
HAL Id: hal-00786513
https://hal.science/hal-00786513

Submitted on 8 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispersive smoothing for the Euler-Korteweg model
Corentin Audiard

To cite this version:
Corentin Audiard. Dispersive smoothing for the Euler-Korteweg model. SIAM Journal on Mathemat-
ical Analysis, 2012, 44 (4), pp.3018-3040. �10.1137/11083174X�. �hal-00786513�

https://hal.science/hal-00786513
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. ANAL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 3018–3040

DISPERSIVE SMOOTHING FOR THE EULER–KORTEWEG MODEL∗

CORENTIN AUDIARD†

Abstract. The Euler–Korteweg system consists of a quasi-linear, dispersive perturbation of
the Euler equations. The Cauchy problem has been studied in any dimension d ≥ 1 by Benzoni,
Danchin, and Descombes, who obtained local well-posedness results when the velocity is in Hs for
s > d/2 + 1. They noticed that one may expect to find some smoothing effect due to the dispersive
effects, but there was no proof so far. Our aim here is to give such results in any dimension under
their local existence assumptions. In the simpler case of dimension 1 we obtain unconditionnal Kato
smoothing (local smoothing of 1/2 derivative). In higher dimensions a few additional hypotheses
must be made to get smoothing and we briefly discuss the pertinence of these restrictions.

Key words. dispersive equations, Euler–Korteweg system, local smoothing, paradifferential
calculus
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1. Introduction. Dispersive smoothing is by now a rather classical topic. Its
first observation originates with the seminal work of Kato on the Korteweg–de Vries
equation [Kat83] (and almost at the same time Kruzhkov and Faminskĭı [KF83]).
There have since been various generalizations and refinements of these results for the
Korteweg–de Vries equation [KPV91], as well as for very general dispersive equations
[CS88]. Seemingly, the first result of dispersive smoothing for the Schrödinger equation
with fully variable coefficients was obtained by Doi [Doi96] (different properties, of
microlocal nature, were also obtained by Craig, Kappeler, and Strauss [CKS95]), who
used geometric assumptions such as nontrapping of bicharacteristics and flatness of
the coefficients at infinity that proved to be (in some sense) sharp. More recently,
Doi’s strategy of proof was successfully generalized by Kenig, Ponce, and Vega for the
quasi-linear Schrödinger equation [KPV04] and Alazard, Burq, and Zuilly [ABZ] for
(a convenient reformulation of) the one-dimensional water waves equations.

We treat here the Euler–Korteweg equations for capillary fluids, which read

(EK)

{
∂tρ+ div(ρu) = 0,
∂tu+ (u · ∇)u+∇g0(ρ) = ∇ (K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2) ,

where the right-hand side of the second equation modelizes capillarity forces. It is
a dispersive perturbation of the classical Euler equations. Special solutions, namely,
traveling profiles of the form u(x · n − ct), have been known for a long time; see, for
example, [BGDDJ07] for a review on the topic of their stability.

The analysis of the Cauchy problem for (EK) with general K was initiated by
Benzoni-Garage, Danchin, and Descombes in [BGDD06] in dimension 1; they later
obtained in [BGDD07] the local well-posedness in any dimension d for (∇ρ, u)|t=0 ∈
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DISPERSIVE SMOOTHING FOR THE E-K MODEL 3019

Hs, s > d/2 + 1. The dispersive nature of this system is clarified by introducing the
new unknown ζ = R(ρ), where R is a primitive of the application ρ →

√
K(ρ)/ρ.

The system satisfied by ζ, u is then artificially supplemented by an equation on the
unknown w := ∂xζ obtained by differentiating in x the transport equation on ζ.

Consider first the simpler case of dimension 1; the equations on (ρ, u) are

(EK1D)

{
∂tρ+ ∂x(ρu) = 0,
∂tu+ (u · ∂x)u+ ∂xg0(ρ) = ∂x (K(ρ)∂2

xρ+
1
2K

′(ρ)|∂xρ|2),

and the extended system reads

(EEK)

⎧
⎨
⎩

∂tζ + u∂xζ + a(ζ)∂xu = 0,
∂tu+ u∂xu− w∂xw − ∂x(a(ζ)∂xw) = −g′(ζ)w,
∂tw + u∂xw + w∂xu+ ∂x(a(ζ)∂xu) = 0,

where g′ = R−1/a · g′0 ◦R−1, a(ζ) =
√
R−1(ζ)K(R−1(ζ)).

One may identify the last two equations in (EEK) as the real and imaginary parts
of a quasi-linear Schrödinger equation on z = u+ iw:

(SB) ∂tz + z∂xz + i∂x(a(ζ)∂xz) = −g′(ζ)Re(z).

The term z∂xz will have to be treated with some care. Indeed, if we write (SB) as

∂tz + u∂xz + iw∂xz + i∂x(a∂xz) = −g′(ζ)Re(z),

we see that (at least formally by Fourier modes analysis) iw∂xz is a source of spectral
instability. More precisely, if w is independent of t, a criterion due to Mizohata [Miz81]

requires that
∫X

0 w(x)dx remain uniformly bounded in X for an L2 estimate to stand.
It is noticeable that this formal criterion is often satisfied here since w is the derivative
of ζ(ρ); thus it is bounded if ρ is bounded. (This is required for the local existence
theorem in [BGDD06].)

In a higher dimension, a different, but crucial, feature appears for the reformulated
system

(1.1)

{
∂tζ + u · ∇ζ + a(ζ)divu = 0,
∂tz + (u · ∇)z + i(∇z) · w + i∇(adivz) = −g′(ζ)Re(z).

The second equation is no longer a quasi-linear Schrödinger equation but a degener-
ate quasi-linear Schrödinger equation. This fact prevents smoothing for general initial
data and some (technical) cancellations of the one-dimensional case are not true any-
more. Another important but more standard feature is the appearance of geometric
assumptions, such as nontrapping of the bicharacteristics and some flatness at infinity
of the symbol ξa(x)ξt.

Smoothing properties of the Euler equations are interesting on a mathematical
level because the degeneracy of the equations studied here raises new technical dif-
ficulties. On a more physical level it is still not known whether small perturbations
of traveling waves solutions of (EK) exist globally or if they may blow up, the blow-
up criterion of [BGDDJ05] involving derivatives of too high an order. The slight
smoothing proved here may be a further step to close the a priori estimates.

To prove our results, we use the gauge methods of [BGDD07] and follow closely
the approach in [ABZ], which consists of reducing the quasi-linear problem to a linear
one by means of paradifferential calculus. The ideas developped by Kenig, Ponce, and
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3020 CORENTIN AUDIARD

Vega [KPV04] for the quasi-linear Schrödinger equation are also important when the
dimension is larger than 1.

The scheme of the proof can be described as follows. We have z an Hs solution,
and the equations are reformulated as equations on some Zs which is exactly s times
less regular than z. A symbol p is then constructed such that

d

dt
〈TpZs, Zs〉 ≥ ‖Zsϕ‖2H1/2 − ‖Zs‖2L2

with ϕ having some decay at infinity. This estimate is true for smooth solutions and
then implies the local 1/2 derivative smoothing by density arguments.

Our paper is organized as follows:
• In section 2 we recall the essential results on paradifferential calculus that we
use in the rest of the paper.

• In section 3 we treat the one-dimensional case by para-linearizing the
equations.

• Section 4 extends to any dimension the results of section 3 under some sup-
plementary assumptions when ∇ρ, u belong to Sobolev spaces.

• Since many physically pertinent solutions of the Euler–Korteweg system do
not cancel at infinity, we extend our results to perturbations of such solutions
in section 5. We briefly discuss the necessity of “flatness at infinity” and prove
the smoothing effect for the linearized extended system near a traveling profile
with weaker assumptions than in the general case.

• In the appendix we give for completeness the (relatively) standard arguments
for the construction of paradifferential operators that are essential tools of
the previous sections, and we give the proof of a weighted G̊arding inequality.

2. Handtool in paradifferential calculus. Paradifferential calculus was in-
troduced in the pioneering paper of Bony [Bon81]. It has since proved to be a very
powerful tool for the analysis of nonlinear partial differential equations. For the re-
sults of this section we refer to the lecture notes of Métivier [Mét08].1 Chapter 5
proves continuity and paralinearization properties of paradifferential operators; the
formulas of symbolic calculus are proved in chapter 6.

Definition 2.1. Let χ(η, ξ) be a smooth nonnegative function. We say that it is
an admissible truncature function when there exists 0 < ε1 < ε2 < 1 such that

{
χ(η, ξ) = 1, |η| ≤ ε1(1 + |ξ|),
χ(η, ξ) = 0, |η| ≥ ε2(1 + |ξ|),

and for any multi-indices (α, β) there exists a constant Cα,β > 0 such that |∂α
η ∂

β
ξ χ| ≤

C(1 + |ξ|)−|α|−|β|. Following Example 5.1.5 of [Mét08], we will choose for χ

χ(η, ξ) =
∑

ϕk(ξ)θk−3(η),

where θk(ξ) = θ(2−kξ), ϕ0 = θ0, ∀ k ≥ 1, ϕk = θk − θk−1, and θ satisfies

θ ∈ C∞
c (Rd), θ = 1 for |ξ| ≤ 1.1, θ = 0 for |ξ| ≥ 1.9.

