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TOWARDS LARGE-SCALE THREE-DIMENSIONAL BLOOD FLOW SIMULATIONS IN
REALISTIC GEOMETRIES

CÉLINE CALDINI-QUEIROS 1, VINCENT CHABANNES 2, MOURAD ISMAIL 3, GONCALO
PENA 4, CHRISTOPHE PRUD’HOMME 5, MARCELA SZOPOS 5 AND RANINE TARABAY 5

Abstract. This paper addresses the numerical approximation of fluid dynamics problems using various finite
element methods including high order methods and high order geometry. The paper is divided in three parts.
The first part concerns the various problem formulations and discretization methods we are interested in. Using
the Stokes equations as model, several different types of boundary conditions are presented and discussed. The
second part deals with describing the high performance framework FEEL++ with which we obtained the various
numerical results including scalability studies. Finally we display numerical results: we start with convergence
properties of the various formulations and associated discretization choices including high order geometries
and we finish with a Navier-Stokes simulation within the cerebral venous system.

1. INTRODUCTION

Developing mathematical and numerical models for simulation of biofluids has been an active research field in the
last few years (see, for instance [10] for a sound and up-to-date monograph on cardiovascular blood flow simulations or
[13] for a recent synthesis on air flow simulations in the human lung, and the references therein). Intensive efforts were
motivated by the fact that these phenomena are very complex, involving different scales (spatially and temporally), and
combining multi-physics. The long term goal is to develop a framework able to provide information difficult or even
impossible to obtain in vivo on patients and thus to support physicians in the diagnosis and/or treatment of diseases.

In the context of such applications, several difficult questions need to be addressed: the generation of meshes (for
complex geometries), which is currently a challenge; the accurate simulation of blood flow, with a model best suited
to the problem and an appropriate choice of boundary conditions; the validation of this model, allowing for calibration
and uncertainty quantification. Moreover, since nowadays, recent developments of models, algorithms and compu-
tational environment make possible to use medical images (CT scan, MRI) as an input in numerical computations, a
flexible framework is needed to include all these data. In this context, not only numerical models must account for
standard discretization errors but also for the various approximations done during the process to obtain the input data
— computational meshes, velocity profiles, pressure or flow rate measurements.

In the present work, we focus our attention on the simulation step, using for now the standard newtonian incom-
pressible Navier-Stokes equations, and we are interested in particular in (i) handling various boundary conditions
settings allowing for a flexible framework with respect to the type of input data (velocity, pressure, flow rate, ...);
(ii) handling of the discretization errors not only with respect to the physical fields (velocity and pressure) but also
with respect to the geometry; (iii) dealing with the associated large computational cost, requiring high performance
computing, through strong and weak scalability studies. We would like to emphasize that the accuracy with which the
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boundary of the physical domain is approximated has a considerable impact on the quality of the numerical approxi-
mation, see for instance [14]. In particular, in the context of blood flow approximation, this takes particular relevance
since the boundary might also be an unknown of the problem and needs to be accurately approximated.

To these ends, our computational framework builds upon the FEEL++ library [15, 16], which allows for arbitrary
order continuous and discontinuous Galerkin methods in 1D, 2D and 3D, seamlessly in parallel, on simplices and
hypercubes. Moreover, we highlight the fact that the mathematical kernel of the library can handle a large variety of
numerical methods and it has been designed such that new ones can be easily included. In particular, in this work, we
use and compare low order as well as high order approximations including for the geometry in 3D.

The outline of the article is as follows. We start by reminding the governing equations in a general setting and
by explaining in more detail the difficulties related to the treatment of the boundary conditions in Section 2. The
discussion is held both on the continuous and on the discrete level. The high performance computing issues are
described in Section 3, where in particular a scalability analysis is performed. Section 4 is devoted to various numerical
experiments, in order to validate the numerical method and also to apply it on a realistic geometry. Conclusions and
some prospects are finally presented in Section 5.

2. MATHEMATICAL MODELS AND METHODS

Let Ω ⊂ Rd, d ≥ 1, denote a bounded connected domain, representing the lumen of the vessel, or system of
vessels, under investigation. In the context of blood flow, it is assumed that the unsteady incompressible Navier-Stokes
equations hold. They read as:

ρ
∂u

∂t
− 2div(µD(u)) + ρ(u ·∇)u +∇p = 0, in Ω× I (1)

div(u) = 0, in Ω× I (2)

where I = (0, T ], u and p are the velocity and pressure of the fluid, respectively, ρ and µ are the density and the
dynamic viscosity of the fluid, respectively, and D(u) is the linear fluid deformation tensor (given by the expression
1
2 (∇u +∇uT )). These notations allow to define the stress tensor σ(u, p) = −pI + 2µD(u), where I is the identity
tensor. System (1)-(2) is completed with appropriate initial and boundary conditions.

2.1. Variational Formulations

Our goal is to impose different kinds of boundary conditions (for both velocity and pressure) to system (1)-(2).
Since these are independent of the presence of a convective term or a time derivative, in the following we focus only
on the Stokes equations.

We are interested in fluid flows in different 2D and 3D geometries, mainly, (straight and curved) pipes and realistic
vessels geometries. In all these cases, the domain of interest is denoted by Ω and its boundary ∂Ω is decomposed into
three parts: Γw (where we will consider an adherence boundary condition), Γin (inlet) and Γout (outlet). Note that inlet
and outlet can have several locally connected components (from the topological point of view), see e.g. Section 4.2.

