
HAL Id: hal-00786453
https://hal.science/hal-00786453v1

Preprint submitted on 8 Feb 2013 (v1), last revised 23 May 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperbolic groups with planar boundaries
Peter Haïssinsky

To cite this version:

Peter Haïssinsky. Hyperbolic groups with planar boundaries. 2013. �hal-00786453v1�

https://hal.science/hal-00786453v1
https://hal.archives-ouvertes.fr


HYPERBOLIC GROUPS WITH PLANAR BOUNDARIES

PETER HAÏSSINSKY

Abstract. We prove that a word hyperbolic group with planar boundary different from the
sphere is virtually a convex-cocompact Kleinian group provided its Ahlfors regular conformal
dimension is strictly less than 2 or if it acts geometrically on a CAT(0) cube complex.

1. Introduction

Conjecturally, word hyperbolic groups with planar boundary are virtually convex-cocompact
Kleinian groups. The aim of this paper is to provide supporting evidence to this picture. It is
known to hold when the boundary is a simple closed curve [CJ, Gab]. When the boundary is
the 2-sphere, this is the content of the so-called Cannon conjecture [Can].

Recall that the Sierpiński carpet is the metric space obtained by starting with the unit
square, subdividing it into nine squares, removing the middle square, repeating this procedure
ad infinitum with the remaining squares, and taking the decreasing intersection. Kapovich
and Kleiner have conjectured that any carpet group i.e., a hyperbolic group with a boundary
homeomorphic to the Sierpiński carpet, is virtually a convex-cocompact Kleinian group [KK,
Conjecture 6].

A homeomorphism h : X → Y between metric spaces is called quasisymmetric provided
there exists a homeomorphism η : [0,∞) → [0,∞) such that dX(x, a) ≤ tdX(x, b) implies
dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b)) for all triples of points x, a, b ∈ X and all t ≥ 0 [Hei]. The
boundary ∂G of a hyperbolic group G is endowed with an Ahlfors regular conformal gauge
G(G) i.e., a family of metrics which are pairwise quasisymmetrically equivalent and which
are Ahlfors regular: this means that there is a Radon measure µ such that for any x ∈ X
and r ∈ (0, diam ∂G], µ(B(x, r)) ≍ rQ for some given Q > 0 [Mat]. The infimum over G(G)
of every dimension Q is the so-called Ahlfors regular conformal dimension confdimARG of G
[MT, Car, Häı1]. This is a numerical invariant of the quasi-isometry class of G.

The conformal dimension provides us with a first characterization of convex-cocompact
Kleinian groups:

Theorem 1.1. Let G be a non-elementary hyperbolic group with planar boundary different
from the sphere. Then G is virtually Kleinian if and only if confdimAR(G) < 2.

The necessity part of Theorem 1.1 is due to Sullivan, see [Sul1]. When the boundary is the
whole sphere, Bonk and Kleiner proved that the group is Kleinian if and only if there is a
distance in its Ahlfors-regular conformal gauge of minimal dimension [BK3].

An induction argument enables us to weaken the assumption on the conformal dimension
provided G has no elements of order two:
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Theorem 1.2. Let G be a non-elementary hyperbolic group with planar boundary different
from the sphere and with no elements of order two. The following conditions are equivalent.

(1) G is virtually Kleinian.
(2) confdimAR(G) < 2.
(3) confdimAR(H) < 2 for all quasiconvex carpet subgroups H of G.

The implication of (2) ⇒ (3) follows for instance from [MT, Prop. 2.2.11].

The following statement is an immediate consequence of Theorem 1.2.

Corollary 1.3. Every hyperbolic group G with a one-dimensional planar boundary and no el-
ements of order two is virtually Kleinian if and only if every carpet group is virtually Kleinian.
In particular, if G has no carpet subgroup, then G is virtually Kleinian.

Theorem 1.2 and Corollary 1.3 reduce the dynamical characterization of (convex) cocompact
Kleinian groups to both Cannon and Kapovich-Kleiner conjectures. Let us recall that the
Kapovich-Kleiner conjecture is implied by the Cannon conjecture [KK, Thm. 5, Cor. 13]. Thus,
the dynamical characterization of convex-cocompact Kleinian groups with no 2-torsion would
follow from the Cannon conjecture. On the other hand, the Cannon conjecture does not imply
Theorems 1.2 and 1.2 since it is not known that a word hyperbolic group with planar boundary
is virtually a quasiconvex subgroup of a word hyperbolic group with the sphere as boundary.

Our second characterization relies on the recent progress made on cubulated groups:

Theorem 1.4. Let G be a hyperbolic group with planar boundary. Then G is virtually Kleinian
if and only if G acts geometrically and cellularly on a CAT(0) cube complex.

Here, we admit groups with boundary the whole sphere, recovering Markovic’s criterion of
Cannon’s conjecture:

Corollary 1.5 (Markovic). Let G be hyperbolic group with boundary homeomorphic to the
sphere and which has a faithful and orientation preserving action on its boundary. Then G is
isomorphic to a cocompact Kleinian group if and only if G acts geometrically and cellularly
on a CAT(0) cube complex.

Remark 1.6. The original proof consists in extending the action on the two-sphere to the
unit ball as a free convergence action so that the quotient is a Haken manifold [Mak2]. Here,
we use the action to split the group to obtain groups with one-dimensional boundary and
apply our previous results.

All these results will rely on a particular case for which we know that the action is already
planar in the following sense. We shall say that a hyperbolic group has a planar action if its
boundary admits a topological embedding into the two-sphere such that the action of every
element of the group can be extended to a global homeomorphism.

Theorem 1.7. Let G be a one-ended hyperbolic group with a planar action and with boundary
different from the sphere. Then G is virtually a convex-cocompact Kleinian group if and only
if confdimARG < 2.

Remark 1.8. If, in the above theorem, the action is faithful and orientation preserving on its
boundary, then the proof shows that the group is isomorphic to a convex-cocompact Kleinian
group.

Corollary 1.9 (Bonk and Kleiner). A carpet group is virtually a convex-cocompact Kleinian
group if and only if confdimARG < 2.
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Proof. Carpets have essentially one embedding in the sphere up to homeomorphisms of the
sphere. Since boundary components do not separate the carpet, the group always has a planar
action. So Theorem 1.7 applies.

Remark 1.10. This corollary was announced by Bonk and Kleiner in 2006 [Bon1] where a
sketch of the proof was given. If the first step is similar (filling-in the “holes” to reconstruct
the Riemann sphere), the other steps are different. The originality of the proof presented here
is in the use of Hinkkanen-Markovic’s characterization of Möbius groups of the circle to extend
the action to the whole sphere. Moreover, we rely on the techniques developed in [Häı2] to

prove that the carpet embeds quasisymmetrically in Ĉ, see Corollary 3.5.

Remark 1.11. Under the assumptions of Theorem 1.7, the group G is quasi-isometric to a
convex subset of H3 with geodesic boundary iff its boundary is homeomorphic to the Sierpiński
carpet (see § 6.2 for a proof).

Working a little more, we may obtain the following corollary from Theorem 1.7:

Corollary 1.12. Let G be a torsion-free non-elementary hyperbolic group acting by home-
omorphisms on S2 as a convergence action. Let us assume that the restriction on its limit
set ΛG( 6= S2) is uniform. If confdimARG < 2, then the action of G is conjugate to that of a
discrete group of Möbius transformations.

Theorem 1.4 and Corollary 1.9 provide us with the following equivalent statements of the
Kapovich-Kleiner conjecture.

Corollary 1.13. Let G be a carpet group with a faithful and orientation preserving action on
its boundary. The following are equivalent:

• the group G is isomorphic to a convex-cocompact Kleinian group;
• the group G acts cellularly and geometrically on a CAT(0) cube complex;
• the Ahlfors regular conformal dimension of G is strictly less than two.

Outline of the proofs. The proof of Theorem 1.7 is proved by filling-in the holes to re-
construct a metric sphere and then to extend the action of the given group G to the whole
sphere as a uniformly quasi-Möbius group action. Bonk and Kleiner’s characterization of the
round sphere enables to conjugate the action on the Euclidean sphere and to apply Sullivan’s
straightening theorem to conclude.

In general, there is no reason why the group G should admit a planar action, and, it does
not even need to be isomorphic to a Kleinian group, see [KK, § 8]. The idea will be to
use the algebraic structure of the group to construct a finite index subgroup isomorphic to
the fundamental group of a compact Haken 3-manifold. Theorem 1.1 will then follow from
Thurston’s uniformization theorem. The key point is to prove that the stabilizers of rigid
type vertices appearing in the JSJ-decomposition of one-ended hyperbolic groups with planar
boundary have a planar action (Prop. 6.7). This has two major consequences. It implies
that G is QCERF when its conformal dimension is less than two. This follows essentially
from the work of Wise and Agol applied to our specific context (Proposition 6.17). This
property is used to find a finite index subgroup such that the JSJ-decomposition of one-ended
quasiconvex subgroups are “regular” (Theorem 6.18). This regularity property enables us to
see each stabilizer as the fundamental group of a pared compact 3-manifold —-in particular
for the rigid vertices— which can be glued together into a larger one.
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Assuming there are no 2-torsion provides us with a finite hierarchy so that the resulting
subgroups can not be split over elementary groups. We may then prove Theorem 1.2 along
the same lines as above by induction on the length of the hierarchy.

By the previous results, the proof of Theorem 1.4 reduces to the case of carpet groups and
groups with boundary homeomorphic to the sphere. So we may assume that we are given
a group with a planar action. We first show that we may define for such a group a special
action on a CAT(0) cube complex such that the stabilizers of hyperplanes are isomorphic to
convex-cocompact Fuchsian groups. Splitting inductively along those hyperplanes, one will
obtain hyperbolic manifolds endowed with subsurfaces on their boundary which can be glued
together to prove that G is virtually the fundamental group of a compact Haken manifold.
The proof ends as above.

Outline of the paper. In the next section, we make a systematic analysis of gluing together
countably many continua to a fixed continuum and study the properties which are inherited.
The proofs are routine and detailed but have the advantage to be checkable. The main results
are Theorem 2.3 and Theorem 2.6. These results are specialized in § 3 to planar sets. Section
4 is a continuation of section 2: it is explained how maps can be extended when enlarging
the space while keeping a control on their geometric properties. The last two sections are
concerned with word hyperbolic groups. In Section 5, we first recall basic facts concerning
quasiconvex subgroups of hyperbolic groups, and then we show how to extend convergence
actions to larger spaces. The last section 6 is devoted to groups with planar boundaries per
se. After recalling basic facts, we prove Theorem 1.7. We then analyse the vertices of rigid
type arising in Bowditch’s JSJ decomposition. We recall the main results on cubulated groups
which will be needed. The QCERF property is then established in order to prove the main
theorems.

Remark 1.14. A similar statement holds for topologically cxc maps with planar repellors,
see [HP] for their definition and basic properties. But the complexity of the topology of the
repellors and the lack of algebraic structure of such maps require to develop other ingredients,
so it will be explained elsewhere.

Acknowledgements. I feel particularly indebted to Cyril Lecuire who explained to me many
features of hyperbolic manifolds and with whom I have had many fruitful discussions, and to
Frédéric Haglund for his explanations on cubulated groups and for suggesting Theorem 1.4.
I am also very grateful to the following people for the many discussions I have had around
this project and for their encouragements: M.Boileau, M.Carrasco, T.Coulbois, P.Derbez,
V.Guirardel, A.Hilion, J. Los, L. Paoluzzi, J.P. Préaux, H. Short, N.Touikan, A.Yaman, and
others I might have forgotten. This work was partially supported by the ANR project
“GDSous/GSG” no. 12-BS01-0003-01.

2. Sewing infinitely many continua

2.1. Topological sewing. Let X be a continuum i.e., a Hausdorff non-degenerate connected
compact space. We assume that we are given a null-sequence i.e., an at most countable family
P of subcontinua with the following property: for any finite cover U of X , for all but finitely
many elements K of P, there exists U ∈ U with K ⊂ U . We call P an admissible collection
of boundary components of X .

For each K ∈ P, we assume that we are given a continuum LK together with an injective
mapping ψK : K → LK .
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Set

Σ = X ⊔ (∪K∈PLK)/ ∼

where, for all K ∈ P, z ∈ K is identified with ψK(z); note that a point z may belong to
several boundary components. We define a topology on Σ as follows: a basis of open sets of
Σ consists of those sets U such that

(T1) U ∩X is open in X ,
(T2) U ∩ LK is open in LK for all K ∈ P,
(T3) for all but finitely many components K ∈ P with K ⊂ U , one also has LK ⊂ U .

One may check that these sets are stable under finite intersection, so we have indeed a basis
for a topology.

Proposition 2.1. With the notation above, the topological space Σ is Hausdorff and compact,
and each embedding X →֒ Σ and LK →֒ Σ is continuous. The connected components of Σ \X
are in bijection with {the connected components of LK \ ψK(K), K ∈ P}.

Proof. The continuity of the embeddings follows from (T1) and (T2).

We now construct a collection of open neighborhoods for each point of Σ.

Let us first consider x ∈ X . If Ux is an open neighborhood of x in X and Wx is the
interior of a compact neighborhood of ∂Ux disjoint from x, then the collection Fx of boundary
components which intersect ∂Ux and is not contained in Wx is finite since P is admissible. Let
U ′
x be the complement in Ux of the union of boundary components K /∈ Fx with K ∩∂Ux 6= ∅;

the set U ′
x is an open neighborhood of x in X : indeed, if u ∈ U ′

x and N ⊂ Ux is a compact
neighborhood of u, then only finitely many components K ∈ P intersect both ∂Ux and N , so
their complement in N is a neighborhood of u in U ′

x.

For each K ∈ Fx, ψK(Ux ∩ K) is open in ψK(K), so there exists an open set UK ⊂ LK

such that ψK(Ux ∩K) = UK ∩ ψK(K). For each K ∈ P \ Fx such that K ∩ U ′
x 6= ∅, we let

UK = LK . For the other components, set UK = ∅. It follows that

Vx = U ′
x ∪ (∪K∈PUK)

is an open neighborhood of x in Σ.

If x /∈ X , then there exists K ∈ P with x ∈ LK \ ψK(K). Let Ux be a neighborhood of x
in LK , then Ux \ ψK(K) is an open neighborhood of x in Σ.

It follows easily that Σ is Hausdorff.

Let us now consider a covering of Σ by open sets. We may as well assume that each element
satisfies (T1), (T2) and (T3). Since X is compact, we may extract a finite cover U0 of X .
The admissibility of P and condition (T3) imply that the set Y = Σ \ ∪U∈U0

U intersects only
finitely many elements LK , each of which is compact by assumption. Therefore, one may
extract a finite cover for each of these sets and obtain a finite cover of Σ.

The last statement follows easily since the sets LK \ ψK(K), K ∈ P, are pairwise disjoint
and their union forms Σ \X .

2.2. Geometric sewing. The basic distortion bound for quasisymmetric maps is given by
the following lemma [Hei, Prop. 10.8]:
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Lemma 2.2. Let h : X → Y be an η-quasisymmetric map between compact metric spaces.
For all A,B ⊂ X with A ⊂ B and diamB <∞, we have diamh(B) <∞ and

1

2η
(
diamB

diamA

) ≤
diamh(A)

diamh(B)
≤ η

(
2
diamA

diamB

)
.

We prove a metric version of Proposition 2.1:

Theorem 2.3. Let X be a metric continuum endowed with an admissible collection of bound-
ary components P. We assume the existence of ∆0 ≥ 1 and η : R+ → R+ such that, for
each K ∈ P, we are given a metric continuum LK and an η-quasisymmetric embedding
ψK : K → LK such that diamLK ≤ ∆0diamψK(K).

