Matthieu Sozeau

Nicolas Tabareau Univalence

Nicolas Tabareau

Univalence For Free

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

A notorious difficulty with intensional type theories like Martin-Löf Type Theory or the Calculus of Inductive Constructions (CIC) is the lack of extensionality principles in the core theory, and notably in its notion of propositional equality. This makes the theory both inflexible with respect to the notion of equality one might want to use on a given type and also departs from the traditional equality notion from Set theory. Functional extensionality (pointwise equal functions are equal), propositional extensionality (logically equivalent propositions are equal) and proof irrelevance (all proofs of the same proposition are equal) are principles that are valid extensions of Type Theory but are not currently internalized in it, except for the efforts of Altenkirch et al. [START_REF] Altenkirch | Observational Equality, Now! In PLPV'07[END_REF]. Another extensionality principle coming from homotopy theory is Univalence, which translates to the idea that isomorphic types are equal [START_REF] Voevodsky | Univalent Foundations of Mathematics[END_REF][START_REF] Pelayo | Homotopy type theory and Voevodsky's univalent foundations[END_REF]. All these principles should be imposeable on a type theory like CIC because, intuitively, no terms can distinguish between isomorphic types, pointwise equal functions, logically equivalent propositions or two proofs of the same proposition. This hints at the idea that there ought to exist an internal model of type theory where equality is defined on a type by type basis using the aforementioned principles and a translation that witnesses that any term of the theory is equipped with proofs that they respect these properties. Formalizing this translation is the goal of this paper.

The central change in the theory is in the definition of equality. Much interest has been devoted to the study of the identity type of Type Theory and models thereof, starting with the groupoid model of Hofmann and Streicher [START_REF] Hofmann | The Groupoid Interpretation of Type Theory[END_REF]. This eventually led, by a detour to homotopy theory, to the study of the ω-groupoid model of Type Theory with identity types, which validates extensionality principles [START_REF] Lefanu | Weak omega-categories from intensional type theory[END_REF]. This model in turn guides work to redesign type theory itself to profit from its richness, and develop a new theory that internalizes the new principles. Preliminary attempts have been made, notably by Licata and Harper [START_REF] Daniel | Canonicity for 2-dimensional type theory[END_REF] who develop a 2-dimensional version of an hybrid intensional/extensional type theory which integrates functional extensionality and univalence in the definition of equality. Work is underway to make it more intensional, and this starts by making the step to higher dimensions, whether finite (weak n-groupoids) or infinite (weak ω-groupoids) [START_REF] Altenkirch | A Syntactical Approach to Weak omega-Groupoids[END_REF]. Our work here is more modest in the sense that our model will be truncated at dimension 2 where we can have a self-contained definition of the structures involved. Truncation at that level means that there are equalities and equalities between equalities, and that is all. But all "lower" notions of equality including isomorphism of types will have computational content.

Our first motivation to implement this translation is to explore the interpretation of type theory in groupoids, in a completely intensional setting and in the type theoretic language, leaving no space for imprecision on the notions of equality and coherence involved. We also hope to give with this translation a basic exposition of the possible type theoretic implications of the groupoid/homotopy models, bridging a gap in the literature. On the technical side, even at dimension 2, the structures are already quite tedious to manipulate and we found some interesting conditions on the structure of Π and Σ types that we believe were never presented in this form before. In the development, we strived to be as generic as possible and use the abstract structures of category theory to not be essentially tied to dimension 2. That level of genericity required a universe polymorphic type system that we showcase here as well.

Also, we shed light on the fact that usual Coq rewriting using eq rect is given here by the functoriality maps of a fibration of type T → Type. And we show how to use the induced rewriting terms to define the notion of dependent functors, that has to be introduced to handle dependent product types. This is to our knowledge the first formulation of dependent functoriality condition in Type Theory.

A second motivation for this translation is to complete a forcing translation of type theory into type theory we developed [START_REF] Jaber | Extending Type Theory with Forcing[END_REF]. By building up forcing layers on top of a core type theory one can introduce new logical operators or type constructors (e.g. modal logic, recursive types), defined by translation. For correctness, this translation relies on a type theory that integrates proof-irrelevance and functional extensionality. The present translation gives us the expressive power we need to compose with the forcing translation and get a fully definitional extension of type theory with forcing.