The model (differential) problem is then written as: find (u, p) such that

−2µdiv(D(u)) +∇p = 0 in Ω, (3)
div(u) = 0 in Ω, (4)

with boundary conditions that will be detailed later. To write formally a variational formulation of the problem (3)-(4),
let us denote by V and M the functional spaces for the velocity and pressure fields, respectively. These spaces will be
setted later according to the specific choices of boundary conditions.We will take, for the moment, V = [H1(Ω)]d and
M = L2(Ω).

Taking the scalar product of equation (3) by a test function v ∈ V, multiplying equation (4) by a test function q ∈M
and integrating the resulting equalities over Ω, we are lead to the following weak formulation: find (u, p) ∈ V ×M
such that

−2µ

∫
Ω

div(D(u)) · v dx+

∫
Ω

∇p · v dx = 0, ∀v ∈ V, (5)∫
Ω

q div(u) dx = 0, ∀q ∈M. (6)
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We integrate by parts the first integral of equation (5). We obtain

2µ

∫
Ω

D(u) : ∇v dx− 2µ

∫
∂Ω

D(u)n · v ds+

∫
∂Ω

p v · n ds−
∫

Ω

p div(v) dx = 0.

Note that, for symmetry reasons, the equality D(u) : ∇v = D(u) : D(v) holds. Thus, the variational formulation of
(3)-(4) can be written as: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx− 2µ

∫
∂Ω

D(u)n · v ds+

∫
∂Ω

p v · n ds−
∫

Ω

p div(v) dx = 0, ∀v ∈ V, (7)∫
Ω

q div(u) dx = 0, ∀q ∈M, (8)

or, equivalently: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx−
∫
∂Ω

σ(u, p)n · v ds−
∫

Ω

p div(v) dx = 0, ∀v ∈ V, (9)∫
Ω

q div(u) dx = 0, ∀q ∈M. (10)

We have not yet incorporated the boundary conditions in the weak formulation. To do so, we start by the common
boundary condition to all our following simulations which is the no slip condition on Γw:

u = 0 on Γw.

The standard manner to deal with this essential boundary condition is to choose the functional space V as

V = {v ∈ [H1(Ω)]d | v = 0 on Γw}. (11)

Within this functional setting for the velocity field, equations (9)-(10) are rewritten as: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Γin∪Γout

σ(u, p)n · v ds−
∫

Ω

p div(v) dx = 0, ∀v ∈ V, (12)∫
Ω

q div(u) dx = 0, ∀q ∈M. (13)

In the weak formulation (12)-(13), we have to take into account the boundary conditions on the inlet and outlet
parts of the boundary. Recall that in this work we are interested in simulating fluid flows in straight and curved
pipes and in realistic geometries of blood vessels. In all these cases, the computational domain is only a part of
the physical one. Therefore, inlets and outlets are in fact the sections that separate the computational and physical
domains. Consequently, special attention needs to be given on the boundary conditions enforced at the inlets or outlets
to not change the physics of the problem.

In the following, let us consider different types of boundary conditions for the inlet and outlet sections. We start by
the more classical boundary condition, the case where we know the velocity profiles at inlet and outlet (for example,
Poiseuille profiles). The second case we consider is the free outlet condition. Finally, we focus on less classical
boundary conditions that correspond to the case where we know only the pressure at the inlet and outlet sections.
These nonstandard boundary conditions are very useful if we want to make a comparison between the simulations
performed and the experimental data. Indeed, in physical experiments it is easier to impose pressure than velocity on
both inlet and outlet.

2.1.1. Dirichlet-Dirichlet boundary conditions

Let us suppose that we know the velocity profiles at the inlets and outlets and that they are described by two
functions uin ∈ [H

1
2 (Γin)]d and uout ∈ [H

1
2 (Γout)]

d such that

u = uin on Γin, (14)
u = uout on Γout. (15)
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In this case, in order to have a well posed problem, it is sufficient to choose

V = {v ∈ [H1(Ω)]d | v = 0 on Γw, v = uin on Γin, v = uout on Γout} (16)

and M = L2
0(Ω), where L2

0(Ω) denotes the set of functions in L2(Ω) with zero mean value. With this choice of
functional spaces, problem (12)-(13) becomes: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx = 0, ∀v ∈ [H1
0 (Ω)]d, (17)∫

Ω

q div(u) dx = 0, ∀q ∈ L2
0(Ω). (18)

The additional restriction of zero mean value to L2(Ω) function allows to uniquely define the pressure in M and may
be integrated in the variational formulation (17)-(18) by adding a suitable Lagrange multiplier. The final variational
formulation, with the Lagrange multiplier, reads as: find (u, p, ζ) ∈ V×M× R such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx = 0, ∀v ∈ [H1
0 (Ω)]d, (19)∫

Ω

(q div(u) + ζq) dx = 0, ∀q ∈M, (20)∫
Ω

pξ dx = 0, ∀ξ ∈ R. (21)

2.1.2. Dirichlet-Neumann boundary conditions

The previous Dirichlet-Dirichlet boundary conditions do not correspond to the most common real situation because,
in general, we do not know exactly the velocity profile at the outlet sections, even if we assume that we know it at
the inlets. Indeed, it is difficult to predict the velocity profile at outlets since it depends on the channel geometry or
the number of outlets sections in a vessel network, for example. Therefore, we can consider the so-called free outlet
conditions. These boundary conditions can be formalized as

u = uin on Γin, (22)
σ(u, p)n = 0 on Γout. (23)

In this case, we retrieve the same variational formulation as in (17)-(18), but taking

V = {v ∈ [H1(Ω)]d | v = 0 on Γw, v = uin on Γin} and M = L2
0(Ω). (24)

It appears that this choice of boundary conditions is not in agreement with our problem since the velocity field is not
necessarily orthogonal to the outlet section. See [13] for some studies on these boundary conditions in the framework
of human lung modeling and some numerical experiments showing this defect or [17] for some numerical examples
in the case of blood flow simulation.

