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Abstract 
We have now sufficient evidence that using electrical biosignals in the field of 

Alternative and Augmented Communication is feasible. Additionally, they are 

particularly suitable in the case of people with severe motor impairment, e.g. people 

with high-level spinal cord injury or with locked-up syndrome. Developing solutions 

for them implies that we find ways to use sensors that fit the user’s needs and 

limitations, which in turn impacts the specifications of the system translating the 

user’s intentions into commands. After devising solutions for a given user or profile, 

the system should be evaluated with an appropriate method, allowing a comparison 

with other solutions. This paper submits a review of the way three bioelectrical 

signals – electromyographic, electrooculographic and electroencephalographic – 

have been utilised in alternative communication with patients suffering severe motor 

restrictions. It also offers a comparative study of the various methods applied to 

measure the performance of AAC systems. 

Introduction 
Much research work has been devoted in the past twenty years to developing assistive 

technology (AT) devices aiming at offering to people suffering a motor disability of 

various origins (e.g. locked-in-syndrome, amyotrophic lateral sclerosis, quadriplegia, 

muscular dystrophy, cerebral palsy, etc.) associated to disorders of verbal 

communication, the possibility of communicating with the persons in their entourage 

and having some control on their environment. These AT devices are operated by 

human-machine interface sensors receiving information provided by the person with 

disabilities to pilot a graphical user interface [1]. 
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When working in the area of augmentative and alternative communication (AAC), 

one of the recurring problems is selecting the sensor that will be best suited to the 

user's motor capacities, whatever the type of AT devices (communication aid, 

assistance when using the computer, etc.) used. As a consequence, one of the first 

tasks to be done is identifying the proper sensor from among the set of devices 

available on the market or developed in research labs. 

One of the major difficulties encountered in the quest for a well-adapted AT devices 

is that the selection process is strongly influenced by the user’s specific needs, which 

in turn has an impact on the type of sensor to be used. Thus, this process cannot be 

carried out without taking full account of the human-machine system to which it is 

going to be applied. It is therefore necessary to study the performances of the user-

sensor-system trio. 

The purpose of this paper is to report about our study regarding the several 

technologies employed in the restricted area of alternative communication systems 

based on bioelectricity. The first part covers the main types of bioelectrical signals 

used as control sources in modern AAC systems, notably the electromyogram (EMG), 

the electrooculogram (EOG) and the electroencephalogram (EEG). The second part 

offers a review of the various methods described in the literature to measure the 

performances of the communication aid devices. 

Switch based control and Proportional Biosignals 
sensors  

A human-machine interface sensor can be defined as a device meant to capture and 

transmit the action that the user intends to perform. Due to the wide range of ways for 

the sensors used as communication aids to capture and transmit information, it 

appears necessary to sort them according to the operational mode. Two function types 
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can then be identified: the switch-based control (SBC) sensor type and the 

proportional sensor type (PRO). This classification is no obstacle to the possibility of 

combining these functions and thus raises the number of possibilities of interaction 

when using the communication aid. For instance, sensors designed to act as a mouse 

replacement call on these two function types with the click button (SBC) and the 

movement controlling a cursor (PRO) on the screen. A SBC type sensor just transmits 

binary signals to the AT device, whatever technology has been applied for its 

conception. Consequently, this device is the least efficient when used for interaction 

with a communication aid. Such systems work only as a tool to scan various 

possibilities and make a selection, the major difficulty being then to decide about the 

scanning delay [1]. The PRO-type sensor has the clear advantage of representing 

several binary commands using only one proportional signal in the same way one 

integer number is represented by one or more bits, thus saving the user time and effort 

during the AT device operation. However, these sensors – that are generally used to 

control a cursor on the computer screen – suffer a drawback related to their mode of 

operation: the person with disability is supposed to have sufficient dexterity to control 

them, which is not always the case.  

To take advantage of an electrical biosignal in AAC tasks, the user may express his 

intention in three different ways: eye movements (EOG), muscle (EMG) and cerebral 

activity (EEG). Even though these sensors may also be used to provide a progressive 

signal as in [2], they usually deliver a binary one, which demands lesser control over 

the body functions by the user. 

