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A highly efficient user-defined finite element for load distribution analysis of large-

scale bolted composite structures 

 
P.J. Gray, C.T. McCarthy 1 

Materials and Surface Science Institute, Department of Mechanical and Aeronautical 

Engineering, University of Limerick, Ireland 

 

Abstract 

This paper presents the development of a highly efficient user-defined finite element for 

modelling the bolt-load distribution in large-scale composite structures. The method is a 

combined analytical/numerical approach and is capable of representing the full non-linear 

load-displacement behaviour of bolted composite joints both up to, and including, joint 

failure. In the elastic range, the method is generic and is a numerical extension of a closed-

form method capable of modelling the load distribution in single-column joints. A semi-

empirical approach is used to model failure initiation and energy absorption in the joint and 

this has been successfully applied in models of single-bolt, single-lap joints. In terms of 

large-scale applications, the method is validated against an experimental study of complex 

load distributions in multi-row, multi-column joints. The method is robust, accurate and 

highly efficient, thus demonstrating its potential as a time/cost saving design tool for the 

aerospace industry and indeed other industries utilising bolted composite structures. 
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1 Introduction 

The efficiency of bolted joints is an essential consideration in the design of lightweight 

composite aircraft structures. Compared to their metal counterparts, carbon-fibre/epoxy 

joints experience a minimal amount of plastic stress relief around the hole and often fail 

catastrophically upon excessive loading. Many primary and secondary structures contain 

hundreds or potentially thousands of bolts. These structures often experience an uneven 

load distribution, thus compounding the complexity of the design problem. As a result, the 

overall approach to design tends to be over-conservative, resulting in the need for improved 

design methods where the emphasis is on reduced time and cost. This issue will be 

addressed in this paper, where a simplified numerical design tool has been developed for 

large-scale structural assemblies. The method will also be generic, i.e. it will have minimal 

reliance on experimental/numerical methods of calibration, thus making extensive design 

studies on bolted composite structures possible.  

 

Joint design practices have been proposed in the past ranging from experimental testing [1-

3], detailed three-dimensional finite element (3-D FE) analysis [4-10], analytical methods 

[11-15], boundary element formulations [16], boundary collocation methods [17] and semi-

empirical approaches [18, 19].  Simplified FE approaches have been used to represent bolts 

and laminates [20-22]. For example, Ekh and Schön [20] used linear beam elements to 

model both the bolts and the laminates, while connector elements were used to capture bolt-

clearance and bolt torque effects. The method was highly efficient but was limited to the 

modelling of single-column joints. Both Friberg [23, 24] and Gray and McCarthy [25] used 

beam elements with simplified contact models to model the bolt, while shell elements were 

used to represent the laminates. Both approaches required areas of high mesh refinement 

around the bolt-hole.  In order to incorporate non-linear material behaviour, both models 

would suffer locally (i.e. close to the bolt-hole) from reduced increment sizes and excessive 
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equilibrium iterations in implicit versions of FE codes. In the authors’ opinion, the problem 

of mesh dependency may be resolved by incorporating user-defined joint behaviour in 

global FE meshes. This involves removing local details from the mesh, such as bolts, 

washers, holes and contact models and replacing them with non-linear ‘beam-type’ 

elements with three-dimensional capability. This philosophy is only briefly addressed in the 

literature by McCarthy et al. [26], Gunnion et al. [27] and Pearce et al. [28]. In [27], rivets 

were represented by mesh-independent Point Link ‘PLINK’ elements in the PAM/CRASH 

FE code and simplified rivet failure laws were introduced for both in-plane shear (bearing) 

and out-of-plane tension (pull-through) loading on the bolt. Experimental tests were used to 

define the elastic stiffness and strength of the joint. This method of representing the 

fastener performed very well when the overall load-displacement behaviour of the model 

was compared to an experimental result. However, the load distribution has yet to be 

captured using this method, which is an important form of validation for global analysis 

tools. In addition, the method has yet to be extended to model non-linear elastic behaviour 

due to bolt-hole clearance and friction effects in the joint. And finally, the method was not 

generic, i.e. it relied entirely on experimental methods of calibration. 

 

In this paper, a mesh-independent approach will be developed and validated, where a single 

‘user-defined finite element’ will be used to represent the mechanical behaviour of the joint. 