2.1.3. Neumann-Neumann boundary conditions

Boundary conditions involving the pressure and the stress tensor: To overcome the difficulties related to the
free outlet boundary conditions, we assume now that we know the exact value of the normal stress tensor at
inlets and outlets. Due to the definition of the stress tensor, it is sufficient to know both the pressure and the
velocity at inlets and outlets to enforce such boundary conditions. They read as

σ(u, p)n = σinn = −pinn + 2µD(uin)n, on Γin, (25)
σ(u, p)n = σoutn = −poutn + 2µD(uout)n, on Γout. (26)

The corresponding variational formulation is then written as: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx =

∫
Γin

σinn · v ds+

∫
Γout

σoutn · v ds, ∀v ∈ V, (27)∫
Ω

q div(u) dx = 0, ∀q ∈M, (28)
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where

M = L2(Ω) and V = {v ∈ [H1(Ω)]d | v = 0 on Γw}. (29)

Boundary conditions involving the pressure without the stress tensor: It is obvious that in the most common
situations, the normal stress tensor is not known at the inlets or outlets. However, in some physical experiments
we have direct access to the pressure at inlets and outlets because it is imposed by the experience. Therefore,
we suppose the existence of two functions pin ∈ H−

1
2 (Γin) and pout ∈ H−

1
2 (Γout) such that

σ(u, p)n = −pinn on Γin, (30)
σ(u, p)n = −poutn on Γout. (31)

The corresponding variational formulation is: find (u, p) ∈ V×M such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx = −
∫

Γin

pinn · v ds−
∫

Γout

poutn · v ds, ∀v ∈ V, (32)∫
Ω

q div(u) dx = 0, ∀q ∈M, (33)

where M = L2(Ω) and V = {v ∈ [H1(Ω)]d | v = 0 on Γw}.
The variational formulation (32)-(33) gives an appropriate framework for imposing boundary conditions

on the pressure. However, this option may only make sense if the stress tensor is diagonal at inlets and outlets,
meaning that the computational domain Ω is separated by inlets and outlets from a perfect gas-like media at
pressure pin and pout respectively. However, this is obviously not the case for blood flow simulations, where Ω
is the computational domain, corresponding to a part of the circulatory system and this is why this formulation
cannot be used in our case. For example, the formulation (32)-(33) cannot even recover the Poiseuille flow in
a straight pipe!

2.1.4. Mixed boundary conditions

To overcome the problems related to the previous variational formulations, especially the one given by equations
(32)-(33), we introduce in this section an additional boundary condition for the velocity on inlets and outlets. These
nonstandard boundary conditions involving the pressure have been studied, from a theoretical point of view, in [8], for
the first time, and recently in [2]. More precisely, we impose u × n = 0 (or u · t = 0 where t stands for the unit
tangent vector for d = 2) on Γin ∪Γout. The new variational formulation is then written as: find (u, p) ∈ V×M such
that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx = −
∫

Γin

pinn · v ds−
∫

Γout

poutn · v ds, ∀v ∈ V, (34)∫
Ω

q div(u) dx = 0, ∀q ∈M, (35)

where

M = L2(Ω) and V = {v ∈ [H1(Ω)]d | v = 0 on Γw, v × n = 0 on Γin ∪ Γout}. (36)

This formulation allows to impose the pressure on inlets and outlets while, at the same time, enforcing the velocity
field to be parallel to to the outward normal vector at inlets and outlets.

From the numerical point of view, the constraints u× n = 0 on Γin ∪ Γout (or u · t = 0 on Γin ∪ Γout for d = 2)
can be taken into account by using Lagrange multipliers or penalty techniques. In the case of Lagrange multipliers,
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the problem reads as: find (u, p, λin, λout) ∈ V×M× Λin × Λout such that

2µ

∫
Ω

D(u) : D(v) dx−
∫

Ω

p div(v) dx

−
∫

Γin

λin · v × n ds−
∫

Γout

λout · v × n ds = −
∫

Γin

pinn · v ds−
∫

Γout

poutn · v ds, ∀v ∈ V, (37)∫
Ω

q div(u) dx = 0, ∀q ∈M, (38)∫
Γin

ηin · u× n ds = 0, ∀ηin ∈ Λin, (39)∫
Γout

ηout · u× n ds = 0, ∀ηout ∈ Λout, (40)

where M = L2(Ω), V = {v ∈ [H1(Ω)]d | v = 0 on Γw}, Λin = [H−
1
2 (Γin)]d and Λout = [H−

1
2 (Γout)]

d.