Then there exist a metric dΣ on Σ compatible with its topology and a constant ∆ > 0 such
that (X, dΣ) is bi-Lipschitz to X, and, for all K ∈ P, (LK , dΣ) is uniformly quasisymmetric
to LK, diamΣLK ≤ ∆diamΣK and there is a constant c > 0 such that, for all y ∈ X, z ∈ LK,
z′ ∈ LK ′, K 6= K ′,

dΣ(z, z
′) ≥ c inf{dΣ(z, x) + dΣ(x, x

′) + dΣ(x
′, z′), x ∈ LK , x

′ ∈ LK ′}

dΣ(z, y) ≥ c inf{dΣ(z, x) + dΣ(x, y), x ∈ LK} .
(2.1)

For the proof, we will use the following Ahlfors-Beurling type theorem [Häı2, Thm2]:

Proposition 2.4. Let (X, dX) be a proper metric space containing at least two points and
(Y, dY ) a connected compact metric space. Let us assume that there is an η-quasisymmetric

embedding f : Y → X with diamY Y = diamXf(Y ). Then there is a metric d̂ on X such that

(1) Id : (X, dX) → (X, d̂) is η̂-quasisymmetric;

(2) Id : (X \ f(Y ), dX) → (X \ f(Y ), d̂) is locally quasisimilar: there is a finite constant
C ≥ 1 such that, for any x ∈ X \ f(Y ) and any y, z ∈ BX(x, dX(x, f(Y ))/2),

1

C
≤

d̂(y, z)

dX(y, z)
·
dX(x, f(Y ))

d̂(x, f(Y ))
≤ C ;

(3) f : (Y, dY ) → (X, d̂) is bi-Lipschitz onto its image: there exists L ≥ 1 such that, for all
y1, y2 ∈ Y ,

1

L
dY (y1, y2) ≤ d̂(f(y1), f(y2)) ≤ dY (y1, y2) ;

(4) there is a constant ∆ ≥ 1 such that

1

∆
diam(X, dX) ≤ diam

(
X, d̂

)
≤ ∆diam(X, dX) .

All the constants involved and η̂ only depend on η.

The proof of Theorem 2.3 consists in defining the metric from the necessary conditions given
by the conclusion of the statement and then to check it fulfills the requirements.

Proof. (Thm2.3) For K ∈ P, we rescale the metric on LK so that diamK = diamψK(K).

We apply Proposition 2.4 to LK(= X), K(= Y ) and ψK : K → LK . Let dK(= d̂) be the

metric thus obtained. Note that the collection of maps {LK
Id
−→ (LK , dK)}K∈P is uniformly

quasisymmetric with distortion function η̂. Moreover, Lemma 2.2 implies that, for all K ∈ P,

(2.2) diam(LK , dK) ≤ ∆diam(ψK(K), dK) ,
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where ∆ = 2η̂(∆0), and, there exists L ≥ 1 such that, for all K ∈ P and for all x, y ∈ K,

(2.3)
1

L
dX(x, y) ≤ dK(ψK(x), ψK(y)) ≤ dX(x, y) .

In the sequel, we will omit ψK when it leads to no confusion.

Let us define a quasimetric on Σ as follows:

• if x, y ∈ X , set q(x, y) = dX(x, y);
• if x, y ∈ LK \K, for some K ∈ P, set q(x, y) = dK(x, y);
• if x ∈ X and y ∈ LK \K for some K ∈ P, set

q(x, y) = q(y, x) = inf
z∈K

{dX(x, z) + dK(z, y)} ;

• if x ∈ LK1
\K1, y ∈ LK2

\K2 for some K1 6= K2 ∈ P, set

q(x, y) = inf
(z1,z2)∈K1×K2

{dK1
(x, z1) + dX(z1, z2) + dK2

(z2, y)} .

Set finally

dΣ(x, y) = inf

N−1∑

i=0

q(xi, xi+1)

over all finite chains x0, , . . . xN in Σ with x0 = x, xN = y. We claim that dΣ is a metric
comparable to q which is compatible with the topology of Σ.

Let x0, . . . , xN be a chain. Inserting finitely many points if necessary in the chain using the
definition of q, we may assume that, for each j ∈ {0, . . . , N−1}, either there exists K ∈ P such
that q(xj , xj+1) = dK(xj, xj+1), or q(xj , xj+1) = dX(xj , xj+1). Using the triangle inequality,
we may assume that if xj /∈ X , j < N , then xj+1 ∈ X ; if furthermore j > 0, then there is
some K ∈ P with xj±1 ∈ K and so, with (2.3),

q(xj−1, xj) + q(xj , xj+1) ≥ dK(xj−1, xj+1) ≥
1

L
dX(xj−1, xj+1) .

Therefore, one can extract a subchain (yj)0≤j≤M with y0 = x0 and yM = xN such that

(a) if x0, xN ∈ X , then

N−1∑

j=0

q(xj , xj+1) ≥
1

L

M−1∑

j=0

dX(yj, yj+1) ≥
1

L
dX(y0, yM) =

1

L
q(x0, xN) ;

(b) if x0 ∈ LK \K for some K ∈ P and xN ∈ X , then y1 ∈ K and

N−1∑

j=0

q(xj , xj+1) ≥ dK(y0, y1) +
1

L

M−1∑

j=1

dX(yj, yj+1)

≥ dK(y0, y1) +
1

L
dX(y1, yM) ≥

1

L
q(x0, xN ) .

(c) if x0, xN /∈ X , then

N−1∑

j=0

q(xj , xj+1) ≥ q(y0, y1) +
1

L

M−2∑

j=1

dX(yj, yj+1) + q(yM−1, yM)

≥ q(y0, y1) +
1

L
dX(y1, yM−1) + q(yM−1, yM) .
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If there is some K ∈ P such that y0, yM ∈ LK \K, then y1, yM−1 ∈ K and it follows
from (2.3) that

N−1∑

j=0

q(xj, xj+1) ≥ dK(y0, y1) +
1

L
dX(y1, yM−1) + dK(yM−1, yM)

≥
1

L
dK(y0, yM) =

1

L
q(x0, xN ) .

If not, then

N−1∑

j=0

q(xj , xj+1) ≥
1

L
(q(y0, y1) + dX(y1, yM−1) + q(yM−1, yM))

≥
1

L
q(y0, yM) =

1

L
q(x0, xN) .

In either case, we have shown that

(2.4) q(x0, xN ) ≥ dΣ(x0, xN ) ≥
1

L
q(x0, xN ) .

This proves (2.1). Since LK embeds in Σ uniformly quasisymmetrically, Lemma 2.2 implies
the existence of ∆ > 0 such that diamΣLK ≤ ∆diamΣK for all K ∈ P.

Since P is a null-sequence and (2.2) holds, it follows that dΣ defines the topology of Σ.

Remark 2.5. Note that if x ∈ LK \ ψK(K) for some K ∈ P, then dΣ(x,X) is realized by a
point y ∈ K.

2.3. Geometric properties. We establish a series of properties of Σ —obtained by Theorem
2.3— inherited from the sets X and LK , K ∈ P. The terms in the next statement will be
defined below.

Theorem 2.6. Under the assumptions of Theorem 2.3, let (Σ, dΣ) be the given metric space.
Then the following hold.

(1) If (X, dX) and all LK , K ∈ P, satisfy the bounded turning property uniformly, then it
also holds for (Σ, dΣ).

(2) If (X, dX) and all LK , K ∈ P, are uniformly LLC, then (Σ, dΣ) is LLC quantitatively
as well.

(3) If X is doubling and relatively doubling with respect to P and if {LK , K ∈ P} is
uniformly doubling, then (Σ, dΣ) is doubling quantitatively.

(4) If X is relatively porous with respect to P and if, for all K ∈ P, K is uniformly porous
in LK , then X is porous in (Σ, dΣ) quantitatively.

(5) We assume that X is doubling, doubling relative to P and porous relative to P. We
also assume that every K is uniformly porous in LK . If each LK, K ∈ P, is Q-
Ahlfors-regular with uniform constants for some Q > 1, and if X is Ahlfors regular of
dimension strictly less than Q, then (Σ, dΣ) is Q-Ahlfors regular.

We will first see how to extend local properties to global ones. Theorem 2.6 will follow at
once.

Given a metric space Z and a constant c > 0, we say that (X, {Lα}α∈A) is a c-separating
structure of Z if X ⊂ Z is closed, {Lα}α∈A is a possibly infinite collection of compact subsets
of Z which satisfies the following properties:
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(S1) Setting Kα = Lα ∩ X and Ωα = Lα \ Kα for α ∈ A, the collection {Ωα}α∈A forms a
partition of Z \X by open sets;

(S2) The following flatness condition holds: for all y ∈ X , z ∈ Ωα, z
′ ∈ Ωα′ , α 6= α′,

(2.5)

{
d(z, z′) ≥ c inf{d(z, x) + d(x, x′) + d(x′, z′), x ∈ Kα, x

′ ∈ Kα′};

d(z, y) ≥ c inf{d(z, x) + d(x, y), x ∈ Kα} .

Unless explicitly stated, we assume throughout this section that we are given a metric space
Z together with a separating structure (X, {Lα}α∈A). The collection P = {Kα, α ∈ A}
denotes the boundary components of X . We also assume the existence of ∆ > 0 such that
diamLα ≤ ∆diamKα for all α ∈ A.

Note that if z ∈ Ωα and δ(z) = d(z,X), then

(2.6) B(z, cδ(z)) ⊂ Ωα.

2.3.1. Connectivity properties. Recall that a metric space Z satisfies the bounded turning prop-
erty λ-(BT), for some λ ≥ 1, if any pair of points x, y ∈ Z is contained in a continuum E with
diamE ≤ λdZ(x, y).

Proposition 2.7. Let λ ≥ 1 be fixed. If X satifies the λ-(BT) condition and every subset Lα

satisfies the λ-(BT) condition, then Z satisfies the (λ/c)-(BT) condition.

Proof. Let x, y ∈ Z. If they both belong to either X or to the same Lα, then the λ-
(BT) property implies at once the existence of a continuum E containing x, y with diamE ≤
λd(x, y).

Let x ∈ X and y ∈ Ωα for some α ∈ A. By the separation condition (2.5), there is
some z ∈ Lα such that d(x, y) ≥ c(d(x, z) + d(z, y)). There exist continua E1 ⊂ X and
E2 ⊂ Lα which contain x, z and z, y respectively and such that diamE1 ≤ λd(x, z) and
diamE2 ≤ λd(z, y). It follows that E = E1 ∪ E2 is a continuum containing x and y and

diamE ≤ diamE1 + diamE2

≤ λd(x, z) + λd(y, z)

≤ (λ/c)d(x, y) .

Assume x ∈ Ωα and y ∈ Ωβ with α 6= β. Let zα ∈ Lα ∩ X and zβ ∈ Lβ ∩ X satisfy
d(x, y) ≥ c(d(x, zα)+d(zα, zβ)+d(zα, y)). There exist continua E0 ⊂ X , Eα ⊂ Lα and Eβ ⊂ Lβ

which contain {zα, zβ}, {x, zα} and {zβ , y} respectively and such that diamE0 ≤ λd(zα, zβ),
diamEα ≤ λd(x, zα) and diamEβ ≤ λd(zβ, y). It follows that E = E0∪Eα∪Eβ is a continuum
containing x and y and

diamE ≤ diamE0 + diamEα + diamEβ

≤ λd(zα, zβ) + λd(x, zα) + λd(y, zβ)

≤ (λ/c)d(x, y) .

Recall that a metric space Z is linearly locally connected (λ-LLC for some λ ≥ 1) if, for all
x ∈ X and R > 0,

(LLC1) for all y, z ∈ B(x,R) there is a continuum E ⊂ B(x, λR) which contains {y, z};
(LLC2) for all y, z /∈ B(x,R), there is a continuum E ⊂ Z\B(x, (1/λ)R) which contains {y, z}.
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Proposition 2.8. Let λ ≥ 1 be fixed. If Z is λ-(LLC) at every point of X and every subset
Lα satisfies the λ-(LLC) condition, then Z is LLC quantitatively as well.

Proof. By Proposition 2.7, the space Z is λ-(BT) so (LLC1) holds. Let us now focus on
(LLC2). Let z ∈ Z \X and r > 0. Let Ωα be the component containing z.

If d(z,X) > 1
2

r
1+λ

, then B(z, 1
2

r
λ(1+λ)

) is disjoint from X and the (BT)-property implies that

this ball is contained in Ωα, hence in Lα. Therefore, if z1, z2 /∈ B(z, r), then we may find a

continuum K disjoint from B
(
z, 1

2
r

λ2(1+λ)

)
which joins z1 and z2.

If d(z,X) ≤ 1
2

r
1+λ

, let x ∈ X satisfy d(z,X) = d(z, x). Note that

B

(
x,

(
1−

1

2

1

1 + λ

)
r

)
⊂ B(z, r)

and

1−
1

2

1

1 + λ
=

1 + 2λ

2(1 + λ)
.

If z1, z2 /∈ B(z, r), then we may find a continuum K disjoint from B(x, r
λ

1+2λ
2(1+λ)

)) which joins

z1 and z2. Now, let us observe that

B

(
z,

(
1

λ

1 + 2λ

2(1 + λ)
−

1

2

1

1 + λ

)
r

)
⊂ B

(
x,
r

λ

1 + 2λ

2(1 + λ)

)

so that K is disjoint from B(z, r/(2λ)).

Corollary 2.9. Let λ ≥ 1 be fixed. If X and every subset Lα satisfies the λ-(LLC) condition,
then Z is LLC quantitatively as well.

Proof. In order to apply Proposition 2.8, it is enough to prove the following claim: there
exists a constant λ′ ≥ 1 such that, for any x ∈ X, for any r ∈ (0, diamZ), any point
z ∈ (Z \B(x, r)) can be joined by a continuum E ⊂ (Z \B(x, r/λ′)) to X.

The claim and the LLC-property of X imply that Z is LLC at every point of X quantita-
tively, so that Proposition 2.8 applies. We now prove the claim.

Let x ∈ X , r > 0 and z /∈ B(x, r); there is some α ∈ A with z ∈ Ωα. Set

κ =
1

2(1 + 2∆λ)
.

If d(x,Kα) ≥ κr then Lα ∩ B(x, cκr) = ∅ according to (2.5) and Lα is a continuum which
joins z to a point of Kα ⊂ X . If d(x,Kα) < κr, let x′ ∈ Kα be such that d(x, x′) = d(x,Kα).

It follows that B(x′, (1− κ)r) ⊂ B(x, r) so that z /∈ B(x′, (1− κ)r). Moreover,

diamKα ≥
1

∆
diamLα ≥

d(x′, z)

∆
≥

(1− κ)r

∆
.

Therefore, we may find y ∈ Kα such that d(x′, y) ≥ (1−κ)r
2∆

.

Since Lα is LLC, there is a continuum

E ⊂

(
Z \B

(
x′,

(1− κ)r

2λ∆

))

which joins z to y. Now, if w ∈ E, then d(x, w) ≥ d(w, x′)− d(x′, x) so that

d(x, w) ≥
(1− κ)r

2λ∆
− κr ≥

1

4λ∆
r .
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Therefore, the claim follows with

λ′ = max

{
2(1 + 2∆λ)

c
, 4λ∆

}
.

2.3.2. Size properties. A metric space Z is doubling if there exists an integer N such that any
set of finite diameter can be covered by at most N sets of half its diameter. This implies that,
for all ε > 0, there exists Nε such that any set E of finite diameter can be covered by Nε sets
of diameter bounded by εdiamE. We propose a relative notion of doubling:

Definition 2.10 (Relative doubling condition). Let X be a metric continuum with boundary
components P. Then X is doubling relative to P if, for any ε > 0, there is some Nε and
there exists r0 > 0 such that, for any x ∈ X and r ∈ (0, r0), there are at most Nε components
K ∈ P such that B(x, r) ∩K 6= ∅ and diam(K ∩ B(x, r)) ≥ εr.

Proposition 2.11. If X is doubling and relatively doubling with respect to P and if {Lα, α ∈
A} is uniformly doubling, then Z is doubling quantitatively.

Proof. Let us first consider x ∈ X , r ∈ (0, diamZ) and ε ∈ (0, 1). We may cover B(x, r)∩X
byM1 balls {Bj} of radius (εr/6), whereM1 only depends on the doubling condition of (X, dX)
and on ε. For each ball Bj, we add all the components Lα, α ∈ A, such that Kα ∩Bj 6= ∅ and
diamKα ≤ (εr)/(6∆); we let B′

j be the resulting set. It follows that diamB′
j ≤ εr.

