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Abstract 

An efficient numerical approach is presented for the simulation of mold filling process 

with random fibrous permeability as input. Suitable dimension-reduction techniques are 

employed to represent all the random fields in the physical system. The required 

accuracy in tracking the moving resin flow front is guaranteed by the Level Set Method 

(LSM). The Probabilistic Collocation Method (PCM) is applied in the efficient solution 

of the non-linear stochastic system. Numerical examples for different injection schemes 

are presented to demonstrate the cost-effectiveness of the current approach in predicting 

the variability in mold filling results in comparison to the traditional Monte Carlo 

Simulation (MCS). 
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1  Introduction 

The resin transfer molding (RTM) technique, consisting of the impregnation of a fibrous 

preform by a reactive resin and the curing of the part, is widely applied in advanced 

composites manufacturing. Irregular flow patterns or defects in the final products often 

occur due to the high variability in the transport properties of the fibrous media. 

Therefore, RTM robustness has to be studied to avoid trial and error procedures.  

Experimental studies [1-4] show the scatter in measured global permeability data can be 

up to 0.5 in terms of coefficient of variation from batch to batch of the same material. 

Besides, local permeability exhibits spatially-dependent fluctuation due to its inherently 

heterogeneous architecture. Although studies have been performed on the probabilistic 

characterization of the random transport properties of fibrous media [2-4], the random 

effects are usually neglected in the available optimization or on-line control schemes 

[5-7] which employ common simulation softwares for mold filling. Available stochastic 

studies in the RTM context [8-12] mostly depend on the Monte Carlo simulation (MCS), 

which is computationally expensive for a fast uncertainty analysis or to be combined 

with other algorithms for optimization or sensitivity analysis.  

In this paper, an efficient stochastic simulation tool for mold filling process is developed, 

which is able to accurately predict the statistics of responses at a fraction of the cost of 

the MCS. The approach is implemented based on available numerical techniques in the 

stochastic and flow simulation domain, which are explained in details in Section 2. 

Numerical examples are given in Section 3 to illustrate the cost-effectiveness of the 

current method in uncertainty quantification, using the MCS as reference. Main 

conclusions and future outlook are discussed in Section 4.  

2  Stochastic simulation approach for mold filling process 

2.1  Dimension reduction for the stochastic system 
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As fiber reinforcement permeability is function of local architectural parameters such as 

fiber volume fraction and fiber tow orientation [3,4,10,12], it can be described by a 

random field ( ),K x ω  with � as a variable in the random space. For this application, 

( ),K x ω  is simplified as a weak stationary random field with mean ( Kµ ) and 

autocovariance independent of the absolute location, i.e. 

( )[ ] KxKE µω =,         (1.a) 

[ ] ( ) ( )[ ] ( )( ) ( )( )[ ]KKKK xxKxKExxKxKCovxC µωµωωω −∆+−=∆+=∆ ,,,,   (1.b) 

The reliable data on the marginal Probability Density Function (PDF) of fiber 

permeability is very limited. Some studies [2] presumed a Gaussian distribution for the 

measured global permeability data, while the log-normal distribution is adopted for 

( ),K x ω  in this study, in order to ensure the nonnegativeness of permeability data even 

in case of a high variance.  

In analogy with the discretization of a deterministic property field for numerical 

simulation, the random field ( ),K x ω  has to be discretized in both spatial and 

probabilistic spaces to reduce the dimensions of the corresponding stochastic system 

and to characterize it by the Stochastic Partial Differential Equations (SPDEs). Focusing 

on the underlying Gaussian field ( ) ( )( )ωω ,log, xKxY = , its discretization can be 

performed using the Karhunen-Loève expansion (KLE) [13], by projecting 

( ),Y x ω onto a set of uncorrelated random basis functions with corresponding 

deterministic coefficients, i.e. 

