
HAL Id: hal-00786554
https://hal.science/hal-00786554

Submitted on 11 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parallel Implementation of the Mortar Element
Method in 2D and 3D

Abdoulaye Samake, Silvia Bertoluzza, Micol Pennacchio, Christophe
Prud’Homme, Chady Zaza

To cite this version:
Abdoulaye Samake, Silvia Bertoluzza, Micol Pennacchio, Christophe Prud’Homme, Chady Zaza. A
Parallel Implementation of the Mortar Element Method in 2D and 3D. ESAIM: Proceedings, 2013,
43, pp.213-224. �10.1051/proc/201343014�. �hal-00786554�

https://hal.science/hal-00786554
https://hal.archives-ouvertes.fr

ESAIM: PROCEEDINGS, Vol. ?, 2013, 1-10

Editors: Will be set by the publisher

A PARALLEL IMPLEMENTATION OF THE MORTAR ELEMENT METHOD IN

2D AND 3D

Abdoulaye Samake1, Silvia Bertoluzza2, Micol Pennacchio3, Christophe
Prud’homme4 and Chady Zaza5

Abstract. We present here the generic parallel computational framework in C++ called Feel++
for the mortar finite element method with the arbitrary number of subdomain partitions in 2D and 3D.
An iterative method with block-diagonal preconditioners is used for solving the algebraic saddle-point
problem arising from the finite element discretization. Finally we present a scalability study and the
numerical results obtained using Feel++ library.

Keywords: Domain decomposition and mortar method and parallel computing

1. Introduction

Domain decomposition methods are becoming increasingly popular as a tool to solve problems arising in
many different applications. The possibility of easily coupling different discretizations and/or different numerical
methods in different subdomains without the need of imposing strong matching conditions is the main feature
of the nonconforming version of such methods and adds a further advantage.

In this paper we consider an algorithm presented in [2] for solving the linear system arising from the mortar
element method (initially proposed by C. Bernardi, Y. Maday and A. Patera in [8]) as well as another variant
with Lagrange multipliers proposed by F. Ben Belgacem and Y. Maday in [6]. The main feature of the Mortar
method is that the interface continuity conditions of the subdomains is taken into account in weak form by
asking the jump of the finite element solution on the interface to be L2-orthogonal to a well chosen Lagrange
multiplier space. The approximation properties of such a method are optimal in the sense that the error is
bounded by the sum of the subdomain approximation errors.

In order to make such techniques more competitive for real life applications, one has to deal with the problem
of efficient implementation. As it happens with all domain decomposition methods (both conforming and non-
conforming) the efficient implementation relies on parallelizing the solution process by assigning each subdomain
to a processor and employing the preferred iterative scheme.

1 Université Joseph Fourier Grenoble 1, / CNRS, Laboratoire Jean Kuntzmann / UMR 5224. Grenoble, F-38041, France
e-mail: abdoulaye.samake@imag.fr
2 IMATI CNR Italy,e-mail: Silvia.Bertoluzza@imati.cnr.it
3 IMATI CNR Italy,e-mail: Micol.Pennacchio@imati.cnr.it
4 Université de Strasbourg / CNRS, IRMA / UMR 7501. Strasbourg, F-67000, France, e-mail: prudhomme@unistra.fr
5 Commissariat à l’Energie Atomique, DEN/DANS/DM2S/STMF/LMEC. CEA Cadarache, 13108 Saint Paul lez Durance,
France. e-mail: chady.zaza@cea.fr

© EDP Sciences, SMAI 2013

2 ESAIM: PROCEEDINGS

The paper is organized as follows. In section 2 we recall the mortar finite element method with Lagrange
multipliers. In section 3 the computational framework is described and some remarks on the parallel implemen-
tation aspects are given. Finally, the numerical results showing strong and weak scaling on large architectures
in 3D are presented in section 4 and we give brief conclusions in section 5.