One example of using the biosignal with either PRO or SBC type sensor is the 

interpretation of the EMG signal. The envelope amplitude may be translated to: (i) a 

binary signal, when compared against a threshold (muscle contracted or not) or (ii) a 
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continuous signal scaled between 0 and a maximum value. It must be observed that 

the use of the progressive signal in this specific case is highly dependent of the final 

application, which may be more or less susceptive to envelope amplitude variations. 

Another case is using the EOG signal to deploy a PRO-sensor, as each degree of eye 

movement represents changes from 14 to 16 �V in the recorded signal. 

Other strategies generate discrete signals employing binary information obtained from 

a biosignal. Barreto et al. [3] controlled a cursor that was allowed three different 

levels of speed, which increased over time as long as the muscle remained contracted.  

The biosignal sensor is generally more complex than those using mechanical 

principles, requiring elaborated circuitry for data acquisition and signal processing 

algorithms. In spite of the technical feasibility of exploring electrical biosignals, the 

application of those kinds of sensors for alternative communication is indicated 

mainly in cases of severe motor disabilities. In situations where the user demonstrates 

the ability to move some part of the body, other approaches will probably be more 

suitable than using electrical biosignals: (i) head movements tracked by a camera is an 

alternative to control a cursor using EMG from facial muscles; (ii) sensor using 

mechanical principles, such as pressure membrane based devices activated with the 

tongue [4] or the side of the head are easier to operate and less prone to errors than a 

BCI system. 

Electromyography 

EMG signal 

When the brain commands a muscle to contract, signals are sent to motor neurons that 

in turn, control several fibres. As the membrane fibre is depolarized, an electrical 

potential is generated in the vicinity of the muscles fibres with duration of 

approximately 8ms. The summation of the action potentials propagating trough the 
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fibres yields the motor unit action potential (MUAP) of a motor unit (MU). To 

maintain the force exerted by the muscle, the MUAPs are fired repeatedly, with 

frequency from 7 to 20 Hz [5], forming the sequence known as MUAPT (MUAP 

train). The electrode used to record muscle activity will register the electrical fields 

generated by all the motor units in the range. This ensemble of MUAPTs is the EMG 

signal. Recorded at the skin surface, the EMG signal may present 20-2000 �V peak-

to-peak amplitude values [6]. 

There are two kinds of electrodes for EMG signal acquisition: intramuscular and 

surface electrodes. The former type is preferred for clinical applications, as in the 

diagnosis and evaluation of motor diseases [7]. Information from specific motor units 

or even fibres can be acquired with confidence; however it may produce infections 

and the mechanical action into the muscle may cause lesions. Consequently, the 

choice on using surface electrodes is appropriate for applications such as 

communication aid devices, as they will probably be used for several hours a day. 

The most common electrode type is the Ag/AgCl, usually 1-3 cm in diameter. Before 

the application of the electrode, the skin is cleansed with alcohol-wet swabs and a 

conductive gel is used to increase conductivity. One of the concerns is that 

conductivity decreases and thermal noise increases as the gel dries off.  

While the majority of studies referenced in this article reported the use of Ag/AgCl 

electrodes, some omitted the information and only one [8] reported the utilization of a 

noncontact electrode that could be used over clothes, however no technical details are 

provided. 

Electromyography is the process of recording and analyzing the EMG signal. One of 

its main applications is making a diagnosis and assessing the severity of the disability 

in case of neuromuscular disorders. Another application is the possibility of 
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identifying the strategy used to control skeletal muscles during a movement, so it is 

later employed to operate prosthesis. Yet another approach consists in using the EMG 

signal as a source of  information to control devices such as electrical wheelchairs [9]. 

The number of studies exploring the EMG signal potential for AAC is considerably 

lower when compared to the attention devoted to other possibilities such as EEG 

signals. 

The EMG signal, used as a channel for AAC, is usually acquired with sampling rates 

in the order of 1 kHz. This aspect is particularly important when spectral tools are 

employed, considering the Nyquist theorem and that most part of the signal energy is 

presented up to 500 Hz. Even though, in some studies, the sampling rate may be 

lower. The reason is not explicit, but could be connected to the necessity of the system 

to operate in real-time, which could be complicated by a large amount of data 

generated by higher sampling rates.  

