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Introduction

Domain decomposition methods are becoming increasingly popular as a tool to solve problems arising in many different applications. The possibility of easily coupling different discretizations and/or different numerical methods in different subdomains without the need of imposing strong matching conditions is the main feature of the nonconforming version of such methods and adds a further advantage.

In this paper we consider an algorithm presented in [START_REF] Abdoulaev | On a parallel implementation of the mortar element method[END_REF] for solving the linear system arising from the mortar element method (initially proposed by C. Bernardi, Y. Maday and A. Patera in [START_REF] Bernardi | A new nonconforming approach to domain decomposition:the mortar element method[END_REF]) as well as another variant with Lagrange multipliers proposed by F. Ben Belgacem and Y. Maday in [START_REF] Langtangen | The mortar element method for three-dimensional finite elements[END_REF]. The main feature of the Mortar method is that the interface continuity conditions of the subdomains is taken into account in weak form by asking the jump of the finite element solution on the interface to be L 2 -orthogonal to a well chosen Lagrange multiplier space. The approximation properties of such a method are optimal in the sense that the error is bounded by the sum of the subdomain approximation errors.

In order to make such techniques more competitive for real life applications, one has to deal with the problem of efficient implementation. As it happens with all domain decomposition methods (both conforming and nonconforming) the efficient implementation relies on parallelizing the solution process by assigning each subdomain to a processor and employing the preferred iterative scheme.

The paper is organized as follows. In section 2 we recall the mortar finite element method with Lagrange multipliers. In section 3 the computational framework is described and some remarks on the parallel implementation aspects are given. Finally, the numerical results showing strong and weak scaling on large architectures in 3D are presented in section 4 and we give brief conclusions in section 5.

The Mortar Method

Let Ω be bounded domain of R d , d = 2, 3. We denote ∂Ω its boundary and we assume that Ω is a union of L subdomains Ω k :

Ω = L k=1 Ω k . (1) 
We assume that the domain decomposition is geometrically conforming. It means that if γ kl = Ω k ∩Ω l (k = l) and γ kl = ∅, then γ kl must either be a common vertex of Ω k and Ω l , or a common edge, or a common face. We define Γ kl = γ kl as the interface between Ω k and Ω l . We note that Γ kl = Γ lk . We consider the Dirichlet boundary value problem (2): find u satisfying

-∆u = f in Ω, u = g on ∂Ω, (2) 
where f ∈ L 2 (Ω) and g ∈ H 1/2 (∂Ω) are given functions. The usual variational formulation of (2) reads as follows

Problem 2.1. Find u ∈ H 1 g (Ω) such that Ω ∇u • ∇v dx = Ω f v dx ∀v ∈ H 1 0 (Ω). ( 3 
)
where H 1 g denotes the space

H 1 g = u ∈ H 1 (Ω), u = g on ∂Ω .
Let us denote by H 1/2 (Γ kl ) the trace space of one of the spaces H 1 (Ω k ) or H 1 (Ω l ) on the interface Γ kl . We define two product spaces:

V = L k=1 H 1 (Ω k ), Λ = L k=1 0≤l<k |Γ kl | =0 H 1/2 (Γ kl ) . (4) 
The space Λ will be a trial space for the weak continuity conditions on the interfaces. We introduce the bilinear forms a :

V × V → R, b : V × Λ → R and the linear functional f : V → R: a(u, v) = L k=1 a k (u, v), a k (u, v) = Ω k ∇u k • ∇v k dx, b(λ, v) = L k=1 L l=0 |Γ lk | =0 b kl (λ, v), b kl (λ, v) = λ kl , v k | Γ kl , f (v) = L k=1 Ω k f v k dx,
where λ kl = -λ lk and •, • | Γ kl stands for the duality product between H 1/2 (Γ kl ) and H 1/2 (Γ kl ). The bilinear form a k (•, •) corresponds to the Dirichlet problem in the subdomain Ω k for the operator -∆.

The approach that we consider here is the mortar formulation with Lagrange multipliers presented in [START_REF] Abdoulaev | On a parallel implementation of the mortar element method[END_REF] that reads as follows:

Problem 2.2. Find (u, λ) ∈ V × Λ such that a(u, v) + b(λ, v) = f (v), b(µ, u) = 0, ∀(v, µ) ∈ V × Λ. ( 5 
)
If ũ and λ denote the vectors of the components of u h and λ h , finite element approximations to u and λ, the discrete problem associated to the problem (2.2) is equivalent to a saddle-point system of the following form:

A ũ λ = f 0 , A = A B T B 0 (6) 
where

A =    A 1 0 . . . 0 A L    , B T =    B1 T . . . B T L   
and A k corresponds to the stiffness matrix in the subdomain Ω k .

Remark 2.3. Moreover, there are other mortar formulations namely master-slave constraint formulation in which the weak continuity constraint is directly taken into account in the approximations space called constraint space.

