or probabilistic tools. A combined representation is necessary.

In order to propagate both aleatory and epistemic uncer-
tainties through model, we can propagate them separately as
the proposed method in this paper and in [19]. Another way
is the second-order probability method [21]. However, it is
expensive since two sampling loops are required.

The modelling and propagation of both aleatory uncertainty
and epistemic uncertainty are complex and expensive in cal-
culation. However, it gives us a more complete and general
understanding on system, as well as the possibility to deal
with complex specifications in design progress.

Another outlook for the methodology is the generalization
to multi-uncertainties case. In fact, the methodology contains
already the possibility of handling the multi-uncertainties
problem, considering that we can regroup all the variables into
a vector and treating them as one. However, when the variables
are no longer independent, the result’s membership function
may end up with a very large support, due to the effect of over-
estimation. In [22], a transformation method to reduce the error
of over-estimation is proposed. However, the implementation
of the transformation method to our propagation process

should only be done within consideration about the calculation
cost.
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