We are left with the components Kα ∈ P with Kα ∩ B(x, r) 6= ∅ and diamK ≥ (εr)/(6∆):
the relative doubling condition implies that there are at most N such sets. Each of these sets
can be covered by M2 sets of diameter at most εr by the uniform doubling condition.

Therefore, for any x ∈ X , we may cover B(x, r) by at most M1 +NM2 sets of diameter at
most εr.

If x /∈ X , then either B(x, r) ⊂ Lα for some α ∈ A, and then we may use the doubling
condition of Lα, or there is some y ∈ X such that B(x, r) ⊂ B(y, 2r/c), cf. (2.6). Using
ε = (c/4) above, we may cover B(y, 2r/c), hence B(x, r) by a uniform number of sets of
diameter at most (r/2).

A subset Y of a metric space Z is said to be porous if there exists a constant p > 0 such
that any ball centered at a point of Y of radius r ∈ (0, diamZ] contains a ball of radius pr
disjoint from Y . We propose a relative notion of porosity:

Definition 2.12 (Relative porosity). Let X be a metric continuum with boundary components
P. Then X is porous relative to P if there exist a constant pX > 0 and a maximal size r0 > 0
such that, for any x ∈ X and r ∈ (0, r0), there is at least one subcontinuum K ′ of a boundary
component K ∈ P such that K ′ ⊂ BX(x, r), K

′ ∩ BX(x, r/2) 6= ∅ and diamXK
′ ≥ pXr.

Proposition 2.13. If X is relatively porous with respect to P and if, for all α ∈ A, Kα is
uniformly porous in Lα, then X is porous in Z quantitatively.

Proof. Let x ∈ X and r ∈ (0, r0). There exist α ∈ A and y ∈ Kα such that d(x, y) ≤ r/2,
and, if K ′ denotes the component of Kα ∩ B(x, r) which contains y, then diamK ′ ≥ pXr.

We have diamLα ≥ diamKα ≥ pXr and B(x, r) ⊃ B(y, pXr/2). It follows from the porosity
of Kα in Lα that there is some z ∈ Ωα such that B(z, cppXr/2) ⊂ Ωα ∩ B(y, pXr/2), so that

B(z, cppXr/2) ⊂ B(x, r) \X .
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Proposition 2.14. Let Q > 0. Let us assume that Z is a doubling metric space and that
X is a porous Ahlfors regular compact subset of dimension strictly smaller than Q. If every
subspace Lα is Q-Ahlfors regular with uniform constants and Kα is uniformly porous in Lα,
then Z is Q-Ahlfors regular.

The proof is exactly the same as [Häı2, Prop. 2.18]. We repeat it for completeness. Instead
of asking X to be Ahlfors-regular, it would have been enough to require that its Assouad
dimension be strictly less than Q.

Proof. Let us denote by µ the Q-Hausdorff measure in Z. If x /∈ X , then there is some
α ∈ A such that x ∈ Ωα; we let δ(x) = d(x,X).

By assumption and (2.6), we have µ(B(x, crδ(x))) ≍ (rδ(x))Q for all r ∈ (0, 1).

Let us fix a point x ∈ X and r > 0. Since X is porous in Z, a constant p > 0 exists such
that B(x, r) contains a ball B(y, pr) disjoint from X . Therefore pr ≤ δ(y) so

µ(B(y, pr)) ≥ µ(B(y.cpr)) & rQ and µ(B(x, r)) ≥ µ(B(y, pr)) & rQ .

For the converse inequality, we first note that since the dimension of X is strictly less than
Q, we have µ(X) = 0. Thus it is enough to bound µ(B(x, r) \ X). We cover B(x, r) \ X
by balls B(z, cδ(z)/10). We extract an at most countable subfamily B(zj , cδj/10) of pairwise
disjoint balls such that B(x, r) \X ⊂ ∪B(zj , cδj/2) [Hei, Thm1.2].

Denote by An the set of centers (zj) such that re−(n+1) < δ(zj) ≤ re−n. It follows that if
zj ∈ An, then µ(B(zj , cδj/2)) ≍ δ(zj)

Q ≍ rQe−Qn.

For each zj , choose a point xj ∈ X such that δ(zj) = d(zj, xj). Since Z is doubling and
the balls {B(zj, cδj/10)}j are disjoint, the nerve of the family of balls {B(xj , δ(zj)), zj ∈ An}
has uniformly bounded valence V (independent from n). Therefore, we may split this family
of balls into V + 1 families of pairwise disjoint balls. Since dimX < Q, the number of balls
involved in An is bounded by eQnθn, up to a factor (which depends on V ), for some θ ∈ (0, 1).
Thus ∑

An

µ(B(zj, cδj/2)) . eQnθn
(
e−nr

)Q
. θnrQ.

Therefore

µ(B(y, r)) ≤
∑

n≥0

∑

An

µ(B(zj, δj/2)) .
∑

n≥0

θnrQ . rQ.

Let us consider a point z ∈ Z \ X , and let x ∈ X be such that δ(z) = d(z, x). If r ∈
[cδ(z), 2δ(z)], then

µ(B(z, r)) ≥ µ(B(z, cδ(z))) & δ(z)Q & rQ.

On the other hand,

µ(B(z, r)) ≤ µ(B(x, 2r)) . rQ.

If r ≥ 2δ(z), then B(x, r − δ(z)) ⊂ B(z, r) ⊂ B(x, r + δ(z)) with r + δ(z) ≤ (3/2)r and
r − δ(z) ≥ r/2, so µ(B(z, r)) ≍ rQ.
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2.3.3. Geometric properties of the sewn space. We prove Theorem 2.6. Theorem 2.3 implies
that (X, {LK , K ∈ P}) is a separating structure for Σ and that there is some ∆ > 0 such
that diamΣLK ≤ ∆diamΣK for all K ∈ P.

1. It follows from Lemma 2.2 that we may assume that (X, dX) and all (LK , dK), K ∈ P,
satisfy λ-(BT) for a fixed λ ≥ 1. Therefore, Proposition 2.7 applies and Σ has bounded
turning.

2. We recall that the LLC property is preserved quantitatively under quasisymmetric map-
pings [Hei, Chap. 15], so that we may assume that {(LK , dΣ), K ∈ P} and (X, dΣ) are λ-LLC.
Therefore, Corollary 2.9 applies and Σ is LLC as well.

3. We recall that the doubling condition is preserved quantitatively under quasisymmetric
mappings [Hei, Chap. 15] so that {(LK , dΣ), K ∈ P} is uniformly doubling. Since (X, dX) is bi-
Lipschitz to (X, dΣ), it is also doubling and relatively doubling with respect to P. Proposition
2.11 applies and we may conclude that Σ is doubling.

4. We recall that the porosity of a subset is preserved quantitatively under quasisymmetric
mappings so that the sets K, K ∈ P, are uniformly porous in (LK , dΣ) and (X, dΣ) is also
relatively porous to P. Therefore we may apply Proposition 2.13 and conclude that X is
porous in Σ.

5. We know from above that the space (Σ, dΣ) is doubling and that X is also porous in Σ.
Since (X, dX) is bi-Lipschitz to (X, dΣ), we get that (X, dΣ) is also Ahlfors regular of dimension
strictly less than Q. Finally, [Häı2, Prop. 2.18] implies that (LK , dΣ), K ∈ P, are uniformly
Q-Ahlfors regular. Therefore, Proposition 2.14 applies.

3. Planar continua

Let X be a planar locally connected continuum, and let ϕ : X → S2 be a topological
embedding. Note that there may be embeddings which are not compatible in the sense that
if ϕ1, ϕ2 : X → S2 are two embeddings, then ϕ2 ◦ ϕ

−1
1 might not be the restriction of a

selfhomeomorphism of the sphere.

We let P denote those subcontinua K ⊂ X such that ϕ(K) bounds a connected component
of S2 \ ϕ(X).

The main result of this section is the following:

Theorem 3.1. Let X be a locally connected planar metric continuum with boundary compo-
nents P provided by an embedding ϕ : X → S2. We assume that X is LLC, Ahlfors regular
of dimension Q < 2, relatively doubling and porous with respect to P, and that we are given
uniformly quasisymmetric gluing maps ψK : K → LK for all K ∈ P, where the sets LK are
continua such that (a) LK \ ψK(K) is homeomorphic to an open disk; (b) all the sets LK

are uniformly Ahlfors regular of dimension 2; (c) ψK(K) is uniformly porous in LK ; and (d)
diamLK ≤ ∆0diamψK(K) for some universal constant ∆0 ≥ 1.

Then the space Σ given by Proposition 2.1 and Theorem 2.3 is quasisymmetric to Ĉ and

there exists a quasisymmetric embedding φ : X → Ĉ compatible with ϕ.

3.1. Topological uniformization. Let X be a locally connected planar continuum with
boundary components P provided by an embedding ϕ : X → S2. For each K ∈ P, we assume
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that we are given topological embeddings ψK : K → LK for all K ∈ P, where the sets LK are
continua such that LK \ ψK(K) is homeomorphic to an open disk.

For each K ∈ P, we denote by UK the component of S2 \ ϕ(X) with ∂UK = ϕ(K). It
follows from the Torhorst theorem [Why2, Thm.VI.2.2] that K is itself locally connected.
Since ϕ(X) is connected, it follows that UK is homeomorphic to an open disk so there exists
a homeomorphism ϕK : LK → UK such that ψK |K = (ϕ−1

K ◦ ϕ)|K .

Proposition 3.2. The topological space Σ defined as above is homeomorphic to S2.

Proof. We first note that since ϕ(X) is a locally connected continuum of the sphere, [Why2,
Thm.VI.4.4] implies that P is an admissible collection of boundary components. Hence Σ is
compact by Proposition 2.1.

Define φ : Σ → S2 as follows: on X , set φ = ϕ; on LK , K ∈ P, set φ = ϕK . Note that, if
z ∈ K for some K ∈ P, then

φ(z) = ϕ(z) = ϕK ◦ (ϕ−1
K ◦ ϕ)(z) = φ(ψK(z))

so that φ is well-defined.

Let us prove that φ is a homeomorphism. First, φ is a bijection by construction. Let us
now prove that φ is continuous: let U be an open subset of S2 and let V = φ−1(U). On the
one hand, one has

V ∩X = φ−1(U) ∩ φ−1(ϕ(X)) = φ−1(U ∩ ϕ(X)) = ϕ−1(U)

so that V ∩X is open, hence (T1) is true. On the other hand, let K ∈ P, then

V ∩ LK = φ−1(U) ∩ ϕ−1
K (UK) = ϕ−1

K (U ∩ UK)

so V ∩ LK is also open, so (T2) holds. By [Why2, ThmVI.4.4], for all δ > 0, there are only
finitely many components of S2\ϕ(X) with diameter at least δ; therefore, we may assume that
only finitely many components of S2 \ϕ(X) intersect ∂U , since any open set can be described
as an at most countable union of such open sets. Hence V satisfies (T3) as well. Therefore φ
is continuous. Since Σ is compact, this implies that φ is a homeomorphism.

3.2. Quasisymmetric embedding. The embedding will be obtained thanks to [BK1, Thm1.1]:

Theorem 3.3 (Bonk and Kleiner). A metric 2-sphere is quasisymmetrically equivalent to the
Riemann sphere if it is LLC and 2-Ahlfors-regular.

Proof. (Theorem 3.1) By the assumption (a), Proposition 3.2 implies that Σ is homeo-
morphic to S2. The assumption (d) implies that we may endow Σ with a metric dΣ which
enjoys the properties given by Theorem 2.3. The assumption (c), the LLC-assumptions and
the Ahlfors-regularity assumptions enable us to apply Theorem 2.6 to conclude that (Σ, dΣ)
is an LLC 2-Ahlfors regular sphere.

It now follows from Theorem 3.3 that Σ is quasisymmetrically equivalent to Ĉ, so X embeds

quasisymmetrically into Ĉ. This ends the proof of Theorem 3.1.

3.3. Carpets. Define a carpet as a planar, one-dimensional, connected, locally connected
compact space with no local cut point; any such space is homeomorphic to the Sierpiński
carpet and admits a unique embedding up to postcomposition by a selfhomeomorphism of
the sphere [Why1]. It follows that the collection of boundary components is canonically
defined, and that they are pairwise disjoint simple closed curves. We call them peripheral
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circles, and we say that they are uniform quasicircles if they are the images of the unit circle
by a quasisymmetry under a uniform distortion function. By extension, a degenerate carpet
will be a one-dimensional, connected locally connected compact space homeomorphic to the
complement of a union of disjoint open disks (their closures may intersect). In this case, there
may be several non-equivalent embeddings in the sphere.

Lemma 3.4. Let X be a one-dimensional, connected locally connected planar compact space
with no global cut point. Then any embedding of X in S2 is a degenerate carpet.

Proof. Let us assume thatX is already embedded into S2, that we identify with the Riemann
sphere. Since it is one-dimensional, it has no interior in S2. We now prove that the boundary
of any component of Ω of S2 \X is a Jordan curve. This will establish that X is a degenerate
carpet. We consider a conformal map h : D → Ω. Since ∂Ω is contained in a locally connected
compact set (disjoint from Ω), Carathéodory’s theorem implies that h admits a continuous
and surjective extension h : D → Ω. If Ω is not a Jordan domain, then there are two rays in
D which are mapped to a Jordan curve in Ω which separates ∂Ω, hence X . But X has no
(global) cut point. Therefore, Ω is a Jordan domain and X is a degenerate carpet.

Corollary 3.5. Let X be a metric degenerate carpet with confdimARX < 2 endowed with
boundary components which are assumed to be uniform quasicircles. We assume that X is
LLC, relatively doubling and porous with respect to the boundary components. Then Σ is

quasisymmetric to Ĉ and there exists a quasisymmetric embedding φ : X → Ĉ compatible with
the boundary components.

Proof. We may choose an Ahlfors regular metric in the gauge of X of dimension Q < 2.
For each K ∈ P, there exists a uniform quasisymmetric homeomorphism ψK : K → S

1 (⊂ D).
Note that D is 2-Ahlfors regular and LLC, that S1 is porous in D and that diamD ≤ diam S

1.
Therefore, Theorem 3.1 applies.

4. Extension of maps

In this section, we show how homeomorphisms between the different sets can be glued
together to yield a global homemorphism of Σ.

Let X be a continuum endowed with an admissible collection of boundary components P.
For each K ∈ P, we assume that we are given a continuum LK together with an injective
mapping ψK : K → LK ; and we consider as above

Σ = X ⊔ (∪K∈PLK)/ ∼

4.1. Global homeomorphisms. The starting point is a collection of homeomorphisms (hK)K∈P

and a homeomorphism hX : X → X such that, for allK ∈ P, hX(K), h−1
X (K) ∈ P. We assume

that the following compatibility condition holds: for all K ∈ P, hK(ψK(K)) = ψhX(K)(hX(K))
and

hX |K = (ψ−1
hX(K) ◦ hK ◦ ψK)|K .

Lemma 4.1. The map h : Σ → Σ defined by h(x) = hX(x) if x ∈ X and h(x) = hK(x) if
x ∈ LK is a well-defined homeomorphism.

Proof. We let the reader check that the compatibility condition implies that h : Σ → Σ is a
well-defined bijection.
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Let U ⊂ Σ be an open set which satisfies (T1), (T2) and (T3). Then U ∩X is open in X
so h−1(U ∩X) = h−1

X (U ∩X) is open in X since hX is continuous. Similarly, for any K ∈ P,
U ∩ LK is open in LK so h−1(U ∩ LK) = h−1

h−1

X
(K)

(U ∩ LK) is open in Lh−1

X
(K) since hh−1

X
(K) is

continuous.

We note that K ⊂ U if and only if h−1
X (K) ⊂ h−1

X (U ∩ X), and LK ⊂ U if and only if
h−1(U ∩ LK) ⊂ h−1(U). So, if for all but finitely many components K ∈ P with the property
that K ⊂ U one has LK ⊂ U , then the same is true for boundary components K ∈ P with
K ⊂ h−1(U). So h−1(U) is open, and h is continuous.