For r ≥ 0, m ∈ R, the space of symbols Γm
r is the set of functions a(x, ξ) : Rd×Rd →

C, C∞ in ξ �= 0, W r,∞ in x for any ξ �= 0 such that for any multi-index α and any
|ξ| ≥ 1/2, ‖∂α

ξ a(·, ξ)‖W r,∞ ≤ Cα(1 + |ξ|)m−|α|.

1We use the chapter numbering of the pdf file available on the webpage of Métivier,
http://www.math.u-bordeaux.fr/metivier/coursinE.html.
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DISPERSIVE SMOOTHING FOR THE E-K MODEL 3021

Remark 2.2. In particular the Sobolev embeddings ensure that if a(x) ∈ Hs(Rd),
s > r + d/2, then a ∈ Γ0

r.
Definition 2.3 (see [Mét08, Definition 5.1.14]). Let ψ ∈ C∞(Rd;R+) be such

that ∀ |η| ≤ 1, ψ(η) = 0, ∀ |η| ≥ 2, ψ(η) = 1. For a ∈ Γm
r we define the paradifferen-

tial operator Ta by

(2.1) T̂au(ξ) =
1

(2π)d

∫

Rd

χ(ξ − η, η)ψ(η)â(ξ − η, η)û(η)dη,

where â is the Fourier transform of a with respect to the variable x.
Equivalently, if Gχ is the inverse Fourier transform with respect to η of χ(η, ξ),

Ta is the pseudodifferential operator of symbol
∫
Gχ(x − y, ξ)a(y, ξ)dy ψ(ξ)/(2π)d.

(This less explicit definition has the advantage of making sense also when â is only a
distribution.)

Remark 2.4. Our definition is slightly different from the one given in the beginning
of chapter 5 in [Mét08]. The presence of the function ψ is necessary to deal with
symbols which are not smooth in ξ near 0; however, it is only introduced in [Mét08]
at the end of chapter 6 (section 6.4). This is a mostly harmless modification, but—as
pointed out by the reviewer—it raises a few modifications in the paralinearization
results that we describe hereafter.

Proposition 2.5 (Theorem 5.1.15 in [Mét08]). If a ∈ Γm
r , r ≥ 0, then Ta is

continuous Hs+m → Hs for s ∈ R, and

‖Ta‖Hs+m→Hs � sup
|ξ|≥1/2, |α|≤d/2+1

(1 + |ξ|)|α|−m‖∂α
ξ a(·, ξ)‖L∞.

Proposition 2.6 (paralinearization formulas).
1. If u, v ∈ Hs ×Hr, s, r > d/2, then

uv = Tuv + Tvu+R(u, v)

with R(u, v) ∈ Hs+r−d/2, ‖R(u, v)‖Hs+r−d/2 ≤ C‖u‖Hs‖v‖Hr .
2. If a and u are bounded, ∇a ∈ Hs−1, u ∈ L2, s ≥ 1, then

‖au− Tau‖Hs � ‖∇a‖Hs−1‖u‖L∞ + ‖a‖L∞‖u‖L2.

3. If a ∈ W r,∞, r integer ≥ 1, u ∈ L2, then

‖a∂xu− Ta∂xu‖Hr−1 � ‖a‖W r,∞‖u‖L2.

Proof. This is the only part of this section where the proofs of [Mét08] need mod-

ifications. We note T̃a the paradifferential operator as defined in section 5 of [Mét08];

this is (2.1) without the ψ factor. Our operator Ta is linked to T̃a by Tau =

T̃a(ψ(Dx)u), where ψ(Dx) is the Fourier multiplier of symbol ψ. The operator T̃a

enjoys the same continuity properties as Ta, namely, for a bounded it acts continu-
ously Hs → Hs (Proposition 5.2.1 in [Mét08]).

1. We have uv−Tuv−Tvu = uv− T̃uv− T̃vu+ T̃u(1−ψ(Dx)v)+ T̃v(1−ψ(Dx)u).

Since 1−ψ(ξ) is compactly supported, T̃u(1−ψ(Dx)v) ∈ H∞. As s, r > d/2,

u and v are bounded and thus T̃u, T̃v are continuous Hs+r−d/2 → Hs+r−d/2.
We are reduced to proving ‖uv − T̃uv − T̃vu‖Hs+r−d/2 � ‖u‖Hs‖v‖Hr , which
is standard. We sketch the argument for completeness: set

u =
∑

j≥0

uj, v =
∑

j≥0

vj ,
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3022 CORENTIN AUDIARD

the nonhomogeneous Littlewood–Paley decomposition of u, v. Then uv −
T̃uv−T̃vu =

∑
|j−k|≤2 ujvk (this is a consequence of our choice for the function

χ), and the Fourier transform of ujvk is supported in a ball of radius C2j .
By Proposition 4.1.12 in [Mét08] we only have to prove 2j(s+r−n/2)‖ujvk‖L2

1|j−k|≤2 ∈ l2(N2).
According to Bernstein inequalities (Corollary 4.1.7 in [Mét08]), ‖uj‖L∞ �
2j(d/2−s)‖uj‖Hs , ‖vj‖L2 � 2−jr‖vj‖Hr so that

|k − j| ≤ 2 ⇒ ‖ujvk‖L2 � 2j(d/2−s−r)‖u‖Hs‖vk‖Hr ,

and the conclusion follows from
∑

‖vj‖2Hr � ‖v‖2Hr .
2. As previously, we write

au− Tau = au− T̃au+ T̃a

(
(1− ψ(Dx))u

)
,

but (1 − ψ(Dx))u ∈ H∞, so that the second term in the right-hand side has
its Hs norm controlled by ‖a‖L∞‖u‖L2, while Proposition 5.2.2 in [Mét08]
gives

‖au− T̃au‖Hs � ‖∇a‖Hs−1‖u‖L∞.

3. Again, we are reduced to estimating a∂xu− T̃a∂xu, which is done in Theorem
5.2.9 in [Mét08]. The result stated in the theorem is slightly different, but
the proof gives the estimate needed.

Corollary 2.7. Let s > d/2, r ≥ s + 1, u ∈ Hs, and a ∈ Hr (resp., a ∈
L∞, ∇a ∈ Hr−1). We have au = Tau + Q(u, a) with ‖Q(u, a)‖Hr � ‖u‖Hs‖a‖Hr

(resp., ‖u‖Hs(‖∇a‖Hr−1 + ‖a‖L∞)).
Proof. The second case is a weaker version of the second point in the previous

proposition.
For the first case, we have au = Tau+Tua+R(a, u), where R already satisfies the

estimate. But since (by Sobolev embedding) u ∈ L∞, Proposition 2.5 implies that
Tua ∈ Hr with the expected estimate.

We denote by [A,B] the commutator AB −BA of two operators.
Proposition 2.8 (functional calculus). If (a, b) ∈ Γm

r × Γn
s , r, s ≥ 1, we have

the composition rule TaTb = Ta♯b +R, where

(2.2) a♯b =
∑

|α|<min(r,s)

1

α!i|α|
∂α
ξ a∂

α
x b,

and R is continuous Ht+m+n → Ht+min(r,s). In particular,
• [Ta, Tb] is continuous Ht+m+n−1 → Ht;
• if moreover r, s ≥ 2, [Ta, Tb] = Tc + R, where R is continuous Ht+m+n−2 →
Ht and c is defined by

c =
1

i
{a, b} :=

1

i

(∑
∂ξja∂xjb− ∂xja∂ξjb

)
.

There is also a symbolic calculus for adjoints: let a ∈ Γm
r be a matrix valued symbol

(i.e., each coefficient is a symbol of Γm
r ); we use such operators in the obvious way

(Au)i = (
∑

Aijuj)i. Set

(2.3) b(x, ξ) =
∑

|α|<r

1

i|α|α!
∂α
x ∂

α
ξ a

∗,
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where a∗ is the adjoint matrix of a, namely, if a = (ai,j), a
∗
i,j = aj,i. Then (Ta)

∗−Tb

is continuous Hs+m−r → Hs. In particular for r ≥ 1, (Ta)
∗ = Ta∗ + R with R

continuous Hs+m−1 → Hs.
Proof. The results are proved in [Mét08] at Theorems 6.1.1 and 6.2.1 for operators

T̃a. But with our definition Ta = T̃a(x,ξ)ψ(ξ) and ∇ψ is compactly supported. Thus
it only adds in the formulas (2.2), (2.3) symbols which have compact support in ξ,
which correspond to neglectable infinitely smoothing operators.