The method will be generic in the elastic range, while a semi-empirical approach will be 

used to model non-linear material behaviour in the joint. The method has been implemented 

in the implicit solver of the commercially available FE code ABAQUS. The main aim of 

this paper is to predict the load distribution (i.e. bolt-hole contact loads and contact angles) 

in multi-row, multi-column joints to a good degree of accuracy, whilst maintaining a high 

level of computational efficiency.  
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2 Problem Description 

2.1 Joint geometries and materials 

The single-bolt, single-lap joint, shown in Fig.1(a), was used for the initial development of 

the user-defined finite element as extensive experimental and numerical results for this joint 

configuration were available from the literature [1, 4-6]. Following this study, the 

capability of the method to model complex load distributions will be assessed through a 

global FE analysis of a twenty-bolt joint (see Fig.1(b)) in both single-lap and double-lap 

joint configurations. The presence of a hole at the centre of the structure gives rise to a 

more complex load distribution i.e. increased presence of bolt-load components in both in-

plane (i.e. X and Y) directions. Both joint configurations in Fig.1(a) and Fig.1(b) were used 

as benchmark studies in the EU Framework 5 project BOJCAS (Bolted Joints in Composite 

Aircraft Structures) [29]. The joints were fabricated using a carbon fibre/epoxy composite 

material manufactured by Hexcel composites, with designation HTA/6376. In the single-

bolt, single-lap joint, both laminates had a quasi-isotropic lay-up with stacking sequence 

[45/0/-45/90]5s. Each ply had a thickness of 0.13 mm, yielding a total laminate thickness of 

5.2 mm. In the twenty-bolt case, the 3.12 mm and 6.24 mm thickness laminates had 

stacking sequences of [±45/0/90]3s and [±45/0/90]6s, respectively. Unidirectional lamina 

material properties are listed in Table 1. The variables Eii, Gij and υij  refer to the modulus, 

shear modulus and Poisson’s ratio in the principle material directions i, j (i ,j = 1, 2, 3), 

respectively. In the user-defined finite element, the material was modelled using 

homogeneous material properties, which were obtained by McCarthy et al. [4] and are also 

listed in Table 1. The variables Enn, Gnm and υnm refer to the modulus, shear modulus and 

Poisson’s ratio in the global laminate directions n, m (n, m = x, y, z), respectively. The 6 

mm and 8 mm diameter bolts were made from aerospace grade Titanium alloy and the 

material properties (where E and υ, refer to the Young’s Modulus and Poisson’s ratio, 

respectively) are again listed in Table 1. 
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2.2 Joint behaviour to be replicated by the user-defined finite element 

The mechanical behaviour of the element is governed by the joint’s load-displacement 

response and typical characteristics are illustrated in Fig.2(a). This curve is taken from an 

actual single-bolt, single-lap joint experiment carried out by McCarthy et al. [1]. In Fig.2(a), 

the area designated ‘Elastic Region’ represents the elastic behaviour of the joint. The initial 

quasi-linear region, dominated mainly by the shear stiffness of the laminate (KSHEAR), is due 

to static friction forces at the shear plane of the joint. With increased joint load, these static 

friction forces are overcome and the laminates begin to slip relative to each other. During 

this phase of loading, the large bolt-hole clearance (c) is gradually taken up until the bolt 

shank begins to contact the hole. When significant contact is established, the bolt starts to 

transmit load and the bolt stiffness (KBOLT) is taken up. A more detailed description of bolt-

hole clearance and friction effects is provided in [15]. 

 

As shown in Fig.2(a), the elastic displacement of the joint is denoted by uELASTIC and this 

quantity may be determined using a closed form approach that was developed by the 

authors in a previous publication [15]. To model failure initiation and energy absorption, 

designated as the ‘Damage Region’ in Fig.2(a), a semi-empirical approach is proposed. The 

point at which damage is said to initiate is the first significant failure load, PSF, i.e. the point 

at which an abrupt change in joint stiffness occurs. For a given control case, either an 

experiment or a detailed numerical analysis can be used to plot the evolution of bearing 

stresses across the damage region, which can thus be used to equate failure loads (from 

Point A to Point B in Fig.2(a)) across a variety of joint thicknesses and hole diameters. The 

bearing stresses from the control case (and hence the joint strength and damage evolution 

stresses) may be plotted using the standard formula for bearing stress [1]: 

controlcontrol

control
b tD

P=σ                    (1) 
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where Pcontrol is the load, tcontrol is the laminate thickness and Dcontrol is the bolt diameter of 

the control case. For any joint of the same material and baseline stacking sequence (for 

example [45/0/-45/90]is where i can be any positive integer), loads in the damage region 

may be determined by: 

FRICb PtDP += σ                    (2) 

The first term of Eq.2 is the expression for bearing load (where σb is found using the control 

case), while the second term accounts for an offset in failure load due to friction forces in 

the joint  (PFRIC). The value for PFRIC can be predicted analytically [15]. The displacements 

to failure (uDAMAGE) may be solved using cubic spline interpolation [30] of failure loads 

from Point A to B. In this method, the damage region is split into m evenly spaced sub-

intervals between uSF and uFINAL (i.e. the displacement at catastrophic failure) as shown in 

Fig.2(b). For convenience, the curve was broken up into five distinct regions (m = 5). The 

joint stiffness at the first and last intervals ( SF
JOINT_(0)K and F

JOINT_(5)K , respectively) are already 

known. The stiffness in the remaining intervals (KJOINT_(N), for N = 1, …., m - 1) can be 

found by solving a system of linear spline equations of the type: 

1,...,1

)(
3

4 )1_()1_()1_()_()1_(

−=

−=++ −++−

mN

PP
h

KKK NNNJOINTNJOINTNJOINT              (3) 

where h is the size of the displacement interval and P_(N) is the load at the Nth chosen point. 