The algorithms used to process the EMG are usually simple, especially when 

operating as a SBC sensor. The translation into a binary variable calls for simple 

strategies – related to signal amplitude – such as the variance of the root mean square 

(RMS) value of the signal [10]. The spectral domain analysis is also analysed. Signal 

features such as mean and median frequency (MNF and MDF) can be used to define 

when a muscle is active as their value shifts during contraction. The spectrum can be 

divided into sub bands before extracting the features [3, 11-13]. In [13-14], as various 

muscles typically supply different MNFs, muscle activity can be correctly detected, in 

spite of interference due to the activity of others muscles. 

EMG applications 

Communication aid devices using EMG signals can be subdivided into three major 

groups: (i) emulate mouse, (ii) speech recognition and (iii) act as a switch-based 
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control device. Most of those applications use the SBC sensor approach with more 

complex sensors deployed by using more than one muscle at a time. 

Switch-based control device 

In situations like the locked-in syndrome, the patient will present control of eyes and 

cognitive tasks. Therefore, an easy way to communicate is by answering to “yes/no” 

questions. This approach provides an output channel of communication with low 

transfer information rate, low interactivity and the care provider must have the 

necessary skills to formulate the right questions. 

Patients that are still able to carry out residual movements with one of the limbs, or to 

move their head, may use a pressure device. The same principle can be applied to 

EMG signals where the pressure action can be replaced by muscle contraction. 

Electromyography has already been considered as a way of assessment for patients 

with disorders of consciousness, indicating its use as a channel of communication 

[15]. Using computational solutions, one can generate binary signals, with ‘1’ being 

associated to muscle activity and ‘0’ otherwise.  

One approach consists in composing messages with some kind of code – e.g. the 

Morse code. Even if it is an unnatural mode of communication, the procedure might 

turn out to be extremely valuable for persons with severe motor impairments. Any 

biosignal which can be interpreted as a two-state information source is a potential 

candidate to use such code. From the Morse-based code the user can control devices 

and communicate in several ways, depending on the strategy adopted. Studies using 

other sources than the EMG signal have shown that applying the Morse code [16-17] 

can be a good option for AAC. As using the Morse code is not natural task in terms of 

language and that keeping a typing rate is difficulty for the persons with disabilities, 

modified forms of the code may be adopted [16]. 
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Park et al [18] developed a system where the user moves his chin so the signal 

acquired from the Massetter muscle is transformed into “dot” or “dashes” symbols 

depending on the duration of the contraction. The sequence is decoded into characters 

that in turn feed a voice synthesizer. This study includes a method for fatigue 

adaptation, an important concern when using EMG. The major caveat was that people 

are not capable of chew-and-pause fast, so the transfer information rate was low, 

although not reported in numbers. 

The binary signal can also be used to operate a scanning device, e.g. a virtual 

keyboard and some more complex interfaces. The Impulse™ [19] system – one of the 

few AAC commercial solutions based on the EMG signal – uses this approach in a 

wireless solution to offer computer access with a specific scanning interface. 

When comparing the scanning and the code-based approaches, we can observe that 

both are based in simple signal processing techniques. The difference lies in the 

cognitive effort required from the user: the scanning approach transfers the 

complexity of the message generation process to the system interface whereas, with 

code-based devices, the user has to learn the sequence of symbols necessary to 

compose each character or command. 

Mouse emulation 

Since the 1970s the mouse is, along with the keyboard, the standard input device for 

computers operation. Then, it is understandable the number of studies to develop 

devices that provide mainly point-and-click functions as a physical keyboard can be 

replaced by a virtual one. For some studies, even though the goal is to provide a 

hands-free alternative to healthy people, the solution could be adapted for the person 

with disability. 
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Using muscles in the pointing task can be described as a three-step process: (i) 

identifying the suitable muscles to be explored and based on this, (ii) define what kind 

of control can be obtained and (iii) last, choose and process the EMG signal feature to 

generate the command.  

In the case of people with severe motor disabilities, facial muscles are a common 

option as they can be activated, even in the case of people who suffered a severe 

spinal cord injury.  