( ) ( ) ( )
1

,
M

Y i i i
i

Y x xω µ λ φ ξ ω
=

= +�
       

(2) 

In Eq. (2), M is the order of the KLE which controls the accuracy of the expansion. It 

has been proved that the random basis ( ){ }iξ ω  (i = 1, 2, …, M) is a collection of 
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independent standard Gaussian random variables for a Gaussian random field [13]. The 

corresponding deterministic coefficients ( ) ( )xxY iii φλ=  are determined by solving Eq. 

(3) for the eigenvalues { }iλ  and eigenfunctions ( ){ }xiφ  of the covariance of ( ),Y x ω  

(denoted by ( )1 2,YC x x ).  

 ( ) ( ) ( )1122222211 ,,,;, yxdydxyxyxyxC ii
D

iY φλφ =�      (3) 

In order to reduce the computational effort in solving Eq. (3), the eigenvalues and 

eigenfunctions are assumed in the form of ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, ,i i i k i ix y x yλ λ λ φ φ φ= = , and the 

covariance is chosen as a parametric model separable in two directions: 

( ) 1 2 1 22
1 1 2 2; expY Y

x y

x x y y
C x , y x , y

l l
σ

� �− −
= − −� �� �

� �
    (4) 

with the correlation length ,x yl l  (in x, y direction) depending on the fabric architecture. 

Using the architectural parameters of reinforcement (e.g. inter-tow gap width for 

directional fabrics, porosity for random mat, etc.) acquired from image analysis or other 

measurements, realizations of permeability field can be obtained by means of numerical 

or analytical methods based on representative unit cell of the fabric structure. Then, 

optimization algorithms [11,12] can be applied to fit the experimental realizations into 

Eq. (4) to estimate ,x yl l . While this procedure is under progress, a trial value for the 

correlation length is used in the numerical examples.  

Once Eq. (3) is reduced to a set of 1-D equations for each direction, it can be 

transformed by means of the Galerkin method into generalized eigenvalue problems, 

from which the set { }iλ  and ( ){ }xiφ  are solved numerically. The log-normal random 

field is accordingly represented in terms of discrete random variables: 

( ) ( ) ( )
1

, exp
M

Y i i i
i

K x xω µ λ φ ξ ω
=

� �= +� �
� �

�
     

(5) 
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As the random dimension of the input of the stochastic system is reduced to M, any 

random output, as non-linear function of the input, should be represented by the same 

random basis { }iξ . Without knowing the marginal PDF, the Polynomial Chaos 

Expansion (PCE) [13] is employed to represent various outputs. For example, the 

pressure field is expressed in the PCE as 

( ) ( ) ( )( )
0

,
P

j j
j

p x p xω ψ ξ ω
=

=�        (6) 

where ( ){ }ξψ j  (j = 0, 1, …, P) are M-dimensional Hermite polynomials in terms of 

{ }iξξ =  (i = 1, 2, …, M) following the joint Gaussian PDF [13], and ( )jp x  denotes 

unknown deterministic coefficients. The order of the PCE (p) is taken as the highest 

order of the Hermite polynomials, related to the number of terms by P+1=(p+M)!/p!M! 

[13]. Once the deterministic coefficients are solved, the statistics of the target random 

response can be easily obtained by performing the MCS on its PCE. 

2.2  Stochastic model for mold filling process 

As a first step, only permeability uncertainty and the isothermal processes are 

considered (other random inputs or process models are ready to be incorporated in the 

presented stochastic framework). Following the well-established deterministic 

simulation models for RTM process [9,14], resin flow through fibrous media is 

approximated by a quasi-steady process. Each intermediate state is governed by Darcy’s 

law and the continuity equation of an incompressible fluid with relevant random 

quantities represented by the suitable expansions: 

( ) ( ) ( ) ( )
1 0

exp
M P

Y i i i j j
i j

x p x Q xµ λ φ ξ ψ ξ
= =

	 
� �∇ ⋅ + ⋅ ∇ =� �� �
� � �

� �        (7) 

where ( )xQ  is the source term (which can also be random if needed). In order to 

simulate the moving resin flow front, most commercial codes employ the Control 
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Volume / Finite Element Method (CV/FEM) [14], in which the flow front position is 

represented by the filling fraction in the control volumes. Due to the dependence of the 

flow front shape on the discretization of the computational domain, it is not efficient in 

simulating distinct and accurate flow fronts, which are required for the current study. 