Combining the Sobolev embeddings with the Proposition 2.8, we get the following
corollary.

Corollary 2.9. If (a, b) ∈ Hs ×Hr, s, r > d/2 + 1, TaTb = Tab + R, where R
is continuous Ht → Ht+1.

If a ∈ L∞, ∇a ∈ Hs, b ∈ Γm
r , r ≥ 2, then [Ta, Tb] = T{a,b} + R, where R is

continuous Ht+m → Ht+2.
Proposition 2.10 (elliptic estimate). Let a ∈ Γm

1 be a symbol satisfying

Re a(x, ξ) ≥ c(1 + |ξ|)m;

there are constants C1, C2 such that ∀ u ∈ Hm,

‖u‖Hs ≤ C1‖Tau‖Hs−m + C2‖u‖L2.

Proof. In [Mét08, section 6.3] it is proved that

‖u‖Hs ≤ C1‖Tau‖Hs−m + C2‖u‖Hs−1 ,

which gives the result by using that for any ε > 0, ‖u‖Hs−1 ≤ ε‖u‖Hs+Cε‖u‖L2.

3. The one-dimensional case. In this section we prove Kato smoothing in
dimension 1. Several technical points are simplified in this case; in particular, we do
not need further assumption than the existence of (ρ, u) solution of (EK1D). The
main result of this section is the following regularization for the solutions of (EK1D).

Theorem 3.1. Let (ρ0, u0) ∈ L∞ × Hs such that ∂xρ0 ∈ Hs, s > 3/2. Let
(ρ, u) ∈ CtL

∞ × CtH
s be the solution of the Cauchy problem (EK1D)

{
∂tρ+ ∂x(ρu) = 0,
∂tu+ (u · ∂x)u+ ∂xg(ρ) = ∂x (K(ρ)∂2

xρ+
1
2K

′(ρ)|∂xρ|2),

which satisfies (u, ∂xρ) ∈ CtH
s ∩C1

t H
s−2. Then for any ε > 0, we have

(∂xρ, u)/〈x〉(1+ε)/2 ∈ L2
loc, tH

s+1/2
x .

3.1. Paralinearization of the Euler–Korteweg equations. Since ζ = R(ρ)
is a smooth diffeomorphism, according to Proposition 5.2 it is equivalent to prove
smoothing for the extended variables (w, u) or for z = u + iw. We start with (SB)
and consider

z ∈ CtH
s ∩ C1

t H
s−2, ζ ∈ L∞, ∂xζ ∈ CtH

s ∩ C1
t H

s−2

with s > 1 + 1/2 such that

∂tz + u∂xz + iw∂xz + i∂x(a∂xz) = −g′(ζ)Re(z), z = u+ iv.

The Cauchy theory of the Euler–Korteweg system (for example, see [BGDD07, Propo-
sition 4.3]) ensures that the CtH

s norm of z is controlled by the Hs norm of the initial
data (u0, w0).
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Remark 3.2. This statement is not entirely true. In fact to be rigorous it should
be noted that the constants involved also depend on ‖ρ0‖∞, a fact that we will not
recall in the rest of the article.

According to Corollary 2.7 we have

u∂xz = Tu∂xz +R1, R1 ∈ CtH
s,

w∂xz = Tw∂xz +R2, R2 ∈ CtH
s,

a∂xz = Ta∂xz +R3, R3 ∈ CtH
s+1,

hence ∂x(a∂xz) = ∂x(Ta∂xz) +R4, R4 ∈ CtH
s.

Thus (SB) implies

∂tz + Tu∂xz + Tiw∂xz + i∂x(Ta∂xz) = R, R ∈ CtH
s.

In order to reduce the analysis to the study of a Schrödinger equation satisfied by
some distribution Zs ∈ L2, it is natural to apply the operator T|ξ|s to the equa-
tions. Moreover, as we pointed in the introduction it is important to cancel out the
“bad” term Tiw∂xz. This kind of issue is classically tackled for the one-dimensional
Schrödinger equation by a change of gauge. The paradifferential calculus brings to
this point a (relative) simplification of the calculus and avoids the loss of derivatives
that this kind of transformation may induce.

Following [BGDD06] we look for a multiplier which has the form T|ξ|sϕs
, where

ϕs(x, t), to be determined, does not vanish and belongs to CtW
r,∞ ∩ Ct

1W
r−2,∞ for

some r > 2.
According to Proposition 2.8, the commutators

[T|ξ|sϕs
, Tu∂x], [T|ξ|sϕs

, Tw∂x], and [T|ξ|sϕs
, ∂t]

define continuous operators Hs → L2; moreover

[T|ξ|sϕs(x), i∂xTa∂x] = T{|ξ|sϕs(x),−|ξ|2a(x)} + T ′,

where T ′ is continuous Hs → L2 and {·, ·} is the Poisson bracket

{|ξ|sϕs(x),−|ξ|2a(x)} = ∂ξ(|ξ|sϕs)∂x(−|ξ|2a(x))− ∂x(|ξ|sϕs)∂ξ(−|ξ|2a(x))
= |ξ|sξ(−sϕs∂xa+ 2a∂xϕs).

In order to cancel out the main order term T|ξ|sϕswi∂xz = T−|ξ|sξϕswz, it is therefore

sufficient to have −sϕs∂xa+ 2a∂xϕs = ϕsw. The choice ϕs =
√
ρas/2 gives

2a∂x(a
s/2√ρ) = sas/2

√
ρ∂xa+ 2as/2+1 ∂xρ

2
√
ρ

= sϕs∂xa+ as/2
ρw√
ρ

= sϕs∂xa+ ϕsw.

We define Zs = Tϕs|ξ|sz. According to the commutator estimates and the previous
computations the equation on Zs is

∂tZs + Tu∂xZs + i∂x(Ta∂xZs) = R, R ∈ CtL
2,

where the norm of R is controlled by ‖(u,w)‖Hs � ‖(u0, w0)‖Hs .
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By ellipticity of Tϕs|ξ|s , it is clear that a gain of derivative for z/〈x〉(1+ε)/2 is

equivalent to a gain of derivatives for Zs/〈x〉(1+ε)/2. (Note that it relies on the fact
that 〈x〉−(1+ε)/2 is smooth to make it commute with Tϕs|ξ|s .) Thus we have proved
the following.

Lemma 3.3. The proof of Kato smoothing for (u, v) amounts to proving

‖Zs/〈x〉(1+ε)/2‖L2
t,locH

1/2 ≤ C‖Zs‖CtL2

for Zs solution of

∂tZs + Tu∂xZs + i∂x(Ta∂xZs) = R, R ∈ CtL
2.

3.2. Smoothing effect on Zs. Doi’s method [Doi96] is based on estimates for

d

dt
〈TpZs, Zs〉 =

d

dt

∫

R

(TpZs)Zsdx,

where p(x, ξ) is a symbol chosen such that this derivative is bounded from below (up
to neglectible terms) by ‖fZs‖H1/2 for some f decaying fast enough. Here we have

d

dt
〈TpZs, Zs〉 = 〈∂t(TpZs, Zs)〉+ 〈TpZs, ∂tZs〉

= −〈TpTu∂xZs + iTp∂xTa∂xZs, Zs〉
−〈TpZs, u∂xZs + i∂xTa∂xZs〉+R

= 〈−[Tp, Tu∂x]Zs − i[Tp, ∂xTa∂x]Zs, Zs〉+R

= 〈T{ip,|ξ|2a}Zs, Zs〉+R,

where R ∈ L1
loc,t (with a control by ‖Zs‖2CtL2).

Proposition 3.4. For any ε > 0, there exists a symbol p ∈ Γ0
∞ such that

{ip, |ξ|2a} ≥ c|ξ|/〈x〉1+ε.

The construction of p is classical and postponed to the appendix. Assume that
such a p exists. By integrating from 0 to T and applying the weighted G̊arding
inequality of Appendix B we find

〈TpZs(T ), Zs(T )〉 − 〈TpZs(0), Zs(0)〉 ≥
∫ T

0

‖Zs/〈x〉(1+ε)/2‖2H1/2 − C‖Zs‖2L2dt,

so that

(3.1) ‖Zs/〈x〉(1+ε)/2‖L2
loc, tH

1/2 � ‖Zs(0)‖L2 � ‖(u0, w0)‖Hs .

The proof of this estimate is rigorous only for smooth initial data, namely, Zs ∈
H2, since in this case the existence theorem of [BGDD06] ensures that d

dt 〈TpZ
n
s , Z

n
s 〉

belongs to Ct. If Zs belongs to L2, we need to use smoothed initial data Zs(0)
n ∈ H2

that converge to Zs(0) in L2. The Zn
s (t) satisfy the estimate (3.1), and we can pass

to the limit in n by using Fatou’s lemma in both the left-and the right-hand side (up
to using a subsequence such that Zn

s (t) converges almost everywhere to Zs(t)).
This implies the following proposition, which implies Theorem 3.1.