To summarize, our contributions are:

-A translation from type theory to (weak) 2-groupoids, or an internal model of type theory in 2-groupoids that has been fully checked in a universe polymorphic version of Coq. -A type-theoretic description of the necessary conditions on the interpretation of function types, including dependent product types which give rise to dependent 2-groupoid functors and dependent sums. -An example use of this theory showing that the interpretations of Church integers and the inductive definition of natural numbers are equal.

The paper is organized as follows: in section 2 we define the setting of the translation and some features of the proof assistant that will be used in the formalization. In section 3 we present the translation, which includes a formalization of weak 2-groupoids (§3.1), the interpretations of the various type constructors at hand (§3.2-3.7) and proofs that our interpretation validates all the extensionality principles we care about (§3.9). We present an example in section 4 and conclude in section 5.

The proof assistant

We will use an extension of the Coq proof assistant to formally define our translation. Vanilla features of Coq allow us to define overloaded notations and hierarchies of structures through type classes [START_REF] Sozeau | First-Class Type Classes[END_REF], and separate definitions from proofs using the Program extension [START_REF] Sozeau | Program-ing Finger Trees in Coq[END_REF], they are both documented in Coq's reference manual [START_REF]The Coq development team[END_REF]. One peculiarity of Coq's class system we use is the ability to nest classes. We use the :> A notation in a type class definition Class B as an abbreviation for defining A as a sub-class of B. This declares the projection as an instance of the subclass, hence to find an A we can lookup a B.

We use the following notations throughout. Sigma type introduction is written (t ; p) when its predicate/fibration is inferrable from the context, and projections are denoted π 1 and π 2 . The bracket notation [] is an alias for π 1 . If you are reading the colored, hypertextual version of the paper, all definitions are hyperlinked, including the ones refering to Coq's standard library. Red is used for keywords, blue for inductive types and classes, dark red for inductive constructors, and green for defined constants and lemmas.

Polymorphic Universes

To be able to typecheck our formalization, we need a stronger universe system than what vanilla Coq offers. Indeed if we are to give a uniform translation of type theory in type theory, we will have to form a translation of type universes Type and equip type constructors like Π and Σ with Type structures as well. As Type itself will contain a Type, the following situation will occur when we define the translation of sums: we should have Σ U T : Type j = Σ U T : Type j . To ensure consistency the interpretations of Types inside U , T and the outer one, they must be at different levels, with the outer one larger than the inner ones. This is however not supported in the current version of Coq, as the universe system does not allow a definition to live at different levels. Hence, there could be only one universe level assigned to the translation of any Type and they couldn't be nested, as this would result in an obvious inconsistency: the usual Type : Type inconsistency would show up as Type : Type . One solution to this problem would be to have n different interpretations of Type to handle n different levels of universes. This is clearly unsatisfactory, as this would mean also duplicating every lemma and every structure depending on the translation of types. Instead, we can extend the system with universe polymorphic definitions that are parametric on universe levels and instantiate them at different levels, just like parametric polymorphism is used to instantiate a definition at different types. This can be interpreted as (recursively) building fresh instances of the constant that can be handled by the core type checker without polymorphism.

The first author has developed a version of Coq with universe polymorphism that implements this system and can be used to check the translation (which expectedly fails with a universe inconsistency otherwise). The changes to the trusted code base of Coq are minimal, and amount to allow definitions to take a list of universes as parameters. When typechecking a constant application, we simply get the instantiated universe constraints, instead of a fixed one. This system is inspired from Harper and Pollack's [START_REF] Harper | Type checking with universes[END_REF] design for LEGO, adding a layer of inference that makes it entirely transparent to the user, much like Hindley-Milner polymorphic type inference in ML. Unlike the explicit universe polymorphism implemented in Agda, it handles typical ambiguity and cumulativity (subtyping for universes), making universe management completely implicit for the user.