As an alternative, the Level Set Method (LSM) [15] motivated by the multi-phase flow 

problems [16] begins to be adopted for LCM simulation [17,18]. The basic idea of this 

technique is to represent the moving interface by a continuous function ( )xφ  (i.e. level 

set function) taking opposite signs in different media (impregnated or dry) and zero on 

their interface (resin-air flow front). In the current context, the level set function is a 

random variable ( )ωφ ,x  representing the signed distance from location x to the flow 

front with a random location. Following the classical LSM [15], the movement of resin 

flow front during a certain time step is characterized using the advection equation [15] 

( ) ( ) ( ) 0,,
, =∇⋅+

∂
∂ ωφωωφ

xxu
t
x

         (8) 

with the Darcy velocity derived from the expansions of permeability and pressure  

( ) ( ) ( ) ( ) ( )( )
1 0

1
, exp

M P

Y i i i j j i
i j

u x x p xω µ λ φ ξ ω ψ ξ ω
µ = =

� �= − + ⋅ ∇� �
� �

� �    (9) 

Besides, the signed distance feature of the level set function can only be preserved by 

performing reinitialization (Eq. 10) at certain time intervals. 

( )( )( )
( ) ( )��

�
�
�

=

=−∇+
∂
∂

ωφϕ
ϕωφ

τ
ϕ

,0,

01,

xx

xsign        (10) 

where τ  denotes the artificial time variable. ( )ωφ ,x  is then replaced by the solution 

( )xϕ  (also random actually) which is a signed distance function with the same 

zero-contour, i.e. flow front. The details of numerical solution for Eq. (8) and (10) can 

be referred to [15,16].  
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2.3  Solution of the stochastic model 

Before choosing a suitable solution technique for Eqs. (7)~(10), it is noted that, for the 

stochastic modeling of RTM process, a particular difficulty consists in the 

characterization of the random resin/air interface in the computation domain, 

represented by the zero-level set. Due to the signed distance requirement for any valid 

realization of a random level set function ( ),xφ ω , it is impossible to assume ( ),xφ ω  

as a stationary random field. For this reason, application of the random level set 

function has only been tempted for the random boundaries with simple geometries [19], 

which is far from the current case of an irregular interface. However, the uncertainty 

propagation in the model necessitates the randomness in the flow front or the level set 

function. Therefore, a stochastic solution technique able to circumvent the direct 

representation of ( ),xφ ω , i.e. a so-called non-intrusive stochastic method [20] which 

deals with the whole non-linear system of equations as a black-box, is needed. 

The Probabilistic Collocation Method (PCM) [20,21] is found to be an optimal choice. 

Focusing on an interesting random output of the model, e.g. the fill time ( ),T x ξ , the 

stochastic system (Eqs. (7)~(10)) can be represented by an implicit function 

( ) ( )
1

, exp
M

Y i i i
i

T x f xξ µ λ φ ξ
=

� �� �= +� �� �
� �� �

�          (11) 

As mentioned in Section 2.1, the random output can be approximated by the PCE: 

( ) ( ) ( )
0

,
P

j j
j

T x T xξ ψ ξ
=

≈�        (12) 

Thus, the solution is interpreted as seeking the set of unknown coefficients ( ){ }jT x  to 

minimize the residual of Eq. (12) in the statistical sense. Following the notion of 

weighted residual method, the mean residual can be expressed as 
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( ) ( ) ( ) ( ) ( )
0

, 0
P

j j k
j

T x T x w p d
ξ

ξ ψ ξ ξ ξ ξ
=

� �
− =� �

� �
��         (13) 

where ( )ξkw  are weight functions to choose and ( )ξp  the joint PDF of the random 

vector ξ . Starting from Eq. (13), different choice of ( )ξkw  will lead to different 

stochastic solution technique. For the instance of the PCM, the zero residual is enforced 

at a set of collocation points { }kξ  (k = 1, 2, …, N) in sample space (equivalent to using 

the Dirac-� functions at the collocation points as weight functions ( ) ( )kkw ξξδξ −= ). 