On every interval, P_(N) ≤ P ≤ P_(N+1), the failure loads, (i)
DAMAGEP (where i is the current load 

increment),  are solved using a cubic polynomial of the form: 

11
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The coefficients aN0, aN1, aN2 and aN3 can be found using the Taylor series [30]: 
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The resulting cubic spline from the control case is illustrated by the dashed line in Fig.2(b). 

The total joint displacement (u) in load increment, i, is found using the summation of 

uELASTIC ,which is found using the analytical model from [15], and (i)
DAMAGEu . 

2.3 Capabilities of the model 

When considering failure initiation and energy absorption, the model is not fully generic. 

However, the model is highly efficient and is applicable to most joint design variables. In 

design cases where changes in baseline stacking sequence and fastener type are necessary, 

experiments or 3-D FE models must be used to calibrate failure initiation and energy 

absorption. Apart from these two variables, the model can account for changes in joint 

thickness, hole diameter, bolt-hole clearance and bolt torque. Laminate width and end-

distance can also be captured, provided the joint is designed to fail in bearing. In the model, 

it is assumed that the laminate thickness, hole diameter and bolt-hole clearance have a 

negligible effect on the bearing strength of the joint. Kelly and Hallström [31] found that 

laminate thickness did not have a significant effect on the bearing strength of torqued (5 

Nm) laminates, but a slight degree of variation existed when varying clearance cases were 

examined. McCarthy et al. [1] found that the presence of bolt-hole clearance only 

marginally affects the bearing strength of the joint and so, the assumptions made herein 

seemed reasonable.  
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3 Model Development 

3.1 Element behaviour 

The concept of the user-defined finite element is illustrated in Fig.3(a). The overall load-

displacement behaviour of the control volume (i.e. the material illustrated in Fig.1(a) and 

Fig.3(a))) is formulated analytically [15] and is governed by: 

1. Shear loading in the X-direction  

2. Shear loading in the Y-direction 

3. Out-of-plane tension in the Z-direction 

The control volume consists of the bolt, head, nut, hole, washers and joint foundation 

(composite material in the vicinity of the bolt-hole). In single-lap joints, this detailed region 

is replaced by a user-defined finite element, as shown in Fig.3(a), where the degrees of 

freedom (D1-D10) are employed to model the full three-dimensional behaviour of the 

control volume. On Node 1, degrees of freedom D1 and D2 represent translation of the 

joint in the X and Y directions, respectively, while D3 represents loading in the Z-direction. 

D4 and D5 represent rotations that are induced by secondary bending in the joint. The same 

reasoning is used for degrees of freedom D6 through D10 on Node 2. The user-defined 

element capability in ABAQUS was chosen due to its potential for efficient solution and its 

flexibility. For example, an extra node with two degrees of freedom can be placed along the 

length of the element to model double-lap joints, as shown in Fig.3(b).  

 

The behaviour of the element is coded in the user-defined finite element subroutine UEL. 

In each increment and iteration, ABAQUS/Implicit provides values of nodal variables such 

as coordinates, displacements, incremental displacements, velocities and accelerations. The 

element’s main contribution to the model is to provide prescribed nodal forces/moments for 

given displacements. In UEL, the relative displacement between Nodes 1 and 2 (for the 

single-lap case in Fig.3(a)) is recorded and a nodal force is interpolated from the element’s 
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load-displacement curve. These nodal forces serve as internal reaction forces and this 

concept is illustrated in Fig.4. The typical loading regime of a single-bolt, single-lap joint is 

illustrated in Fig.4(a) where the external load contribution in a 3-D FE model is shown 

together with a simplified global model. The variables PX, MY, and PZ represent the applied 

load in the global X-direction, the bending moment due to secondary bending and the 

reaction force due to bending at the gripped end of the laminates, respectively. The moment 

term (MY) is simply equal to PX multiplied by the joint eccentricity (e) and is used to 

replicate the ‘tipping’ action of the bolt under an eccentric load path. The IMY term 

represents the resulting reaction moment at the gripped end of the specimen. The internal 

reaction forces in the user-defined element (to enforce equilibrium in the joint) are 

illustrated in Fig.4(b), where IPX represents the internal reaction force due to PX  and IPZ 

represents the internal reaction force due to fastener pull-through. MY also serves as a 

coupling mechanism between shear loads (in this case IPX) and out-of-plane tension loads 

(IPZ), i.e. secondary bending induces tension in the bolt. In its current format, a detailed 3-D 

FE model has been used to characterise the load-displacement behaviour of the joint in the 

Z-direction. However, a highly efficient, spring-based formulation is currently under 

development. 

 

The loading regime of a double-lap case is shown in Fig.4(c). In this case, half of the 

applied joint load (PX / 2) is experienced by the upper and lower splice plates. It is also 

assumed that a small bending moment (MY / 2) is generated due to bending of the fastener. 