Computational Framework

Krylov Iterative solvers

We want to solve the saddle-point problem (6) using an iterative Krylov subspace method in parallel. Finding a good preconditioner for such problems is a delicate issue as the matrix A is indefinite and any preconditioning matrix P acting on the jump matrices B kl would involve communications. A survey on block diagonal and block triangular preconditioners for this type of saddle-point problem (6) can be found in [START_REF] Benzi | Numerical solution of saddle point problems[END_REF][START_REF] Elman | Finite Elements and Fast Iterative Solvers:with Applications in Incompressible Fluid Dynamics: with Applications in Incompressible Fluid Dynamics[END_REF]. The matrix A arising in saddle-point problems is known to be spectrally equivalent to the block diagonal matrix:

P = A 0 0 -S
where S is the Schur complement -BA -1 B T (see for instance [START_REF] Murphy | A note on preconditioning for indefinite linear systems[END_REF]). While not being an approximate inverse of A, the matrix P is an ideal preconditioner. Indeed it can be shown that P (X) = X(X -1)(X 2 -X -1) is an annihilating polynomial of the matrix T = P -1 A. Therefore, assuming T non singular, the matrix T has only three eigenvalues {1, (1 ± √ 5)/2}. Thus an iterative solver using the Krylov subspaces constructed with T would converge within three iterations. In practice, computing the inverse of the exact preconditioner P is too expensive. Instead, one would rather look for an inexact inverse P-1 . When applying the preconditioner, the inexact inverse P-1 would be determined following an iterative procedure for solving the linear system Px = y.

This requires a class of iterative methods qualified as flexible inner-outer preconditioned solvers [START_REF] Saad | A flexible inner-outer preconditioned GMRES algorithm[END_REF] or inexact inner-outer preconditioned solvers [START_REF] Golub | Inexact preconditioned conjugate gradient method with inner-outer iteration[END_REF].

The outer iterations for solving the main problem would involve inner iterations for computing an inexact and non-constant preconditioner. Finding the relevant convergence parameters to this inner iterative procedure is a critical issue. On the one hand, P-1 has to be computed in few iterations: the total number of iterations including the inner iterations should be less than without preconditioner. On the other hand for ensuring the stability of the outer iterations, it would be preferable to solve the inner iterations with as much accuracy as possible in order to keep an almost constant preconditioner. We refer the reader to [START_REF] Jie Chen | Analysis and practical use of flexible BICGSTAB[END_REF] and references therein for theoretical results and experimental assessment with respect to the influence of the perturbation to the preconditioner. In this context, the choice a good preconditioner for solving the inner iterations can have a significant impact on the convergence of the outer iterations.

In this work the outer iterations will be carried out with a flexible preconditioned Biconjugate Gradient Stabilized Method (FBICGSTAB) (see for instance algorithm (7.7) in [START_REF] Saad | Iterative methods for sparse linear systems[END_REF]) and the flexible preconditioned Generalized Minimal Residual Method (FGMRES(m)) with restart (see [START_REF] Saad | A flexible inner-outer preconditioned gmres algorithm[END_REF]):

Algorithm 1 Flexible Preconditioned FGMRES(m) 1: for k = 1, 2, . . . maxiter do 2: r 0 = b -Ax 0 3: β = r 0 2 4: v 1 = r 0 /β 5: p = βe 1 6: for j = 0, 1, . . . m do 7: solve Pz j = v j 8: w = Az j 9:
for i = 1, 2, . . . j do 10:

h i,j = (w, v i ) 11: w = w -h i,j v i 12:
end for 13:

h j+1,j = w 2 14: v j+1 = w/h j+1,j

15:

for i = 1, 2, . . . j -1 do 16:

h i,j = c i h i,j + s i h i+1,j 17: h i+1,j = -s i h i,j + c i h i+1,j

18:

end for 19:

γ = h 2 j,j + h 2 j+1,j 20 
:

c j = h j,j /γ; s j = h j+1,j /γ

21:

h j,j = γ; h j+1,j = 0 22:

p j = c j p j ; p j+1 = -s j p j 23: if |p j+1 | ≤ ε then

24:

exit loop

25:

end if 26: end for 27:

Z m ←-[z 1 • • • z m ] 28: H m ←-h i,j 1≤i≤j+1;1≤j≤m 29: y = Argmin q p -H m q 2 30: x = x 0 + Z m y 31: if |p j+1 | ≤ ε then 32:
exit loop 33: else 34:

x 0 = x 35: end if 36: end for Algorithm 2 Flexible Preconditioned FBICGSTAB 1: r 0 = b -Ax 0 2: r0 = r 0 3: p 0 = r 0 4: v 0 = r 0 5: ρ 0 = α = ω 0 = 1
6: for j = 0, 1, . . . maxiter do 7: Regarding the preconditioning we will focus on two approximations of P:

ρ j+1 = (r 0 , r j ) 8: β = (ρ j+1 /ρ j ) × (α/ω j ) 9: p j+1 = r j + β(p j -ω j v
P I = A 0 0 I and P S = A 0 0 -Ŝ
In the first preconditioner the exact inverse of P I is computed at each iteration using the (I)LU factorization of the block diagonal matrix A. This preconditioner only acts on the diagonal blocks A k . As a result, solving the linear system P I x = y does not involve any communication between the subdomains. However, since P I does not act on the jump matrices B kl , it is very likely to become less effective as the number of subdomains increases.