Proposition 3.5. If Zs(0) belongs to L2, then Zs/〈x〉(1+ε)/2 belongs to L2
loc, tH

1/2
x

for ε arbitrarily small, and its norm is controlled by ‖(u0, w0)‖Hs .
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4. Multidimensional case. In the case of several space variables, the degener-
acy of the system may prevent the dispersive smoothing effect. To illustrate this fact
one may look at the linearized constant coefficient system

∂tz + u · ∇z + i∇(adivz) = −g′w.

If z is divergence free this becomes a transport equation, for which there cannot be
any smoothing. On the other hand, if z is potential, the equation satisfied by z is

∂tz + u · ∇z + ia∆z = −g′w,

and by adapting the classical proof of Constantin and Saut [CS88] in the case of the
Schrödinger equation one easily obtains the local gain of 1/2 (spatial) derivative for
the solutions.

Based on this simple example, we focus on the case where z is potential, and
we prove the same 1/2 Kato smoothing under a few standard additional assumptions
(namely, flatness at infinity and nontrapping of the bicharacteristics). We recall that
the multidimensional extended Euler–Korteweg system reads for the complex vector
z = u+ iw

(4.1) ∂tz + (u · ∇)z + i(∇z) · w + i∇(adivz) = −g′(ζ)w.

(Note that this reformulation uses the fact that w is potential.) As previously, we
reduce the problem to an L2 estimate by using the new quantity Zs = Tϕs|ξ|sz, ϕs

being chosen so that commutators may control the “bad” term i∇z · w. In fact, in
the irrotational case we will find out that the previous choice ϕs =

√
ρas/2 := ϕ0a

s/2

still works. Our result reads as follows.
Theorem 4.1. Under the following assumptions,
• u0 is irrotational,
• the Hamiltonian a(x, 0)|ξ|2 has no trapped bicharacteristic,
• a(x, t) ∈ CtW

2,∞ ∩ C1
t W

1,∞, |∂ta|+ |∂t∇a|+ |∇a| ≤ C/〈x〉1+ε;
then there exists T > 0 such that

‖(u,w)/(1 + |x|)1+ε‖L2([0,T ];(Hs+1/2)2d) � ‖u0, w0‖Hs .

Remark 4.2.
• Unlike the one-dimensional case, the time interval [0, T ] on which there is
smoothing may be smaller than the lifespan of the solution. This is due to
the fact that the nontrapping assumption is only locally (in time) true, and
it is not clear whether it is “propagated.”

• In our proofs we will use the fact that if u0 is irrotational, then z = u +
iw is irrotational. This follows from the fact that w is a gradient and the
implication curlu0 = 0 ⇒ curlu = 0 (Corollary 4.1 in [BGDD07]).

• Since w =
√
K(ρ)/ρ∇ρ, the same theorem holds if one replaces w (resp.,

w0) by ∇ρ (resp., ∇ρ0). (This is a mere consequence of Proposition 5.2 on
product rules in Sobolev spaces.)

4.1. Paralinearization. We use the convention that R is a generic harmless
term in CtL

2
x, controlled by ‖(u0, w0)‖Hs .

If v : Rd ×Rd → Rd, we write Tv · z =
∑d

j=1 Tvjzj , Tv · ∇z = (
∑

j Tuj∂jzi)i=1···d,

and for A : Rd×Rd → Rd2

, TAz := (
∑d

j=1 TAi,jzj)i=1···d. More generally when A and
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B are matrices valued with compatible dimensions, we write TA·B = (
∑

j TAi,jBj,k)i,k,
the dot being omitted if one of the matrices is of size 1× 1. The scalar rules of para-
differential calculus extend straightforwardly to this frame.

Following the existence theorem of [BGDD07], we assume that z ∈ CtH
s ∩

C1
t H

s−2, ρ ∈ L∞, has a positive lower bound and ∇ρ ∈ CtH
s for some s > 1 + d/2.

In particular we have as in the previous section

u · ∇z = Tu · ∇z +R1, R1 ∈ CtH
s,

w · ∇z = Tw · ∇z +R2, R2 ∈ CtH
s,

a∂jz = Ta∂jz +R3, R3 ∈ CtH
s+1,

hence ∂k(a∂jz) = ∂k(Ta∂kz) +R4, R4 ∈ CtH
s.

We first exploit the curl-free assumption: letQ be the projector on curl-free vector
fields; its symbol is ξξt/|ξ|2 and it satisfies ∇divQ = ∆Q. This implies

(4.2) ∇(adivz) = a∇divz + (∇a)divz = div(a∇z) + (∇a) · divz −∇z · ∇a.

As in the previous section we take ϕs =
√
ρas/2 and we multiply (4.1) by Tϕs|ξ|s . This

gives

Tϕs|ξ|s∂tz + Tϕs|ξ|s(u · ∇z) + iTϕs|ξ|s((∇z) · w) + Tϕs|ξ|s
(
idiv(a∇z)

)

+iTϕs|ξ|s
(
(∇a)divz −∇z · ∇a

)
= R,

hence ∂tZs + (u · ∇)Zs + i(∇Zs) · w + idiv(a∇Zs) + i
(
(∇a)divZs −∇Zs · ∇a

)

= R+ [i div a∇, Tϕs|ξ|s ]z.

Using the rules of paradifferential calculus we have

[idiv(a∇·), Tϕs|ξ|s ]z = [T−ia|ξ|2 , Tϕs|ξ|s ]z +R

= T{−a|ξ|2,ϕs|ξ|s}z +R.

But

{−a|ξ|2, ϕs|ξ|s} = −2|ξ|saξ · ∇ϕs + s|ξ|sϕs∇a · ξ
= −ϕs|ξ|sξ · w

so that

[idiva∇, Tϕs|ξ|s ]z = iTw · ∇Zs +R = i∇Zs · w +R

since w is curl-free. The paralinearized equation on Zs is thus

∂tZs + Tu∇Zs + idiv(Ta∇Zs) + iT∇adivZs − T(ξ·)∇aZs = R,

where

T(ξ·)∇aZs :=

⎛
⎝

d∑

j=1

−iT∂xj
a∂xiZj)1≤i≤d = i(T∇a · (∇Zs)

t

⎞
⎠

t

,

Remark 4.3. The fact that we replaced ∇(adiv·) by div(a∇·) has allowed the
commutator [idiva∇, Tϕs|ξ|s ]z to cancel the “bad” term i∇z ·w. Without the curl free
assumption there would have been a remaining term i∇z · w − idiv(z)w.
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To summarize we have obtained the next lemma.
Lemma 4.4. The proof of Kato smoothing for (u, v) amounts to proving

‖Zs/〈x〉(1+ε)/2‖L2([0,T ];H1/2) ≤ C‖Zs‖C([0,T ] ;L2)

for Zs solution of

∂tZs + Tu · ∇Zs + idiv(Ta∇Zs) + iT∇adivZs − T(ξ·)∇aZs = R

with R ∈ C([0, T ]; L2) whose norm is controlled by ‖(u0, w0)‖Hs .

4.2. The smoothing effect. Let p ∈ Γ0
∞ a scalar symbol to be determined

later, independent of time. Following Doi we differentiate with respect to t the integral∫
Zs · (TpZs)dx := 〈TpZs, Zs〉,

d

dt
〈TpZs, Zs〉 = 〈Tp∂tZs, Zs〉+ 〈TpZs, ∂tZs〉

=

〈
Tp

(
− (Tu · ∇)Zs − idiv(a∇Zs) + T(

(ξ ·)∇a−∇a·ξt
)Zs

)
, Zs

〉

+

〈
TpZs,−(Tu · ∇)Zs − idiv(a∇Zs) + T(

(ξ ·)∇a−∇a·ξt
)Zs

〉
.

Now using that div(a∇ ·) is self-adjoint and T ∗
iuξ = −Tiuξ + Q with Q of order 0 we

find

d

dt
〈TpZs, Zs〉 = 〈−[Tp, idiva∇]Zs, Zs〉+ 〈−[Tp, Tu · ∇]Zs, Zs〉

+

〈(
TpT(

(ξ ·)∇a−∇a·ξt
) −

(
T(

(ξ ·)∇a−∇a·ξt
)
)∗

Tp

)
Zs, Zs

〉
+ I,(4.3)

where I ∈ L1
loc, t is controlled by ‖Zs‖2CtL2

x
� ‖(u0, w0)‖2Hs .

We will generically call such terms I even though they may change from one line
to another.

The commutator [Tp, Tu · ∇] is an operator of order 0; thus 〈−[Tp, Tu · ∇]Zs, Zs〉
can be included in I. There is no such cancellation for the second line of (4.3), since
it is easily checked that (T(

(ξ ·)∇a−∇aξt
))∗ = T(

(ξ ·)∇a−∇aξt
) + Q with Q of order 0.