However, this contribution is minimal in comparison to the single-lap case and does not 

produce significant bolt tension loads and so, PZ has been omitted here. To enforce 

equilibrium in the double-lap system, the internal forces induced by the user-defined 

element are illustrated in Fig.4(d). 
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3.2 Convergence control 

As illustrated in Fig.2(a), the load-displacement behaviour of the joint is non-linear. 

ABAQUS/Implicit solves non-linear problems using the Newton-Raphson method [32]. In 

any non-linear analysis, multiple equilibrium iterations are often necessary to achieve 

convergence. The efficiency and stability of the user-defined element can be significantly 

improved with an accurate definition of the tangent stiffness (KN) in each displacement 

increment. Since PN (and hence IN) are already known for a given displacement (from the 

joint’s load-displacement curve), an accurate definition of KN is possible. The load from the 

previous increment (N -1) can be stored as a solution dependant state variable (designated 

SDV in ABAQUS [32]) and a reasonable estimate of the tangent stiffness is found from: 

u

I

uu

II
K

NN

NN
N Δ

Δ=
−
−

=
−

−

1

1                   (6) 

This method of defining KN is accurate (regardless of increment size) and was found to 

improve convergence considerably, thus resulting in a much more efficient solution.  

 

Eq.6 represents the tangent stiffness in one dimension, but since the problems in Fig.3 are 

three-dimensional, KN  must be written as: 

a
i

b
kiakb IuK ΔΔ =                    (7) 

where i and k represent degrees of freedom, and a and b represent the node number. In the 

single-lap user-defined element in Fig.3(a), there are two nodes with five degrees of 

freedom per node. Therefore Kiakb is a 10 X 10 tangent stiffness matrix in the single-lap 

case and specific terms of Kiakb are calculated for the current increment. For example, if a 

positive displacement is applied to Node 2 in the X-direction only ( 2
6u ), the tangent 

stiffness term K6262 may be written as: 

DirXu

I
K

−

=
Δ
Δ

6262                   (8) 
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where the ΔI and the Δu terms are found using the method outlined in Fig.5 and applying it 

to the load-displacement curve in the X-direction. Note that the Δu term is passed in for 

information by UEL and is equal to the relative incremental displacement between Nodes 1 

and 2. K6262 effectively represents the tangent stiffness of the joint due to shear loading in 

the X-direction for the current increment N. Similarly, the terms K1162, K1111 and K6211 are 

written as: 

DirXu

I
KKK

−

===
Δ
Δ

621111111162                  (9) 

All other terms in the stiffness matrix would be set to zero and Kiakb would take the 

following form: 
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           (10) 

In order to capture multi-axial loads applied to the joint, a similar procedure is followed for 

loads in the global Y and Z directions and other terms of Kiakb are populated.  

3.3 Boundary conditions and loading 

A plot of the global mesh for the single-bolt, single-lap joint is illustrated in Fig.3(c), in 

which details such as boundary conditions and coupling constraints are included. To 

represent the gripped end of the joint, both translational degrees of freedom (uX, uY and uZ) 

and rotational degrees of freedom (θX, θY, θZ) at the leftmost end of the specimen are 

constrained. At the rightmost end, a displacement is prescribed in the X-direction to induce 

load into the joint, while the remaining degrees of freedom (uY, uZ, θX, θY, θZ) are 
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constrained. The forces and moments are transmitted from the user-defined element to the 

global mesh using distributed coupling constraints as shown in Fig.3(c). The size of the 

coupling region is set equal to the size of the joint control volume shown in Fig.3(a) or 

Fig.3(b). This coupling technique also mitigates mesh sensitivity effects in the model. To 

complete the model, a surface-to-surface type contact definition was used between the 

upper and lower plates. The friction coefficient was set to zero in this contact definition, as 

friction in the joint region is accounted for in the closed-form model from [15]. Given the 

relative coarseness of the mesh, it was found that this contact model did not significantly 

affect computational efficiency. The elements that were used in the global model (in 

Fig.3(c)) were layered shell elements with reduced integration (designated S4R in 

ABAQUS [32]). In order to ensure that the full mechanical behaviour of the joint was 

captured, a simple continuum damage model developed by Lapczyk and Hurtado [33] was 

used in the global mesh. Material strength values for the global mesh are listed in Table 1 

(where T
iiS  and C

iiS refer to strength in the principle material directions i (i = 1, 2) for tensile 

(T) and compressive loading (C), respectively). The variables ijS refer to shear strengths in 

the principle material directions i, j (i, j = 1, 2). However, it was found that, in all cases, 

failure of the joint was dictated entirely by the user-defined finite element. 