Since h is also a bijection and Σ is compact according to Proposition 2.1, it follows that h
is a homeomorphism as well.

4.2. Quasi-Möbius maps. Following Väisälä [Väi], a homeomorphism f : Z → Z ′ between
metric spaces is quasi-Möbius if there exists a homeomorphism θ : R+ → R+ such that, for
any distinct points x1, x2, x3, x4 ∈ Z,

[f(x1) : f(x2) : f(x3) : f(x4)] ≤ θ([x1 : x2 : x3 : x4])

where

[x1 : x2 : x3 : x4] =
|x1 − x2| · |x3 − x4|

|x1 − x3| · |x2 − x4|
.

We record the following relationships with quasisymmetric mappings, see [Väi] for a proof.

Proposition 4.2. Let f : Z → Z ′ be a homeomorphism between proper metric spaces.

(i) If f is η-quasisymmetric then f is also θ-quasi-Möbius, where θ only depends on η.
(ii) If f is θ-quasi-Möbius, then f is locally η-quasisymmetric, where η only depends on θ.
(iii) Let us assume that f is θ-quasi-Möbius. If Z and Z ′ are unbounded, then f is θ-

quasisymmetric. If Z and Z ′ are compact, then assume that there are three points
z1, z2, z3 ∈ Z, such that |zi − zj | ≥ diamZ/λ and |f(zi)− f(zj)| ≥ diamZ ′/λ for some
λ > 0, then f is η-quasisymmetric, where η only depends on θ and λ.

Corollary 4.3. Let f : Z → Z ′ be a θ-quasi-Möbius homeomorphism between proper metric
spaces. If there is a closed and connected subset Y ⊂ Z with at least three points such that
diamY ≥ ∆diamZ, diam f(Y ) ≥ ∆diamZ ′ and such that f |Y is η-quasisymmetric, then f is
η̂-quasisymmetric on Z where η̂ only depends on ∆, η and θ.

Proof. If Z is unbounded, then there is nothing to prove. If not, we may pick three points
z1, z2, z3 ∈ Y , such that |zi − zj | ≥ diamY/3; by Lemma 2.2, we also have |f(zi) − f(zj)| ≥
diam f(Y )/λ for some constant λ which only depends on η. But the assumption on the
embeddings Y →֒ Z and f(Y ) →֒ Z ′ implies that |zi − zj | ≥ ∆diamZ/3 and |f(zi)− f(zj)| ≥
∆diamZ ′/λ for all i 6= j. Therefore, Proposition 4.2 applies.

4.3. Gluing quasi-Möbius maps together. We assume that X is now a metric continuum
and we suppose the existence of ∆0 ≥ 1 and η : R+ → R+ such that, for each K ∈ P, we are
given a metric continuum LK and an η-quasisymmetric homeomorphism ψK : K → LK such
that diamLK ≤ ∆0diamψK(K). We let dΣ be the metric given by Theorem 2.3 on Σ.

In this section, we prove

Theorem 4.4. Given a homeomorphism θ : R+ → R+, there exists another homeomorphism
θ′ : R+ → R+ such that, if each hK and h are θ-quasi-Möbius maps, then h : (Σ, dΣ) → (Σ, dΣ)
is θ′-quasi-Möbius.
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It is convenient to see Σ as an unbounded space in order to transform quasi-Möbius maps into
quasisymmetric ones. The following lemma makes the job. It may be considered as a converse
construction of Bonk and Kleiner given in [BK2, Lma 2.2]. We use the same arguments for
the proof.

Lemma 4.5. Let (X, d, w) be a marked complete metric space. There exists a complete metric

d̂ on X \ {w} such that Id : (X \ {w}, d) → (X \ {w}, d̂) is θ-quasi-Möbius with θ(t) = 16t.
and

1

4

d(x, y)

δ(x)δ(y)
≤ d̂(x, y) ≤

d(x, y)

δ(x)δ(y)

where δ(x) = d(x, w).

Proof. Set, for x, y ∈ X \ {w},

q(x, y) =
d(x, y)

δ(x)δ(y)

and let

d̂(x, y) = inf

N−1∑

i=0

q(xi, xi+1)

over all finite chains x0, . . . , xN inX\{w} with x0 = x, xN = y. By definition, d̂(x, y) ≤ q(x, y)
holds.

Without loss of generality, we may assume that δ(x) ≤ δ(y); let us fix a chain x0, , . . . xN
with x0 = x, xN = y. We consider two cases.

If δ(xj) ≤ 2δ(x) for all j ∈ {0, . . . , N}, then

N−1∑

i=0

q(xi, xi+1) ≥
1

4δ(x)2

N∑

i=0

d(xi, xi+1)

≥
1

4δ(x)2
d(x, y) ≥

1

4
q(x, y) .

We now assume that there is some j > 0 with δ(xj) ≥ 2δ(x). Let us observe that

q(x, y) ≤
δ(x) + δ(y)

δ(x)δ(y)
≤

2

δ(x)

and that, for u, v ∈ X \ {w},
∣∣∣∣

1

δ(u)
−

1

δ(v)

∣∣∣∣ =
|δ(v)− δ(u)|

δ(u)δ(v)
≤ q(u, v) .

Therefore,

N−1∑

i=0

q(xi, xi+1) ≥

j−1∑

i=0

∣∣∣∣
1

δ(xi)
−

1

δ(xi+1)

∣∣∣∣

≥

∣∣∣∣
1

δ(x)
−

1

δ(xj)

∣∣∣∣

≥
1

2δ(x)
≥

1

4
q(x, y) .

This proves that d̂ is indeed a complete metric. The fact that the identity is quasi-Möbius
follows at once from the formulae.
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We will need to control the relative diameters of the sets LK and K in this new metric:

Lemma 4.6. Let X be a complete metric space, w ∈ X and K ⊂ L ⊂ X \ {w} be such that
diamL ≤ ∆diamK and there is a constant c > 0 such that, for all x ∈ L,

d(x, w) ≥ c inf{d(x, y) + d(y, w), y ∈ K} ;

then there is some constant ∆̂ > 0 which only depends on ∆ and c such that

diam (L, d̂) ≤ ∆̂diam (K, d̂)

where d̂ is the metric on X \ {w} given by Lemma 4.5.

Proof. We set δ(x) = d(x, w) and q(x, y) = d(x, y)/(δ(x)δ(y)) as above, and let δ(K) =
d(w,K).

Let us first estimate diamqK = sup{q(x, y), x, y ∈ K}; pick x ∈ K such that δ(x) = δ(K)
and let y ∈ K be such that d(x, y) ≥ (1/2)diamK. It follows that δ(y) ≤ diamK + δ(K) so
that

diamqK ≥ q(x, y) ≥
1

2

diamK

δ(K) · (δ(K) + diamK)

≥
1

4

diamK

δ(K) ·max{δ(K), diamK}

≥
1

4
min

{
diamK

δ(K)2
,

1

δ(K)

}
.

We note that the assumptions imply that, for all x ∈ L, δ(x) ≥ c · δ(K).

On the one hand, we have

diamqL ≤
diamL

c2δ(K)2
≤

∆

c2
diamK

δ(K)2
.

On the other hand, if x, y ∈ L, then d(x, y) ≤ δ(x) + δ(y) ≤ 2max{δ(x), δ(y)} so that

q(x, y) ≤
2

min{δ(x), δ(y)}
≤

2

cδ(K)

hence

diamqL ≤ min

{
∆

c2
diamK

δ(K)2
,

2

cδ(K)

}

≤
2∆

c2
min

{
diamK

δ(K)2
,

1

δ(K)

}

≤
8∆

c2
diamqK .

Therefore,

diam (L, d̂) ≤
32∆

c2
· diam (K, d̂) .

We now introduce the last ingredient for the proof of Theorem 4.4. Let X1 and X2 be two
closed subsets of a metric space X such that X1∩X2 6= ∅. The seam is by definition the closed
set Y = X1 ∩X2. Following Agard and Gehring, the angle ∠(X1, X2) between X1 and X2 is
by definition the supremum over all c > 0 such that, for any (x1, x2) ∈ X1 ×X2,

|x1 − x2| ≥ c · inf
y∈Y

{|x1 − y|+ |y − x2|} .
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We recall [Häı2, Thm3.1]:

Proposition 4.7. Let X = X1 ∪X2 and X ′ = X ′
1 ∪X

′
2 be metric spaces with positive angles.

Let us assume that Y = X1 ∩ X2 and Y ′ = X ′
1 ∩ X ′

2 are λ-uniformly perfect subspaces such
that diamY ≥ µdiamX1 for some µ ∈ (0, 1).

If f : X → X ′ is a homeomorphism such that f |Xj
is η-quasisymmetric and f(Xj) = X ′

j,
then f is globally η̂-quasisymmetric quantitatively.

We now need to check that angles remain positive when applying Lemma 4.5:

Lemma 4.8. For any c > 0 and ∆ ≥ 1, there exists ĉ > 0 with the following property. Let A,
B be subsets of a metric space (Z, d) with A∩B = X and ∠d(A,B) ≥ c. Let w ∈ Z and let us

consider the metric space (Z \ {w}, d̂) given by Lemma 4.5. Then ∠
d̂
(A \ {w}, B \ {w}) ≥ ĉ.

Proof. Fix a ∈ A \ {w}, b ∈ B \ {w} and x ∈ X such that d(a, b) ≥ c(d(a, x) + d(x, b)).

We first observe that it is enough to find a constant C = C(c,∆) and a point x′ ∈ X \ {w}
such that

min{d̂(a, x′), d̂(b, x′)} ≤ Cd̂(a, b) .

In this case, it follows from the triangle inequality that max{d̂(a, x′), d̂(b, x′)} ≤ (C+1)d̂(a, b)
so that

d̂(a, b) ≥
1

2(C + 1)
(d̂(a, x′) + d̂(x′, b)) .

We rely on the notations of Lemma 4.5 and shall use q instead of d̂. Let α ∈ (0, 1) be a
small constant which will only depend on c and ∆. If δ(x) ≥ αδ(a) then

q(a, b) ≥ c
d(b, x)

δ(a)δ(b)
≥ cαq(b, x) ;

similarly if δ(x) ≥ αδ(b).

Let us now assume that δ(x) ≤ αmin{δ(a), δ(b)}. On the hand, the triangle inequality
implies that

d(a, b) ≥ cd(b, x) ≥ c(δ(b)− δ(x)) ≥ c(1− α)δ(b)

holds so that q(a, b) ≥ c(1− α)/δ(a). On the other hand, there is a point x′ ∈ X such that

d(x, x′) ≥
1

2∆
d(x, a) ≥

1

2∆
(1− α)δ(a)

so that

δ(x′) ≥ d(x, x′)− δ(x) ≥

(
1− α

2∆
− α

)
δ(a) .

Choosing α small enough with respect to ∆, we get δ(x′) ≥ (1/4∆)δ(a), so that

q(a, x′) ≤
δ(a) + δ(x′)

δ(a)δ(x′)
≤

1 + 4∆

δ(a)
≤

1 + 4∆

c(1− α)
q(a, b) .

We may now turn to the proof of the main result of the section.

Proof. (Theorem 4.4) We first notice that Theorem 2.3 and Proposition 4.2 imply that

there is a distortion function θ1 such that the maps (X, dΣ)
hX−→ (X, dΣ) and (LK , dΣ)

hK−→
(LhX(K), dΣ), K ∈ P, are θ1-quasi-Möbius.
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Let us pick w ∈ X (⊂ Σ) and apply Lemma 4.5 to (Σ, w) and denote by (Z, d) the resulting
metric space. Let (Z ′, d′) be the metric space obtained from (Σ, h(w)). The theorem follows
if we prove that h : Z → Z ′ is quasisymmetric with a distortion function which only depends
on θ, η and ∆.

Proposition 4.2 implies that hX : (X ∩ Z, d) → (X ∩ Z ′, d′) is η1-quasisymmetric, where
η1 only depends on θ. Similarly, there is some θ2 which only depends on θ such that (LK ∩

Z, d)
hK−→ (LhX(K) ∩ Z

′, d′) is θ2-quasi-Möbius for all K ∈ P.

Now, from Theorem 2.3, we know the existence of ∆1 such that diamΣLK ≤ ∆1diamΣK for
all K ∈ P. Lemma 4.6 implies the same property on Z and Z ′ with another constant ∆2. So

by Corollary 4.3, there is a distortion function η2 such that (LK ∩ Z, d)
hK−→ (LhX(K) ∩ Z

′, d′)
is η2-quasisymmetric for all K ∈ P.

For all K ∈ P, we have (LK ∩ X) = K, and the separating property (2.4) implies that
∠(LK , X) ≥ c0 for some constant which only depends on η and ∆0. Lemma 4.8 provides
us with uniform positive angles in Z and Z ′. Therefore, Proposition 4.7 implies that h :
(LK ∪X) ∩ Z → (h(LK) ∪X) ∩ Z ′ is η3-quasisymmetric for some η3 which only depends on
c0, η1 and η2, so on η and ∆0. Similarly, given K1 6= K2 ∈ P, (LK1

∪X)∩ (LK2
∪X) = X and

∠((LK1
∪ X), (LK2

∪ X)) ≥ c0 so that h|(LK1
∪LK2

∪X)∩Z is η4-quasisymmetric onto its image,
with η4 which only depends on η and ∆0. If we pick a third K3 ∈ P, then we obtain that
h|(LK1

∪LK2
∪LK3

∪X)∩Z is η5-quasisymmetric onto its image, with η5 which only depends on η
and ∆0.

This is enough to conclude that h : Z → Z ′ is η5-quasisymmetric.

5. Quasiconvex subgroups of one-ended hyperbolic groups

Background on hyperbolic groups include [Gro, GdlH, KB].

Let G be a word hyperbolic group. The action of G on its boundary ∂G is that of a
uniform convergence group i.e., the diagonal action on the set of distinct triples is properly
discontinuous and cocompact. When G is one-ended, then its boundary is connected, locally
connected and without (global) cut points.

Given a metric in its gauge G(G), the group G acts as a uniform quasi-Möbius group.
Moreover, there exists a constant m > 0 such that, for any distinct points x1, x2, x3 ∈ ∂G,
there is some g ∈ G such that {g(x1), g(x2), g(x3)} is m-separated. It follows that ∂G is
doubling. and LLC when one-ended, see [Häı1] and the references therein.

5.1. Invariant null-sequences. We establish some general properties in the spirit of [KK,
Thm5] and [Bon2, Prop. 1.4] where the authors dealt with carpets.

Proposition 5.1. Let G be a non-elementary hyperbolic group and P a G-invariant null-
sequence in ∂G, each element containing at least two points. Then

(a) the set P/G is finite;
(b) there exists a distortion function η such that, for any K ∈ P and K ′ ∈ G(K), there

exists g ∈ G such that g|K : K → K ′ is η-quasisymmetric;
(c) for any K ∈ P, the stabilizer GK of K is infinite and acts on K as a uniform conver-

gence group;
(d) the boundary ∂G is doubling and porous relatively to P if the elements of P are con-

nected;
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(e) if the elements of P are pairwise disjoint and connected, then they are uniformly rela-
tively separated i.e., there is a constant s > 0 such that dist(K1, K2) ≥ smin{diamK1, diamK2}
for every distinct pairs K1, K2 ∈ P.

In other words, (c) means that GK is a quasiconvex subgroup of G. These properties may
be essentially established with the conformal elevator principle [Häı1, Prop. 4.6]:

Proposition 5.2. (Conformal elevator principle) Let G be a non-elementary hyperbolic
group and consider its boundary ∂G endowed with a metric from its gauge. Then there exist
definite sizes r0 ≥ δ0 > 0 and a distortion function η such that, for any x ∈ X, and any r ∈
(0, diam ∂G/2], there exists g ∈ G such that g(B(x, r)) ⊃ B(g(x), r0), diamB(g(x), r0) ≥ 2δ0
and g|B(x,r) is η-quasisymmetric.