On the other hand, if we denote Zj the coordinates of the vector Zs, we have

Re

(
〈TpT(ξ ·)∇a−∇aξtZs, Zs〉

)
= Re i

∑

k,l

〈Tp(T∂ka∂lZk − T∂la∂kZk), Zl〉

= − Im

(∑

k,l

−〈TpZk, T∂ka∂lZl〉 − 〈T∂la∂kZk, TpZl〉
)
+ I.

If p is real we obtain by reordering the sum

Re

(
〈TpT(ξ ·)∇a−∇a·ξtZs, Zs〉

)
= Im

(∑

k,l

〈TpZl, T∂la∂kZk〉+ 〈T∂la∂kZk, TpZl〉
)

+I = I.
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Injecting these identities in (4.3) gives

Re

(
d

dt
〈TpZs, Zs〉

)
= Re

(
〈−[Tp, i div(a∇)]Zs, Zs〉

)
+ I.

We may now paralinearize the last term: idiv(a∇ ·) = −Tia|ξ|2 +Q1 with Q1 of order
1; thus

〈−[Tp, idiv(a∇ ·)]Zs, Zs〉 = 〈[Tp, Tia|ξ|2 ]Zs, Zs〉+ I = 〈T{p,a|ξ|2}Zs, Zs〉.

There is a huge gain here since we can now decouple the equations on Zs in equations
for each of its coordinates Zj :

∀ j = 1 · · · d, Re

(
d

dt
〈TpZj , Zj〉

)
= Re

(
(〈T{p,a|ξ|2}Zj, Zj〉

)
+ I.

We may now apply a paradifferential version of Doi’s operator construction.
Lemma 4.5. Under the assumptions of Theorem 4.1, there exists a real valued

symbol p ∈ Γ0
1 and some constants c, C > 0 such that for 0 ≤ t ≤ T small enough

{p, a(x, t)|ξ|2} :=

d∑

j=1

(∂ξjp) ∂xj (a|ξ|2)− (∂xjp) ∂ξj (a|ξ|2) ≥
c|ξ|

〈x〉1+ε
− C.

The (sketch of) construction of this operator is made in Appendix C. The appli-
cation of the weighted G̊arding inequality of Proposition B.1 combined with Lemma
4.5 readily gives

Re

(∫ T

0

d

dt
〈TpZs, Zs〉

)
= Re

(∫ T

0

〈T{p,a|ξ|2}Zs, Zs〉
)
+

∫ T

0

I

≥ c′‖Zs/〈x〉(1+ε)/2‖2H1/2 − C‖Z‖2L2 +

∫ T

0

I.

(Note that the real parts do not matter since up to harmless terms added in I we
may replace T{p,a|ξ|2} by the self-adjoint operator T{p,a|ξ|2} + T ∗

{p,a|ξ|2}.)
By using regularized initial data as in the previous section, we obtain the expected

result:

‖Zs/〈x〉(1+ε)/2‖2L2([0,T ];H1/2) � ‖Zs(0)‖2L2 � ‖(u0, w0)‖2Hs .

5. Solutions with nonzero endstates. The authors of [BGDD07] did not re-
strict their analysis to solutions (u,w) vanishing at infinity; indeed, there exists special
traveling waves solutions such that u has different endstates. (They call such solutions
capillary profiles.) Those solutions are physically pertinent (they can correspond to
a change of state) and thus should be included in the present analysis. We will work
under the regularity assumptions of Theorem 1.1 in [BGDD07] supplemented by the
assumptions of our Theorem 4.1.

Theorem 5.1. Let (ρ, u) be a smooth bounded solution to (EK) such that

(∇2ρ,∇u) ∈ C([0, T ];Hs+3)

and u is irrotational. We denote (ρ0, u0) := (ρ(t = 0), u(t = 0)). Let (ρ0, u0) be a
initial data such that

(ρ0, u0)− (ρ0, u0) ∈ Hs+1 ×Hs, s > 1 + d/2.
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We assume that

ρ0([0, T ]× R
d) ⊂ Cwith C a compact set of R on which K and g0 are smooth.

(5.1)

⎧
⎨
⎩

∂tρ+ div(ρu) = 0,
∂tu+ (u · ∇)u +∇g0(ρ) = ∇ (K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2) ,

(ρ, u)|t=0 = (ρ0, u0).

Let (ρ, u) ∈ (ρ, u) + C([0, T ];Hs+1 ×Hs) be the solution provided by Theorem 1.1 in
[BGDD07]. Then, assuming that (ρ− ρ, u − u) satisfies the assumptions of Theorem
4.1, there exists T ′ ≤ T such that the solution of (5.1) satisfies moreover

(∇ρ, u)− (∇ρ, u) ∈ L2
(
[0, T ′];H

s+1/2
loc )×H

s+1/2
loc .

Key ingredients for this result are standard multiplication and composition esti-
mates in Sobolev spaces, which we recall here for the ease of the reader. Proofs can
be found in Appendix B of [BGDD07].

Proposition 5.2. In every case, we assume s ≥ 0. The product rule is as
follows: For k ∈ N, there exists C(s, k, d) such that

‖uv‖Hs ≤ C(‖u‖L∞‖v‖Hs + ‖∇ku‖Hs−k‖v‖L∞).

The composition rules are as follows: Let F ∈ W σ+1,∞(I;R), where σ is the smallest
integer such that σ ≥ s, and assume F (0) = 0. Then if Im(v) ⊂⊂ I,

‖F (u)‖Hs ≤ C(1 + ‖u‖L∞)σ‖F ′‖Wσ,∞‖v‖Hs .

Without assuming F (0) = 0 and for m ∈ N∗,

‖∇mF (v))‖Hs ≤ C(1 + ‖v‖L∞)m+σ‖F ′‖Wm+σ,∞‖Dmv‖Hs .

If Im(v) ⊂⊂ I, Im(w) ⊂⊂ I,

‖F (w)− F (v)‖Hs ≤ C

(
‖F‖L∞‖v − w‖Hs

+(1 + ‖v‖L∞ + ‖w‖L∞)σ+k+1‖F ′‖Wσ+k(‖∇kv‖Hs−k + ‖∇k(w − v)‖Hs−k

)
.

We may now prove Theorem 5.1.
Proof of Theorem 5.1. We focus on the extended system

∂tz + (u · ∇)z + i(∇z) · w + i∇(adivz) = −g′(ζ)w.

Set ũ = u− u, w̃ = w − w, z̃ = z − z; then z̃ satisfies

∂tz̃ + u · ∇z̃ + i∇z̃ · w + i∇(adivz̃) = −g′w + g′w − ũ · ∇z − i∇z · w̃
+i∇((a− a)divz)

:= R

with a = a(ζ).
We are mostly reduced to the argument of the previous section. Indeed, it is easy

to see that the previous analysis can still be applied for the left-hand term. (Note
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that the construction of p essentially relies on the fact that a is bounded away from
zero, in particular the limits of u at ±∞ do not matter, and the gauge transformation
only relies on the relation between a(ζ) and w.) If we use as previously the function

Z̃s = Tϕs|ξ|s z̃, the only new terms in

d

dt
〈TpZs, Zs〉

are 〈TpR,Zs〉 and 〈TpZs, R〉. In order to include these in I ∈ L1
loc,t, it suffices to check

that R ∈ CtH
s.

Since ∇z ∈ CtH
s+1 and z̃ ∈ CtH

s the rules of product in Sobolev spaces imply
−ũ · ∇z − i∇z · w̃ ∈ CtH

s.
Now using the rules of composition we also have a− a ∈ CtH

s+1, which implies
i∇((a − a)divz) ∈ CtH

s. Similarly, noting that −g′w + g′w = ∇(−g(ζ) + g(ζ)) we

have −p(ζ) + p(ζ) ∈ CtH
s+1 (we see here that the assumption on the decay of the

perturbation is essential even for ρ̃ ), and thus −g′w + g′w ∈ CtH
s. This allows us

to neglect these new terms, and the rest of the proof goes as in section 4.
Remark 5.3. The careful reader may have noted that we do not really need

(∇2ρ,∇u) ∈ C([0, T ];Hs+3).

This is in fact necessary for the existence theorem in [BGDD07], but the Kato smooth-
ing only requires (∇2ρ,∇u) ∈ C([0, T ];Hs+1).

The decay assumption for the derivatives of a are somehow not satisfying (nor sat-
isfied !) in our frame because the Euler–Korteweg system admits special planar trav-
eling waves solutions which only depend on x·n−ct (n is the direction of propagation,
c is the speed; see [BGDDJ05]). In particular, for t fixed they are constant on any
affine hyperplane orthogonal to n and ∇a(x ·n) can obviously not decay as 1/〈x〉1+ε.
Though we do not have a general result, we will give some insights indicating that
smoothing may occur also for perturbations of traveling waves. We restrict ourselves
to the extended system linearized near a smooth traveling wave (ζ, u, w) of initial
value (ζ0, u0, w0).