4 Model Validation 

The user-defined finite element has been validated against experimental results from the 

single-bolt, single-lap joint in Fig.1(a) and the effect of varying bolt-hole clearance and bolt 

torque from [1] was examined. Both neat-fit (10 μm) and large (240 μm) bolt-hole 

clearances were considered and 7.2 MPa (finger-tight torque [6]) and 227 MPa (high torque 

[6]) pre-stresses were prescribed to the bolt. The load-displacement behaviour of all 

clearance and torque cases examined herein are illustrated in Fig.6(a) to Fig.6(d). The 

effects of bolt-hole clearance and bolt torque are captured quite well by the model. In 
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Fig.6(b), a delay in load take-up approximately equal to the bolt-hole clearance of 240 μm 

has been captured by the model. Comparing Fig.6(d) to Fig.6(b), this delay in load take-up 

occurs at a higher load level due to friction effects early in the loading history. In Fig.6(d), 

a comparably higher bolt pre-stress of 227 MPa was used. As discussed in [15], high bolt 

pre-stresses induce sticking between the laminates earlier in the loading history, and in this 

case, the transition from sticking to slipping occurs at approximately 5kN joint load. The 

presence of this critical friction force (PFRIC) is less obvious when comparing the low 10 

μm clearance cases of Fig.6(a) and Fig.6(c). Good agreement was obtained between the 

global model and the experiments [1] in terms of joint strength and energy absorption. 

Comparing Fig.6(a) to Fig.6(c), the bearing strength of the joint is exceeded at 

approximately 21 kN in the finger-tight case, while in the highly torqued joint, it occurs at 

approximately 26 kN.  This offset in joint strength is primarily due to the critical friction 

force, PFRIC.  The results in Fig.6 demonstrate that the user-defined finite element can be 

used to model any type of non-linear behaviour in joints, ranging from bolt-hole clearance 

and friction forces early in the loading history to joint failure and energy absorption in the 

latter phases of loading. 

5 Load distribution study 

The capability of the element to model complex load distributions in multi-row, multi-

column joints was also investigated. An elastic analysis of the twenty-bolt benchmark in 

Fig.1(b) was conducted for this purpose. To validate the model, strain distribution results 

from experimental work carried out by an industrial partner in the BOJCAS project [24] has 

been used as a basis for comparison. It should be noted that due to large deformations in the 

problem, large-strain theory (designated NLGEOM in ABAQUS [32]) was used to solve 

the problem. In addition, 10 μm bolt-hole clearances and 7.2 MPa bolt pre-stresses were 

applied to the user-defined element. A FE mesh of the single-lap global model is shown in 

Fig.7(a) together with a plot of the shear strain distribution in the +45º plies at the shear 
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plane of the joint. The presence of the hole and the user-defined elements results in a non-

uniform distribution of shear strain in the structure. Comparing Fig.7(a) to Fig.7(b) it can 

be seen that the double-lap joint tends to undergo much less out-of-plane deformation than 

the single-lap case. In order to compare the strain distribution in the global FE mesh to 

experiments and other numerical results, a numbering convention for the strain gauges is 

shown in Fig.7(c). The fastener numbering system is illustrated in Fig.1(b) and Fig.9. In 

addition to fully assembled models, the change in strain response due to the omission of 

certain fasteners around the structure has also been investigated. The joint configurations 

analysed are presented in Table 2 and the results from this study are illustrated in Fig.8. The 

single-lap joints were loaded to 250 kN, while a compressive load of 200kN was applied to 

the double-lap joint (as shown in Fig.7(b)). 

 

Remarkable agreement was achieved between the global model, the experiment and 

Friberg’s Method [24] as shown in Fig.8. Given that bolt-holes are not modelled discretely 

by the user-defined element, the accuracy of the global model is surprising. The close 

proximity of the strain gauges to each bolt-hole would suggest that the user-defined 

element would suffer some form of inaccuracy. However, Fig.8 clearly illustrates that this 

problem does not exist. Looking more closely at the result from Joint A, a peak in strain is 

visible at Bolt 13 in Gauges 9 and 10, suggesting that a significant portion of the by-pass 

load (around the hole at the centre of the structure) occurs at this location. In Joint B, Bolt 

13 was removed and again good agreement was obtained between the experiment and the 

two analysis methods. In Joint C, Bolts 19 and 20 were removed and this seems to result in 

a shift in the peak strain towards Gauges 5 and 6 at Bolt 19. In Joint D, good correlation 

was found between the global model and Friberg’s method [24]. However, results from 

both numerical models were found to deviate significantly from experimental results.  In 
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general, the removal of bolts seems to result in a shift in the strain distribution and in order 

to understand this behaviour, a load distribution analysis of the joints was carried out. 

 

The results from the load distribution analysis are illustrated in Fig.9, where the 

percentages of the total joint load carried by each fastener in the structure are presented 

together with bolt-hole contact angles. Comparison with load distributions from 

experimental results was not possible as results from tests involving instrumented fasteners 

were not available. However, load distribution results from the fully validated numerical 

approach of Friberg [23,24] were available and have thus been used for the purposes of 

comparison in this paper. Regarding Joint A, excellent agreement between the global model 

and Friberg’s Method [24] was obtained in terms of the load sharing capacity of each 

individual fastener. A degree of fluctuation in the percentage of load carried is seen 

between Bolts 6 and 10. It should be noted that the fasteners located quite close to the hole 

at the centre of the structure (such as Bolts 7, 8, 10, 11, 13 and 14) experience relatively 

low bolt-loads. In terms of the bolt-load angles (which were computed from components of 

bolt-load acting in the X and Y directions at each fastener location), good agreement was 

also obtained between the global model and Friberg’s model [24]. It can be clearly seen that 

bolts located away from the hole at the centre of the structure experience high contact 

angles, while bolts located on the X-axis of symmetry experience very low contact angles.  