In the second preconditioner the exact inverse of the block diagonal matrix A is also computed so that the exact Schur complement S = -BA -1 B T is readily available. Instead of taking S we choose an approximation Ŝ such that x = Ŝ-1 y is an approximate solution to the linear system Sx = y following an iterative procedure. This inner procedure is also carried out with a BICGSTAB algorithm preconditioned with the diagonal of S (Jacobi preconditioner M J ) or with M -1 S = BAB T . Remark 3.1. The Krylov methods FBICGSTAB and FGMRES(m) are both adapted to our saddle-point problem, but the only major difference between these methods is that FBICGSTAB presents sometimes breakdowns unlike FGMRES(m).

Parallel implementation

The parallel implementation is designed using the message passing interface(MPI) library. The objective of the parallel implementation is to minimize the amount of communications with respect to the parallel operations involved in the linear solver, namely matrix-vector products and dot products. One of interests of this mortar parallel implementation is that there's no communication at cross-points(in 2D and 3D) and cross-edges(in 3D), which reduces considerably communications between subdomains.

Assuming a constant number of internal dofs in each subdomain, it is rather straightforward to bind a subdomain to each process. Each process would own its subdomain mesh T h k , functional space X h k , stiffness matrix A k and unknown u k . Regarding the mortars, the choice is less obvious. In order to decrease the amount of communications in the matrix-vector products, we have used technique developed in [START_REF] Abdoulaev | On a parallel implementation of the mortar element method[END_REF] which consists in duplicating the data at the interfaces between subdomains. If Γ kl is such an interface, then the Lagrange multiplier vector λ kl and its associated trace mesh T h k ,l and trace space M h k ,l are stored in both the processors dealing Ω k and Ω l . Although the data storage is increased a little bit, the communications will be reduced significantly. As an example, consider the splitting of the unit square into four little squares, as in Figure 1., where the dash rectangles denote clusters and the bold segments correspond to the mortar interfaces. Note, that when neighboring subdomains belong to different clusters, there are two copies of the mortar interface variables stored in different clusters. Consider the interfaces as shown in the picture. The matrix A has the following form:

A =             A 1 B T 15 B T 16 0 0 A 2 B T 25 0 B T 27 0 A 3 0 B T 36 0 B T 38 A 4 0 0 B T 47 B T 48 B 15 B 25 0 0 B 16 0 B 36 0 0 B 27 0 B 38 0 0 B 47 B 48
size fixed and increasing the number of cores.

The second is the weak scaling, which is defined as how the solution time varies with the number of cores for a fixed problem size per core. The goal is to solve the larger problems by keeping the work per core fixed and increasing the number of cores.

Strong Scaling

We present here the strong scaling results corresponding to the partition of the global domain Ω into L x × L y × L z subdomains (1 subdomain per core) with the fixed lengths L x = L y = L z = 1. We plot in Figure 4.1. the absolute solve time and assembly+solver time and total time versus the number of cores in loglog axis and in Figure 4.2. the speedup and ideal speedup versus number of cores. The total number of degrees of freedom is approximately equal to 300.000 and all the the measured timings are expressed in seconds.

We define the speedup by the following formula: S p = T r /T p where p is the number of cores and T r the execution time of the parallel algorithm with r cores(r = 4 is our reference number of cores) and T p the execution time of the parallel algorithm with p cores(r < p). Analogously we define by SS p the corresponding speedup for only the solver time and by SAS p for assembly and solver . 10 0.6 10 0.7 10 0.8 10 0.9 10 1 10 1.1 10 1.2 10 1.3 10 1.4 that the speedup related to the total computational time is very over the ideal speedup. This is due to the fact that the functions spaces construction and matrix factorization timings decrease significantly in the strong scaling, as well as the communications between subdomains which are few in only 24 cores. We expect to find the normal behavior on the large scale architectures on which we can take many subdomains with more consistent problem size.

Weak Scaling

We present here the the weak scaling results corresponding to the partition of the global domain Ω into L x × L y × L z subdomains (1 subdomain per processor) with L x × L y × L z = #Cores. We plot in Figure 5.1. the absolute solve time and total time versus the number of cores in loglog axis and in Figure 5.2. the efficiency relative to four cores versus number of cores. We denote by E p the efficiency relative to four cores for the total time on p cores and ES p the efficiency relative to four cores for the solver time on p cores. The number of degrees of freedom is approximately equal to 12.000 per subdomain and all the measured timing are expressed in seconds.