2.2. Discretisation choices

We introduce in the sequel the discretisation strategy, following the framework presented in [7]. Let δ be a discreti-
sation parameter. We define K̂ ⊂ Rd (d = 1, 2, 3) a reference elementary convex, e.g. a simplex or a hypercube. We
denote by Tδ a finite collection of nonempty, disjoint open simplices or hypercubes Tδ ≡ T(h,k) = {K = ϕgeo

K,k(K̂)}
forming a partition of Ω such that h = maxK∈Tδ hK , with hK denoting the diameter of the elementK ∈ Tδ and ϕgeo

K,k

is the polynomial of degree k that maps K̂ to K which is also called the geometric transformation. The partition Tδ
induces a discretization of Ω, denoted Ωδ , defined as the union of the closure of all elements in this partition. Note that
if Ω is a polyhedral domain then Ωδ = Ω. Following these notations, we denote Γin,δ , Γout,δ , Γw,δ the discretization
of Γin,Γout,Γw respectively.

We say that a hyperplanar closed subset F of Ωδ is a mesh face if it has positive (d−1)-dimensional measure and
if either there exist K1, K2 ∈ Tδ such that F = ∂K1 ∩ ∂K2 (in this case F is called an internal face) or there exists
K ∈ Tδ such that F = ∂K ∩ ∂Ωδ (and F is called a boundary face). Internal faces are collected in the set F iδ ,
boundary faces in Fbδ and we let Fδ : =F iδ ∪ Fbδ . For all F ∈ Fδ , we define TF : ={K ∈ Tδ | F ⊂ ∂K}. For every
interface F ∈ F iδ we introduce two associated normals to the elements in TF and we have nK1,F = −nK2,F , where
nKi,F , i ∈ {1, 2}, denotes the unit normal to F pointing out of Ki ∈ TF . On a boundary face F ∈ Fbδ , nF = nK,F
denotes the unit normal pointing out of Ωδ .

Without loss of generality we suppose from now on that we work with simplicial elements. Given a positive integer
N , we denote by PN (K̂) and PN (K) the spaces of polynomials of total degree less or equal than N defined in K̂ and
K respectively. We define PNc (Ωδ ≡ Ω(h,k)) and [PNc (Ωδ ≡ Ω(h,k))]

d with k > 1:

PNc (Ωδ) = {v ∈ C0(Ωδ) | v ◦ϕ
geo
K,k ∈ PN (K̂) ∀K ∈ Tδ}, [PNc (Ωδ)]

d =

d∏
1

PNc (Ωδ). (41)

We choose the generalized Taylor-Hood finite element for the velocity-pressure discretisation, that is to say we
look for the velocity in [PN+1

c (Ω(h,kgeo))]
d and the pressure in PNc (Ω(h,kgeo)). We shall use from now on the notation

PN+1PNGkgeo to specify exactly the discretisation spaces used for the velocity, pressure and geometry, respectively.
The resulting approximate velocity and pressure fields are denoted by uδ and pδ , respectively.

Regarding the formulation (37)-(40) in Section 2.1.4, we follow the same discretization process as previously for
velocity, pressure and geometry. Denote Γδ = Γin,δ ∪ Γout,δ and we look for the discrete Lagrange multiplier in

[PNc (Γδ)]
d =

d∏
1

PNc (Γδ), where PNc (Γδ) = {v ∈ C0(Γδ) | v ◦ϕgeo
F,k ∈ PN (F̂ ) ∀F ∈ Fbδ ∩ Γδ, }, (42)

F̂ ⊂ Rd is a reference elementary convex of topological dimension d − 1 (i.e.corresponding to a face of K̂) and
ϕgeo
F,k is the polynomial of degree kgeo that maps F̂ to F . A natural choice for the polynomial degree of the Lagrange

multipliers is to take N + kgeo where N is the velocity polynomial order in order to ensure that (39)- (40) are satisfied
exactly. This will require further analysis. However the code, see Listing 1, and some promising initial numerical
results, see Figure 1, are already available.
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3. HPC WITH FEEL++

3.1. General description

In order to perform our numerical experiments, we use the FEEL++ library, Finite Element Embedded Language
in C++, see [15, 16], which provides a clear and easy interface to solve complex PDE systems. It aims at bringing the
scientific community a tool for the implementation of advanced numerical methods and high performance computing.
Some recent applications of FEEL++ to multiphysics problems in blood flow context can be found in the literature,
see e.g. [7, 9, 14].

FEEL++ relies on a so-called domain specific embedded language (DSEL) designed to closely match the Galerkin
mathematical framework. In computer science, DS(E)Ls are used to partition complexity and, in our case, the DSEL
splits low level mathematics and computer science on one side (leaving the FEEL++ developer to enhance them) and
high level mathematics as well as physical applications to the other side (left to the FEEL++ user). This allows FEEL++
to be used for teaching purposes, solving complex problems with multiple physics and scales or rapid prototyping of
new methods, schemes or algorithms.

The DSEL on FEEL++ provides access to powerful, yet with a simple and seamless interface, tools such as inter-
polation or the clear translation of a wide range of variational formulations into the variational embedded language.
Combined with this robust engine lie also state of the art arbitrary order finite elements — including handling high
order geometrical approximations, — high order quadrature formulas and robust nodal configuration sets. The tools
at the user’s disposal grant the flexibility to implement numerical methods that cover a large combination of choices
from meshes, function spaces or quadrature points using the same integrated language and control at each stage of the
solution process of the numerical approximations.

To illustrate, Listing 1 displays the full code to implement the formulation described in Section 2.1.4. It shows the
power of the DSEL to write this complex and non-standard mathematical formulation in a very compact and expressive
way.