 

In Joint B, the presence of a missing fastener at location 13 results in a notable change in 

the load distribution. Fasteners located in the lower half of the structure take a higher 

portion of the overall joint load and experience slightly higher contact angles. This effect 

was captured quite well by both the global model and Friberg’s Method. In Joint C, missing 

bolts at locations 19 and 20 result in a redistribution of load to Bolts 16, 17 and 18 and 

again good agreement was obtained between both methods of load distribution analysis. 
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This would suggest that the removal of bolts results in a localised effect, where bolts which 

are located close to open holes carry more load. The results from Joint D demonstrate that 

the user-defined element can also be successfully applied to large-scale double-lap joints. 

6 Computational efficiency 

Simplified global models of single-bolt, single-lap joints displayed excellent CPU times as 

shown in Table 3. Each analysis was run on a single processor in a dual-core, 3.5GB RAM 

personal computer (Intel® Core™ 2 CPU, 2.13GHz). For example, the CPU run-time for 

the 240μm clearance, 16 Nm joint was 43 seconds. Depending on the complexity of the 

damage model and solution scheme used, 3-D FE simulations of single-bolt joints can take 

hours or days to run. This is further hampered by time consuming friction models, which 

also require extensive iteration to achieve system equilibrium. It was also noted during 

analysis that the solution was highly stable, suggesting that the convergence control 

(tangent stiffness definition) imposed on the user-defined element during the non-linear 

solution scheme functioned very well. The twenty-bolt models also display excellent run-

times, where global load distribution results were achieved with a high degree of accuracy 

and efficiency.  

7 Concluding Remarks 

In this paper, a highly efficient user-defined finite element for global load distribution 

analysis of bolted composite structures has been presented. The element is capable of 

representing any type of non-linear load-displacement behaviour of bolted composite joints 

ranging from bolt-hole clearance and friction effects to eventual joint failure. In the elastic 

range, the method is generic, where the elastic load-displacement response of the user-

defined element is formulated using a closed-form analytical method developed in [15], 

while the onset of failure and damage evolution is modelled using a semi-empirical 

approach. The overall model is robust, accurate and highly efficient, where solution times 
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to large-scale problems can be achieved in minutes. The model captured strain distributions 

and complex load distributions in twenty-bolt joints to a good degree of accuracy.  The 

redistribution of load due to missing fasteners was also captured well by the model and it 

was found that this redistribution is localised (i.e. fasteners located close to the open hole(s) 

become more highly loaded). Furthermore, the method is applicable to a variety of joint 

configurations and loading scenarios, thus demonstrating its capability as an industrial 

design tool. This approach could potentially be used for time and cost savings in the design 

of large-scale composite aircraft structures and could be used to maximise joint efficiency, 

thus demonstrating its immediate industrial significance.  

 

Acknowledgements 

This work was funded by the Irish Research Council for Science, Engineering and 

Technology (IRCSET) and Airbus UK. The author would also like to acknowledge 

BOJCAS [29] for the permitted use of benchmark models and experimental results for the 

purposes of this paper. BOJCAS was an RTD project partially funded by the European 

Union under the European Commission GROWTH programme, Key Action: New 

Perspectives in Aeronautics, Contract No. G4RD-CT99-00036.  

 

 

 

 

 

 

 

 

 



  

 19

References 

[1] McCarthy MA, Lawlor VP, Stanley WF and McCarthy CT. Bolt-hole clearance effects and strength 
criteria in single-bolt, single-lap, composite bolted joints. Composites Science and Technology 2002;  
62(10-11): 1415-1431.  

[2] McCarthy MA, Lawlor VP and Stanley WF. An experimental study of bolt-hole clearance effects in 
single-lap, multi-bolt composite joints. Journal of Composite Materials 2005;  39(9): 799-825.  

[3] Lawlor VP, McCarthy MA and Stanley WF. An experimental study of bolt-hole clearance effects in 
double-lap, multi-bolt composite joints. Composite Structures 2005;  71(2): 176-190.  

[4] McCarthy MA, McCarthy CT, Lawlor VP and Stanley WF. Three-dimensional finite element 
analysis of single-bolt, single-lap composite bolted joints: Part I - model development and validation. 
Composite Structures 2005;  71(2): 140-158.  

[5] McCarthy CT and McCarthy MA. Three-dimensional finite element analysis of single-bolt, single-
lap composite bolted joints: Part II - effects of bolt-hole clearance. Composite Structures 2005;  
71(2): 159-175.  