(5.2)

⎧
⎨
⎩

∂tz + u · ∇z + i∇z · w + i∇(adivz) = −g′w − g′′ζw − z · ∇u
− i∇z · w − i∇(a′ζdivz),

z|t=0 = z0 = u0 + iw0,

where we denote generic f = f(u,w, ζ) and f0 = f(u0, w0, ζ0). Up to a linear change

of basis, we may assume that n =
(
1 0 · · · 0

)
and we will use the notation

x = (x1, x
′).

Proposition 5.4. The bicharacteristics
⎧
⎨
⎩

Ẋ(t, x0, ξ0) = 2a0(X)Ξ, t ≥ 0,

Ξ̇(t, x0, ξ0) = −|Ξ|2∇a0(X), t ≥ 0,
X(0, x0, ξ0) = x0, Ξ(0, x0, ξ0) = ξ0,

are not trapped, i.e., |X(t, x0, ξ0)| →|t|→∞ ∞. More precisely, they satisfy the follow-
ing uniform nontrapping property:

∀ (x0, ξ0), ξ0 �= 0, ∃ r > 0 : ∀ (x1, x
′, ξ) ∈ ]x0,1 − r, x0,1 + r[×R

d−1 ×B(ξ0, r) :

∀K > 0, ∃TK > 0 : ∀ |t| ≥ TK : |X(t, x, ξ)− x| ≥ K.
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Proof. We first check “simple” nontrapping. Recall that the bicharacteristics are
integral curves of the Hamiltonian a0(x)|ξ|2, whose conservation readily implies

C/ supa0 ≤ |Ξ|2 ≤ C/ inf a0.

Since a0 = a0(x1), we have

−|Ξ|2∇a0(X) = −|Ξ|2

⎛
⎜⎜⎜⎝

a′0
0
...
0

⎞
⎟⎟⎟⎠ .

As a consequence, Ξj(t) = ξ0,j and (Xj)2≤j≤d are monotone of slope larger than
inf(a0)|ξ0,j |. They remain bounded in t iff

Ξ2 = · · · = Ξn = 0.

But in this case we have a0(X)|Ξ|2 = a0(X1)|Ξ1|2; the conservation of this quantity
implies that Ξ1 is uniformly bounded away from 0 and in particular has constant sign.
We deduce that X1(t) is monotone and (the modulus of) its slope has a lower bound,
thus |X1(t)| →t→∞ ∞, and there can be no trapped bicharacteristic.

Since we have no decay assumption, uniform nontrapping cannot be deduced from
the simple nontrapping. We give here a direct proof. Two cases must be distinguished:

• There exists j ≥ 2 such that ξ0,j �= 0. For r small enough,

∀(x, ξ) ∈ B((x0, ξ0), r), |ξj | ≥ |ξ0,j |/2,

which directly implies |Xj(s, x, ξ)−xj | ≥ |ξ0,j | inf(a0) |s| and thus the uniform
nontrapping for this case.

• For j ≥ 2, ξ0,j = 0. We denote ξ′ = (ξ2, · · · , ξd). Then a0(X)|Ξ|2 =
a0(X)(|Ξ1|2 + |ξ22 + · · · + ξ2d) = a0(x)|ξ|2. Take r small enough such that
∀ (x, ξ) ∈ B((x0, ξ0), r), |ξ′|2 < inf(a0)/(2 sup(a0))|ξ1|2. This gives

|Ξ1|2 + |ξ′|2 ≥ inf(a0)

sup(a0)
|ξ|2 ⇒ |Ξ1|2 ≥ inf(a0)

2 sup(a0)
|ξ1|2.

As a consequence Ξ1 has a constant sign, and up to decreasing r so that
|ξ1| ≥ |ξ0,1|/2 we find

|X1(s, x, ξ)− x1| ≥
inf(a0)

3/2

√
2 sup(a0

|ξ0,1| |s|,

which implies again uniform nontrapping.
Uniform nontrapping is a key assumption for the construction of Doi’s symbol p,

and (to the author’s opinion) it is deeper than the polynomial decay at infinity of a
(namely, |∂ta|+ |∂t∇a|+ |∇a| ≤ C/〈x〉1+ε). Thus it seems reasonable to expect that
smoothing occurs as soon as Property 5.4 is fulfilled without decay needed. We prove
this now under a restriction on the graph of a0.

Proposition 5.5. Assume that there exists α > 0 such that

2
√
a0(x1)−

a0
′(x1)√
a0(x1)

x1 ≥ α.
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Then there exists T > 0 such that the solution (u,w) of the linearized system (5.2)
satisfies

∀ ε > 0, ∃T > 0 : ‖(u,w)/〈x〉1+ε‖L2([−T,T ])((Hs+1/2)2) ≤ C‖(u0, w0)‖(Hs)2 .

Proof. The proof is essentially similar to that of Theorem 5.1; thus we will only
detail the original points. By the same arguments it is reduced to the smoothing for
Zs = Tϕs|ξ|sz = Tϕs|ξ|s(u+ iw), which satisfies the equation

d

dt
〈TpZs, Zs〉 = 〈Tp(−i∇(adivZs)), Zs〉+ 〈TpZs,−i∇(adivZs)〉+ I,

where I ∈ L1
loc,t has a norm controlled by ‖Z|t=0‖L2 . It is sufficient to construct p

such that {a|ξ|2, p} ≥ |ξ|/〈x〉1+ε −C. If there exists q such that ∂α
x ∂

β
ξ q ≤ C〈x〉〈ξ〉−|β|

and {a|ξ|2, q} ≥ |ξ| the method to deduce p from q can be directly applied. (This
step is indeed independent of the assumptions on a0.) It remains to prove that such
a q exists.

We take q of the form f(x1 − ct)〈x, ξ〉/|ξ|. Then

{a|ξ|2, q} = 2f(x1 − ct)a(x1 − ct)|ξ|+ 2a0ξ1f
′(x1 − ct)

〈x, ξ〉
|ξ|

−a′(x1 − ct)|ξ|f(x1 − ct) + a′(x1 − ct)
f(x1 − ct)

|ξ| 〈x, ξ〉ξ1

= |ξ|(2af − x1a
′f) +

ξ1〈x, ξ〉
|ξ|

(
a′f + 2f ′a

)
.

The term ξ1〈x,ξ〉
|ξ|

(
a′f +2f ′a

)
is not bounded in x′, and thus it must be cancelled. The

only way to do so is by taking f = c/
√
a. Fixing c = 1, we have

{a|ξ|2, q} = |ξ|(2af − x1a
′f) = |ξ|

(
2
√
a− x1

a′√
a

)
≥ |ξ|

(
α− ct

a′√
a

)

≥ α|ξ|
2

for t small enough.
Remark 5.6. The condition

(5.3) 2
√
a0(x1)−

a0
′(x1)√
a0(x1)

x1 ≥ α

may seem very artificial; it is, however, satisfied by several traveling waves. Obviously
if (5.3) is true for a0(·−b) instead of a0, it then suffices to perform a shift of coordinates
to apply Proposition 5.5, and thus the result only depends on the shape of a0 rather
than its graph. In particular, provided a0 has a convenient shape, the smoothing
effect for the linearized system may be obtained on arbitrary time intervals by simply
repeating the argument on small intervals.

The most obvious profiles satisfying this assumption are those such that a0 is
increasing and then decreasing. Using

2
√
a0(x1)−

a0
′(x1)√
a0(x1)

x1 = 2
√
a0(0) +

∫ x1

0

a′0√
a0

(y)−
a′0√
a0

(x1)dy,
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we see that the case where
√
a0 is increasing with an inflexion point at x1 = 0 works,

too. (See [BGDDJ05] for various examples of traveling profiles in dimension 1.)

Appendix A. Construction of p (one-dimensional case).
Proposition A.1. For any ε > 0, there exists p ∈ Γ0

∞, c > 0 such that

{|ξ|2a, ip} ≥ c|ξ|/〈x〉1+ε.

Remark A.2. As was pointed out by the reviewer, one could simply check that
the symbol ξ/|ξ|

∫ x

0 1/〈y〉1+εdy works; however, we emphasize that the construction
of the following proof is essential for the multidimensional case.

Proof. The obvious candidate is q(x, ξ) = x ξ
|ξ| since {|ξ|2a, ix ξ

|ξ|} = 2ξ ξ/|ξ|a =

2a|ξ|, but it is not in Γ0
∞ since it is not bounded in x. Thus it is necessary to use

convenient truncations of this function. Let ϕ ∈ C∞(R; [0, 1]) be such that ϕ =
0, x ≤ 1, ϕ = 1, x ≥ 2. For δ > 0 (supposed small, specified later) we define
ϕ+ = ϕ(x/δ), ϕ− = ϕ(−x/δ), ϕ0 = 1 − ϕ+ − ϕ−. If ψj = ϕj(q/〈x〉), we define the
symbol p by

p(x, ξ) =
q

〈x〉ψ0 + (f(|q|) + 2δ)(ψ+ − ψ−),

where f is a primitive of 1/〈x〉1+ε.
Using the fact that ξ/|ξ| is a constant function of ξ outside 0, we find

{|ξ|2a, ip} = ∂ξ(a|ξ|2)∂xp = 2ξa
(
ψ0ξ/(〈x〉|ξ|) + q∂x(ψ0/〈x〉)

)

+2aξ∂x
(
f(q) + 2δ

)
ψ+ + 2aξ(f(q) + 2δ)∂xψ+

−2aξ∂x
(
f(q) + 2δ

)
ψ− − 2aξ(f(q) + 2δ)∂xψ−.