LISTING 1. FEEL++ code to implement the mixed boundary conditions description in Section 2.1.4
using Lagrange multipliers

Environment env( _argc=argc, _argv=argv,
_desc=feel_options(),
_about=about(_name="poiseuille",

_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org"));

auto mesh = Cylinder<1>();
auto Vh = Pch<2,Vectorial>( _mesh=mesh ); // velocity
auto Qh = Pch<1>( mesh ); // pressure
auto Lmesh = merge( mesh->trace(markedfaces(mesh,"inlet")),

mesh->trace(markedfaces(mesh,"outlet")) );
auto Lh = Pch<2,Vectorial>( _mesh=Lmesh ); // Lagrange mult.
auto Xh = Vh*Qh*Lh;
auto U = Xh->element();
auto u = U.element<0>();
auto p = U.element<1>();
auto l = U.element<2>();

auto a = form2( _trial=Xh, _test=Xh );
a = integrate(_range=elements(mesh),

_expr=sym(gradt(u))*trans(sym(grad(u))) );
a+= integrate(_range=elements(mesh),

_expr=-div(u)*idt(p)-divt(u)*id(p));
a+= integrate(_range=markedfaces(mesh,{"inlet","outlet"}),

_expr=-trans(cross(idt(u),N()))*id(l)-trans(cross(id(u),N()))*idt(l));
auto l = form1( _test=Vh );
l = integrate(_range=markedfaces(mesh,"inlet"),

_expr=-trans(p_in*N())*id(v));
l+= integrate(_range=markedfaces(mesh,"outlet"),

_expr=-trans(p_out*N())*id(v));
a+=on(_range=markedfaces(mesh,"wall"), _rhs=l, _element=u,

_expr=zero<3,1>());
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a.solve(_rhs=l,_solution=U);

Figure 1 displays the results of the above code using the Stokes mixed boundary condition formulation of Sec-
tion 2.1.4.

FIGURE 1. Streamlines, velocity arrows and pressure isosurfaces of a Poseuille flow in a cylinder
using mixed boundary conditions

In this paper, we use recent developments which allow to operate on large-scale parallel infrastructures. The general
strategy used is parallel data framework using MPI and thanks to DSEL the MPI communications are seamless to the
user: (i) we start with automatic mesh partitioning using GMSH [11] (Chaco/Metis) — adding information about ghost
cells with communication between neighbor partition;— (ii) the FEEL++ parallel data structures such as meshes,
(elements of) function spaces — create a parallel degrees of freedom table with local and global views; — (iii) and
finally we use the library PETSC [3–5] which provides access to a Krylov subspace solvers(KSP) coupled with PETSC
preconditioners such as Block-Jacobi, ASM, GASM.

Remark 3.2. The last preconditioner is an additive variant of the Schwarz alternating method for the case of many
subregions, see [18]. For each sub-preconditioners (in the subdomains), PETSC allows to choose a wide range of
sequential preconditioners such as LU, ILU, JACOBI, ML. Moreover, precondioner ASM or GASM can be used with or
without an algebraic overlap. Other parallel preconditioners are available in PETSC but not used here. In particular
we would like to mention the MUMPS direct parallel solver [1]. We use it both as solver and preconditioner for
iterative solves. FIELDSPLIT preconditioners are also of notice for the applications we have: they allow to exploit the
structure of block matrix.

From now on, we shall denote GASM1 (resp GASM2) for a preconditioner GASM with an overlap of size 1
(respectively, 2). A complete description of the FEEL++ high performance framework — with blood flow applications
— is available in the thesis [6].

3.3. Challenges in handling complex geometries

Geometries that describe blood flow are complex with three-dimensional structures, often asymmetric and present-
ing a variable pattern. From these medical images, a complex process can be developed to build computational meshes,
which the objective of many research and development projects. Figure 2(a) shows a computational mesh obtained
through this process from MRA images, see for details [17]. Other realistic meshes can be found on GMSH [11] web-
site, see for example Figures 2(b) and 2(c) that display an aorta and an artery with an aneurysm. The mesh generation
was done using GMSH [12].

Once we have the computational meshes are built, they are partitioned, see Section 3.1, and the blood flow compu-
tation is distributed using MPI. One of the crucial points in parallel computation is to check if our strategy is robust
and scalable over a large number of processors.
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(a) A mesh partition (32 partitions) of the cerebrovenous system (b) Mesh partitioning of an aorta

(c) Mesh partitioning of an artery with an aneurysm

FIGURE 2. Computational meshes of the cerebrovenous system, of a realistic aorta and of an artery
with aneurysm geometries.

3.4. Scalability analysis

We now turn to a scalability analysis applied to problems in fluid mechanics using FEEL++. We propose here
to study two configurations: (i) a Stokes model with a simple geometry (a cylinder), (ii) a Navier-Stokes model
with complex and realistic geometry (an aorta), presented in Figure 2(b), in order to check the strong scalability —
increase processing units for a fixed size problem — and weak scalability — increase processing units along with the
problem size. Each test will measure (i) the assembly CPU time for matrices and vectors as well as the necessary MPI
communications, (ii) the linear and/or nonlinear algebraic system CPU time.

Regarding the strong scalability, the problem size stays fixed while the number of processing elements increases
from N core = N core

min , . . . , N
core
max and we are interested in the speed-up = tNcore

min
/tNcore obtained with N core cores

where tNcore
min

is the elapsed wall-clock time with N core
min cores and tNcore the elapsed wall-clock time with N core

processors.
As to the weak scalability, the problem size increases with the number of processing units such that the problem size

assigned to each processing element remains constant throughout all computations and we measure the efficiency =
100(tNcore

min
/tNcore).
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3.4.1. Stokes model

To perform the scalability test, we consider a cylinder of length LC and radius 0.5. We impose Dirichlet-Neumann
boundary conditions, i.e., a parabolic known velocity profile at the inlet and a zero normal stress at the outlet, see
Section 2.1.2.