[6] McCarthy CT, McCarthy MA, Stanley WF and Lawlor VP. Experiences with modelling friction in 
composite bolted joints. Journal of Composite Materials 2005;  39(21): 1881-1908.  

[7] Padhi GS, McCarthy MA and McCarthy CT. BOLJAT: A tool for designing composite bolted joints 
using three-dimensional finite element analysis. Composites Part A - Applied Science and 
Manufacturing 2002;  33(11): 1573-1584.  

[8] Camanho PP, Fink A, Obst A, and Pimenta S. Hybrid titanium-CFRP laminates for high-
performance bolted joints. Composites Part A - Applied Science and Manufacturing. 2009;  40(12): 
1826-1837. 

[9] Camanho PP and Matthews FL. A progressive damage model for mechanically fastened joints in 
composite laminates. Journal of Composite Materials 1999;  33(24): 2248-2280.  

[10] McCarthy CT, McCarthy MA and Lawlor VP. Progressive damage analysis of multi-bolt composite 
joints with variable bolt-hole clearances. Composites Part B-Engineering 2005;  36(4): 290-305.  

[11] Tate MB and Rosenfeld SJ. Preliminary investigation of the loads carried by individual bolts in 
bolted joints. NACA TN 1051, 1946. 

 
[12] Barrois W. Stresses and displacements due to load-transfer by fasteners in structural assemblies. 

Engineering Fracture Mechanics 1978;  10(1): 115-176.  

[13] Nelson WD, Bunin BL and Hart-Smith LJ. Critical joints in large composite aircraft structure. 
NASA CR-3710, 1983. 

 
[14] McCarthy MA, McCarthy CT and Padhi GS. A simple method for determining the effects of bolt-

hole clearance on load distribution in single-column, multi-bolt composite joints. Composite 
Structures 2006;  73(1): 78-87.  

[15] McCarthy CT and Gray PJ. An analytical model for the prediction of load distribution in highly 
torqued multi-bolt composite joints. Composite Structures 2011;  92(2): 287-298. 

[16] Zhang JM. Design and analysis of mechanically fastened composite joints and repairs. Engineering 
Analysis with Boundary Elements 2001;  25(6): 431-441.  

[17] Madenci E, Shkarayev S, Sergeev B, Oplinger DW and Shyprykevich P. Analysis of composite 
laminates with multiple fasteners. International Journal of Solids and Structures 1998;  35(15): 
1793-1811.  



  

 20

[18] Barut A and Madenci E. Analysis of bolted-bonded composite single-lap joints under combined in-
plane and transverse loading. Composite Structures 2009;  88(4): 579-594.  

[19] Huth H. Influence of fastener flexibility on the prediction of load transfer and fatigue life for 
multiple-row fasteners. American Society for Testing and Materials, Philadelphia; 1986;  927: 221-
250.  

[20] Ekh J and Schön J. Finite element modeling and optimization of load transfer in multi-fastener joints 
using structural elements. Composite Structures 2008;  82(2): 245-256.  

[21] Eriksson I, Backlund J, and Moller P. Design of multiple-row bolted composite joints under general 
in-plane loading. Composites Engineering. 1995;  5(8): 1051-1068. 

[22] Ramkumar RL, Saether ES, and Appa K. Strength analysis of laminated and metallic plates bolted 
together by many fasteners. Air Force Wright Aeronautical Laboratories Technical Report. AFWAL-
TR-86-3034. 1984. 

[23] Friberg M. Fastener load distribution and interlaminar stresses in composite laminates. Licentiate 
Thesis, Royal Institute of Technology: Stockholm, 2000. 

 
[24] Friberg M. Final description of global design methods developed. BOJCAS Tech. Report. 

Deliverable No: D2.3-4, 2002. 
 
[25] Gray PJ and McCarthy CT. A global bolted joint model for finite element analysis of load 

distributions in multi-bolt composite joints. Composites Part B-Engineering. 2010;  41(4): 317-325.  
 
[26] McCarthy MA, Xiao JR, McCarthy CT, Kamoulakos A, Ramos J, Gallard JP, and Melito V. 

Modelling bird impacts on an aircraft wing - Part 2: Modelling the impact with an SPH bird model. 
International Journal of Crashworthiness. 2005;  10(1): 51-59.  

 
[27] Gunnion AJ, Körber H, Elder DJ, and Thomson RS. Developement of fastener models for impact 

simulation of composite structures. 25th Congress of the International Council of Aeronautical 
Sciences ICAS, Hamburg, Germany, 2006.  

 
[28] Pearce GM, Johnson AF, Thomson RS, and Kelly DW. Numerical investigation of dynamically 

loaded bolted joints in carbon fibre composite structures. Applied Composite Materials. 2010;  17(3): 
329-346.   

 
[29] McCarthy MA. BOJCAS: Bolted Joints in Composite Aircraft Structures. Air and Space Europe. 

2001;  3/4(3): 139-142.  
 
[30] McCarthy CT, O'Higgins RM, and Frizzell RM. A cubic spline implementation of non-linear shear 

behaviour in three-dimensional progressive damage models for composite laminates. Composite 
Structures. 2010;  92(1): 173-181. 