Once the number of muscles available has been established, research can start to set 

up the strategy to achieve proper cursor control. One simple strategy is to use each 

muscle to define the cursor displacement in one direction. There are at least two 

aspects that will define the system final capacity to control a cursor: the sensor type 

and the user ability to control the muscles. If a PRO sensor is used and the user has 

the dexterity necessary to control all the four muscles at once, the cursor control will 

be omnidirectional. If an SBC sensor is employed with the same user, than the cursor 

can moves towards eight different directions. Finally, if the SBC sensor is operated by 

someone with poor muscle control, it is likely that the cursor will move to only four 

different directions. The most commonly used facial muscles in the pointing task are 

the Corrugator, the left and right Frontalis, the left and right Temporalis and the left 

and right Zygomaticus major. Traditional approaches use pairs of muscles to control 

displacement over the XY axis. Others strategies for exploring the EMG signal are 

possible, such as the 2D control from only one [20] muscle. 

Considering all the actions a mouse can perform there are also right and left-clicks. In 

[3] the left-click action and cursor movement (2D) were controlled by the EMG 

signals from the Temporalis and Frontalis muscles. Additionally, the system is 

provided with an ON/OFF switch, controlled by the EEG signal. The mouse functions 
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were identified applying a threshold to the amplitude signal, and later, performing 

spectral analysis over several frequency bands. The system was implemented over a 

DSP board, which was identified by the host as an ordinary mouse. The final 

command information generated from the EMG signals was not actually continuous 

as the application may suggest. Actually, the system used a three-level adjustable 

speed schema, with increasing values if the system identified five consecutive 

commands indicating the same direction. At first, only three channels for EMG 

signals were necessary, but in [12, 21] a fourth electrode was used, improving the 

average of correct classification of muscle movements from 78.43% to 98.42%. 

Despite the good results for classification muscle movements, the system took 16.3s 

in average to move a cursor from the middle to the corner of the screen, compared to 

1s-2s with a standard mouse. So, in [13, 22-23] the same approach was combined with 

a gaze-based system into a hybrid system. While the gaze offered the absolute 

position of the cursor, the EMG signal provided incremental displacement. As 

consequence, the time to move a cursor from the middle to the corner of the screen 

dropped from 16.3s to 6.8s. 

Also considering multimodal approaches, a detailed study [24] compared a standard 

mouse and a hybrid device. The cursor position was controlled by gaze and the object 

selection (left-click) was activated by frowning. The two solutions were compared 

using Fitts’ law: for small distances a standard mouse showed superior performance, 

but there was no statistical difference among devices with large distances. 

In [25] the goal was also to provide a pointing device controlled by facial muscles. A 

continuous Wavelet transform measured the level of activation of each muscle, 

providing four direction displacements, associated with both sides of Orbicular, 

Massetter and Mentalis muscles. Left and right click operations were associated to 
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opposite directions executed at the same time (Up+Down = right click and Left+Right 

= left click). The use of the Wavelet transform was justified by the shape similarity 

between the wavelet mother and the MUAPs. However, this strategy can be 

questioned, as the system performance was not compared with traditional signal 

features (e.g. the RMS value). Even the similarity between the Wavelet mother and 

the MUAPs can't be assured, as no other arbitrary wavelet mother was used and the 

electrodes dimensions were not reported, being impossible to estimate the electrodes 

selectivity regarding muscle units. 

Using four muscles to control horizontal and vertical displacement seems like a very 

straightforward idea. Nevertheless, in a novel approach [20] the authors employed 

only one muscle to control the cursor position in the X and Y axis. The power levels 

of two different frequency bands extracted from the EMG signal recorded from the 

Auricularis Superior muscle were employed. The strategy adopted is quite different 

from the others described earlier, as the absence of muscle activity sets the cursor the 

position to coordinates (0,0) while the contraction moves the cursor. The user training 

is mandatory, as not only the user should learn how the contractions affected the 

cursor position, but also because of the different bands of interest presented by 

different users. 

For patients unable of controlling upper limbs, using muscles located in the head may 

be the only option. However, people with conditions such as tetraplegia may manifest 

residual control of neck, shoulders and even arms.  