2. The Mortar Method

Let Ω be bounded domain of Rd, d = 2, 3. We denote ∂Ω its boundary and we assume that Ω is a union of
L subdomains Ωk:

Ω =

L⋃
k=1

Ωk. (1)

We assume that the domain decomposition is geometrically conforming. It means that if γkl = Ωk∩Ωl (k 6= l)
and γkl 6= ∅, then γkl must either be a common vertex of Ωk and Ωl, or a common edge, or a common face. We
define Γkl = γkl as the interface between Ωk and Ωl. We note that Γkl = Γlk.
We consider the Dirichlet boundary value problem (2): find u satisfying

−∆u = f in Ω,

u = g on ∂Ω,
(2)

where f ∈ L2(Ω) and g ∈ H1/2(∂Ω) are given functions. The usual variational formulation of (2) reads as
follows

Problem 2.1. Find u ∈ H1
g (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω). (3)

where H1
g denotes the space H1

g =
{
u ∈ H1(Ω), u = g on ∂Ω

}
.

Let us denote by H1/2(Γkl) the trace space of one of the spaces H1(Ωk) or H1(Ωl) on the interface Γkl. We
define two product spaces:

V =

L∏
k=1

H1(Ωk), Λ =

L∏
k=1

∏
0≤l<k
|Γkl|6=0

(
H1/2(Γkl)

)′
. (4)

The space Λ will be a trial space for the weak continuity conditions on the interfaces. We introduce the
bilinear forms a : V × V → R, b : V × Λ→ R and the linear functional f : V → R:

a(u,v) =

L∑
k=1

ak(u,v), ak(u,v) =

∫
Ωk

∇uk · ∇vk dx,

b(λ,v) =

L∑
k=1

L∑
l=0
|Γlk|6=0

bkl(λ,v), bkl(λ, v) = 〈λkl, vk〉|Γkl
,

f(v) =

L∑
k=1

∫
Ωk

fvk dx,

ESAIM: PROCEEDINGS 3

where λkl = −λlk and 〈·, ·〉|Γkl
stands for the duality product between

(
H1/2(Γkl)

)′
and H1/2(Γkl). The

bilinear form ak(·, ·) corresponds to the Dirichlet problem in the subdomain Ωk for the operator −∆.

The approach that we consider here is the mortar formulation with Lagrange multipliers presented in [2] that
reads as follows:

Problem 2.2. Find (u, λ) ∈ V × Λ such that

a(u,v) + b(λ,v) = f(v),

b(µ,u) = 0,

∀(v, µ) ∈ V × Λ.

(5)

If ũ and λ̃ denote the vectors of the components of uh and λh, finite element approximations to u and λ, the
discrete problem associated to the problem (2.2) is equivalent to a saddle-point system of the following form:

A
(

ũ

λ̃

)
=

(
f
0

)
, A =

(
A BT

B 0

)
(6)

where

A =

 A1 0
. . .

0 AL

 , BT =

 B1T

...
BT

L



and Ak corresponds to the stiffness matrix in the subdomain Ωk.

Remark 2.3. Moreover, there are other mortar formulations namely master-slave constraint formulation in
which the weak continuity constraint is directly taken into account in the approximations space called constraint
space.

3. Computational Framework

3.1. Krylov Iterative solvers

We want to solve the saddle-point problem (6) using an iterative Krylov subspace method in parallel. Finding
a good preconditioner for such problems is a delicate issue as the matrix A is indefinite and any preconditioning
matrix P acting on the jump matrices Bkl would involve communications.
A survey on block diagonal and block triangular preconditioners for this type of saddle-point problem (6) can
be found in [7, 12].
The matrix A arising in saddle-point problems is known to be spectrally equivalent to the block diagonal matrix:

P =

(
A 0
0 −S

)
where S is the Schur complement −BA−1BT (see for instance [15]). While not being an approximate inverse
of A, the matrix P is an ideal preconditioner. Indeed it can be shown that P (X) = X(X − 1)(X2 −X − 1) is
an annihilating polynomial of the matrix T = P−1A. Therefore, assuming T non singular, the matrix T has
only three eigenvalues {1, (1±

√
5)/2}. Thus an iterative solver using the Krylov subspaces constructed with T

would converge within three iterations. In practice, computing the inverse of the exact preconditioner P is too
expensive. Instead, one would rather look for an inexact inverse P̂−1. When applying the preconditioner, the
inexact inverse P̂−1 would be determined following an iterative procedure for solving the linear system Px = y.

4 ESAIM: PROCEEDINGS

This requires a class of iterative methods qualified as flexible inner-outer preconditioned solvers [18] or inexact
inner-outer preconditioned solvers [13].