 
[31] Kelly G and Hallström S. Bearing strength of carbon fibre/epoxy laminates: effects of bolt-hole 

clearance. Composites Part B-Engineering. 2004;  35(4): 331-343. 
 
[32] ABAQUS Analysis User's Manual. Version 6.9. Dassault Systèmes 2010. 
 
[33] Lapczyk I and Hurtado JA. Progressive damage modelling in fibre-reinforced materials. Composites 

Part A-Applied Science and Manufacturing. 2007;  28: 2333-2341.  
 
 
 
 
 
 
 
 



  

 21

Table 1 Material properties 

E11 

(GPa) 

E22 

(GPa) 

E33 

(GPa) 

G12 

(GPa) 

G13 

(GPa) 

G23 

(GPa) 

υ12 υ13 υ23 Unidirectional 

properties for 

HTA/6376 140 10 10 5.2 5.2 3.9 0.3 0.3 0.5 

Exx 

(GPa) 

Eyy 

(GPa) 

Ezz 

(GPa) 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 

υxy υxz υyz Homogenised 

laminate 

properties for 

quasi-isotropic 

lay-up 

54.25* 54.25* 12.59 20.72* 4.55 4.55 0.309* 0.332 0.332 

TS11  

(MPa) 

CS11  

(MPa) 

TS22  

(MPa) 

CS22  

(MPa) 

12S  

(MPa) 

23S  

(MPa) 

Material 

strength for 

HTA/6376 
2170 1600 73 250 83 50 

E 

(GPa) 
υ Titanium 

properties 
 110 0.29 

*Verified by classical laminate theory 
 
 
 
 
 
 
Table 2 Joint configurations  
Joint  Joint Type Description Loading 
A Single-lap All bolts present Tension 
B Single-lap Bolt 13 removed Tension 
C Single-lap Bolts 19 & 20 removed Tension 
D Double-lap All bolts present Compression 

 
 
 
 
 
 
Table 3 CPU run-times for 3D-FE models (dual-core, 3.5GB RAM CPU) 

Model Joint Type Bolt-hole 
Clearance (µm) 

Bolt Torque 
(Nm) 

Loaded 
to 

Failure? 

CPU time 
(seconds) 

Global SBSLa 10 0.5   Yes 39 
Global SBSLa 240 0.5   Yes 32 
Global SBSLa 10 16   Yes 50 
Global SBSLa 240 16   Yes 43 
Global TBSLb 10 0.5   No 254 
Global TBSLb 10 0.5   No 222 
Global TBSLb 10 0.5   No 310 
Global TBDLc 10 0.5   No 373 

a SBSL- Single-bolt, single-lap 
b TBSL- Twenty-bolt, single-lap 
c TBDL- Twenty-bolt, double-lap 
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Fig. 1 Joint geometry (all dimensions in mm): (a) single-bolt, single-lap joint (redrawn 
from [1]); (b) twenty-bolt, single-lap and double-lap joints with bolt numbering system 
(redrawn from [24]) 
 
 
 

 
Fig. 2 Experimental load-displacement curve from a clearance-fit, highly torqued, single-
bolt, single-lap joint: (a) total load-displacement behaviour (redrawn from [1]); (b) spline 
interpolation of failure loads 
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Fig. 3 Concept of the user-defined finite element: (a) single-lap configuration; (b) double-
lap configuration; (c) finite element mesh and boundary conditions in a single-bolt, single-
lap joint 
 

 
Fig. 4 Uni-axial loading and deformation of single-bolt joints: (a) forces and moments in a 
3-D FE model and global model (single-lap); (b) internal reaction forces and moments in a 
single-lap user-defined finite element; (c) forces and moments in a 3-D FE model and 
global model (double-lap); (d) internal reaction forces and moments in a double-lap user-
defined finite element 
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Fig. 5 Convergence control: tangent stiffness definition for the user-defined finite element 
 
 
 
 
 

 
Fig. 6 Effect of varying bolt-hole clearance and torque on the elastic behaviour and damage 
development in single-bolt, single-lap joints (experiments [1] and global models) 
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Fig. 7 Finite element mesh and deformation of twenty-bolt joints: (a) single-lap joint with 
shear strain distribution; (b) double-lap joint with shear strain distribution; (c) strain gauge 
numbering system (redrawn from [24]) 
 

 
Fig. 8 Strain distribution in twenty-bolt joints (results from experiment and Friberg’s 
Method redrawn from [24]) 
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Fig. 9 Load distributions in twenty-bolt joints - percentage of load carried by each bolt and 
bolt-load angles (Friberg’s Method redrawn from [24]) 
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• A user-defined finite element for modelling bolted composites joints is presented 
• The element represents non-linear load-displacement behaviour of single-bolt joints 
• A combined analytical/numerical approach is used to formulate the element 
• The method is used to model the load distribution in twenty-bolt joints 
• The method was found to be robust, accurate and highly efficient 
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