Additionally, using facial muscles seems as an unnatural way of controlling a cursor, 

when comparing to a standard mouse. As example, diagonal movements tend to be 

accomplished through horizontal and vertical movements [26] when using EMG 
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signals as source of control. Head motion [27], on the other hand, could be compared 

to a joystick operation.  

In [28-29], five different motions of neck and shoulder could be recognized with 95% 

mean recognition rate and response time about 0.17s. Two pairs of electrodes were 

placed over the Sternocleidomastoid and the Trapezius muscles, in each side of the 

body. 

In [26] three methods offering pointing device control were compared: a standard 

mouse, head-orientation using an accelerometer and the EMG based approach. The 

Platysma, left Trapezius and the Frontalis muscles were utilized. Cursor speed was a 

continuous variable, with a maximum value attributed to 70% of maximum voluntary 

contraction (MVC). As expected, the mouse was superior and in general the EMG 

approach was inferior to the head-orientation method, especially due the difficulty to 

perform diagonal movements. 

In [30] the angle of head was estimated through linear interpolation of the EMG 

signal extracted from the Sternocleidomastoid muscle. For small angle rotations the 

EMG signal is too small to offer any useful information and in its place a camera was 

used and the angle was estimated by the relative position of the pupils. In fact, if the 

user presents good head and neck control, the camera based solution seems to be more 

appropriated, with software already available for download, demanding only an 

ordinary webcam. 

Finally, there is the possibility to use movements of arms to operate virtual keyboards 

and mouse. In [31] an omnidirectional pointing device is controlled by the EMG 

signals recorded from the forearm. An Artificial Neural Network (ANN) was used to 

find the direction, while the muscular contraction level controlled the cursor velocity. 

A recent research involving the Microsoft Corporation presents a similar approach 
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using the EMG signal in games [32] interfaces but also in hands-busy situations, that 

could also be deployed for people presenting some level of disability. The implication 

of a company highly bounded with the computing area indicates the potential of using 

the EMG signal for computing interface. However, solutions for user presenting good 

arm movement control are outside the scope of this article and even in the case of 

adopting an assistive device, adapted mouse or joysticks would be more appropriated 

for this user profile. 

It was noticed that some studies lack a method to measure performance, impeding 

therefore the comparison of different approaches. Fitts’ Law was already used to 

compare different pointing devices [33] and has been used in several studies; 

precision on drawing over templates are also suggested [31]. The methods used for 

performance measure are presented in details in section 6. Other problem with 

pointing devices studies is that details such as screen resolution and specifications of 

the standard mouse used are not revealed. 

Automatic speech recognition (ASR) 

Since the late 1960s, efforts have been made to achieve a system for speech 

recognition [34]. Several pieces of software are available in the market and modern 

operating systems for personal computers already offer built-in speech recognition. 

But there are a few drawbacks that offer some resistance for using usual ASR systems 

and intensify the research on silent speech interfaces: (i) the audible speech prohibits 

confidential conversation; (ii) it is not advised to use such systems during meetings or 

inside a library; (iii) the performance decays severely in adverse environments such as 

crowded places; and finally (iv) some clinical conditions hinder voice communication. 

There is a relation among the words pronounced and movements of articulatory facial 

muscles. Then, a feasible approach is to use the activation of those muscles to identify 
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phonemes and therefore, words. This is not an easy task, as the act of speech employs 

several facial muscles, such as: Mentalis, Depressor anguli oris, Massetter, Digastric, 

Zygomaticus major, Levator anguli oris, Platysma, and Orbicularis oris. 