The outer iterations for solving the main problem would involve inner iterations for computing an inexact
and non-constant preconditioner. Finding the relevant convergence parameters to this inner iterative procedure
is a critical issue. On the one hand, P̂−1 has to be computed in few iterations: the total number of iterations
including the inner iterations should be less than without preconditioner. On the other hand for ensuring the
stability of the outer iterations, it would be preferable to solve the inner iterations with as much accuracy as
possible in order to keep an almost constant preconditioner. We refer the reader to [11] and references therein
for theoretical results and experimental assessment with respect to the influence of the perturbation to the
preconditioner. In this context, the choice a good preconditioner for solving the inner iterations can have a
significant impact on the convergence of the outer iterations.

In this work the outer iterations will be carried out with a flexible preconditioned Biconjugate Gradient Stabi-
lized Method (FBICGSTAB) (see for instance algorithm (7.7) in [19]) and the flexible preconditioned Generalized
Minimal Residual Method (FGMRES(m)) with restart (see [20]):

ESAIM: PROCEEDINGS 5

Algorithm 1 Flexible Preconditioned FGMRES(m)

1: for k = 1, 2, . . . maxiter do
2: r0 = b−Ax0

3: β = ‖r0‖2
4: v1 = r0/β
5: p = βe1

6: for j = 0, 1, . . . m do
7: solve Pzj = vj

8: w = Azj
9: for i = 1, 2, . . . j do

10: hi,j = (w,vi)
11: w = w − hi,jvi

12: end for
13: hj+1,j = ‖w‖2
14: vj+1 = w/hj+1,j

15: for i = 1, 2, . . . j − 1 do
16: hi,j = cihi,j + sihi+1,j

17: hi+1,j = −sihi,j + cihi+1,j

18: end for

19: γ =
√
h2
j,j + h2

j+1,j

20: cj = hj,j/γ; sj = hj+1,j/γ
21: hj,j = γ; hj+1,j = 0
22: pj = cjpj ; pj+1 = −sjpj
23: if |pj+1| ≤ ε then
24: exit loop
25: end if
26: end for
27: Zm ←− [z1 · · · zm]
28: Hm ←−

(
hi,j
)

1≤i≤j+1;1≤j≤m
29: y = Argminq‖p−Hmq‖2
30: x = x0 + Zmy
31: if |pj+1| ≤ ε then
32: exit loop
33: else
34: x0 = x
35: end if
36: end for

Algorithm 2 Flexible Preconditioned FBICGSTAB

1: r0 = b−Ax0

2: r̃0 = r0

3: p0 = r0

4: v0 = r0

5: ρ0 = α = ω0 = 1
6: for j = 0, 1, . . . maxiter do
7: ρj+1 = (r̃0, rj)
8: β = (ρj+1/ρj)× (α/ωj)
9: pj+1 = rj + β(pj − ωjvj)

10: solve Pp̂ = pj+1

11: vj+1 = Ap̂
12: α = ρj+1/(r̂0,vj+1)
13: s = rj − αvj+1

14: solve P ŝ = s
15: t = Aŝ
16: ωj+1 = (t, s)/(t, t)
17: xj+1 = xj + αp̂ + ωŝ
18: rj+1 = s− ωj+1t
19: end for

Regarding the preconditioning we will focus on two approximations of P:

PI =

(
A 0
0 I

)
and PS =

(
A 0

0 −Ŝ

)
In the first preconditioner the exact inverse of PI is computed at each iteration using the (I)LU factorization of
the block diagonal matrix A. This preconditioner only acts on the diagonal blocks Ak. As a result, solving the
linear system PIx = y does not involve any communication between the subdomains. However, since PI does
not act on the jump matrices Bkl, it is very likely to become less effective as the number of subdomains increases.

6 ESAIM: PROCEEDINGS

In the second preconditioner the exact inverse of the block diagonal matrix A is also computed so that the exact
Schur complement S = −BA−1BT is readily available. Instead of taking S we choose an approximation Ŝ such
that x̂ = Ŝ−1y is an approximate solution to the linear system Sx = y following an iterative procedure. This
inner procedure is also carried out with a BICGSTAB algorithm preconditioned with the diagonal of S (Jacobi
preconditioner MJ) or with M−1

S = BABT .