The integration is then reduced to a linear system of equations of the unknown 

coefficients ( ){ }jT x  

( ) ( ) ( )
0

,
P

j j k k
j

T x T xψ ξ ξ
=

=�       (14) 

with the coefficient matrix ( )kj ξψ  and the right-hand-side ( ), kT x ξ  evaluated at 

{ }kξ  by means of the PCE and the deterministic system of equations, respectively. 

Therefore, the computational effort for solving the stochastic system is reduced to that 

of solving the deterministic system for N times, which means the PCM has great 

advantage in terms of the efficiency and convenience in operation. 

However, the accuracy in predicting the response statistics is the primary factor in 

assessing the performance of the PCM. Since the zero residual is only ensured at the set 

of collocation points, they must be able to capture the high probability region in the 

sample space. In analogous to the Gaussian quadrature, the collocation points are 

usually chosen from the roots of the polynomials of one order higher than the PCE, and 

kept as close to the origin as possible in sample space [20,21]. For example, if the 

2nd-order PCM is employed, the optimal collocation points should have the coordinates 

(in sample space) 0 or 3±  (as roots of ( ) 3
3 3H ξ ξ ξ= − ).  
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Up to now, the overall framework (implemented in MATLAB programming language) 

for uncertainty quantification in the RTM process model is completed based on the 

PCM and the LSM, as illustrated in the flowchart in figure 1. 

3 Numerical examples 

The effectiveness of the approach developed above for the uncertainty analysis is 

demonstrated by applying it to a simple two-dimensional mold filling model. The mold 

has a thickness of 5mm, a single inlet/outlet and an internal insert (figure 2(a)), 

containing an isotropic fabric of 30% fiber volume fraction. The fibrous permeability, 

assumed as a stationary log-normal random field with the mean value K0 = 1×10-9 m2, a 

coefficient of deviation CV=1.0 (to illustrate the robustness of the method) and the 

covariance function described by Eq. (4) with a correlation length equaling half the 

mold size, is taken as the only source of input uncertainty of the system. The 4th-order 

K-L expansion is performed on the permeability field, from which the generated 

realizations can reproduce the input statistics (e.g. the local PDF and the autocorrelation) 

with acceptable accuracy, as shown in figures 2 (a)~(b). Resin with viscosity of 0.1 Pa�s 

is injected into the mold by means of two different schemes respectively. In each case, 

the deterministic solution resulting from a homogeneous fabric with permeability K0 is 

used to normalize the mean of the stochastic solution to highlight their discrepancy. The 

stochastic simulation is performed (on a CPU of Intel Xeon X5550/2.67GHz) using the 

2nd-order PCM (with 15 collocation points selected following the rules in Section 2.3) 

and also the MCS with 103 realizations for validation. 

3.1 Constant flow rate driven injection 

First, the injection case using a constant flow rate (5×10-6 m3/s) is considered. In order 

to design the appropriate stiffness and closing force of the mold for the targeted 

thickness or fiber volume fraction [22, 23], the range of resin pressure magnitude needs 



  

10 
 

to be known. However, without taking into account the uncertainty in pressure field, the 

maximal pressure magnitude may be underestimated by traditional simulation codes, 

which increases the risk of preform deformation and mold deflection. 