This extension of Coq4 was originally made to support the formalization of Homotopy Type Theory and is able to check for example Voevodsky's proof that Univalence implies Functional Extensionality. It can also check the formalization of 2-groupoids we will present now 5 This formalization is a great benchmark for universe polymorphism as it stresses the universe system by constructing a hierarchy of types embedded in nested structures. Given a morphism, we define type classes that represents that the Hom-set of morphisms on a Type A is reflexive (which corresponds to the identity morphism), symmetric (which corresponds to the existence of an inverse morphism for every morphism) and transitive (which corresponds to morphisms composition).

Class Identity {A} (M : Hom

A) := identity : ∀ x , M x x .
Class Inverse {A} (M : Hom A) := inverse : ∀ x y:A, M x y → M y x .

Class Composition {A} (M : Hom

A) := composition : ∀ {x y z :A}, M x y → M y z → M x z .
Notation "g • f" := (composition f g) (at level 50).

In a 2-groupoid, all 2-morphisms are invertible and higher equalities are trivial. Thus the set of 2-Homs denoted by ∼ 2 corresponds to an equivalence relation.

Class Equivalence T (Eq : Hom T):= { Equivalence Identity :> Identity Eq ; Equivalence Inverse :> Inverse Eq ; Equivalence Composition :> Composition Eq }.

Class EquivalenceType (T : Type) : Type := { m2: Hom T ; equiv struct :> Equivalence m2 }.

Infix "∼ 2 " := m2 (at level 80).

We start with the definition of 2-1 categories, that is weak 2-categories where 2-Homs are isoHoms. Technically, we use it for the 2-1 category of functors and iso-natural transformations, which is not a 2-groupoid but will be a useful structure in the definitions and proofs about type equivalences.

Class 1Hom T := {m1 : Hom T }.

Infix "∼ 1 " := m1 (at level 80).

Class Weak2 1Category T := { M :> 1Hom T ; eq m :> ∀ x y, EquivalenceType (x ∼ 1 y) ; Weak2 1Category Identity :> Identity m1 ; Weak2 1Category Composition :> Composition m1; id R : ∀ x y (f : x ∼ 1 y), f • (identity x) ∼ 2 f ; id L : ∀ x y (f : x ∼ 1 y), (identity y) • f ∼ 2 f ; assoc : ∀ x y z w (f : x ∼ 1 y) (g: y ∼ 1 z) (h: z ∼ 1 w), (h • g) • f ∼ 2 h • (g • f); comp : ∀ x y z (f f ' : x ∼ 1 y) (g g' : y ∼ 1 z), f ∼ 2 f ' → g ∼ 2 g' → g • f ∼ 2 g' • f ' }. Definition Weak2 1CatType := {T :Type & Weak2 1Category T }.
Now, a weak 2-groupoid is just a 2-1 category where all 1-Homs are invertible and subject to additional compatibility laws on the inversion.

Class Weak2Groupoid T := { Weak2Groupoid Weak2 1Category :> Weak2 1Category T ; Weak2Groupoid Inverse :> Inverse m1 ; inv R : ∀ x y (f : x ∼ 1 y), f • (inverse f) ∼ 2 identity ; inv L : ∀ x y (f : x ∼ 1 y), (inverse f) • f ∼ 2 identity ; inv : ∀ x y (f f ' :x ∼ 1 y), f ∼ 2 f ' → inverse f ∼ 2 inverse f ' }. Definition Weak2GroupoidType := {T :Type & Weak2Groupoid T }.
Notation. We introduce the following notation that defines an application when the function is part of a dependent sum.

Notation "M N" := ([M] N) (at level 55).

Prop extensionality and proof irrelevance

Equality on proofs is irrelevant. What we mean by irrelevant is that the set of (iso-)Homs between any two proofs of the same proposition is a singleton.

Definition Hom irr (T : Type) : Hom T := λ , unit.

We define an instance IrrRelWeak2Groupoid T m for Weak2Groupoid T when m is an equivalence and the second equality is relevant. We will use this instance to define 2-groupoid degenerated at level 2, as for instance for Prop.

Class PropIrr (P :Prop) : Type := { prop irr groupoid := IrrRelWeak2Groupoid (m:= Hom irr P) }.

Program Definition Propositions := { P : Prop & PropIrr P }.