We draw the following consequence of the conformal elevator principle. Let ε ∈ (0, 1), and
let us consider y ∈ B(x, r) such that d(g(x), g(y)) ≥ δ0, and let z /∈ B(x, εr). Then either
z /∈ B(x, r) so that d(g(x), g(z)) > r0, or

d(g(x), g(z)) ≥
1

η(1/ε)
d(g(x), g(y))

so that we have

(5.1) g(B(x, εr)) ⊃ B(g(x), δ0/η(1/ε))

Proof. (Prop. 5.1) Let us fix a metric in G(G) and let m > 0 be such that any distinct triple
of ∂G can be m-separated by an element of G. Given δ > 0, we let Pδ denote the subset
of elements K of P such that diamK ≥ δ; this set is finite since P is a null-sequence and
non-empty for small enough δ.

For all K ∈ P, we can find two points x1, x2 ∈ K and a group element g ∈ G such that
{g(x1), g(x2)} is m-separated: this implies that g(K) ∈ Pm, so that P is composed of finitely
many orbits and (a) holds.

Let r0 and δ0 be the constants arising from the conformal elevator principle. To prove
(b), we notice that since Pδ0 is finite and that quasi-Möbius mappings between compact sets
are quasisymmetric, it is enough to prove that any K ∈ P can be mapped by a uniform
quasisymmetric map to an element of Pδ0 . But this is exactly what the conformal elevator
principle does.

Let us fix K ∈ P and let us first assume that K contains at least three points. Let us
enumerate Pm ∩ G(K) = {K1, . . . , KN}. For each j ∈ {1, . . . , N}, one can find gj ∈ G such
that gj(Kj) = K. Since Pm∩G(K) is finite and {g−1

j , j = 1, . . . , N} are uniformly continuous,
there is some m′ ∈ (0, m] such that, for all j ∈ {1, . . . , N} and all x, y ∈ Kj with d(x, y) ≥ m,
one has d(gj(x), gj(y)) ≥ m′. Since GK is a subgroup of G, its action on the set of distinct
triples of K is automatically properly discontinuous. Let us prove that it is also cocompact.
Let x1, x2, x3 ∈ K and consider g ∈ G such that {g(x1), g(x2), g(x3)} ism-separated. It follows
that g(K) = Kj for some j, hence (gj ◦ g) ∈ GK and {(gj ◦ g)(x1), (gj ◦ g)(x2), (gj ◦ g)(x3)} is
m′-separated.

If K has only two points x, y, then it suffices to prove that its stabilizer is infinite: this will
imply it is two-ended, hence is quasiconvex in G. Pick a sequence (xn) accumulating x. As
above, we may find infinitely many gn ∈ G such that gn{x, xn, y} are m-separated; the same
argument as above proves that GK is infinite. This proves (c).
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Let us prove that ∂G is relatively doubling. Pick x ∈ ∂G and r ∈ (0, diamG/2] and let us
apply Proposition 5.2: there exists g ∈ G such that g(B(x, r)) ⊃ B(g(x), r0) and g|B(x,r) is
η-quasisymmetric.

Since the restriction of g is η-quasisymmetric, it follows from Lemma 2.2 that, for each
boundary component K which intersects B(x, r),

2η

(
diamB(x, r)

diam (B(x, r) ∩K)

)
≥

diam g(B(x, r))

diam g(B(x, r) ∩K)
.

So if we assume that diam (B(x, r) ∩ K) ≥ εr, then diam g(B(x, r) ∩ K) ≥ δ0/η(2/ε). But
since P is a null-sequence, there are only finitely many such boundary components.

We now assume that the elements of P are connected.

The proof that ∂G is relatively porous is similar: we apply the conformal elevator principle
as above. It follows from (5.1) that g(B(x, r/2)) ⊃ B(g(x), r0/η(2)). But since the action of
G is minimal on ∂G which is compact, there exists a constant δ1 > 0 such that, for y ∈ ∂G,
there exists Ky ∈ P with the property that Ky ∩ B(y, r0/η(2)) 6= ∅ and diamKy ≥ δ1. Let
K ′

g(x) be a connected component of Kg(x) ∩ g(B(x, r)) which intersects B(g(x), r0/η(2)); it

follows from above that diamK ′
g(x) ≥ cr0 for some universal constant c > 0. By construction,

K ′ = g−1(K ′
g(x)) is a subset of an element of P which intersects B(x, r/2); moreover, Lemma

2.2 implies that

diamK ′ ≥ (1/2η(2/c))r .

We now turn to the proof of (e). Let K1 and K2 be two distinct boundary components such
that diamK1 ≤ diamK2. Since P is a null-sequence, we may assume that diamK1 ≤ r0, and
that dist(K1, K2) ≤ diamK1/2. Let x ∈ K1 and y ∈ K2 be such that d(x, y) = dist(K1, K2)
and set r = diamK1. Let K ′

2 be the component of K2 ∩ B(x, r) which contains y so that
diamK ′

2 ≥ r/2 and dist(K1, K
′
2) = dist(K1, K2) = d(x, y). Apply the conformal elevator

principle to B(x, r). It follows that diam g(K1) ≥ r0 and, from Lemma 2.2, we may deduce
that

diam g(K2) ≥ diam g(K ′
2) ≥

r0
2η(2)

.

Since P is a null-sequence and the components are pairwise disjoint, there is a constant s0 > 0
independent from K1 and K2 such that

d(g(x), g(y)) ≥ dist(g(K1), g(K
′
2)) ≥ dist(g(K1), g(K2)) ≥ s0r0 .

Hence, applying a last time Lemma 2.2 yields

d(x, y) ≥
r

2η−1(s0)
≥

diamK1

2η−1(s0)

and so

dist(K1, K2) ≥
1

2η−1(s0)
min{diamK1, diamK2} .

5.2. The extension property. We give a criterion which enables to extend an action to a
larger space. A convergence group action is an action of a group on a metrizable compactum
X such that its diagonal action on the set of distinct triples of X is properly discontinuous.
The limit set is by definition the unique minimal closed invariant subset of X .
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Definition 5.3 (Extension property). Let X be a metrizable continuum and Y ⊂ X be a
compact subset. We say that the pair (Y,X) has the extension property if any convergence
action of a group on Y is the restriction of a convergence action on X by the same group. If
X is supplied with a metric, we say that the pair (Y,X) has the conformal extension property
if any action of a group which acts by uniform quasi-Möbius homeomorphisms on Y can be
extended to an action on X by uniform quasi-Möbius homeomorphisms.

Remark 5.4. A discrete group G of uniformly quasi-Möbius self-homeomorphisms of a com-
pact metric space Z has the convergence property.

These extension properties are motivated by the following result due to Casson and Jungreis
[CJ], Gabai [Gab], Hinkkanen [Hin1, Hin2] and Markovic [Mak1].

Theorem 5.5. (a) Any faithful convergence action of a group on the unit circle is conjugate
to an action of a Fuchsian group.

(b) Any uniformly quasi-Möbius group of homeomorphisms on the unit circle is quasisym-
metrically conjugate to a group of Möbius transformations.

So we may conclude that the extension property is not void.

Corollary 5.6. The pair (S1,D) has both the extension and conformal extension properties.

Proof. The extension property is a direct consequence of Theorem 5.5 (a): if G is a con-
vergence group of S1, there is a homeomorphism h : S1 → S

1 such that G′ = hGh−1 is a
group of Möbius transformations. Therefore, this group G′ acts canonically on D by Möbius
transformations as well. Let H : D → D be a homeomorphism which extends h. The group
H−1G′H extends the action of G faithfully.

If G is a group of uniform quasi-Möbius homeomorphisms. By Theorem 5.5 (b), there exists
a quasisymmetric homeomorphism h : S1 → S

1 such that G′ = hGh−1 is a group of Möbius
transformations. Let H : D → D be a quasiconformal map which extends h [Ahl]. The group
H−1G′H is a uniform group of quasi-Möbius maps which extends the action of G faithfully.

Theorem 5.7. Let G be a group acting on a metrizable continuum X as a convergence group
action. Let K0 ⊂ X be a subcontinuum such that G(K0) defines an admissible sequence. We
also assume that there exists an embedding ψ : K0 → L, where L is a metrizable continuum
such that (ψ(K0), L) has the extension property. For each K ∈ G(K0), let gK ∈ G map K0

to K, and let us consider the space Σ obtained by Proposition 2.1 with gluing maps (ψ ◦ g−1
K ).

Then we may extend the action of G on X to Σ as a convergence group action with same limit
set.

Proof. Set K ′ = ψ(K0), let ϕ0 : K
′ → K0 denote its inverse and let ϕK = gK ◦ϕ0 : K

′ → K
and ψK = ϕ−1

K . For each K, we set LK = L and we let Σ be the metric space obtained from
Proposition 2.1.

Denote by H the set of self-homeomorphisms of K ′ of the form ϕ−1
g(K) ◦ g ◦ ϕK , among all

K ∈ G(K0) and g ∈ G. Given h1 and h2 in H , we let g1, g2 ∈ G and K1, K2 ∈ G(K0) be such
that hj = ϕ−1

gj(Kj)
◦ gj ◦ ϕKj

. Then

h1 ◦ h2 = ϕ−1
g1(K1)

◦ g1 ◦ ϕK1
◦ ϕ−1

g2(K2)
◦ g2 ◦ ϕK2

= ϕ−1
g1(K1)

◦ g1 ◦ (gK1
◦ ϕ0) ◦ (ϕ

−1
0 ◦ g−1

g2(K2)
) ◦ g2 ◦ ϕK2

= ϕ−1
g1(K1)

◦ (g1 ◦ gK1
◦ g−1

g2(K2)
◦ g2) ◦ ϕK2

.
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We may check that (g1 ◦ gK1
◦ g−1

g2(K2)
◦ g2)(K2) = g1(K1) so that h1 ◦ h2 ∈ H and H is a group

of homeomorphisms. Note that H is isomorphic to the stabilizer of K0: if h = ϕ−1
g(K) ◦ g ◦ ϕK ,

then we may write

h = ϕ−1
0 ◦ (g−1

g(K) ◦ g ◦ gK) ◦ ϕ0

and

(g−1
g(K) ◦ g ◦ gK)(K0) = (g−1

g(K) ◦ g)(K) = g−1
g(K)(g(K)) = K0 .

Therefore, H is a convergence group on K ′.

By the extension property, H acts on L as a convergence group as well.

We now define an action of G on Σ. Let g ∈ G. Fix K ∈ G(K0), and let h = ϕ−1
g(K) ◦g ◦ϕK :

K ′ → K ′ and ĥ : LK → Lg(K) be its extension. By construction, g|K = (ψ−1
g(K) ◦ ĥ ◦ ψK)|K so

that Lemma 4.1 implies that these maps patch up into a homeomorphism ĝ : Σ → Σ.

Let ĝj ∈ G, j = 1, 2. On X , we find g1, g2 such that ĝj = gj so that (ĝ1 ◦ ĝ2)|X = (g1 ◦ g2)|X .
Set g = g1 ◦ g2 and ĝ its extension to Σ. We have to prove that ĝ1 ◦ ĝ2 = ĝ.

Fix K ∈ G(K0), and let us prove that (ĝ1 ◦ ĝ2)|LK
= ĝ|LK

.

We let (h1, ĥ1), (h2, ĥ2) and (h, ĥ) be associated to (g2, K), (g1, g2(K)), and (g,K). On K ′,
we have

h1 ◦ h2 = (ϕ−1
g1(g2(K)) ◦ g1 ◦ ϕg2(K)) ◦ (ϕ

−1
g2(K) ◦ g2 ◦ ϕK)

= ϕ−1
(g1◦g2)(K) ◦ (g1 ◦ g2) ◦ ϕK

= ϕ−1
g(K) ◦ g ◦ ϕK = h .

Hence, the extension property implies that ĥ1 ◦ ĥ2 = ĥ.

It follows that the extended maps define an action of G on Σ. Since (G(K0)) is admissible,
the limit set Λ of this action coincides with the embedded copy of X . This embedding is
equivariant by construction.

We now apply this construction to hyperbolic groups.

Let G be a one-ended hyperbolic group, and let us supply ∂G with a metric from its gauge.
We assume that there exists a continuum K0 ⊂ ∂G such that G(K0) forms an admissible
sequence of subcontinua of ∂G. We also assume that there exists a quasisymmetric embedding
ψ : K0 → L, where L is a metric continuum such that (ψ(K0), L) has the conformal extension
property.

Theorem 5.8. There exist gluing functions of L along G(K0) so that the compact metric space
Σ constructed by Theorem 2.3 can be endowed with an action of G by uniformly quasi-Möbius
maps such that there is an equivariant bi-Lipschitz homeomorphism ϕ : ∂G→ Λ where Λ ⊂ Σ
is the limit set of the action of G.

Proof. According to Proposition 5.1 (b), there exists η such that, for any K ∈ G(K0), there
is some gK : K0 → K which is η-quasisymmetric. We use the same notation as above and
note that diamLK ≤ ∆0diamψK(K) with ∆0 = diamL/diamK ′, and that ϕK and ψK are
uniformly quasisymmetric. We let Σ be the metric space obtained from Proposition 2.1 and
Theorem 2.3. The embedding of ∂G in Σ is bi-Lipschitz by Theorem 2.3.

Since G is uniformly quasi-Möbius and the ϕK ’s are uniformly quasisymmetric, the group
H defined as in Theorem 5.7 is also a uniform quasi-Möbius group. According to Theorem
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5.7, the group G acts as a convergence group on Σ with limit set ∂G. Theorem 4.4 implies
that this action is also uniformly quasi-Möbius.

This embedding is bi-Lipschitz by Theorem 2.3 and equivariant by construction.

6. Hyperbolic groups with planar boundaries

6.1. Hyperbolizable manifolds. We quickly review definitions and properties of Haken 3-
manifolds and of convex-cocompact Kleinian groups. Basic references include [Thu, Mor, Mad].
The following exposition is much inspired by [And].

A Kleinian group is a discrete subgroup of PSL2(C) which we view as acting both on

hyperbolic 3-space H3 via orientation-preserving isometries and on the Riemann sphere Ĉ via
Möbius transformations.

The action of a Kleinian group G partitions Ĉ into the domain of discontinuity ΩG, which

is the largest set of Ĉ on which G acts discontinuously, and the limit set ΛG, which is the

minimal G-invariant compact subset of Ĉ.

When G is torsion-free, we may associate a 3-manifold MG = (H3 ∪ ΩG)/G, canonically
endowed with a complete hyperbolic structure in its interior, which is called the Kleinian
manifold. We say that G is convex-cocompact if MG is compact. Conversely, a compact 3-
manifold M is hyperbolizable if there exists a discrete subgroup of isometries G such thatM is
homeomorphic toMG (this whole presentation rules out tori in ∂M since they are not relevant
to the present work). We say that M is uniformized by G. Note that G is isomorphic to the
fundamental group of M , and that it is necessarily word-hyperbolic. Moreover, the boundary
∂M is a union of finitely many hyperbolic compact surfaces. When M is orientable, then G
is a convex-cocompact Kleinian group.

Let M be a compact hyperbolizable 3-manifold with boundary. A surface S is properly
embedded in M if S is compact and orientable and if either S ∩ ∂M = ∂S or S is contained in
∂M . A properly embedded surface S is incompressible if S is not homeomorphic to the 2-sphere
and if the inclusion i : S →M gives rise to an injective morphism i∗ : π1(S, x) → π1(M,x). A
Haken manifold is a manifold which contains an incompressible surface. In our situation, as
∂M 6= ∅, M is always Haken.

We say that M has incompressible boundary if each component of ∂M is incompressible.
This is equivalent to the connectedness of the limit set of the group uniformizing M .

A surface S inM is non-peripheral if it is properly embedded and if the inclusion i : S →M
is not homotopic to a map f : S → M such that f(S) ⊂ ∂M . A surface S is essential if it
is properly embedded, incompressible and non-peripheral. An acylindrical compact manifold
has incompressible boundary and no essential annuli: the limit set of any uniformizing group
is homeomorphic to the Sierpiński carpet.

A compact pared manifold (M,P ) is given by a 3-manifold M as above together with a
finite collection of pairwise disjoint incompressible annuli P ⊂ ∂M such that any cylinder in
C ⊂ M with boundaries in P can be homotoped relatively to its boundary into P . We say the
paring is acylindrical if ∂M \ P is incompressible and every incompressible cylinder disjoint
from P and with boundary curves in ∂M can be homotoped into ∂M \ P relatively to ∂M .