(a) Strong scalability settings

MESH TETRAHEDRONS DOF

M8 111,475 530,275
M9 151,443 712,545

M10 210,526 980,105

(b) Weak scalability settings

N core LC DOF(M4) DOF(M5) DOF(M6)

32 16.0 297,372 398,181 563,574
16 8.0 146,094 197,262 290,423
8 4.0 77,255 105,296 148,027
4 2.0 39,834 56,075 75,005
2 1.0 23,950 31,971 41,869
1 0.5 15,705 19,207 26,523

TABLE 1. Configurations used for the scalability tests with the Stokes model and approximation
spaces P2P1G1.

The scalability tests of Stokes model were made using the P2P1G1 approximation spaces. The different configu-
rations used are displayed in Table 1(a) for the strong scalability and in Table 1(b) for the weak scalability. Figure 3
displays all the results obtained. We use several meshes associated to a characteristic mesh size which we denote by
M4, M5, M6, etc. The larger the index, the finer the mesh. We also compare two parallel preconditioners GASM1 and
GASM2. Both precondtioners use a direct subsolver (LU with MUMPS) within the subdomains.

Figures 3(a) and 3(b) display the elapsed wall-clock CPU time to solve the linear system for strong and weak
scalability. We see that the preconditioner GASM1 is more efficient than GASM2 for each scalability test. Figure 3(c)
plots the number of solver iterations associated to the strong scalability test: the preconditioner GASM2 reduces the
number of iteration which is due to the overlap. However, in both cases, the number of iterations increases significantly
as we increase the number of cores. A similar behaviour for weak scalability is observed in Figure 3(c). In particular
when using 32 cores the number of solver iterations increases a lot and we have slow convergence. Figures 3(e)
and 3(f) plot the assembly time of the algebraic structures. The performances are perfect with for both scalability tests
up to 16 processors and it deteriorates at 32 cores as the communication become dominant. We note however that the
speed-up is improving with the finest meshes.

To conclude the overall — the sum of assembly and solves times — measured speed-up is very good, even above
an ideal speed-up, see Figure 3(g). As to weak scalability, see Figure 3(h), performance decreases with increasing the
number of cores which is explained by the strong increase in the number of iterations.

3.4.2. Navier-Stokes model

We now turn to the strong scalability test for the Navier-Stokes strategy on a realistic geometry — an aorta, —
see Figure 2(b). The formulation of this nonlinear model is described with equations (1)-(2). Regarding the problem
setting, we have a nonzero value of normal stress tensor at the inlet, a zero normal stress is set on the four outlets and
a no-slip condition on the wall, see Section 2.1.3. We measure the computational time only during the first time step.

MESH TETRAHEDRONS DOF

M2 42,744 199,371
M3 109,997 497,525
M4 223,120 989,237

TABLE 2. Configurations used for the Navier-Stokes model with P2P1G1 approximations.

The strong scalability tests are obtained using P2P1G1 approximations. The number of mesh elements and degrees
of freedom are reported in Table 2 and the scalability results in Figure 4. The speed-up for assembly of the algebraic
structures is ideal up to 16 processors but at 32 cores performance stagnates because communications become domi-
nant compared to the cost of local assembly. Indeed we note that speed-up improves with the finest meshes, i.e. the
local assembly cost is still important. As to the speed-up of the solver strategy, it is excellent, see Figure 4(b). Indeed,
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(c) Number of solver iterations (strong scalability)
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(g) Global speed-up (strong scalability)
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FIGURE 3. Results for the scalability tests with the Stokes model.

the number of iterations of the linear solves remains relatively low, see Figure 4(d). Also note that the scalability of
this application is dominated by the solver, see Figure 4(d), and not by assembly: we obtain, in overall, an excellent
global strong scalability.
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(b) Non-linear solves speed-up
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(c) Global speed-up
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FIGURE 4. Results for the strong scalability tests with the Navier-Stokes model.

4. NUMERICAL RESULTS

4.1. Convergence analysis of the Stokes formulations

In this Section we verify that the various formulations (presented in Section 2 after discretization) converge with
the proper rates. We check with a simple 3D Poiseuille flow in a cylinder with a base of radius r = 1 and length L = 5
centered at (2.5, 0, 0), see Figure 5. The exact solution for this benchmark is

uex =

(
(pin − pout)2r2

4µL

(
1− y2 + z2

r2

)
, 0, 0

)
, pex =

pout − pin
L

x+ pin. (43)

Γ
in

Γ
o
u
t

Γw
x

y

z

FIGURE 5. Geometry for convergence rates verification Ω

We note that the discrete geometry, Ωδ , will be different from the exact one, Ω. Hence, the geometry approximation
will play a crucial role in the verification process. To measure the geometric approximation error, not only we measure
the error in the standard L2(Ωδ) and H1(Ωδ) norms but also the applied forces by integrating the stress tensor on one
of the curved boundaries, here Γin. That is to say, we compute

Fδ =

∫
Γin,δ

σ(u, p)n ds. (44)
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Thanks to (43), we can compute by hand the exact counterpart Fex =
∫

Γin
σ(uex, pex)n ds and hence ‖Fex − Fδ‖2

is measured. This is the simplest way to take properly into account the error in the geometry as well as in velocity and
pressure. Indeed we have otherwise only access to L2(Ωδ) and H1(Ωδ) norms and not L2(Ω) and H1(Ω). We remark
that a similar test case was used in [14] to check for the dependence of the geometry approximation in the numerical
convergence verification process.