Remark 3.1. The Krylov methods FBICGSTAB and FGMRES(m) are both adapted to our saddle-point problem,
but the only major difference between these methods is that FBICGSTAB presents sometimes breakdowns unlike
FGMRES(m).

3.2. Parallel implementation

The parallel implementation is designed using the message passing interface(MPI) library. The objective of
the parallel implementation is to minimize the amount of communications with respect to the parallel operations
involved in the linear solver, namely matrix-vector products and dot products. One of interests of this mortar
parallel implementation is that there’s no communication at cross-points(in 2D and 3D) and cross-edges(in 3D),
which reduces considerably communications between subdomains.

Assuming a constant number of internal dofs in each subdomain, it is rather straightforward to bind a
subdomain to each process. Each process would own its subdomain mesh Thk

, functional space Xhk
, stiffness

matrix Ak and unknown uk. Regarding the mortars, the choice is less obvious. In order to decrease the amount
of communications in the matrix-vector products, we have used technique developed in [2] which consists in
duplicating the data at the interfaces between subdomains. If Γkl is such an interface, then the Lagrange
multiplier vector λkl and its associated trace mesh Thk,l and trace spaceMhk,l are stored in both the processors
dealing Ωk and Ωl. Although the data storage is increased a little bit, the communications will be reduced
significantly.

1

5

6

2

7

3

8

4

1.1. One subdomain per cluster

1

5

6

2

7

3

8

4

1.2. Subdomains 3 and 4 on the same cluster

Figure 1. Domain decompositions

As an example, consider the splitting of the unit square into four little squares, as in Figure 1., where the
dash rectangles denote clusters and the bold segments correspond to the mortar interfaces. Note, that when

ESAIM: PROCEEDINGS 7

neighboring subdomains belong to different clusters, there are two copies of the mortar interface variables stored
in different clusters. Consider the interfaces as shown in the picture. The matrix A has the following form:

A =



A1 BT
15 BT

16 0 0
A2 BT

25 0 BT
27 0

A3 0 BT
36 0 BT

38

A4 0 0 BT
47 BT

48

B15 B25 0 0
B16 0 B36 0
0 B27 0 B38

0 0 B47 B48


Let us consider the matrix-vector multiplication procedure with the matrix A and the vector (ũ, λ̃), where ũ

and λ̃ have the following component-wise representation, according to the decomposition and the enumeration
in Figure 1.1.: ũ = (uT1 , u

T
2 , u

T
3 , u

T
4)T and λ̃ = (λT5 , λ

T
6 , λ

T
7 , λ

T
8)T . The resulting vector (ṽ, µ̃) = A · (ũ, λ̃) can

be computed as 

v
(1)
1

v
(2)
2

v
(3)
3

v
(4)
4

µ
(1,2)
5

µ
(1,3)
6

µ
(2,3)
7

µ
(3,4)
8


=



A1u
(1)
1 +BT

15λ
(1)
5 +BT

16λ
(1)
6

A2u
(2)
2 +BT

25λ
(2)
5 +BT

27λ
(2)
7

A3u
(3)
3 +BT

36λ
(3)
6 +BT

38λ
(3)
8

A4u
(4)
4 +BT

47λ
(4)
7 +BT

48λ
(4)
8

B15u
(1)
1 +B25u

(2)
2

B16u
(1)
1 +B36u

(3)
3

B27u
(2)
2 +B47u

(4)
4

B38u
(3)
3 +B48u

(4)
4


(7)

where the upper indices denote the cluster(the processor), in which this variable is stored. Two upper indices

mean that this variable is stored in both processors. Note that λ
(k)
i ≡ λ

(l)
i and so far we need communications

only when computing µi. For example

Ω1

u1
B1,6

µ
(1)
6

Ω3

u3
B3,6

µ
(3)
6

Figure 2. Communications for jump matrix multiplication

µ6 = µ
(1)
6 + µ

(3)
6 , µ

(1)
6 = B16u1 and µ

(3)
6 = B36u3.

We see that µ
(1)
6 and µ

(3)
6 are computed in parallel, and then should be interchanged and summed(see the

representations in Figure 3. and more explicitly in Figure 2.) .