We set
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I1 = 2ξa
(
ψ0ξ/(〈x〉|ξ|) + q∂x(ψ0/〈x〉)

)
,

I2 = 2aξ∂x
(
f(q) + 2δ

)
ψ+,

I3 = 2aξ(f(q) + 2δ)∂xψ+,
I4 = −2aξ∂x

(
f(q) + 2δ

)
ψ−,

I5 = −2aξ(f(q) + 2δ)∂xψ−.

The Ij are handled as follows:
• First term: I1 = 2a|ξ|ψ0/〈x〉+ 2aξq∂x(ψ0/〈x〉) with

q∂x(ψ0/〈x〉) = −ψ0qx/〈x〉3 + q/〈x〉ψ′
0∂x(x/〈x〉ξ/|ξ|)

= −ψ0qx/〈x〉3 + qψ′
0/〈x〉4ξ/|ξ|;

thus

I1 = 2a|ξ|ψ0/〈x〉+ 2aξ
(
− ψ0qx/〈x〉3 + qψ′

0/〈x〉4ξ/|ξ|
)
.

• Second term: I2 = 2a|ξ| sgn(q)f ′(|q|)ψ+ = 2a|ξ|/〈x〉1+εψ+.
• Third term: I3 = 2aξ(f(|q|) + 2δ)ψ′

+/〈x〉3.
• Fourth term: I4 = −2a|ξ| sgn(q)f ′(|q|)ψ− = 2a|ξ|/〈x〉1+εψ− (since ψ− van-
ishes for q ≥ 0).

• Fifth term:

I5 = −2aξ(f(|q|) + 2δ)ψ′
−/〈x〉3 = 2aξ(f(|q|+ 2δ)ψ′

+(−x,−ξ),

so that
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{|ξ|2a, ip} = 2a|ξ|
(
ψ0

〈x〉

(
1− sign(ξ)

qx

〈x〉2
)
+ ψ+/〈x〉1+ε + ψ−/〈x〉1+ε

)

+2a|ξ|
(
qψ′

0/〈x〉4 +
(
2δ + f(|q|)

)
.
(
ψ′
+ + ψ′

+(−x,−ξ)
)
/〈x〉3

)
.

If ψ0(q/〈x〉) �= 0 we have |q|/〈x〉 ≤ δ; therefore ψ0/〈x〉
(
1 − sign(ξ) qx

〈x〉2

)
≥

ψ0/(2〈x〉) for δ small enough.

Using that ψ′
0 = ψ′

+ − ψ′
+(−x,−ξ) and the support condition on ψ0 we obtain

qψ′
0/〈x〉4 ≥ δ/〈x〉3(−ψ′

+ − ψ′
+(−x,−ξ)),

which implies

2a|ξ|
(
qψ′

0/〈x〉4 +
(
2δ + f(|q|)

)
.
(
ψ′
+ + ψ′

+(−x,−ξ)
)
/〈x〉3

)
≥ 0.

We finally deduce the inequality

{|ξ|2a, ip} ≥ 2a|ξ|
(

ψ0

2〈x〉 +
ψ+

〈x〉1+ε
+

ψ−

〈x〉1+ε

)
≥ a|ξ|

〈x〉1+ε
.

Appendix B. A weighted G̊arding inequality for nonsmooth symbols.

This result is a direct adaptation of a version for an operator of Γ
1/2
ρ in [ABZ].

Proposition B.1. Let Tc be a paradifferential operator such that

c(x, ξ) ≥ K|ξ|/〈x〉1+δ, c ∈ Γ1
1;

then

∃K1,K2 > 0 : 〈Tcu, u〉 ≥ K1‖u/〈x〉1+δ‖2H1/2 −K2‖u‖2L2.

Proof. Since the symbol c is not in Γ1
2 we cannot directly apply the usual sharp

G̊arding’s inequality. The method consists rather in reducing the analysis to a simple
elliptic estimate as for the G̊arding’s inequality. It suffices to check that

(B.1) 〈Tcu, u〉 ≥ c
∑

1/2j(1+δ)‖θju‖2H1/2 − C‖u‖2L2,

where (θj) is a sequence of functions C∞
c (R;R+) such that

∞∑

j=0

θ2j = 1, supp(θ0) ⊂ B(0, 2), θj = θ(2−j ·), supp(θ) ⊂ {1/2 ≤ |x| ≤ 2}.

Let us write

〈Tcu, u〉 =
∞∑

0

〈Tcθ
2
ju, u〉.

Let Θ be a C∞
c function such that 0 /∈ supp(Θ), Θ = 1 on supp(θ). We also define

Θj = Θ(2−j·), as well as Θ0 ∈ C∞
c with Θ0 = 1 on supp(θ0). Then
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∞∑

0

〈Tcθ
2
ju, u〉 =

∞∑

0

〈Tcθ
2
ju,Θju〉+ 〈Tcθ

2
ju, (1−Θj)u〉

=

∞∑

0

〈Tcθju, θjΘju〉+ 〈[Tc, θj ]θju,Θju〉

+〈θju, θjT ∗
c (1 −Θj)u〉

=
∞∑

0

〈ΘjTcθju, θju〉+ I1 + I2

=

∞∑

0

〈TcΘjθju, θju〉+ I1 + I2 + 〈(ΘjTc − TcΘj )θju, θju〉

=

∞∑

0

〈TcΘjθju, θju〉+ I1 + I2 + I3.

By hypothesis we have cΘj ≥ 0; in particular its square root r :=
√
cΘj is real

positive. The rules of paradifferential calculus then imply

Tr(T
∗
r ) = TcΘj +Rj ,

where Rj is a continuous operator L2 → H1/2+1/2−1 = L2, with a constant of conti-
nuity bounded uniformly in j. This gives

∞∑

0

〈TcΘjθju, θju〉 =
∞∑

0

‖Trθju‖2L2 + 〈Rjθju, θju〉.

The symbol r satisfies r ≥ 2−j(1+δ)/2|ξ|1/2Θj (for
√· ≥ Id on [0, 1]). In particular

r + (1− Θj)2
−j(1+δ)/2|ξ|1/2 is elliptic of order 1/2. We deduce that

‖Trθju‖2L2 ≥ c2−j(1+δ)‖θju‖2H1/2 − C‖T(1−Θj)2−j(1+δ)/2|ξ|1/2θju‖2L2,

which is (B.1) up to neglectable terms. There remains to quantify what is meant by
“neglectable.”

I1 =

∞∑

0

〈[Tc, θj ]θju,Θju〉 �
∞∑

0

‖θju‖2L2 + ‖Θju‖2L2 � ‖u‖2L2.

Since Θj is a real smooth bounded function as well as all its derivatives uniformly
in j, the operator TΘj − Θj is continuous L2 → H1. Consequently ΘjTc − TcΘj is
continuous L2 → L2 and we have

I3 =
∑

〈(ΘjTc − TcΘj)θju, θju〉 �
∑

‖θju‖2L2 � ‖u‖2L2.

For the control of I2 = 〈θju, θjT ∗
c (1 − Θj)u〉 we must use a property of “para-

localization”: denote d ∈ Γ1
ρ the symbol of T ∗

c ,

θjTd(1−Θj)u =
1

2π

∫∫
ei(xξ−yη)θj(x)(1 −Θj(y))

d̂(ξ − η, η)ψ(η)χ(ξ − η, η)u(y)dydηdξ

=
1

2π

∫∫
ei(x−y)η+ixζθj(x)(1 −Θj(y))

d̂(ζ, η)ψ(η)χ(ζ, η)u(y)dydηdξ.
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First note that by definition of θj ,Θj, on the support of the integrand |x − y| � 2j .
An integration by parts on the variable η gives

θjT
∗
c (1 −Θj)u = − 1

2π

∫∫
ei(x−y)η+ixζ

i(x− y)
θj(x)(1 −Θj(y))

∂η

(
d̂(ζ, η)ψ(η)χ(ζ, η)

)
u(y)dydηdζ

= − 1

2π

∫∫
ei(x−y)η+ixζu(y)

i(x− y)
θj(x)(1 −Θj(y))

∂η

(
d̂(ζ, η)ψ(η)χ(ζ, η)

)
u(y)dydηdζ.

We have

∂η
(
d̂(ζ, η)ψ(η)χ(ζ, η)

)
= ψ′(η)d̂(ζ, η)χ(ζ, η) + ∂ηd̂(ζ, η)ψ(η)χ(ζ, η)

+d̂(ζ, η)ψ(η)∂ηχ(ζ, η).