Equality between propositions of type Propositions is given by logical equivalence on the underlying propositions, i.e. propositional extensionality. This is a degenerate case of univalence, where the proofs that the two maps form an isomorphism is trivially true due to the above definition of equality of witnesses: they are all equal.

Definition eq prop (P Q : Propositions) :

= [P] ↔ [Q].
Program Definition Prop : Weak2GroupoidType := (Propositions ; IrrRelWeak2Groupoid (m:=eq prop)).

Functional Extensionality and natural transformations

A morphism between two 2-groupoids is a 2-functor, i.e. a function between objects of the 2-groupoids that transports higher Homs, subject to compatibility laws. Infix "-→" := Fun Type (at level 55).

Class Functor {T U : Weak2GroupoidType} (f : [T] → [U]) : Type := { map : ∀ {x y}, x ∼ 1 y → f x ∼ 1 f y ; map2 : ∀ x
Note that we only impose compatibility with the composition as compatibilities with identities and inverse Homs can be deduced from it.

Lemma map id {T U } (f : T -→ U) x : map [f] (identity x) ∼ 2 identity (f x). Lemma map inv {T U } (f : T -→ U) : ∀ x y (e : x ∼ 1 y) , map [f] (inverse e) ∼ 2 inverse (map [f] e).
Equivalence between functors is given by (iso-)natural transformations, which are actually equivalent to natural transformations for groupoids. We would like to insist here that this naturality condition in the definition of functional extensionality is crucial in a higher setting. It is usually omitted in formalizations of homotopy theory in Coq because there they only consider the 1-groupoid case where the naturality becomes trivial, see for instance [START_REF] Bauer | A Coq proof that Univalence Axioms implies Functional Extensionality[END_REF].

Definition nat trans T U (f g : T -→ U) := {α : ∀ t : [T], f t ∼ 1 g t & ∀ t t' (e : t ∼ 1 t'), (α t') • (map [f] e) ∼ 2 (map [g] e) • (α t)}.
The equivalence at the second level corresponds to a higher natural transformation but as the higher equivalences are trivial, there is no need for naturality.

Definition nat trans2 T U (f g : T -→ U) : Hom (nat trans f g) := λ α β , ∀ t : [T], α t ∼ 2 β t.
We can now equip the function space with its 2-groupoid structure. Note here that we (abusively) use the same notation for the functor type and its corresponding 2-groupoid.

Program Definition fun T U : Weak2GroupoidType := (T -→ U ;).

Infix "-→" := fun. In the definition above, is instantiated by a proof that nat trans and nat trans2 form a 2-groupoid on T -→ U .

Homotopic equivalences

The standard notion of equivalence between 2-groupoids is given by adjoint equivalences, that is a map with its adjoint, two proofs that they form a section (or counit of the adjunction) and a retraction (or unit of the adjunction). Additionally, two triangle identities between sections and retractions are required. This allows to eliminate a section against a retraction in many proofs of naturality in our formalization.

Class Equiv struct T U (f : [T -→ U]) := { adjoint : [U -→ T] ; section : nat trans (f • adjoint) (identity U) ; retraction : nat trans (identity T) (adjoint • f); triangle : ∀ t, (section) • map (retraction t) ∼ 2 identity ; triangle' : ∀ u, map (section u) • (retraction) ∼ 2 identity }. Definition Equiv A B := {f : A -→ B & Equiv struct f }.
2-groupoids and homotopic equivalences between them form a 3-groupoid. Equality of homotopic equivalences is given by equivalence of adjunctions. As we only consider 2-groupoids, the fact that 2-groupoids form a 3-groupoid is not explicit in the formalism in the sense that we miss the last level of equality. We will see in the next sections that it will cause some problems in the equality that can derived on homotopic rewriting, with repercussion in the definition of dependent products and dependent sums.

Two adjunctions are equivalent if their left adjoint are equivalent and they agree on their section and retraction (up-to the isomorphism). Note that equivalence of the right adjoint can be deduced using Equiv adjoint and so is not part of the definition.