We start first with the standard finite element approximations using first order geometry, namely P2P1G1 and
P3P2G1, applied to the Dirichlet-Dirichlet (see Section 2.1.1), Dirichlet-Neumann (see Section 2.1.2) and Neumann-
Neumann (see Section 2.1.3). The results are displayed in Table 3 and are quite interesting: even though the geometry
is not properly approximated, velocity and pressure error norms are 0 up to machine precision in all cases. This
can be explained by the facts that (i) the exact velocity is quadratic and the exact pressure linear, see (43), (ii) the
geometric transformation is first order and all volume and surface numerical integrals are computed exactely thanks to
FEEL++, hence the only possible solution in the velocity and pressure spaces are the exact velocity and exact pressure
respectively which we see in the L2(Ωδ) and H1(Ωδ) error norms. These results are however somewhat deceptive
as they are not taking into account the geometrical approximation as mentioned above. Indeed if we now look at the
error in ‖Fex − Fδ‖ it displays only an order 2 convergence rate with respect to h — as expected when using order 1
geometry — not withstanding the polynomial order of the velocity and pressure, see Table 3 and Figure 6.
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(c) Neumann-Neumann

FIGURE 6. Output convergence using PN+1PNG1 approximation spaces, N = 1, 2

In order to improve the approximation properties of Fδ , we now turn to the second order geometry approximation.
The results are displayed in Table 4. Again the results are interesting: even though the exact velocity and pressure
are quadratic and linear respectively the finite element approximations are not exact. First recall that, see (41), it
is not the finite element approximations in the real element that are polynomials of degree N but the finite element
approximations in the reference element K̂ and second that the geometric transformation is not longer linear, hence
the numerical integrations are not exact as the integrands are no longer polynomial when derivatives are involved —
thanks to the chain rule. — We recover however very good convergence rates and in fact we have super convergence
— one order more than expected. — This is due to the symmetries of the cylinder. Finally, we plot the Fδ convergence
in Figure 7 for PN+1PNGN , N = 1, 2 as well as P2P1G2. The later case shows that increasing just the geometrical
approximation improves already Fδ tremendously. To summarize, to handle non linear geometries, i.e.Ωδ 6= Ω, we
not only need to increase the order of approximations in velocity and pressure if we want to improve the accuracy of
our simulations but we need also to increase the order of approximation of the geometry. This, of course, comes at a
cost which the FEEL++ framework allows to alleviate to find a good balance between h,N and kgeo.

4.2. Flow simulation on cerebrovenous system

To exercise our full fledged framework, we perfom now a (incompressible) Navier-Stokes simulation in a realistic
geometry, the cerebrovenous system. This geometry represented by Figure 2(a) has 29 inlets and 2 outlets. The
boundary conditions imposed in this application are not physiological: on each inlet, we impose σ(u, p)n = ginn
with

gin = −0.5 · 105

(
1− cos

(
πt

0.0015

))
, (45)

and at the outlets, we set : σ(u, p)n = 0 which corresponds to the Neumann-Neumann formulation described in
Section 2.1.3. Regarding the physical parameters, we take the density ρ equal to 1kg/m3 and the dynamic viscosity µ
equal 0.003N · s/m2. The time step is ∆t = 10−5s and we perform a simulation up to t = 0.003s. The approximation
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(a) Dirichlet-Dirichlet: P2P1G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 2.0 · 10−16 2.1 · 10−15 4.9 · 10−16 1.4 · 10−1

0.3 1.2 · 10−16 3.6 · 10−15 5.5 · 10−16 5.1 · 10−2 1.98
0.2 3.3 · 10−16 1.3 · 10−14 8.4 · 10−16 2.6 · 10−2 1.65
0.1 1.3 · 10−16 1.5 · 10−14 1.7 · 10−15 5.7 · 10−3 2.2

(b) Dirichlet-Dirichlet: P3P2G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 1.5 · 10−16 8.4 · 10−15 1.1 · 10−15 1.4 · 10−1

0.3 1.8 · 10−16 4.9 · 10−15 1.2 · 10−15 5.1 · 10−2 1.98
0.2 1.9 · 10−16 9.2 · 10−15 1.8 · 10−15 2.6 · 10−2 1.65
0.1 2.1 · 10−15 4.6 · 10−14 4.3 · 10−15 5.7 · 10−3 2.2

(c) Dirichlet-Neumann: P2P1G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 8.1 · 10−17 2.3 · 10−15 3.9 · 10−16 1.4 · 10−1

0.3 8.4 · 10−17 1.4 · 10−15 5.1 · 10−16 5.1 · 10−2 1.98
0.2 1.7 · 10−16 2.0 · 10−15 8.5 · 10−16 2.6 · 10−2 1.65
0.1 1.6 · 10−16 3.9 · 10−15 1.7 · 10−15 5.7 · 10−3 2.2

(d) Dirichlet-Neumann: P3P2G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 2.0 · 10−16 5.4 · 10−15 1.1 · 10−15 1.4 · 10−1