If M has compressible boundary, it can be cut along compression disks into finitely many
pieces each of which has incompressible boundary. Given a compact hyperbolizable manifold
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M with incompressible boundary, we may cut it into finitely many pieces along essential annuli
so that the remaining pieces are acylindrical pared manifolds.

We will use the following form of Thurston’s uniformization theorem for Haken manifolds:

Theorem 6.1. Let M be a compact irreducible Haken 3-manifold with word hyperbolic fun-
damental group. Then M is hyperbolizable.

If the orientable case is usually stated, see for instance [Thu, Thm 2.3] and [Mor, Thm A’],
this is not the case for non-orientable manifolds. It can be deduced from the uniformization
of orientable manifolds: taking the orientable double cover, we obtain a representation of
its fundamental group as a group generated by a convex-cocompact Kleinian group and an
orientation-reversing quasiconformal involution: this group is thus uniformly quasiconformal,
hence conjugate to a group of Möbius transformations according to Sullivan’s straightening
theorem [Sul2].

In particular, one obtains the following [McM2, Cor. 4.9]

Corollary 6.2. A compact 3-manifold M is homeomorphic to the Kleinian manifold of a

convex-cocompact Kleinian group G with ΛG 6= Ĉ if and only if M is irreducible, orientable
with non-empty boundary and its fundamental group contains no subgroup isomorphic to Z⊕Z.

6.2. Planar action of word hyperbolic groups. For the proof of Theorem 1.7, we need
some properties on the boundaries of hyperbolic groups. Some may be established just using
the planarity. Others seem more specific to planar actions.

We start with a lemma which describes the topology of the boundary of a one-ended hy-
perbolic group provided it is planar.

Proposition 6.3. Let G be a one-ended hyperbolic group with a planar boundary. Then
either ∂G is homeomorphic to the sphere or ∂G is a degenerate carpet. In the latter case, any
embedding defines an admissible collection of boundary components.

Proof. If ∂G is not a sphere, then it is one-dimensional. But the boundary of a one-ended
group has no global cut point and is locally connected. Therefore, Lemma 3.4 implies that it
is a degenerate carpet.

Let us fix an embedding ϕ : ∂G→ S2 and define P to be the collection of boundaries of the
components of S2 \ϕ(∂G). Since ∂G is locally connected, it follows from [Why2, Thm.VI.4.4]
that P is an admissible null-sequence.

We may now establish some stronger assumptions when G admits a planar action.

Proposition 6.4. Let G be a one-ended hyperbolic group with a planar action. Then

(1) the boundary components form an invariant null-sequence;
(2) every boundary component K is a uniform quasicircle and GK is virtually a cocompact

Fuchsian group.

Proof. (Prop. 6.4) Let ϕ : ∂G → S2 be the topological embedding such that G leaves
invariant the set P of boundary components of S2 \ ϕ(∂G). We know from Proposition 6.3
that P is a null-sequence; it is invariant by definition.

Proposition 6.3 also implies that each boundary component is a Jordan curve. By Propo-
sition 5.1, for any K ∈ P, GK is a uniform convergence group on K. We may then conclude



HYPERBOLIC GROUPS WITH PLANAR BOUNDARIES 27

from [Gab, CJ] that GK is virtually a cocompact Fuchsian group and K is a quasicircle. Since
G acts by uniform quasi-Möbius maps and there are only finitely many orbits of boundary
components, we conclude that P is formed of uniform quasicircles.

We may now prove Theorem 1.7.

Proof. (Theorem 1.7) Let ϕ : ∂G → S2 be the topological embedding such that G leaves
invariant the set P of boundary components of S2\ϕ(∂G). By Proposition 6.4, each peripheral
circle is uniformly quasisymmetric equivalent to the unit circle.

Note that ∂G is LLC, relatively doubling and porous with respect to its boundary compo-
nents. Therefore, Corollary 3.5 applies, so ∂G can be quasisymmetrically embedded in the
sphere.

Since (S1,D) has the extension property according to Corollary 5.6, Theorem 5.8 enables
us to extend the action of G to the whole sphere as a group of uniform quasi-Möbius trans-
formations. By Sullivan’s straightening theorem [Sul2], this action is conjugate to a group of
Möbius transformations. The action being properly discontinuous on the complement of ∂G,
the group is discrete.

If G does not act faithfully on ∂G, then there is a normal finite subgroup F such that G/F
is isomorphic to a discrete subgroup of isometries of H3. In order to conclude, we use material
developed in §§ 6.4.2 and 6.5. According to Lemma 6.16 below and [Ago, Lemma 2.8], the
group G is virtually special, hence virtually torsion-free by Corollary 6.20.

Therefore, G has a torsion-free finite index subgroup which is isomorphic to a convex-
cocompact Kleinian group.

Remark 6.5. In the case of carpets, one could construct the Kleinian group differently. From
[Bon2, Thm 1.1], we know that ∂G is quasisymmetric equivalent to a round carpet Λ (with

all boundary components a round circle) of measure 0 (since the carpet is porous in Ĉ), and
G acts by quasisymmetric homeomorphisms. Therefore, [BKM, Thm 1.1] implies that each
element of G acting on Λ is actually the restriction of a Möbius transformation.

Proof. (Remark 1.11) There are several approaches to see whether G is quasi-isometric to a
convex subset of H3 with geodesic boundary or not. The first is based on hyperbolic geometry.
If G is quasi-isometric to a convex subset with geodesic boundary, then it is virtually the
fundamental group of a compact hyperbolic manifold with geodesic boundary. It follows that
this manifold is acylindrical so the limit set is homeomorphic to the Sierpiński carpet, see e.g.
[McM2]. The converse is one of the main steps of Thurston’s hyperbolization theorem, see
[McM1].

Another route goes as follows. When ∂G is a carpet, peripheral circles are disjoint uniform
quasicircles so they are also uniformly separated by Proposition 5.1. Hence, [Bon2, Thm
1.1] implies that ∂G is quasisymmetric equivalent to a round carpet Λ (with all boundary
component a round circle). It now follows from [BS] that G is quasi-isometric to a convex
subset of H3 with geodesic boundary.

When ∂G is not a carpet, then ∂G admits local cut points [KK, Thm4]. Either it is
homeomorphic to a circle so that G is virtually a cocompact Fuchsian group. Or the local cut
points are structured in equivalence classes as described by Bowditch [Bow1], see also below.
Note that local cut points have to belong to boundary components: if x ∈ ∂G does not belong
to any boundary component, [Why2, VI.4.5] asserts that we can find a nested sequence of



28 PETER HAÏSSINSKY

Jordan curves contained in ∂G enclosing x in any neighborhood of x. This prevents x to
be a local cut point. These cut points are associated to two-ended hyperbolic groups: every
component of the complement which contains one of the fixed points has to contain the other
one: therefore, there are components which intersect in at least two different points, preventing
them to be mapped simultaneaously to round disks.

We may now prove Corollary 1.12.

Proof. (Corollary 1.12) If ΛG is connected, then Theorem 1.7 and its proof imply that G is
isomorphic to a convex-cocompact Kleinian group with conjugate actions by a homeomorphism
which extend to the whole sphere. Moreover, according to [MT, Cor. 4.5], the action of each
stabilizer of each component is essentially unique, so we may build a conjugacy using similar
considerations as in the proof of Theorem 5.7.

Let us assume that ΛG is not connected, and let us write ΩG = S2 \ ΛG. We apply the
decomposition techniques from [AM], see also [MS]. Let p : ΩG → ΩG/G be the covering
and N be the normal subgroup defining the covering; we consider a finite set of simple,
disjoint loops M = {u1, . . . , un} on ΩG/G such that there exist (minimal) positive integers
a1, . . . , an so that the normal subgroup NM generated by ua11 , . . . , u

an
n is a subgroup of N . Let

Γ = p−1({u1, . . . , un}): this is a countable set of pairwise disjoint homotopically non-trivial
simple loops in ΩG.

We construct a tree T as follows. Let the set of vertices be the connected components of
S2 \ ∪γ∈Γγ and put an edge between two such components if they share a curve of Γ on their
boundary. Let us observe that Γ is a null-sequence since Γ/G is finite and the curves live in
the set of discontinuity of G. Since each curve is a Jordan curve which separates S2, it follows
that T is simply connected and that the ends of T correspond to a nested sequence of disks
so that T is connected. This implies that T is a tree.

By construction, G acts simplicially on T and T/G is finite since Γ/G is finite. Moreover,
an edge stabilizer corresponds to the stabilizer of a curve γ ∈ Γ; since γ ⊂ ΩG and G is
torsion-free, each edge stabilizer is trivial and there are no edge inversions. It follows that this
action yields a decomposition of G as a free product. SInce G is hyperbolic, it is accessible so
the number n of edges in T/G is bounded. But, according to [Mas, Lemma 5], if NM 6= N ,
then we can find un+1 disjoint from M and an+1 with u

an+1

n+1 ∈ N , so may repeat the above
construction with M ∪ {un+1}. The accessibility of G implies that this process has to stop,
meaning that we end up with a multicurve M such that NM = N .

This implies in particular that ΩG/G is a finite union of compact surfaces. Let T ′
0 ⊂ T/Γ be

a maximal tree and let us consider a connected lift T0 ⊂ T so that each vertex is represented
in T exactly once; the stabilizers of vertices of T0 are quasiconvex subgroups according to
[Bow1, Prop. 1.2]. Moreover, they are either trivial or one-ended for otherwise Γ/G would not
generate N .

Let v ∈ T0; if its stabilizer Gv is trivial, we may associate a 3-ball Mv; otherwise Gv is
a one-ended torsion-free planar group hence it is conjugate to a discrete group of Möbius
transformations by Theorem 1.7, and so Gv is isomorphic to the fundamental group of a
hyperbolic manifold Mv. Each edge orbit attached to v corresponds to a simple closed curve
on ∂Mv which bounds a disk. The graph T/G tells us how to build a manifold M by gluing
the different Mv’s along the disks bounded by the curves above [SW]. We obtain in this way
a Haken manifold which satisfies the assumptions of Theorem 6.1. Therefore, G is isomorphic
to a discrete subgroup H of isometries of H3.
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By the construction of M , the isomorphism between G and H yields an equivariant home-

omorphism between ΩG and ΩH , so we may find a function f : S2 → Ĉ such that (a)
f ◦ G = H ◦ f , (b) f |ΛG

: ΛG → ΛH and f |ΩG
: ΩG → ΩH are homeomorphisms. There-

fore, [Bow2, Prop. 5.5] implies that this conjugacy is a global homeomorphism.

6.3. The JSJ decomposition. We first summarize briefly the JSJ-decomposition of a non-
Fuchsian one–ended hyperbolic group G following Bowditch [Bow1]. Then we will focus on
specific decompositions for groups with planar boundary.

6.3.1. General properties. There exists a canonical simplicial minimal action of G on a sim-
plicial tree T = (V,E) without edge inversions such that T/G is a finite graph and which
enjoys the following properties, cf. [Bow1, Thm5.28, Prop. 5.29]. If v is a vertex (resp. e an
edge), we will denote by Gv (resp. Ge) its stablizer, and by Λv (resp. Λe) the limit set of Gv

(resp. Ge). Let Ev denote the set of edges incident to v ∈ T . Every vertex and edge group is
quasiconvex in G. Each edge group Ge is two-ended and ∂G \ Λe is not connected. A vertex
v of T belongs to exactly one of the following three exclusive types.

Type I (elementary).— The vertex has bounded valence in T . Its stabilizer Gv is
two-ended, and the connected components of ∂G \ Λv are in bijection with the edges
incident to v.
Type II (surface).— The limit set Λv is cyclically separating and the stabilizer Gv

of such a vertex v is a non-elementary virtually free group canonically isomorphic
to a convex-cocompact Fuchsian group. The incident edges are in bijection with the
peripheral subgroups of that Fuchsian group.
Type III (rigid).— Such a vertex v does not belong to a class above. Its stabilizer
Gv is a non-elementary quasiconvex subgroup. Every local cut point of ∂G in Λv is in
the limit set of an edge stabilizer incident to v; see Lemma 6.6 for more properties of
rigid type vertices.

No two vertices of the same type are adjacent, nor surface type and rigid can be adjacent
either. The action of G preserves the types. Therefore, the edges incident to a vertex v of
surface type or rigid type are split into finitely many Gv-orbits.

Let v be a vertex of T of rigid type; if e ∈ Ev is incident to v, let Cv(e) denote the connected
component of ∂G \Λe which contains Λv and set Ze = ∂G \Cv(e): this is a connected, locally
connected, compact set by construction. Let us define the following equivalence relation ∼v

on ∂G. Say x ∼v y if x = y or if there exists an edge e ∈ Ev incident to v such that {x, y} is a
subset of Ze. Let Qv = ∂G/ ∼v be endowed with the quotient topology and let pv : ∂G → Qv

be the canonical projection. Note that preimages of points are either points or one of the Ze’s,
so they are always connected and the map pv is monotone.

Lemma 6.6. If v is of rigid type, then the space Qv is a Hausdorff, compact, connected and
locally connected space. Moreover, no pair of points can disconnect Qv and the local cut points
of Qv correspond to the non-trivial classes of ∼v which disconnect locally Qv in exactly two
components. The group Gv acts on Qv as a geometrically finite group and there are finitely
many orbits of parabolic points.

Following Bowditch [Bow3], we say that a subgroup H < Gv is parabolic if it is infinite, fixes
some point of Qv, and contains no loxodromics. In this case, the fixed point of H is unique.
We refer to it as a parabolic point. The stabilizer of a parabolic point is necessarily a parabolic
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group. There is thus a natural bijective correspondence between parabolic points in Qv and
maximal parabolic subgroups of Gv. We say that a parabolic group, H , with fixed point p, is
bounded if the quotient (Qv \ {p})/H is compact. (It is necessarily Hausdorff.) We say that p
is a bounded parabolic point if its stabilizer is bounded. A conical limit point is a point y ∈ Qv

such that there exists a sequence (gj)j≥0 in Gv, and distinct points a, b ∈ Qv, such that gj(y)
tends to a and gj(x) tends to b for all x ∈ Qv \ {y}. We finally say that the action of Gv on
Qv is geometrically finite if every point is either conical or bounded parabolic (they cannot be
both simultaneously).

Proof. Since ∂G is locally connected, it follows that {Ze}e∈Ev
is a null-sequence, so ∼v defines

an upper semicontinuous decomposition of ∂G and Qv is Hausdorff (see also [Car, Cor. 6.16]).
It follows thatQv is connected, locally connected and compact as the image under a continuous
map of a Hausdorff, connected, locally connected and compact set into a Hausdorff space. See
[Why2, Chapter VII, § 2,3] for details.

Cut points and local cut points of Qv yield (local) cut points of ∂G by pull-backs under pv.
Let x ∈ Qv; if x = pv(Ze), then it does not disconnect Qv since Ze does not (∂G\Ze = Cv(e));
otherwise, since v is of rigid type, it follows that p−1

v (x) is not a local point, so neither is x.
We also conclude that the only possible local points correspond to the non-trivial classes.

Fix an incident edge e. By construction, ∂G \ Ze has exactly two ends, each accumulating
one single point of Λe. Hence, we may consider two disjoint connected neiborhoods N1 and N2

of Λe in (∂G \Ze)∪Λe; if there are small enough then pv(N1) and pv(N2) cover a neigborhood
of pv(Λe) and they intersect exactly at that point. This implies that it is a local cut point
with two ends.

The action of Gv permutes the fibers of pv, hence Gv acts on Qv. Since the action of Gv is
a convergence action and is minimal on Λv it is also the case on Qv.

If e ∈ Ev is an incident edge, then (Λv \Λe)/Ge is compact by [Bow2], so (Qv \pv(Λe))/Ge =
pv(Λv \ pv(Λe))/Ge is compact as well. Thus, pv(Λe) is a bounded parabolic point.