Definition Equiv adjoint A B (f f ' : Equiv A B) : [f] ∼ 1 [f '] → adjoint [f] ∼ 1 adjoint [f '].
Record Equiv eq T U (f g : Equiv T U) :

Type := {equiv :> [f] ∼ 1 [g] ; eq section : ∀ u, section [f] u ∼ 2 section [g] • (nat comp' (Equiv adjoint equiv) equiv) u; eq retraction : ∀ t, (nat comp' equiv (Equiv adjoint equiv)) • retraction [f] t ∼ 2 retraction [g] t }.
In the definition below, is instantiated by a proof that Equiv and Equiv eq form a 2-groupoid.

Program Definition Type : Weak2GroupoidType := (Weak2GroupoidType ;).

Rewriting in homotopy type theory

When considering a dependent type F : [A -→ Type], the map function provides an homotopic equivalence between F x and F y for any x and y such that x ∼ 1 y. But the underlying map of homotopic equivalence can be use to rewrite any term of type [F x] to a term of type [F y].

Definition eq rect' (A : [Type]) (x : [

A]) (F : [A -→ Type]) (y : [A]) (e : x ∼ 1 y) (p : [F x]) : [F y] := [map [F] e] p.
In the same way, a dependent type F : [A -→ Prop] gives a way to transform any proof of [F x] to a proof of [F y].

Definition eq ind' (A : [Type]) (x : [A]) (F : [

A -→ Prop]) (y : [A]) (e : x ∼ 1 y) (p : [F x]) : [F y] := let (l ,r) := map [F] e in l p.
Using compatibility on map, we can reason on different ways of rewriting. Intuitively, any two rewriting maps with the same domain and codomain should be the same up to homotopy. But as we only consider 2-groupoids, we are missing higher-order compatibilities. Here is an example of two derivable equalities between two rewriting maps.

Definition eq rect' eq (A : The fact that we are missing higher equalities on rewriting maps will become more apparent in the next two sections.

Dependent Product

As for function, a dependent function will be interpreted as a functor. But this time, the compatibilities with higher-order morphisms can not be expressed as simple equalities, as some rewriting as to be done to make those equalities typable. We call such a functor a dependent functor.

Class

{f : ∀ t, [U t] & DependentFunctor U f }.
As it is the case for functor between 2-groupoids, the compatibilities with the identity and inverse morphism can be deduced from the compatibility with the composition. But for that, we need to reason on higher-order equalities that are not derivable in an n-groupoid setting. Of course, this problem would not appear when using ∞-groupoids. To show the validity of the approach, we have decided to prove the compatibility with the identity up-to a higher-order axiom on rewriting. This shows that in a 3-groupoid setting, the very same proof could be done, but this time without an axiom.

Axiom map2 id L : ∀ T (U : [T -→ Type]) (x y : [T]) (e:x ∼ 1 y), map2 [U] (id L e) ∼ 2 id L (map [U] e) • comp (identity (map [U] e)) (map id U) • map comp . Lemma Dmap id (T :[Type]) (U : [T -→ Type]) (f : Prod Type U) : ∀ x , Dmap [f] (identity x) ∼ 2 eq rect' id x (f x).
Equality between dependent functors is given by dependent natural transformations. Again, at level 2, the naturality condition is trivial.

Definition Dnat trans T (U :[T -→ Type]) (F G: Prod Type U) := {α : ∀ t : [T], F t ∼ 1 G t & ∀ t t' e, (α t') • (Dmap e) ∼ 2 (Dmap e) • eq rect' map U (F t) (G t) e (α t)}.
Definition Dnat trans2 T U (f g : Prod Type U) : Hom (Dnat trans f g)

:= λ α β , ∀ t : [T], α t ∼ 2 β t.
We can now equip the dependent functors with its 2-groupoid structure using Dnat trans and Dnat trans2 as underlying equalities.

Program Definition Prod T (U :[T -→ Type]) : [Type] := (Prod Type U ;).

Σ types and groupoid levels

In the interpretation of Σ types, the missing equalities coming from the truncation at level 2 of ∞-groupoids will be even more apparent. In the same way that a Σ type on a fibration F : T → Type in Coq lives in universe n + 1 when F lives in universe n, our interpretation of Σ type requires that F defines n-groupoids to get a n+1-groupoid Σ type. Of course, this problem doesn't show up with ∞-groupoids.