8 ESAIM: PROCEEDINGS

A1 u1

B1,5 B
t
1,5 λ

(1)
5

B1,6

Bt
1,6

λ
(1)
6

µ
(1)
5

µ
(3)
6

A2 u2

B2,5 B
t
2,5 λ

(2)
5

Bt
2,7

Bt
2,7

λ
(2)
7

µ
(2)
5

µ
(2)
7

A3 u3

B3,8 B
t
3,8 λ

(3)
8

B3,6

Bt
3,6

λ
(3)
6

µ
(1)
6

µ
(4)
8

A4 u4

Bt
4,7

B4,7

λ
(4)
7

B4,8 B
t
4,8 λ

(4)
8

µ
(4)
7

µ
(3)
8

Figure 3. Communications for parallel matrix-vector multiplication

For the Feel++ [16, 17] implementation the communications are handled explicitly by the user and we
use PETSc [3–5, 14] sequentially even though the code is parallel using MPI communicators. This technique
requires explicitly sending and receiving complex data structures such as mesh data structures, PETSc vectors
and elements of functions space(traces) using Boost.MPI and Boost.Serialization [1].

4. Numerical Results

We present in this section the numerical results of the parallel implementation of the mortar element method
described in the section (3) using Feel++ and Boost.MPI libraries. We consider here the problem (2) in 3D
with g = sin(πx) cos(πy) cos(πz) the exact solution and f = −∆g = 3π2g the corresponding right hand side.
The problem is solved in the parallelepiped Ω = [0, Lx]×[0, Ly]×[0, Lz], Lx, Ly, Lz > 0. The following numerical
results are obtained using P2 finite element approximations in each subdomain Ωk with hΩk

= 0.1 in the strong
scaling study(see subsection 4.1) and hΩk

= 0.075 in the weak scaling one(see subsection 4.2), k = 1, · · · , L.
The stopping criterion is such that the residual norm for the Krylov solver is less than ε = 10−7.

The simulations have been performed at UJF/LJK on Syrah. Syrah cluster is made of 2 nodes named syrah-
local and Grenache-local. Each node has 2 x Intel Xeon L5640 2.27GHz granted 12 Cores with 128Gb of RAM
on Syrah-local and 64Gb of RAM on Grenache-local. The cluster has a total resource of 24 Cores and 192Gb
of RAM.
In the context of High Performance Computing(HPC), there are two common notions of scalability to evaluate
the efficiency of the parallel computing.
The first is the strong scaling, which is defined as how the solution time varies with the number of cores for a
fixed total problem size. The goal is to minimize time to solution for a given problem by keeping the problem

ESAIM: PROCEEDINGS 9

size fixed and increasing the number of cores.
The second is the weak scaling, which is defined as how the solution time varies with the number of cores for
a fixed problem size per core. The goal is to solve the larger problems by keeping the work per core fixed and
increasing the number of cores.

4.1. Strong Scaling

We present here the strong scaling results corresponding to the partition of the global domain Ω into Lx ×
Ly ×Lz subdomains (1 subdomain per core) with the fixed lengths Lx = Ly = Lz = 1. We plot in Figure 4.1.
the absolute solve time and assembly+solver time and total time versus the number of cores in loglog axis and
in Figure 4.2. the speedup and ideal speedup versus number of cores. The total number of degrees of freedom
is approximately equal to 300.000 and all the the measured timings are expressed in seconds.

We define the speedup by the following formula: Sp = Tr/Tp where p is the number of cores and Tr the
execution time of the parallel algorithm with r cores(r = 4 is our reference number of cores) and Tp the
execution time of the parallel algorithm with p cores(r < p). Analogously we define by SSp the corresponding
speedup for only the solver time and by SASp for assembly and solver .

100.6 100.7 100.8 100.9 101 101.1 101.2 101.3 101.4

101.4

101.6

101.8

102

102.2

102.4

#Cores

A
b
so

lu
te

T
im

e(
s)

Solver
AS+Solver

Total

4.1. Absolute Solve and Total time versus #Cores

2 4 6 8 10 12 14 16 18 20 22 24 26

2

4

6

8

10

#Cores

T
im

in
g

re
la

ti
ve

to
4

C
or

es

SS#Cores

SAS#Cores

S#Cores

ideal speedup

4.2. Speedup versus #Cores

Figure 4. Strong scaling

Remark 4.1. We observe in Figure 4.2. that the speedup related to the total computational time is very
over the ideal speedup. This is due to the fact that the functions spaces construction and matrix factorization
timings decrease significantly in the strong scaling, as well as the communications between subdomains which
are few in only 24 cores. We expect to find the normal behavior on the large scale architectures on which we
can take many subdomains with more consistent problem size.