Note that the action on Λv is uniform so every point is conical [Bow2]. Thus, if y ∈ Λv, we
may find a sequence (gj)j≥0 in Gv, and distinct points a, b ∈ Λv, such that gj(y) tends to a
and gj(x) tends to b for all x ∈ Λv \ {y}. To conclude that pv(y) is also conical, it suffices to
make sure that we may choose a and b not simultaneously in some Λe. Let us assume that y
is in no limit set of an incident edge and that there is indeed some incident edge e such that
Λe = {a, b}. Pick a compact fundamental domain K of (Λv \ Λe)/Ge. Then for any j, we
may find hj ∈ Ge such that hjgj(y) ∈ K. Then it follows that, extracting a subsequence if
necessary, (hjgj(x))j tends to b for all x ∈ Λv but (hjgj(y))n remains far from Λe. Therefore
pv(y) is conical as well.

This proves that the action of Gv on Qv is geometrically finite. Since there are only finitely
many Gv-orbit of incident edges to v in T , there are only finitely many parabolic orbits in Qv.

Let us prove that no pair of points separates Qv by contradiction. Following Bowditch
[Bow1, § 3], say two points x and y in Qv are equivalent, x ∼ y, if x = y or Qv \ {x, y} is
disconnected. Since every local cut point disconnects Qv locally into two components, this
defines an equivalence relation on Qv according to [Bow1, Lma 3.1]. Moreover, [Bow1, Lma 3.7]
implies that each class is closed. So, let us assume that x ∈ Qv belongs to a non-trivial class
and let y ∼ x, y 6= x. Since x is necessarily a local cut, it is also a parabolic point. Therefore,
one can find a sequence (gn) stabilizing x such that gn(y) tends to x. It follows that no point
is isolated in a non-trivial class. Therefore, each non-trivial class is a perfect compact subset
of local cut points of Qv. But such a set is always uncountable, contradicting that there are
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at most countably many parabolic points. Hence each class is trivial and no pair of points can
separate Qv.

6.3.2. Planar action of stabilizers of vertices of rigid type. In this paragraph, we assume that
G is a one-ended hyperbolic group with planar boundary. The goal is to analyze vertices of
rigid type and interpret the incident edges as an acylindrical paring for the Kleinian manifold
when this vertex stabilizer is isomorphic to the fundamental group of a compact 3-manifold
with boundary.

We assume that we are given an embedding ϕ : ∂G → S2, and we write ΛG = ϕ(∂G). We
will identify in the sequel subsets of ∂G with subsets of ΛG via the map ϕ.

Proposition 6.7. Let G be a one-ended hyperbolic group with planar boundary. Let v be
a vertex of rigid type in its JSJ decomposition. Then the action of Gv on Λv extends to a
convergence action of S2 with limit set Λv.

The proof of this proposition will require several steps, which we outline right now. We
will first prove that we may find a degree 1 map of S2 transforming Λv onto a homeomorphic
copy of Qv; this will enable us to prove that Qv is a degenerate carpet and that Gv acts as
a geometrically finite convergence group. This action is planar and can be extended to a
convergence action on S2 with limit set the copy of Qv. We may then lift this action to an
action of S2 with limit set Λv.

Lemma 6.8. There exists a pseudoisotopy (ψt)t∈[0,1] of the sphere such that, writing ψ = ψ1,
ψ(Λv) is homeomorphic to Qv and such that fibers are points except at non-trivial classes of

∼v where fibers are closed arcs. Moreover, Λ̂v is connected and locally connected, where Λ̂v

denotes the inverse image of ψ(Λv) under ψ.

A pseudoisotopy is a continuous map ψ : [0, 1]× S2 → S2 where, for all t ∈ [0, 1), ψt : x 7→
ψ(t, x) is a homeomorphism of S2 and ψ0 is the identity.

Proof. Let e ∈ Ev be an edge incident to v. Since Λe disconnects Ze from Λv, we may find
an arc ce ⊂ Ze joining Λe.

Proceeding as above for all edges incident to v, we obtain a family of arcs {ce}e∈Ev
. Since the

sets Ze are disjoint, these curves are pairwise disjoint. We wish to prove that the partition G
of the sphere into these arcs and single points is upper semicontinuous, cf. [Why2, Chap.VII].
Since the non-trivial elements of this collection form a countable set, it is enough to prove
that they form a null-sequence. This follows from the local connectivity of ∂G since it implies
that (Ze)e∈Ev

forms a null-sequence.

Since the elements of G are connected compact non-separating subsets of S2, Moore’s The-
orem [Dav, Theorem 25.1] implies that the quotient S2/G is homeomorphic to the sphere.
Note that G and ∼v agree on Λv so that both quotients are homeomorphic (to Qv). By [Dav,
Theorems 13.4, 25.1], the decomposition G of S2 has the property of being strongly shrinkable:
there is a pseudoisotopy ψt : S

2 → S2, t ∈ [0, 1] such that the fibers of ψ agree with G.

The set Λ̂v is clearly connected since ψ is monotone. It remains to prove it is also locally

connected. Let x ∈ Λ̂v and let us consider a nested family of connected neighborhoods (Vn)
of ψ(x) with ∩Vn = {ψ(x)}. It follows that ψ−1(Vn) is also a sequence of nested connected

neighborhoods of x and that ∩ψ−1(Vn) = ψ−1({ψ(x)}). Therefore, we already know that Λ̂v

is locally connected at points which are fibers of ψ. If x belongs to the interior of some arc ce,

then we may also construct a basis of connected neighborhoods as the arc is isolated in Λ̂v. If
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x ∈ Λe, then ψ
−1(Vn)\ ce has two connected components, one of them —Wn— containing x in

its closure. We may then add to Wn a small subarc of ce to obtain a connected neighborhood

W ′
n in Λ̂v of x so that ∩W ′

n = {x}.

From now on, we let Qv = ψ(Λv).

Lemma 6.9. The set Qv is a degenerate carpet such that, for any connected component Ω of
S2 \Qv, Qv \ ∂Ω is connected.

Proof. Note that Λv is one-dimensional (otherwise we would have Gv = G), hence Qv as
well. By Lemma 6.6 and Lemma 3.4, Qv is a degenerate carpet.

Let Ω be a component of S2 \ Qv, and let us prove that Qv \ Ω is connected: let Q1 and
Q2 be a partition of Qv \ Ω into two open disjoint sets. Let V be a connected component of
S2 \ (Qv ∪ Ω).

Note that ∂V can intersect ∂Ω at most at a single point, otherwise we would be able to
disconnect Qv by removing two points, contradicting Lemma 6.6. Therefore ∂V ∩ (Qv \ ∂Ω)
is connected: it is either contained in Q1 or in Q2.

We may now define, for j = 1, 2, Uj to be the union of Qj with all the components V the
boundaries of which are contained in Qj: we obtain in this way two disjoint open sets covering
S2 \Ω. Since the latter is connected, U1 or U2 is empty, hence Qv \ ∂Ω is connected as well.

By definition of ψ, we may define an action of Gv on Qv such that Gv ◦ ψ = ψ ◦Gv.

Lemma 6.10. The projection ψ yields a minimal planar action of Gv on Qv as a geometrically
finite convergence action with finitely many orbits of parabolic points. Moreover, there are only
finitely many orbits of boundary components of Qv and, for any connected component Ω of
S2 \Qv, the stabilizer of ∂Ω is also geometrically finite.

Proof. The first statement of the lemma is contained in Lemma 6.6.

We note that, according to Lemma 6.9, boundaries of complementary components do not
separate Qv, so they are preserved by Gv, and the action is planar.

Let P = {ψ−1(∂Ω)∩Λv, Ω ∈ π0(S
2\Qv)}. Since the action on Qv is planar, the collection P

isGv-invariant. Note that each element is contained in the boundary of a connected component

of S2\Λ̂v, cf. Lemma 6.8; since Λ̂v is a locally connected continuum by Lemma 6.8, we conclude
that P is a Gv-invariant null-sequence. Therefore, Proposition 5.1 applies and proves that each
stabilizer of K ∈ P is quasiconvex with limit set K and that P is composed of finitely many
orbits. Pushing down by ψ, we obtain finitely many orbits of boundary components, and the
stabilizer GK of each K ∈ P provides us with a geometrically finite action of the stabilizer
GΩ of the boundary of each complementary component Ω of Qv.

Corollary 6.11. The action of Gv on Qv can be extended to a convergence action on S2 with
limit set Qv such that (S2 \Qv)/Gv is a finite union of surfaces of finite type.

Proof. It follows from Theorem 5.7, Lemma 6.10 and Proposition 3.2 that the action of Gv

to Qv is the restriction of a convergence action on S2.

Finally, for each component Ω of S2 \ Qv, the action of its stabilizer GΩ is geometrically
finite, hence isomorphic to a geometrically finite Fuchsian group and we may conclude that
Ω/Gv is a surface of finite type. By Lemma 6.10, there are only finitely many of them.
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Proof. (Proposition 6.7) We want to lift under ψ the action of Gv given by Corollary 6.11.
Each parabolic point pe = ψ(Λe) belongs to the boundary of two complementary components
according to Lemma 6.6. Let He ⊂ (S2 \ Qv) be the union of two Ge-invariant horocycles
(one in each component) that we choose small enough so that their Gv-orbit are all pairwise
disjoint. The map

ψ : S2 \ (∪e∈Ev
ψ−1(He)) → S2 \ (∪e∈Ev

He)

is a homeomorphism so we may lift the action of Gv there.

Let e represent an element of Ev/Gv; the set Se = ψ−1(He) is homeomorphic to a Jordan
domain and Ge acts as an elementary convergence group on its boundary. By Theorem 5.7,
Lemma 6.10 and Proposition 3.2, the action of Gv extends to a convergence action on S2.

Corollary 6.12. Let G be a torsion-free one-ended hyperbolic group with a planar boundary
and let v be a vertex of rigid type in its JSJ decomposition such that all the stabilizers of
its incident edges are isomorphic to Z. We also assume that confdimARGv < 2. Then there
exists a compact hyperbolizable 3-manifold Mv with boundary and with fundamental group
isomorphic to Gv such that the conjugacy classes of incident edges define a maximal collection
of incompressible disjoint simple closed curves on ∂Mv.

Thickening this multicurve into pairwise disjoint annuli provides us with an acylindrical
paring of Mv.

Proof. According to Proposition 6.7, Gv acts on S
2 with limit set Λv. Since its Ahlfors regular

conformal dimension is strictly less than two, Corollary 1.12 provides us with a hyperbolizable
manifold.

Each generator of a conjugacy class of an incident edge defines a non-trivial curve γe in
Mv = H

3/Gv. Since the curves {ce} are pairwise disjoint off of Λv, it follows that the γe are
homotopic to simple and pairwise disjoint curves on ∂Mv. If this family was not maximal, we
could split Mv along an incompressible annulus disjoint from the γe. But this would imply
that the JSJ-decomposition of G was not maximal.

6.3.3. Regular decomposition. We will focus on particular JSJ-decompositions which are suited
to manifolds.

Definition 6.13 (Regular JSJ decomposition). Let G be a one-ended hyperbolic group and let
us consider its JSJ decomposition. We say it is regular if the following properties hold:

– every two-ended group H which appears as a vertex or an edge group is isomorphic to
Z and stabilizes the components of ∂G \ ΛH ;

– the stabilizer of vertices of surface type are free;
– the stabilizer of vertices of rigid type is torsion-free.

The main point comes from the following proposition.

Proposition 6.14. Let G be a one-ended hyperbolic group with planar boundary and with a
regular JSJ decomposition. We assume that the Ahlfors regular conformal dimension of each
vertex of rigid type is stricly less than 2. Then G is isomorphic to the fundamental group of
a compact hyperbolizable 3-manifold with boundary.

Proof. We first notice that since each elementary group Gv or Ge fixes the components of
∂G \ Λv and ∂G \ Λe, they are generated by primitive elements of G.
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If v is a vertex of elementary type, we associate a solid torus Mv = S
1 × D on which we

consider on its boundary pairwise disjoint incompressible annuli S1 × αe in bijection with its
incident edges, where αe ⊂ ∂D are arcs.

If v is of surface type, then Gv is Fuchsian so it uniformizes a surface Sv; we let Mv =
Sv × [0, 1] and, noting that each incident edge in T/G corresponds to a simple closed curve
γe ⊂ Sv bounding a hole of Sv, we may associate on ∂Mv disjoint annuli γe × [0, 1].

If v is of rigid type, Corollary 6.12 enables us to associate a pared manifold Mv.

Now, T/G provides us with a manual to build a 3-manifold M with fundamental group
isomorphic to G by gluing theMv’s along the annuli [SW]. Thurston’s hyperbolization theorem
for Haken manifolds shows that M is hyperbolizable.

6.4. Group actions on CAT(0) cube complexes. A cube complex X is a CW-complex
where each n-cell is a standard Euclidean n-cube and such that

(1) each closed cube is embedded into X ;
(2) the intersection of two cubes is either empty or a face.

A cube complex is naturally endowed with a length structure such that each n-cell is isometric
to a unit Euclidean cube of the same dimension. We will focus on cube complexes which satisfy
the CAT(0) condition. We shall say that a group G is cubulated if it admits a geometric and
cellular action on a CAT(0) cube complex X . We refer for instance to [Sag] and [BH] for
details.

We gather some definitions and properties for future reference.

6.4.1. Hyperplanes. A fundamental feature of CAT(0) cube complexes comes from hyper-
planes. Let us first define a midcube of a cube [(−1/2), 1/2]n to be the intersection of the
cube with a linear hyperplane orthogonal to one axis [(−1/2), 1/2]n ∩ {xj = 0}, for some
j ∈ {1, . . . , n}. A hyperplane is a maximal convex subset of a CAT(0) cube complex for which
the intersection with any cube is either empty or a midcube.

Hyperplanes have many interesting properties [Sag, Hag]. Among them:

(1) given an edge, there is a unique hyperplane which intersects it orthogonally;
(2) a hyperplane divides a CAT(0) cube complex into exactly two connected components

which are both convex.

Say a hyperplane Y ⊂ X is essential if, for any R > 0, none of the two components of X \Y
is contained in the R-neighborhood of Y . Note that if X is proper and hyperbolic, then any
pair of distinct points x, y ∈ ∂X is separated by an essential hyperplane. If we also assume
that X supports a geometric action of a group G, then the action of the stabilizer H of a
hyperplane Y is always cocompact.

6.4.2. Special actions. Haglund and Wise have defined a particular class of non-positively
curved cube complexes named special, see [HW] for the precise definition and a proper intro-
duction to the subject. They enjoy two properties which will be of interest for the present
work.

Say a hyperbolic group G has a special action if it acts cellularly and geometrically on a
CAT(0) cube complex X such that X/G is special. In this case,



HYPERBOLIC GROUPS WITH PLANAR BOUNDARIES 35

(1) the group G splits over the stabilizer of any essential hyperplane;
(2) the group G has the QCERF property [HW, Thm1.3]; see § 6.5 for the definition.

Following Wise [Wis, Ago], define the class QVH as the smallest class of hyperbolic groups
that contains the trivial group {1} and is closed under the following operations:

– if G = A ⋆C B with A,B ∈ QVH and C quasiconvex in G then G ∈ QVH;
– if G = A⋆C with A ∈ QVH and C quasiconvex in G then G ∈ QVH;
– if H < G with H ∈ QVH and [G : H ] <∞ then G ∈ QVH.

A group in QVH is said to have a quasiconvex virtual hierarchy.

Improving on the work of Wise [Wis], Agol, Groves and Manning proved that a hyperbolic
group has a quasiconvex virtual hierarchy if and only if it is virtually special [Ago, Thm.A.42].
Moreover, Agol proved that any cubulated hyperbolic group admits a finite index subgroup
with a special action [Ago, Thm. 1.1]. In summary, we have

Theorem 6.15. Let G be a hyperbolic group. The following are equivalent

– G is cubulated;
– G is virtually special;
– G admits a quasiconvex virtual hierarchy.

We record the following application.

Lemma 6.16. If G is a convex-cocompact Kleinian group, then G is virtually special.

Proof. By Brooks’ theorem [Bro], we may assume that it is a quasiconvex subroup of a
cocompact Kleinian group. By [BW] and Theorem 6.15, the latter is virtually special so [Hag,
ThmH] implies that G is as well.