As for dependent products, we could solve this issue by assuming the missing compatibilities. We prefer here to define a 2-groupoid Σ type on weak 1fibrations, that is functors of type T -→ Type that send every t:T to a weak 1-groupoid, without resorting to axioms.

Definition Weak1Groupoid (T : [Type]) : Type

:= ∀ (x y : [T]) (f f ' : x ∼ 1 y), f ∼ 2 f ' . Definition Weak1Fibration (T : [Type]) : Type := { F : [T -→ Type] & ∀ t, Weak1Groupoid (F t)}.
As explained above, we need to restrict the construction of Σ types to Weak1Fibration.

Definition sum type (T : [Type]) (F : Weak1Fibration

T) := {t : [T] & [[F] t]}.
1-equality between dependant pairs is given by 1-equality on the first and second projections, with a rewriting/transport on one second projection by the first equality. In the same way, 2-equality between 1-equalities is given by projections and rewriting. The proof that we actually have a 2-groupoid makes use of the fact that ∼ 2 on F t is always trivial to complete proofs that would have been derivable at level 3 only.

The translation process

We now present a translation that internalizes homotopy type theory into the Calculus of Constructions (CC) using our 2-groupoid interpretation.

-Type ≡ Type -Prop ≡ Prop -T → U ≡ T -→ U -∀ t : T , U ≡ Prod (λ t, U ;) -λ t : T , M ≡ (λ t : T , M ;) -x :A ≡ x : [T] -M N ≡ M N -{t : T , U } ≡ Sum (λ t, U ;) -π i M ≡ π i M
The translation is conservative with respect to CC because it conserves all the computation content and only adds missing terms for compatibilities and naturalities.

Note that in the translation of products, functions and sums, the missing terms for compatibilities and naturalities are treated as obligations. It is still an open problem to know whether every such obligations can be automatically computed from the original term before translation. The connection between ∞-groupoids and homotopy type theory guarantees that such proofs exist but does not say much about their shape.

The idea is to use an encoding of λ-terms with one free variable as endofunctors to define the type of Church naturals. In this encoding, the variable is seen as the identity functor.

Definition Var := identity Type : [Type -→ Type].

Then, the functor cnatT corresponding to the term λ X , (X → X) → X → X can be defined directly. Let us now define the 2-groupoid of inductive natural numbers. It has natural numbers as objects, the Leibniz equality (eq of Coq) for ∼ 1 and is irrelevant on ∼ 2 . This corresponds to the fact that uniqueness of (Leibniz) identity proofs for nat holds in CIC, as for any decidable type.

Program Definition nat : [Type] := (nat ; IrrRelWeak2Groupoid (m := eq)).

The zero of nat is still the zero 0 of nat, but we need to promote the successor constructor S to a functor succ that contains the (trivial) proofs of compatibility with Leibniz equality.

Program Definition succ : [nat -→ nat] := (λ n , S n;).

We now turn into the definition of the map from inductive naturals to Church naturals using an iterator. This iterator takes an integer k and applies the first argument (the successor function) k times to the second argument (the zero).

Fixpoint iter k (X : [Type]) (s : [X -→ X]) (z : [X]) : [X] := match k with | 0 ⇒ z | S p ⇒ s (iter p X s z) end.
Again, we also need a proof that this iterator is functorial.

Program Definition nat to cnat : [nat -→ cnat] := (λ k , (λ X , iter k X ;);).

The definition of the functor in the other direction is more direct. It just consists in applying nat, succ and 0 to a (parametric) Church integer to get the natural number that it computes.

Program Definition cnat to nat : [cnat -→ nat] := (λ cn, cn nat succ 0 ;).

In that case, the proof of functoriality is easy as it lives in nat which is a 1-groupoid with the Leibniz equality.

Proving functoriality and naturality. In the rest of this example, we have to deal with very large proofs of functoriality and naturality. Those proofs requires a lot of rewriting which could be done with a generalization of the setoid rewrite tactic.

This generalized tactic has not been defined for the moment, so we have posed functoriality and naturality as axioms to discharge the proof of the remaining definitions. Again, this is not problematic as the model guarantees the existence of such proofs, but it is nevertheless a bit unsatisfactory and we hope to solve this issue soon.