The first term has compact support in η because ψ = 1 for |x| ≥ 2 and consequently
its derivative is fast decaying in η. The second term is of order 0 in η because d is
of order 1, and the third term is of order 0 in η, because (by homogeneity) ∂ηχ is of
order −1.

We also note that θj(x)(1 − Θj(y))/|x − y| � 2−j ; thus θjT
∗
c (1 − Θj)u is in L2,

its norm being moreover controlled by 2−j‖u‖L2.
Finally we obtain

∞∑

0

〈θju, θjT ∗
c (1 −Θj)u〉 �

∞∑

0

2−j‖u‖2L2 + ‖θju‖2L2 � ‖u‖2L2.

The last term ‖T(1−Θj)2−j(1+δ)/2|ξ|1/2θju‖2L2 can be treated in the same way as I2, or
more simply by writing

T(1−Θj)2−j(1+δ)/2|ξ|1/2θju = T(1−Θj)2−j(1+δ)/2|ξ|1/2θjΘju

= Tθj(1−Θj)2−j(1+δ)/2|ξ|1/2Θju+RjΘju

= RjΘju

with Rj bounded from L2 to L2.

Appendix C. Construction of p (general case). This section is devoted to
the construction of the symbol p such that

(C.1) {a|ξ|2, p} ≥ c
|ξ|

〈x〉1+ε
− C.

The scheme of construction is to construct a function q(x, ξ) such that |q| � 〈x〉 and
{a0|ξ|2, p} ≥ |ξ|−C. This implies the existence of p such that {a0|ξ|2, p} ≥ c |ξ|

〈x〉1+ε −C,

and we finally check that p satisfies (C.1) for t small enough.
We recall our assumptions:
• a(x, t) ∈ CtH

s+1 ∩C1
t H

s, and |∂ta|+ |∂t∇a|+ |∇a| � 1/〈x〉1+ε.
• The Hamiltonian a0(x)|ξ|2 := a(ζ0)|ξ|2 has no trapped bicharacteristics.
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Remark C.1. If (ρ, u) is a particular soliton solution, the decay assumption is
satisfied by a := a(ρ) only in the direction of propagation. In particular for traveling
waves only depending of x ·n−ct, a is constant on any affine hyperplane orthogonal to
n, and the construction of this section does not apply. We denote a0(x) = a(ζ0(x))
with ζ0 the initial data. As a first step, we prove that there exists q such that

{ { a0|ξ|2, q} ≥ c|ξ| − C,

∀α, β, |∂α
x ∂

β
ξ q| � 〈x〉〈ξ〉−|β|.

Let q1 = x · ξ/|ξ|; the decay assumption ∇a0 ≤ C/〈x〉1+ε gives

{a0|ξ|2, x · ξ/|ξ|} =
d∑

j=1

2a0ξjξj/|ξ| − ∂xja0|ξ|2
(
xj/|ξ| − x · ξ ξj/|ξ|3

)

= 2a0|ξ| − |ξ|∇a0 · x+ x · ξ∇a0 · ξ/|ξ|
≥ a0|ξ| for x large enough.

Say that this inequality is valid for |x| ≥ M , and take ψ ∈ C∞(R+) nondecreasing,
equal to 0 on [0,M ] and 1 on [M + 1,∞[; then

{a0|ξ|2, ψ(|x|2)x · ξ/|ξ|} = ψ(|x|2){a0|ξ|2, x · ξ/|ξ|}+ x · ξ/|ξ|{a0|ξ|2, ψ(|x|2)}
≥ ψ(|x|2)a0|ξ|+ 2a0(x · ξ)2ψ′(|x|2)/|ξ|
≥ ψ(|x|2)a0|ξ|.

This construction works as well if we replace a0 by a; it will not be the case for the
second part.

By bilinearity of the Poisson bracket, it remains to find a symbol whose Poisson’s
bracket is positive for x small. We recall that the bicharaceristics are the solutions of

⎧
⎨
⎩

Ẋ(t, x0, ξ0) = 2a0(X)Ξ, t ≥ 0,

Ξ̇(t, x0, ξ0) = −|Ξ|2∇a0(X), t ≥ 0,
X(0, x0, ξ0) = x0, Ξ(0, x0, ξ0) = ξ0,

and assume that the bicharacteristics are not trapped, that is, for any (x0, ξ0) ∈
Rd × (Rd \ {0}) we have |X(t, x0, ξ0)| →t→+∞ +∞.

Remark C.2. In dimension greater than 1, nontrapping is not an empty as-
sumption. Even in the elementary case of a diagonal, asymptotically flat Laplacian,
trapping may occur, as we can see, for instance, on the symbol

a(x)|ξ|2 := (χ(x)ex
2
1+x2

2 + ϕ)|ξ|2,

where χ = 1 for |x| ≤ 5, χ = 0 for |x| ≥ 6, ϕ = 0 for |x| ≤ 4, and ϕ = 1 for
|x| ≥ 5. It is easy to check that X := (cos(2et), sin(2et)), Ξ := (− sin(2et), cos(2et))
is a bounded solution of

⎧
⎪⎪⎨
⎪⎪⎩

Ẋ(t, x0, ξ0) = 2a0(X)Ξ, t ≥ 0,

Ξ̇(t, x0, ξ0) = −|Ξ|2∇a(X), t ≥ 0,

X(0, x0, ξ0) =

(
1
0

)
, Ξ(0, x0, ξ0) =

(
0
1

)
.

Let us define

q2(x, ξ) := −ψ1(x)ψ2(ξ)

∫ ∞

0

ψ1(X(s, x, ξ))〈Ξ(s, x, ξ)〉ds,

D
ow

nl
oa

de
d 

02
/0

8/
13

 to
 1

34
.1

57
.2

.1
00

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISPERSIVE SMOOTHING FOR THE E-K MODEL 3039

where ψ1 ∈ C∞
c is equal to 1 for |x| ≤ M + 1 and ψ2 ∈ C∞ is equal to 1 for |ξ| ≥ 1

and vanishes on a neighborhood of 0. Because of the nontrapping assumption q2 is
well defined. Moreover, by homogeneity in ξ of the symbol a(x)|ξ|2, we have

(
X(s, x, ξ), Ξ(s, x, ξ)

)
=

(
X(s|ξ|, x, ξ/|ξ|), |ξ|Ξ(s|ξ|, x, ξ/|ξ|)

)
.

Thus, setting s|ξ| = s′,

q2(x, ξ) = −ψ1(x)ψ2(ξ)

|ξ|

∫ ∞

0

ψ1(X(s′, x, ξ/|ξ|))〈|ξ|Ξ(s′, x, ξ/|ξ|)〉ds

defines a symbol2 of order 0. Its Poisson bracket with a|ξ|2 satisfies

{a0|ξ|2, q2} =−
d∑

j=1

a02ξj(∂xjψ1(x))ψ2

∫ ∞

0

ψ1(X(s, x, ξ))〈Ξ(s, x, ξ)〉ds

+

d∑

j=1

|ξ|2∂xja0ψ1∂ξjψ2

∫ ∞

0

ψ1(X(s, x, ξ))〈Ξ(s, x, ξ)〉ds

+ 2〈ξ〉ψ2
1(x)ψ2(ξ).

Since ∂xjψ1 vanishes on B(0,M + 1) and ∂ξjψ2 is compactly supported, we have

{a|ξ|2, q2} ≥ −C(|ξ|1|x|≥M+1 + 1) + 〈ξ〉ψ2
1(x)ψ2(ξ).

Taking M = (C + 1)/ inf(a0), we have

{a0|ξ|2,Mq1 + q2} ≥ |ξ|1|x|≥M+1 − C + 〈ξ〉ψ1(x)
2ψ2(ξ) ≥ |ξ| − C′.

Then a standard argument (in fact, an elementary generalization of the proof in the
one-dimensional case where Mq1 + q2 would play the role of q; see also the very clear
lecture notes of Kenig [Ken05, pp. 48–49]) gives the existence of p such that

{a0|ξ|2, p} ≥ c
|ξ|

〈x〉1+ε
− C.

Now assume also that |∂ta|+ |∂t∇a| � 1/〈x〉1+ε. This implies

{a|ξ|2, p} ≥ c
|ξ|

〈x〉1+ε
− C +

{∫ t

0

∂ta|ξ|2, p
}

≥ c
|ξ|

2〈x〉1+ε
− 2C

for t small enough.
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2The smoothness of the symbol is a consequence of the uniform nontrapping, i.e. for (x, ξ)
in a neighborhood of (x0, ξ0), the bicharacteristics (X(s, x, ξ),Ξ(s, x, ξ)) leave any compact K for
s ≥ s(K) independent of (x, ξ). This is a nontrivial but standard consequence of the nontrapping
assumption combined with the decay assumption for ∇a.
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