4.2. Weak Scaling

We present here the the weak scaling results corresponding to the partition of the global domain Ω into
Lx × Ly × Lz subdomains (1 subdomain per processor) with Lx × Ly × Lz = #Cores. We plot in Figure 5.1.
the absolute solve time and total time versus the number of cores in loglog axis and in Figure 5.2. the
efficiency relative to four cores versus number of cores. We denote by Ep the efficiency relative to four cores
for the total time on p cores and ESp the efficiency relative to four cores for the solver time on p cores. The
number of degrees of freedom is approximately equal to 12.000 per subdomain and all the measured timing are
expressed in seconds.

Remark 4.2. The plots in Figure 5.1. clearly show that the absolute solve and total time does not increase
significantly when the number of cores and the problem size increase by keeping the problem size per core. This
confirms the results expected for the weak scaling study.

10 ESAIM: PROCEEDINGS

100.6 100.8 101 101.2 101.4

102.4

102.6

102.8

#Cores

A
b
so

lu
te

T
im

e(
s)

Solver
Total

5.1. Absolute Solve and Total time versus #Cores

5 10 15 20 25

80%

85%

90%

95%

100%

#Cores

E
ffi

ci
en

cy
re

la
ti

v
e

to
4

C
or

es

ES#Cores

E#Cores

5.2. Efficiency versus #Cores

Figure 5. Weak scaling

4.3. Convergence Results

We summarize in the following Tables Table 1. and Table 2. the behavior of L2 and H1 errors of the
numerical solution relative to the analytical solution of our problem using the mortar finite formulation described
in the section 2 according to the maximum mesh size h ∈ {0.2, 0.1, 0.05, 0.025} and the Lagrange polynomial
orders PN , N ∈ {1, 2, 3}. The tests are performed in the nonconforming case where the characteristic mesh
size in the subdomain Ωk is hΩk

= h+ δk, k = 1, · · · , L, with δk = 0.001 the small perturbation. All the tests
are achieved with 2, 4, 8 and 16 number of subdomains. We denote by u the exact solution of our problem and
uNh the discrete solution obtained by using the characteristic size equal to h and the piecewise polynomials of
degree less than or equal to N . We denote ‖ · ‖0 the L2-norm and ‖ · ‖1 the H1-norm. We plot in Figure 6.1.
and Figure 6.2. the L2 and H1 norms of the error relative to the exact solution versus the characteristic mesh
sizes in loglog axis.

Table 1. L2 Convergence results

h ‖u− u1
h‖0 ‖u− u2

h‖0 ‖u− u3
h‖0

0.2 2.80 · 10−2 2.67 · 10−3 2.16 · 10−4

0.1 6.69 · 10−3 2.83 · 10−4 9.58 · 10−6

0.05 1.66 · 10−3 3.24 · 100 5.29 · 10−7

0.025 4.00 · 10−4 3.91 · 10−6 3.10 · 10−8

Table 2. H1 Convergence results

h ‖u− u1
h‖1 ‖u− u2

h‖1 ‖u− u3
h‖1

0.2 7.92 · 10−1 1.09 · 10−1 1.10 · 10−2

0.1 3.72 · 10−1 2.44 · 10−2 1.08 · 10−3

0.05 1.83 · 10−1 5.88 · 10−3 1.25 · 10−4

0.025 8.93 · 10−2 1.43 · 10−3 1.49 · 10−5

Remark 4.3. Note that the convergence results above clearly shows that our formulation checked the best
convergence orders certified by the finite element theory. In addition, the above convergence results are obtained
in the nonconforming configuration which illustrates the flexibility of the mortar element method.