The axioms are only used in the definition of the parametricity axiom (which involves many quantifications), and the definition Church exists which uses the parametricity axiom.

Using those axioms, we can define a ∀' notation that takes a function λ (x : T), U and returns a dependent type by using the axiom that every dependent function is a dependent functor.

Notation "'∀'' (x : T) , U" := (Prod' T (λ x ,U)) (at level 200, x at level 99).

To show that nat ∼ 1 cnat, it now remains to prove that cnat to nat and nat to cnat define an isomorphism. But without any parametricity argument, there is no hope to show that all inhabitants of cnat behave uniformly with respect to the quantified type X .

Note that the requirement that any Church integer has to be a dependent functor guarantees that a Church integer behaves informally with respect to isomorphic types, but not with respect to any two types.

Axiom cnat parametricity :

[∀' (cn : cnat), ∀' (X : Type), ∀' (X' : Type), ∀' (R : X -→ X' -→ Type), ∀' (H : X -→ X), ∀' (H 0 : X' -→ X'), (∀' (H 1 : X), ∀' (H 2 : X'

), R H 1 H 2 -→ R (H H 1) (H 0 H 2)) -→ (∀' (H 1 : X), ∀' (H 2 : X'), R H 1 H 2 -→ R ((cn X) H H 1) ((cn X') H 0 H 2))].
Using parametricity, we can prove that any Church integer cn is actually equal to the image of some k through nat to cnat. In the proof, k is actually instantiated by cnat to nat cn. Using these two lemmas, it is not difficult to show that we have a section and a retraction, forming an homotopic equivalence.

Program Definition

Program Instance nat to cnat eq : Equiv struct nat to cnat := {adjoint := cnat to nat}.

Definition ι : nat ∼ 1 cnat := (nat to cnat ; nat to cnat eq).

The witness of equality ι can be used to import directly, for Church naturals, all definitions and lemmas valid for inductive naturals.

For instance, we show how to define the addition on Church naturals and prove its commutativity using map [ι] and the proof of commutativity on nat. Infix "+c" := cnat plus (at level 50).

Definition cnat plus comm (cn cn' : [cnat]) : cn +c cn' ∼ 1 cn' +c cn := map [[ι]] (plus comm).

Conclusion and future work

We have presented a 2-groupoid interpretation of type theory in a version of Coq supporting polymorphic universes. In the course of the formalization we uncovered necessary naturality and truncation conditions along with a definition of dependent functor that are required in that setting. Finally we saw how to build on this construction to transport definitions and functions between isomorphic types: the rewriting involved there has the actual computational content of applying the isomorphism wherever needed. To really complete the formalization, we need better support for automatic rewriting with computational relations, to prove higher-dimensional proofs. This is a first step to be able to automatically discharge the naturality conditions that arise during translation. Having a direct translation would be a convenient laboratory to test new principles coming from homotopy type theory. For instance, a complete definition of inductives in that setting is still an open question and being able to translate and type-check the new definitions will be a nice way to certify their correction.

Another direct perspective is to combine this translation with our Forcing translation as it requires proof irrelevance and functional extensionality which are not natively available in Coq.

3 The translation 3 . 1

 31 Definition of weak-2-groupoids We formalize weak-2-groupoids using type classes. Contrarily to what is done in the usual Setoid translation, the basic notion of morphism is a relation in Type: Definition Hom (A : Type) := A → A → Type.

 y (e e' : x ∼ 1 y), e ∼ 2 e' → map e ∼ 2 map e' ; map comp : ∀ x y z (e:x ∼ 1 y) (e' :y ∼ 1 z), map (e' • e) ∼ 2 map e' • map e }. Definition Fun Type (T U : Weak2GroupoidType) := {f : [T] → [U] & Functor f }.

 [Type]) (x : [A]) (F : [A -→ Type]) (y : [A]) (e e' : x ∼ 1 y) (H : e ∼ 2 e') (p : [F x]) : eq rect' x F y e p ∼ 1 eq rect' x F y e' p := (equiv (map2 [F] H)) p. Definition eq rect' map (A : [Type]) (x : [A]) (F : [A -→ Type]) (p q : [F x]) (y : [A]) (e : x ∼ 1 y) (H : p ∼ 1 q) : eq rect' x F y e p ∼ 1 eq rect' x F y e q := map [[map [F] e]] H . Definition eq rect' comp (A : [Type]) (x y z : [A]) (F : [A -→ Type]) (e : x ∼ 1 y) (e' : y ∼ 1 z) (p : [F x]) : eq rect' x F z (e' • e) p ∼ 1 (eq rect' y F z e' (eq rect' x F y e p)) := (equiv (map comp [F] e e')) p.