Studies usually regard people with voice impairment, such as conditions after a total 

laryngectomy [35] or to situations where the ambient noise impedes communication 

(e.g. by fire fighters and pilots). Therefore it must be carefully analysed if the level of 

disability may compromise the control over the muscles involved in the speech 

process. Nevertheless, people with severe motor impairment could use ASR by 

muscle activity to achieve a channel of communication. One example is people with 

tetraplegia using ventilator systems that are adjusted to accommodate 

cardiopulmonary requirements, but that are not optimal for speech. Speech produced 

with typical ventilator adjustments is often characterized by short phrases, long pauses 

between phrases, abnormal loudness, and poor voice quality [36]. In a study 

conducted by Denby et al. [37] over silent speech interfaces – systems enabling 

speech communication when an audible acoustic signal is unavailable – several 

solutions are compared regarding if the systems: (i) are  invasive, (ii) work in noisy 

environments, (iii) require glottal activity, (iv) are ready for market, (v) work for 

laryngectomy and (vi) have low cost. Among the seven systems analyzed, the EMG 

based had the highest overall evaluation. 

In [38], Hidden Markov Models were used to map muscle activation into phonemes. 

The features extracted from the EMG signal were mel-frequency cepstral coefficients 

(MFCC), as previous studies showed that discrete wavelet transform (DWT) 

coefficients were superior but slightly different. Only three channels were used with 

respect to the muscles levator anguli oris, the zygomaticus major, and the depressor 

anguli oris. The muscles used and the electrodes were defined heuristically. To 
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evaluate the system a limited vocabulary of 60 words was used and accuracy of up to 

85% was achieved. 

In [14] a multimodal ASR with the acoustic information and the EMG signal allowed 

a Coupled Hidden Markov Model (CHMM) to recognize speech. This solution is 

compared with two others: audio only and EMG only. Adding different levels to the 

signal, it showed that the audio-only approach is highly dependent on the SNR, while 

the EMG-only proposal was not affected. Five muscle channels were used: the 

Levator anguli oris, the Zygomaticus major, the Platysma, the Depressor anguli oris, 

and the anterior belly of the Digastric. No criteria were indicated for choosing neither 

muscles nor the electrodes position. The vocabulary used was extremely restricted, 

with only 10 words. 

In [39] only vowels were used as shape of lips and mouth cavity were stationary. 

Three channels were used, with information recorded from the Mentalis, Depressor 

anguli oris and Massetter muscles, since those are the most active muscles during 

vowels pronunciation. An artificial neural network (ANN) using the back-propagation 

algorithm was used to associate the RMS of the EMG signal with the vowels. Other 

studies provide the recognition of isolated words and small vocabulary [40-42]. In 

[42] as the aim was to recognize speech of pilots that could be interpreted as 

commands, electrodes were embedded in a pilot oxygen mask. The error rate was very 

low, ranging from 0% to 10.4% during the task of recognizing the speech of the 

numbers ‘zero’ to ‘nine’.  

The probability that electrodes are repositioned in the same place as the previous 

session is very low. In [40] a normalization method found that among sessions, the 

accuracy to drop about 10%, whereas without the method the accuracy dropped more 

than 21%. Eight channels of information were extracted from the following muscles 
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Levator angulis oris, the Zygomaticus major, the Platysma, the Depressor anguli oris, 

the anterior belly of the Digastric and the tongue. Only the numbers ‘zero’ to ‘nine’ 

composed the vocabulary. 

Wand et al. [11] and Jou et al. [43], implemented continuous speech recognition using 

an HMM algorithm. The vocabulary was phonetically balanced and formed by 108 

words. A total of six channels were used. When compared to features from frequency 

and time-frequency domains, the Wavelet transform showed a slightly advantage. 

Studies show good results as almost 90% of accuracy is obtained. On the other hand, 

the vocabulary used is usually extremely restricted. But as it happens with other 

categories of assistive technology devices, people with severe motor impairments may 

find even a limited control extremely useful. If 60 words could be associated to 

different actions, common sense dictates that even this would be extremely helpful for 

daily activities. 

Other issue is that the data used to test each system were obtained under highly 

controlled situations, with the subjects being under supervision. During normal 

operation, the user will probably be less concentrated, the pronunciation sometimes 

will be less clear and the system may not respond very well. 