5. Conclusions

This paper clearly shows that our parallel computational framework scales on the small scale architectures
for solving the linear system arising from the mortar finite element method in 2D and 3D with the arbitrary
number of subdomain partitions using the block-diagonal preconditioners. Our current work is focused on
the implementation of the substructuring preconditioners [9, 10] for the discrete Steklov-Poincaré operator on

ESAIM: PROCEEDINGS 11

10−1.6 10−1.4 10−1.2 10−1 10−0.8
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2.04

3.14

4.25

Mesh size

‖u
−
u
h
‖ L

2

P1 FEM
P2 FEM
P3 FEM

6.1. L2 convergence

10−1.6 10−1.4 10−1.2 10−1 10−0.8

10−5

10−4

10−3

10−2

10−1

100

1.05

2.08

3.17

Mesh size

‖u
−
u
h
‖ H

1

P1 FEM
P2 FEM
P3 FEM

6.2. H1 convergence

Figure 6. Convergence curves

interfaces so that the number of iterations is maintained as low as possible that is needed for a good scaling on
very large scale architectures.

Acknowledgements

The authors would like to thank Vincent Chabannes for many fruitful discussions. Abdoulaye Samake and Christophe
Prud’homme acknowledge the financial support of the project ANR HAMM ANR-2010-COSI-009.

References

[1] Boost c++ libraries. http://www.boost.org.

[2] G.S. Abdoulaev, Y. Achdou, Y.A. Kuznetsov, and C. Prud’homme. On a parallel implementation of the mortar element
method. RAIRO-M2AN Modelisation Math et Analyse Numerique-Mathem Modell Numerical Analysis, 33(2):245–260, 1999.

[3] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman

McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne
National Laboratory, 2004.

[4] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F.

Smith, and Hong Zhang. PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.
[5] Satish Balay, Victor Eijkhout, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of

parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[6] F. Ben Belgacem and Y. Maday. The mortar element method for three-dimensional finite elements. R.A.I.R.O. Modl. Math.

Anal., 31:289–302, 1997.
[7] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta numerica, 14(1):1–137, 2005.
[8] C. Bernardi, Y. Maday, and A. Patera. A new nonconforming approach to domain decomposition:the mortar element method.

Nonlinear Partial Differential Equations and their Applications, 1993.
[9] S. Bertoluzza and M. Pennacchio. Preconditioning the mortar method by substructuring: The high order case. Applied Nu-

merical Analysis & Computational Mathematics, 1(2):434–454, 2004.

[10] Silvia Bertoluzza and Micol Pennacchio. Analysis of substructuring preconditioners for mortar methods in an abstract frame-
work. Applied Mathematics Letters, 20(2):131 – 137, 2007.

[11] Jie Chen, L.C. McInnes, and H. Zhang. Analysis and practical use of flexible BICGSTAB. Technical Report ANL/MCS-P3039-

0912, Argonne National Laboratory, 2012.
[12] H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative Solvers:with Applications in Incompressible

Fluid Dynamics: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation.
OUP Oxford, 2005.

[13] G.H. Golub and Q. Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM Journal on
Scientific Computing, 21(4):1305–1320, 1999.

12 ESAIM: PROCEEDINGS

[14] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue
problems. ACM Transactions on Mathematical Software, 31(3):351–362, 2005.

[15] M.F. Murphy, G.H. Golub, and A.J. Wathen. A note on preconditioning for indefinite linear systems. SIAM Journal on

Scientific Computing, 21(6):1969–1972, 2000.
[16] Christophe Prud’homme. A domain specific embedded language in C++ for automatic differentiation, projection, integration

and variational formulations. Scientific Programming, 14(2):81-110, 2006.
[17] Christophe Prud’homme. Life: Overview of a unified C++ implementation of the finite and spectral element methods in 1d,

2d and 3d. In Workshop On State-Of-The-Art In Scientific And Parallel Computing, Lecture Notes in Computer Science, page

10. Springer-Verlag, 2007.
[18] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing, 14(2):461–469,

1993.

[19] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, 2003.
[20] Youcef Saad. A flexible inner-outer preconditioned gmres algorithm. SIAM J. Sci. Comput., 14(2):461–469, March 1993.

	1. Introduction
	2. The Mortar Method
	3. Computational Framework
	3.1. Krylov Iterative solvers
	3.2. Parallel implementation

	4. Numerical Results
	4.1. Strong Scaling
	4.2. Weak Scaling
	4.3. Convergence Results

	5. Conclusions
	Acknowledgements
	References