6.5. The QCERF property. A group G satisfies the QCERF property if every quasiconvex
subgroup A < G is separable i.e., for any g ∈ G \ A, there exists a finite index subroup of G
which contains A but not g. This property will provide us with regular JSJ decompositions
(Theorem 6.18). The QCERF property holds for virtually special hyperbolic groups [HW,
Thm1.3 and Lma 7.5].

6.5.1. Strong accessibility. Let G be a non-elementary hyperbolic group. If it is not one-ended
then it splits over a finite group [Sta1]. By [Dun], there is a quasiconvex splitting over finite
groups such that each vertex group is finite or one-ended; when G is torsion-free, it leads to a
free product of a free group with finitely many one-ended groups. We may then consider the
JSJ-decomposition of the remaining one-ended vertex subgroups and proceed inductively. If
G has no element of order two, then this process stops in finite time [DP]. In the end, we are
left with finite groups, virtually Fuchsian groups and/or one-ended hyperbolic groups with no
local cut points in their boundaries. If G has planar boundary, then those latter groups are
carpet groups [KK, Thm4].

6.5.2. A criterion for the QCERF property. This section is devoted to the proof of the follow-
ing proposition.

Proposition 6.17. Let G be a nonelementary hyperbolic group with planar boundary different
from the sphere. If confdimARG < 2 or if G has no elements of order two and if confdimARH <
2 for all carpet quasiconvex subgroups H, then G is QCERF.
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Proof. By [HW, Thm1.3 and Lma 7.5], a group is QCERF provided it is virtually special.
According to Theorem 6.15, it suffices to prove that G has quasiconvex virtual hierarchy.

Let us first assume that confdimARG < 2. Let us split G over finite groups so that every
factor is elementary or one-ended. Then G will have a quasiconvex virtual hierarchy provided
every rigid group arising in the JSJ-decomposition is also in QVH. But such a group has
a planar action by Proposition 6.7 so Theorem 1.7 implies that it is virtually Kleinian and
Lemma 6.16 enables us to conclude that G is virtually special.

We now assume that G has no elements of order 2. From the strong accessibility of such
groups (§ 6.5.1), we just have to deal with carpet groups. Assuming their conformal dimension
is strictly less than two, Corollary 1.9 implies that they are virtually isomorphic to convex-
cocompact Kleinian groups so are virtually special according to Lemma 6.16.

6.5.3. The QCERF property and regular JSJ decompositions. Wemay now prove the following:

Theorem 6.18. Let G be a non-elementary hyperbolic group which is QCERF. There is a
normal finite index torsion-free subgroup H < G such that all the one-ended groups arising
from its strong accessibility have regular JSJ decompositions.

The key point is the following group-theoretic result.

Proposition 6.19. Let A′ < A < G be groups with [A : A′] <∞ and A′ separable in G. Then
there exist subgroups A′′ and H with the following properties:

(1) H is a normal subgroup of finite index in G;
(2) A′′ = H ∩A′ is a normal subgroup of finite index in A ;
(3) for all g ∈ G, (gAg−1) ∩H = gA′′g−1.

Proof. Since A′ has finite index in A, we may pick a set of representatives {a0, . . . , an} of
A/A′ with a0 the neutral element. Since A′ is separable, there is some finite index subgroup
Gj < G which contains A′ but not aj for all j ∈ {1, . . . , n}. Note that this implies that
ajA

′ ∩Gj = ∅.

Let G′ = ∩Gj . Then G
′ is a finite index subgroup of G with the property that G′ ∩A = A′.

Let H be the largest finite index subgroup of G′ normal in G and set A′′ = A ∩H .

It follows that H is a normal subgroup of finite index in G and that A′′ is a normal subgroup
of finite index in A. Note that since A ∩ G′ = A′ we also have A′′ = H ∩ A′. Since H is a
normal subgroup, it follows that, for all g ∈ G, (gAg−1) ∩H = g(A ∩H)g−1 = gA′′g−1.

We include a proof of the following folklore result:

Corollary 6.20. A hyperbolic group with the QCERF property is virtually torsion-free.

Proof. A hyperbolic group has finitely many conjugacy classes of torsion elements [GdlH,
Prop. 4.13]. Let {g1, . . . , gn} be a set of representatives. Set Aj to be the cyclic subgroup
generated by gj and apply Proposition 6.19 to {e} < Aj < G to obtain Gj and set G′ = ∩Gj .
We let the reader check that G′ is a finite index torsion-free subgroup of G.

Proof. (Thm6.18) Since G is hyperbolic and QCERF, it contains a finite index subgroup
H ′ which is torsion-free (and QCERF) by Corollary 6.20. It follows that its action on ∂G is
faithful. We now use the strong accessibility to decompose H ′ until we obtain free groups,
Fuchsian groups and one-ended subgroups with no local cut points: let us first write H ′
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as a free product of one-ended groups with a free group and let us denote by H′
1 the set

of vertices of this decomposition. To each non-Fuchsian one-ended subgroup, we consider
its JSJ-decomposition; let H′

2 be the collection of groups obtained as vertices and edges of
the graph of groups describing those elements of H′

1. We proceed inductively so that H′
2n+1

denotes the factors of the decompositon as a free product by a free group with one-ended
groups of the elements of H′

2n and H′
2n+2 consists of the vertices and edges obtained by the

JSJ-decomposition of the non-Fuchsian one-ended elements of H′
2n+1.

By [Vav], there is some N such that every element ofHN is either free, Fuchsian or one-ended
without any local cut point on its boundary.

Let 1 ≤ 2n + 1 ≤ N and pick K ∈ H2n+1; each vertex group Kv ∈ H2n+2 of elementary
type coming from its JSJ decomposition contains a cyclic subgroup Av of finite index which
stabilizes all the components of ∂K \ Λv. Note that, for any g ∈ G, gAvg

−1 satisfy the same
conditions at the vertex g(v).

We now apply Proposition 6.19 to each triple (Av, Kv, H
′) to obtain finitely many finite

index subgroups of H ′ and we let H denote their intersection.

By construction, H is normal and of finite index in H ′. Note that a virtually free torsion-
free group is free [Sta2] so that we only need to check the condition on the elementary type
vertices and edges. Let K ′ ∈ H′

2n+1 and let TK denote the Bass-Serre tree given by its JSJ-
decomposition. Then K = H ∩ K ′ acts on TK and TK/K provides its JSJ-decomposition.
For each vertex v, we have Kv = K ′

v ∩ H . Therefore, Proposition 6.19 ensures that Kv is a
subgroup of Av. Moreover, each edge group Ke is cyclic since it is torsion-free and it fixes
the components of ∂K \ Λe since two adjacent vertices are not of the same type and if it is
incident to a vertex of elementary type, then it already fixes the complementary components.
This garantees that K admits a regular JSJ decomposition.

6.6. Dynamical characterization of groups with planar boundaries. We first notice
that a free group is the fundamental group of a handlebody or a solid torus if its rank is one,
so it can always be uniformized by a convex-cocompact Kleinian group.

We start proving Theorem 1.1.

Proof. (Theorem 1.1) Let G be a non-elementary hyperbolic group with planar boundary
of Ahlfors regular conformal dimension strictly less than two. According to Proposition 6.17,
G is QCERF and so Theorem 6.18 implies that it contains a torsion-free subgroup H of finite
index such that the JSJ-decomposition of its one-ended subgroups are regular.

We construct a compact Haken manifold with fundamental group isomorphic toH as follows.

Let us first write H = H0 ⋆ H1 ⋆ . . . ⋆ Hn as a free product of a free group H0 and of one-
ended subgroups. Now, each non-elementary Hj has conformal dimension strictly less than 2.
Either Hj is free or with boundary isomorphic to the circle or Hj satisfies the assumptions of
Proposition 6.14. In either case, Hj is isomorphic to the fundamental group of a hyperbolizable
manifoldMj with boundary. We may then glue these manifolds along disks on their boundaries
to obtain a Haken manifold M with fundamental group isomorphic to H . Theorem 6.1 proves
that M is hyperbolizable, so that, up to index two, H is isomorphic to a convex-cocompact
Kleinian group.

Remark 6.21. The proof only uses that the Ahlfors regular onformal dimension of rigid type
vertices in the JSJ-decomposition of the subgroups Hj is strictly less than two.
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We now turn to Theorem 1.2; we just prove (3) implies (1).

Proof. (Theorem 1.2) Let G be a non-elementary hyperbolic group with planar boundary, no
elements of order 2 and with carpet quasiconvex subgroups with conformal dimension strictly
less than two. Proposition 6.17 and Theorem 6.18 provide us with a torsion-free finite index
subgroup H of G such that each JSJ decomposition appearing in its hierarchy is regular. This
group H acts faithfully on ∂G.

We will prove that H is isomorphic to the fundamental group of a hyperbolizable manifold
by induction on its hierarchy. The initial cases n = 1, 2 follow along the same lines as Theorem
1.1.

Assuming Theorem 1.2 holds up to rank 2n, we show how to deal with a group H with 2n+2
generations. Note that each element of H2 has rank 2n, so they are isomorphic to fundamental
groups of compact Haken manifolds and virtually isomorphic to convex-cocompact Kleinian
groups. It follows that their Ahlfors regular conformal dimension is strictly less than 2.
Therefore, the same argument as above shows that H is also a virtually convex-cocompact
Kleinian group.

6.7. Cubulated groups with planar boundary. We will deduce Theorem 1.4 from the
following:

Theorem 6.22. Let G be a quasiconvex subgroup of a hyperbolic cubulated group Ĝ with
boundary homeomorphic to the two-sphere. Then G is virtually a convex-cocompact Kleinian
group.

We start by preparing the ambient group Ĝ:

Proposition 6.23. Let G be a cubulated hyperbolic group with boundary homeomorphic to the
two-sphere. There exists a finite index torsion-free subgoup which admits a special action on
a cube complex such that every hyperplane stabilizer is isomorphic to a cocompact Fuchsian
group.

Proof. Let X be a CAT(0) cube complex on which G acts geometrically.

Let x, y ∈ ∂X be two distinct points. We first prove that we may separate them with the
limit set of a cocompact Fuchsian subgroup of G. We start with a hyperplane of X with
stabilizer H which separates x and y. Considering a quasiconvex subgroup, we may assume
that H is one-ended. It follows that x and y lie in two different components of ∂X \ΛH . Note
that the action of H on ∂X is planar. Therefore, by Proposition 6.4, there is a Fuchsian group
which separates x and y.

By [BW], G acts on a CAT(0) cube complex Y such that the stabilizer of each hyperplane
is virtually Fuchsian. By [Ago, Thm1.1] and Corollary 6.20, there is a finite index torsion-free
subgroup of G which has a special action on X . The stabilizers of the hyperplanes in this
subroup are now Fuchsian.

Proof. (Thm 6.22) The proof will proceed by induction: we may start with G < Ĝ where

Ĝ is torsion-free and admits a special action on a CAT(0) cube complex X̂, cf. Proposition
6.23. Since G is quasiconvex, its action on X is convex-cocompact according to [Hag, Thm.H]:

there is a convex subcomplex X ⊂ X̂ invariant by G with X/G is compact.

Let Y ⊂ X be an essential hyperplane of X . Set Y = ∪g∈Gg(Y ). We define a graph T as
follows: the vertices are the connected components of X \ Y and two vertices form an edge
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if they are separated by exactly one hyperplane g(Y ) for some g ∈ G. Since G has a special
action, it follows that T is a tree and that the action of G on T is simplicial, minimal and
without edge inversions, cf. [HW]. If we let C be the stabilizer of Y , then we have shown that
G is either an amalgamated product G = A ⋆C B or an HNN extension G = A⋆C , where A
and B are stabilizers of components X \ Y : their action is also convex-cocompact.

If no vertex group contains a carpet group, then Corollary 1.3 shows that these vertex
groups are Kleinian, hence their Ahlfors regular conformal dimension is strictly less than two.
We then apply the following proposition, the proof of which is postponed later on:

Proposition 6.24. With the notation above, if the Ahlfors regular conformal dimension of
every vertex group is strictly less than two, then G is conjugate to a convex-cocompact Kleinian
group.

This ends the proof in this case. Otherwise, each vertex group is convex-cocompact in X
so we may find a convex subcomplex invariant by the vertex group, and proceed as above
until their vertex groups contain no carpet group. This process ends since the action of G is
special, so G admits a quasiconvex hierarchy. We obtain a rooted finite tree of quasiconvex
subgroups where children of a vertex correspond to a splitting of it. So, we may apply, as
above, Corollary 1.3 to the leaves and inductively Proposition 6.24 in order to reconstruct the
whole group G.

Proof. (Prop. 6.24) We first treat the case G = A ⋆C B. It follows from Corollary 1.12 that
A and B are conjugate to convex-cocompact Kleinian groups.

The hyperplane Y is defined by an orthogonal edge e ∈ X(1), cf. § 6.4.1. This is also an edge

of X̂ so it defines a hyperplane Ŷ ⊂ X̂ . It follows that Y = Ŷ ∩X so Stab GY = Stab ĜŶ ∩G

and C is a quasiconvex subroup of a cocompact Fuchsian group Ĉ. Moreover, Ŷ is clearly
inessential with respect to A and B so we may name the connected components of ∂X̂ \Λ

Ĉ
DA

and DB so that DA ∩ΛA = ∅ and DB ∩ΛB = ∅. Moreover, it follows from [MT, Cor. 4.6] that

the action of C on ∂X̂ is globally conjugate to a convex-cocompact Fuchsian group. Hence

there is an equivariant involution ιC : ∂X̂ → ∂X̂ which fixes ΛĈ pointwise and exchanges its
complementary components DA and DB.

It follows that (DA\ΛC)/C is a subsurface of a boundary component of the Kleinian manifold
MA, (DB \ΛC)/C is also a subsurface of a boundary component of the Kleinian manifold MB

and ιC induces an orientation reversing homeomorphism between them. We may then define
MG = MA ⊔ιC MB: this is a Haken manifold with fundamental group isomorphic to G [SW].
Therefore, Theorem 6.1 implies that G is Kleinian and Corollary 1.12 that the actions are
conjugate.

If G = A⋆C , the proof is similar: there is some element g0 ∈ G \ A such that the HNN
extension is obtained by identifying C with C ′ = g0Cg

−1
0 . Since the action is special, C and C ′

will be contained in cocompact Fuchsian groups Ĉ and Ĉ ′ which bound disjoint disks DC and
DC′ disjoint from ΛA. We may then glue the compact surface (DC\ΛC)/C with (DC′\ΛC′)/C ′,
both contained in the boundary of MA, to obtain a Haken manifold with fundamental group
isomorphic to G.

We now prove Theorem 1.4 and its corollaries.

Proof. (Thm1.4) The necessity comes from Lemma 6.16. For the suffciency, Theorem 1.2
tells us that we just need to deal with groups with boundary a carpet or a sphere. For the
latter, Theorem 6.22 shows that the group is virtually Kleinian.
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For the carpet case, let G be a carpet group and let H1, . . . , Hk denote representatives of the
peripheral Fuchsian groups, cf. Proposition 6.4. Let us take another copy (G′, H ′

1, . . . , , H
′
k)

of (G,H1, . . . , , Hk) and consider the graph of groups with vertices G and G′ and with k edges

identifying each Hj with H ′
j. According to [KK, Thm5], one obtains a hyperbolic group Ĝ

with boundary the sphere so that G has become a quasiconvex subgroup of Ĝ.

Since G is cubulated, it follows from Theorem 6.15 that G admits a quasiconvex hierarchy,
so Ĝ as well and we may conclude that Ĝ is cubulated.

We may now apply Theorem 6.22 and conclude that G is a virtually convex-compact
Kleinian group.

Proof. (Corollaries 1.5 and ??) The Ahlfors regular conformal gauge of a group is the same
for its finite index subgroups. Therefore, if G is cubulated, Theorem 1.4 implies that the group
is virtually Kleinian, so either its Ahlfors regular conformal dimension is strictly less than two
or it is attained. In the former case, we conclude with Corollary 1.9 and in the latter case,
with [BK3].
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