As the goal is to associate phonemes with activation of related muscles, it is 

interesting to define some criteria to decide which muscles should be used, as well the 

electrode positioning minimizing crosstalk. Although not applied to ASR, in [44] the 

assessment was conducted for better positioning of electrodes in the forehead, so both 

electrodes could gather information from different muscles with minimum 

interference. 
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Electrooculography 

EOG signal  

The EOG signal is the electrical signal generated by the difference of potential 

between the cornea and the retina, from 2 to 20 mV but with recorded signals ranging 

from 15-200 �V [45]. This potential is due to the large presence of active nerves in 

the retina compared to the front of eye [46]. Several experiments show that the 

corneal part is a negative pole while the retina is a negative one in the eye. Then, 

analyzing the eyeball as a dipole eye movements can be registered through the EOG, 

with each degree representing 14 to 16 �V in horizontal and also vertical way. 

Sampling rate for electrooculogram acquisition should reproduce components up to 

15 Hz [45]. Traditionally, for EOG recording are placed five Ag/AgCl self-adhesive 

electrodes: (i) one pair above the eyebrow and below the eye to record vertical 

movements; (ii) one pair next to the lateral canthus, to record horizontal movements 

and (iii) one over a neutral site, acting as reference. 

 EOG applications 

Compared with the EEG, EOG signals have the characteristics as follows: the 

amplitude is relatively high, the relationship between EOG and eye movements is 

linear, and the waveform is easy to detect [46]. Considering the simplicity of EOG is 

also easier to classify it when compared to EMG. For these reasons, EOG-based HCI 

systems have become a very interesting field of research in recent years. In addition, 

the majority of the patients with severe motor disabilities remain able to control their 

eye movements. In this sense, recent studies have shown the viability of the EOG 

application in assistive communication systems.  

Borghetti et al [47] developed a system for writing in an alphanumeric matrix based 

on two EOG channels (vertical and horizontal). The cursor movement in the 

orthogonal directions was carried out by EOG classification based on elementary 
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parameters like polarity, amplitude and slope, and the letter selection was made by 

double blinking detection from EOG. The study appealed to the low cost, around € 

100. As a preliminary research, there were no bindings with voice synthesizer or other 

software of any kind. The interface was very simple as even the backspacing function 

was missing.  

Usakli et al [48] proposed a similar system where both cursor movement and letter 

selection were supported by an EOG classification algorithm based on the nearest 

neighbourhood (NN) relation. The performance of the designed system was compared 

with that of a P300-based BCI speller. Results showed the EOG system more efficient 

than P300-based BCI system in terms of accuracy, speed, applicability, and cost 

efficiency.  

Dhillon et al [49] proposed a virtual keyboard writer system based on two EOG 

channels and one EMG channel. The cursor movement was associated to the gaze 

angular displacement in the vertical and horizontal directions, and the letter selection 

was carried out by an “EMG click” obtained from eyebrow. The authors reported as 

advantages the lower cost and complexity of their system compared to more 

sophisticated methods to detect eye movements like videooculography (VOG) and 

infraredoculography (IROG).  

Other studies prove the possibility of using eye movements as a control source, such 

as in [46] to control a mini-car. The signal was transformed into trains of rectangular 

pulses and moving the eyes twice in the same direction indicated the command the 

mini-car should execute. A feedback was offered to the user, allowing the command 

confirmation, also through the eyes. Other applications demonstrating the potential of 

the EOG signal for control are to handle wheelchairs through eyes movements [50-52] 

or to control a robot [53].Cursor control was showed in [51] where a simulator on the 
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screen was used to train the patient to control a powered wheelchair and in [53] to 

control a robot. Being a manifestation of eye movements, EOG signals are processed 

to identify gaze [50-51, 54-55], usually for cursor control on the screen. However, the 

most popular method for gaze estimation is using infrared cameras [55], through the 

reflection in the eye structures and their geometric relations. In fact, gaze based 

devices may be best suitable for users with severe motor impairment that cannot move 

the head, as one of the technical problems presented by gaze based devices that is the 

lost of reference once the user moves it. Cursor control may be offered with absolute 

coordinates (gaze) [54-55] or through direction of movement [56-57]. 

With a simpler application, EOG signal may be used to encode Morse code messages 

[58] with looking left and right as ‘dash’ and ‘dot’, respectively. Another way of 

communication is to associate eyes movements sequences with symbols [59] that in 

turn, could be characters or even high level commands. 