Remark 4.2. The plots in Figure 5.1. clearly show that the absolute solve and total time does not increase significantly when the number of cores and the problem size increase by keeping the problem size per core. This confirms the results expected for the weak scaling study. 

Convergence Results

We summarize in the following Tables Table 1. and Table 2. the behavior of L 2 and H 1 errors of the numerical solution relative to the analytical solution of our problem using the mortar finite formulation described in the section 2 according to the maximum mesh size h ∈ {0.2, 0.1, 0.05, 0.025} and the Lagrange polynomial orders P N , N ∈ {1, 2, 3}. The tests are performed in the nonconforming case where the characteristic mesh size in the subdomain Ω k is h

Ω k = h + δ k , k = 1, • • • , L,
with δ k = 0.001 the small perturbation. All the tests are achieved with 2, 4, 8 and 16 number of subdomains. We denote by u the exact solution of our problem and u N h the discrete solution obtained by using the characteristic size equal to h and the piecewise polynomials of degree less than or equal to N . We denote • 0 the L 2 -norm and • 1 the H 1 -norm. We plot in Figure 6.1. and Figure 6.2. the L 2 and H 1 norms of the error relative to the exact solution versus the characteristic mesh sizes in loglog axis. Remark 4.3. Note that the convergence results above clearly shows that our formulation checked the best convergence orders certified by the finite element theory. In addition, the above convergence results are obtained in the nonconforming configuration which illustrates the flexibility of the mortar element method.

u -u 1 h 1 u -u 2 h 1 u -u 3

Conclusions

This paper clearly shows that our parallel computational framework scales on the small scale architectures for solving the linear system arising from the mortar finite element method in 2D and 3D with the arbitrary number of subdomain partitions using the block-diagonal preconditioners. Our current work is focused on the implementation of the substructuring preconditioners [START_REF] Bertoluzza | Preconditioning the mortar method by substructuring: The high order case[END_REF][START_REF] Bertoluzza | Analysis of substructuring preconditioners for mortar methods in an abstract framework[END_REF] for the discrete Steklov-Poincaré operator on 
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where the upper indices denote the cluster(the processor), in which this variable is stored. Two upper indices mean that this variable is stored in both processors. Note that λ

i and so far we need communications only when computing µ i . For example

Ω 3 

6 = B 16 u 1 and µ

(3) 6 = B 36 u 3 . We see that µ 

(1) 5

(2) 7 For the Feel++ [START_REF] Prud | A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations[END_REF][START_REF] Prud | Life: Overview of a unified C++ implementation of the finite and spectral element methods in 1d, 2d and 3d[END_REF] implementation the communications are handled explicitly by the user and we use PETSc [START_REF] Balay | PETSc users manual[END_REF][START_REF] Balay | PETSc Web page[END_REF][START_REF] Balay | Efficient management of parallelism in object oriented numerical software libraries[END_REF][START_REF] Hernandez | SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems[END_REF] sequentially even though the code is parallel using MPI communicators. This technique requires explicitly sending and receiving complex data structures such as mesh data structures, PETSc vectors and elements of functions space(traces) using Boost.MPI and Boost.Serialization [START_REF]Boost c++ libraries[END_REF].

Numerical Results

We present in this section the numerical results of the parallel implementation of the mortar element method described in the section (3) using Feel++ and Boost.MPI libraries. We consider here the problem (2) in 3D with g = sin(πx) cos(πy) cos(πz) the exact solution and f = -∆g = 3π 2 g the corresponding right hand side. The problem is solved in the parallelepiped Ω = [0,

The following numerical results are obtained using P 2 finite element approximations in each subdomain Ω k with h Ω k = 0.1 in the strong scaling study(see subsection 4.1) and h Ω k = 0.075 in the weak scaling one(see subsection 4.2), k = 1, • • • , L. The stopping criterion is such that the residual norm for the Krylov solver is less than ε = 10 -7 .

The simulations have been performed at UJF/LJK on Syrah. Syrah cluster is made of 2 nodes named syrahlocal and Grenache-local. Each node has 2 x Intel Xeon L5640 2.27GHz granted 12 Cores with 128Gb of RAM on Syrah-local and 64Gb of RAM on Grenache-local. The cluster has a total resource of 24 Cores and 192Gb of RAM. In the context of High Performance Computing(HPC), there are two common notions of scalability to evaluate the efficiency of the parallel computing. The first is the strong scaling, which is defined as how the solution time varies with the number of cores for a fixed total problem size. The goal is to minimize time to solution for a given problem by keeping the problem