 DependentFunctor (T :[Type]) (U : [T -→ Type]) (f : ∀ t, [U t]) : Type := { Dmap : ∀ {x y} (e: x ∼ 1 y), eq rect' U e (f x) ∼ 1 f y ; Dmap2 : ∀ x y (e e' : x ∼ 1 y) (H : e ∼ 2 e'), Dmap e ∼ 2 Dmap e' • eq rect' eq x U y e e' H (f x) ; Dmap comp : ∀ x y z (e : x ∼ 1 y) (e' : y ∼ 1 z), Dmap (e' • e) • inverse (eq rect' comp U e e') ∼ 2 Dmap e' • eq rect' map U (Dmap e) }. Definition Prod Type (T :[Type]) (U :[T -→ Type]) :=

Definition

 sum eq (T : [Type]) (F : Weak1Fibration T) := λ (m n : sum type F), {P : [m] ∼ 1 [n] & eq rect' [F] P (π 2 m) ∼ 1 π 2 n}.

Definition

 sum eq2 T (F :Weak1Fibration T) (M N : sum type F) : Hom (sum eq M N) := λ e e' , {P : [e] ∼ 2 [e'] & π 2 e ∼ 2 π 2 e' • eq rect' eq P (π 2 M)}. Program Definition Sum T (F :Weak1Fibration T) : [Type] := (sum type F ;).

 Definition cnatT : [Type -→ Type] := (Var Var) Var Var. As all our constructions are functorial, there is no need to prove extra compatibilities to define the type of Church naturals. Program Definition cnat := Prod cnatT : [Type].

 Church exists :∀ (cn : [cnat]), {k :[nat] & cn ∼ 1 nat to cnat k }.

Definition

 cnat plus (cn cn' : [cnat]) := [ι] ((adjoint [ι] cn) + (adjoint [ι] cn')).

Available at http://www.pps.univ-paris-diderot.fr/~sozeau/repos/CoqUnivs

Available at http://tabareau.fr/univalence_for_free.

Univalence axiom and others as lemmas

As a sanity check, we now prove that the equality we defined on propositions, Prop, functions, dependent pairs and Type behave as expected.

First, we state that equality on proofs is irrelevant and equality on propositions is given by ↔.

Lemma prop extensional (P

Lemma proof irrelevant (P : [Prop]) (p q : [P]) : p ∼ 1 q.

We also have functional extensionality, for the dependent and non-dependent function spaces, at the price of a naturality condition (see nat trans).

To prove equality on dependent pairs, it is enough to prove equality of the corresponding projections.

Finally, we have the univalence principle on types.

An example using univalence

To illustrate the use of univalence in our equality, we will define the type ∀ X : Type, (X → X) → X → X of Church naturals and show that it is equal to the inductive type nat of inductive Coq naturals. Showing that those two types are equal amounts to constructing a homotopic equivalence between them. The proof that we actually have an equivalence relies on the fact that every inhabitant of cnat is parametric with respect to the variable X . This principle is not provable in Coq and will be posed as an axiom in our development. However it is validated meta-theoretically by a parametricity result on (a slight refinement of) CIC in Keller and Lasson's work [START_REF] Keller | Parametricity in an Impredicative Sort[END_REF].

The first problem to define the type of Church integers is to derive the (nested) proofs of functoriality of the function λ X , (X → X) → X → X . To do that, we show that the arrow (-→) is functorial. Based on this, we can construct an other arrow () on endofunctors on Type.

Program Definition endo fun (f g : [Type -→ Type]) : [Type -→ Type] := (λ X , (f X) -→ (g X);).

Infix " " := endo fun (at level 80, right associativity).

This arrow expects two endofunctors on Type and pre-composes them with (-→) to get a new endofunctor on Type.