The capability of the current method is first validated by the converged solution of the 

MCS, taking the peak value of the inlet pressure as the random response of interest. As 

shown in figure 3(a), the converged mean value can be taken as obtained by the MCS 

with more than 300 realizations, while the PCM only needs a cost of 5% of the former 

to get the same result with negligible error. To get more detailed probabilistic 

information, the Cumulative Density Function (CDF) of the random response can be 

employed. Figure 3(b) compares the CDF estimated by the 2nd-order PCM to those by 

the MCS with 102 or 103 realizations, showing that the convergence of the overall CDF 

can be accurately reached by the PCM (except the tail region of CDF>0.87) at a cost 

less than 3% of that of the MCS. 

Using the convergent stochastic solution, the evolution of the mean and the CV of the 

inlet pressure during the injection process are displayed in figures 4(a)~(b), respectively, 

showing the consistency of the PCM estimation with the MCS standard through the 

time history. Results show that the long-term response (i.e. the average response of a 

large sample) is underestimated by the deterministic simulation, and the discrepancy 

may be significant for an input with high variance, as figure 4(b) shows that the CV of 

the response (around 0.65~0.70) is comparable to that of the input. Besides, the PCM 

prediction of the CV of inlet pressure increases as flow front advances, demonstrating 

the uncertainty propagation in the model. In addition, the peak in the mean value 

between 300 and 350 s with a magnitude comparable to the maximal value reflects the 

disturbance of the internal insert (referring to the isochrones in figure 2(a)). Due to the 

simple configuration of the mold, the spatial distribution of the mean and CV of the 
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random pressure field are both analogous to that of the deterministic pressure field and 

not displayed here. Results show that the CV of pressure at any location (except those 

close to outlet) is largely in the range of 0.6~0.7, which confirms the importance of the 

pressure variability for mold design. 

The irregular flow pattern resulting from the random permeability field is the main 

obstacle for mold design. As a basis of the optimization schemes, the simulation tool 

should be able to assess the impact of the random input on the flow pattern. The 

resin-arriving time (referred to as fill time below) at any location is taken as the random 

variable quantifying the uncertainty in flow front. First, the PCM prediction for the 

mean and CV of fill time is compared to the respective MCS solution and validated 

(both have a slight dependence on discretization but only at a local scale). As can be 

seen in figures 5(a)(b), the mean value has small fluctuation around the deterministic 

one, implying a minor fluctuation in the flow pattern. Figures 5(c)(d) show that the CV 

of the fill time has a maximum of around 0.15, with relatively higher values in the 

regions close to the corners or affected by the insert. However, the uncertainty in 

permeability field has no major influence on the flow pattern for this injection scheme.  

3.2 Constant pressure driven injection 

As an alternative, the constant pressure injection is widely adopted in practice because 

of its low cost of injection device and the steady pressure level. However, the total fill 

time has to be controlled respecting the resin reactivity and process automation. Some 

techniques aiming at the prediction of accurate fill time are tempted [24], but none focus 

on the random effects. Using a test example with inlet pressure given as 0.2MPa, the 

influence of the input uncertainty on the statistics of the fill time is analyzed by means 

of the current approach.  

In analogy to the precedent injection case, the convergence for the typical statistics of 
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the mold fill time is first studied. For the mean value, the MCS requires at least 600 

realizations to obtain the steady value, which can be predicted by the 2nd-order PCM 

with a relative error less than 2% using about 2.5% computational effort (figure 6(a)). 

Comparing the CDF curves in figure 6(b), the PCM result can match the overall shape 

and capture the tail region of the MCS estimation using 103 realizations (approximately 

taken as converged).  

In addition to the overall fill time for the mold, the randomness in the flow pattern can 

be easily investigated using the current method. Still using the converged MCS solution 

for validation, the mean value of the local fill time (normalized by the deterministic 

value) is displayed in figures 7(a)(b) for both methods. Simulation results show that at 

any location, the mean of random fill time is longer than the deterministic prediction by 

about 15%~30%. The two methods give similar prediction in terms of magnitude and 

spatial distribution. The discrepancy between the stochastic and the deterministic 

solutions demonstrates the importance of the random effects for choosing suitable 

process parameters to account for the variation in the material properties. 