0.3 2.1 · 10−16 6.7 · 10−15 1.4 · 10−15 5.1 · 10−2 1.98
0.2 2.1 · 10−16 7.1 · 10−15 1.9 · 10−15 2.6 · 10−2 1.65
0.1 4.9 · 10−16 1.3 · 10−14 4.2 · 10−15 5.7 · 10−3 2.2

(e) Neumann-Neumann: P2P1G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 2.3 · 10−16 3.2 · 10−15 4.6 · 10−16 1.4 · 10−1

0.3 1.8 · 10−16 3.1 · 10−15 5.5 · 10−16 5.1 · 10−2 1.98
0.2 1.9 · 10−16 2.7 · 10−15 8.3 · 10−16 2.6 · 10−2 1.65
0.1 1.7 · 10−16 3.6 · 10−15 1.5 · 10−15 5.7 · 10−3 2.2

(f) Neumann-Neumann: P3P2G1

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ ‖u− uδ‖1,Ωδ ||Fex − Fδ|| Slope

0.5 2.2 · 10−16 4.2 · 10−15 1.0 · 10−15 1.4 · 10−1

0.3 1.8 · 10−16 4.5 · 10−15 1.3 · 10−15 5.1 · 10−2 1.98
0.2 2.0 · 10−16 6.3 · 10−15 1.8 · 10−15 2.6 · 10−2 1.65
0.1 8.0 · 10−16 1.8 · 10−14 3.9 · 10−15 5.7 · 10−3 2.2

TABLE 3. Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann formulations using first
order geometry approximation

used is P2P1G1. Table 5 shows the number of tetrahedrons in the mesh as well as the number of degrees of freedom
associated to the P2P1G1 approximation.

As a verification, we monitor the sum of the flow rates Din at the inlets and the sum of the flow rates Dout at the
outlets. Since the fluid is incompressible, |Din +Dout| must be zero. In our simulations, this estimate varies between
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(a) Dirichlet-Dirichlet P3P2G2

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ SlopeP ‖u− uδ‖1,Ωδ SlopeU ||Fex − Fδ|| Slope

0.5 6.3 · 10−6 5.8 · 10−5 2.2 · 10−5 4.6 · 10−4

0.3 6.2 · 10−7 8.5 · 10−6 3.76 2.5 · 10−6 4.28 5.7 · 10−5 4.1
0.2 1.2 · 10−7 2.1 · 10−6 3.48 8.9 · 10−7 2.52 1.5 · 10−5 3.31
0.1 6.4 · 10−9 1.4 · 10−7 3.88 7.0 · 10−8 3.67 6.2 · 10−7 4.59

(b) Dirichlet-Neumann P3P2G2

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ SlopeP ‖u− uδ‖1,Ωδ SlopeU ||Fex − Fδ|| Slope

0.5 6.3 · 10−6 1.0 · 10−4 2.2 · 10−5 4.0 · 10−4

0.3 6.4 · 10−7 1.7 · 10−5 3.55 2.3 · 10−6 4.36 4.6 · 10−5 4.23
0.2 1.3 · 10−7 3.9 · 10−6 3.6 8.8 · 10−7 2.4 1.2 · 10−5 3.21
0.1 6.8 · 10−9 2.6 · 10−7 3.91 7.1 · 10−8 3.62 4.6 · 10−7 4.77

(c) Neumann-Neumann P3P2G2

h ‖u− uδ‖0,Ωδ ‖p− pδ‖0,Ωδ SlopeP ‖u− uδ‖1,Ωδ SlopeU ||Fex − Fδ|| Slope

0.5 8.9 · 10−6 5.2 · 10−5 2.3 · 10−5 5.1 · 10−4

0.3 1.1 · 10−6 4.3 · 10−6 4.85 2.4 · 10−6 4.45 6.7 · 10−5 3.98
0.2 2.3 · 10−7 1.3 · 10−6 2.92 8.9 · 10−7 2.45 1.8 · 10−5 3.29
0.1 1.2 · 10−8 7.0 · 10−8 4.25 7.1 · 10−8 3.65 8.4 · 10−7 4.4

TABLE 4. Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann formulations using sec-
ond order geometry approximation
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(a) Dirichlet-Dirichlet test case
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(b) Dirichlet-Neumann test case
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FIGURE 7. Fδ convergence using PN+1PNGN , N = 1, 2 approximations and P2P1G2 approximation.

TETRAHEDRONS DOF(uδ) DOF(pδ) DOF(Total)

237,438 1,119,411 54,183 1,173,594

TABLE 5. Number of elements and degrees of freedom using P2P1G1 approximations.

1e−10 and 1e−13. Finally, the Figure 4.2 displays two screenshots of a solution at time t = 0.00151s computed with
32 processors.

5. CONCLUSIONS AND OUTLOOK

In this paper we have proposed a flexible framework to answer some modeling and computational issues in order to
perform large-scale three-dimensional blood flow simulations in realistic geometries. In particular, we have presented
different strategies to handle boundary conditions appropriate to blood flow simulation as well as their variational

15



(a) Pressure field (b) Streamlines colored with pressure

FIGURE 8. Numerical solution on the cerebrovenous system at time t = 0.00151s.

formulation. While this work is a preliminary step, the results obtained with respect to convergence rates for both
velocity and pressure for the Stokes problem are encouraging but require further investigation, for example in the case
of mixed boundary conditions. We have also obtained good scalability results indicating that the strategy considered
should now be taken to the next level and tested on hundreds or thousands of processors. Finally, we displayed initial
numerical results on a realistic geometry which now need to be backed up by further mathematical and bio-mechanical
modeling.
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