The uncertainty propagation can be observed from the CV of the fill time (figure 7(c)(d)) 

which increases as the flow front moving forward, reaching about 0.8 (comparable to 

the CV of the input random field) near the outlet. Comparing to the results of constant 

flow rate injection (figure 5), the constant pressure injection appears more sensitive to 

the input uncertainty, in terms of the variability in the flow pattern and in mold fill time. 

By comparison to the MCS (103 realizations) estimation, the PCM is able to predict 

accurately the statistical moments of the fill time which is an implicit function of the 

permeability, and its capability of randomness propagation is proved. 

4 Conclusions 

A stochastic simulation code has been developed by combining the Level Set technique 
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with the Probabilistic Collocation Method, taking the advantage of efficiency in both 

the moving interface simulation and uncertainty propagation, and thus suitable to be 

embedded as a module into optimization or sensitivity analysis algorithms [25], instead 

of the time-consuming MCS. Numerical examples illustrate the capability of the 

developed simulation code in uncertainty quantification in the mold filling problem, as 

well as its great advantage over the MCS in terms of computational efficiency (e.g. for 

the given numerical tests, the CPU cost of the PCM is on average less than 5% of that of 

the MCS) for predicting the response statistics with comparable accuracy. Stochastic 

simulation results of simple mold filling processes reveal distinct discrepancies between 

the stochastic and deterministic solutions for various responses, which indicates the 

necessity to take into account the intrinsic randomness in transport properties.   

In spite of the simple numerical tests shown in this paper, potential application in many 

aspects can be developed based on the current framework, such as the simulation of 

RTM process with multiple sources of input uncertainty (e.g. the race-tracking 

permeability, defects distributed in fabric, randomness in resin viscosity and curing), or 

the optimization of process parameters to reduce the sensitivity of outputs to the input 

uncertainty. 
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Fig. 1  Flowchart of simulation procedure 
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(a) (b) 
Fig. 2  Computational domain and K-L approximation of input statistics:  
(a) upper-left: computational domain (discretized by 2010 triangular elements);  

upper-right: deterministic flow fronts at time 100, 200, 300, 350, 400, 500 (s);  
lower: local PDF (comparing simulated and accurate values);  

(b) autocorrelation function with respect to location (0, 0):  
upper: simulated values; lower: analytical values. 

 
 

 
 

(a) (b) 
Fig. 3  Convergence of statistics of maximal inlet pressure:  
(a) Mean (normalized by deterministic value); (b) CDF. 
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(a) (b) 

Fig. 4  Time history of statistical moments of inlet pressure:  
(a) Mean (normalized by deterministic value); (b) CV. 

 

  

(a) (b) 

  
(c) (d) 

Fig. 5  Statistical moments of fill time (constant flow rate injection) comparing 
between MCS (103 realizations) and PCM (2nd-order) estimation: 
(a) MCS estimation of mean value (normalized by deterministic value);  
(b) PCM estimation of mean value (normalized by deterministic value);  
(c) MCS estimation of CV; (d) PCM estimation of CV. 
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(a) (b) 

Fig. 6  Convergence of statistics of mold fill time (constant pressure injection):  
(a) Mean (normalized by deterministic value); (b) CDF. 
 

  
(a) (b) 

  

(c) (d) 
Fig. 7  Statistical moments of fill time (constant pressure injection) comparing between 
MCS (103 realizations) and PCM (2nd-order) estimation: 
(a) MCS estimation of mean value (normalized by deterministic value);  
(b) PCM estimation of mean value (normalized by deterministic value);  
(c) MCS estimation of CV; (d) PCM estimation of CV. 
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• Efficient numerical simulation of mold filling with random permeability as input  

• Use of dimension-reduction techniques to represent random fields  

• Coupling of Level Set Method and Probabilistic Collocation Method   

• Numerical examples for injection schemes compared to Monte Carlo Simulation 

 
 