Electroencephalography  
For people with severe motor disability such as locked-in syndrome, it often becomes 

impossible to communicate or control a muscular activity.  However, these people 

generally keep cerebral and sensory functions intact.  A solution planned to overcome 

this handicap is to use electroencephalography associated with the cerebral activity to 

control an interface.  This type of interface using the cerebral waves is usually called 

brain computer interface (BCI). The approach used to build a BCI consists in 

measuring the cerebral activity through the EEG signal in order to determine the 

wishes of each subject.  BCI applications can also be built with invasive technologies, 

e.g., electrocorticogram (ECoG), which involve implantation of electrodes in the 

cortex and provides better signal to noise-ratio [60]. Although invasive technologies 

are suppose to deliver higher-dimensional control, studies conducted by Wolpaw and 
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McFarland [61] have shown that non-invasive EEEG-based BCI can give 

multidimensional movement control comparable to the control achieved by invasive 

BCIs. As invasive methods face technical difficulties and involve clinical risks, they 

should only be used in rare circumstances, when they are necessary to avoid artefacts 

(e.g. uncontrollable head control) or in cases where the invasive solution shows 

clearly superior performance than non-invasive methods. For those reasons, we focus 

on non-invasive BCI applications that use EEG. 

Of course, it is not possible to analyze complex thoughts but to detect for example 

variations of rhythms associated with sensorimotor activities.  Thanks to the analysis 

of this type of EEG signals associated with an imagined motor activity (sensorimotor 

rhythms), it is possible to build interfaces in which the displacement of a cursor 

present at the screen (according to one or 2 dimensions) is controlled in a continuous 

way by cerebral waves [62].   

Other EEG signals associated with visual or auditory stimulations allow the 

construction of brain computer interfaces; these signals are called the evoked 

potentials. The P300 waves are cognitive evoked potentials often used for BCI. For 

interfaces based on the treatment of P300, it is not allowed to provide a continuous 

control but to choose one item among several [63].  Contrary to the first case where 

the subject has to modulate EEG rhythms in a spontaneous way, in this last type of 

interface the evoked potentials are created by stimulations of the interface on the user, 

this strong dependence between stimulations and interface explains the term 

synchronised interfaces used. 

It is thus possible starting from the two examples of EEG signals presented to 

distinguish two types of BCI:   

· synchronous interfaces based on evoked potentials;  
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· asynchronous interfaces based on EEG signals obtained in a spontaneous way 

by the subject, the sensorimotor rhythms being the most usually kind of EEG 

signals used in this type of interface. 

Each one of these two approaches present performances, advantages and 

disadvantages which will be presented in the following paragraphs.   

Asynchronous BCI  

Some asynchronous BCI use slow cortical potentials (SCP) corresponding to shifts of 

the mean potential measured on the cortex. Relatively long recording times (several 

seconds) are required before being able to discriminate between a positive and a 

negative shift of these potentials. A negative shift of the cortical potentials is 

associated to a significant cortical activity (imagination of movements or mental 

tasks) while a positive shift corresponds to a reduced activity.  The main advantage of 

the use of SCP is the relative simplicity of the processing of these EEG signals, 

requiring only filtering and artefacts corrections.  The major disadvantage is related to 

the need for more or less long training before the user is able to control the interface 

with an acceptable accuracy.  The most well known application using SCP is the TTD 

developed at the University of Tübingen in Germany [64].  From this TTD, an 

internet navigator called NESSI was developed [65].   

Another kind of asynchronous interface can be obtained from the processing of 

sensorimotor rhythms Mu and Beta associated to the imagination of the movements of 

the right and left arms or hand for example. The interfaces built from sensorimotor 

rhythms use mainly cursor displacement on the screen controlled by the magnitude of 

Mu and Beta waves associated to the cerebral activity in the sensorimotor cortex. The 

Mu waves frequency range is between 8 and 12 Hz and the Beta waves frequency 

range is between 18 to 26 Hz. These waves present interesting properties for BCI 
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because they are associated to region of the cortex directly connected to the control of 

motor activity. Any preparation of a movement accomplished or imagined by the right 

arm or hand, respectively left, result in a decrease of the amplitude of these Mu and 

Beta waves detected on the left hemisphere, respectively right, of the sensorimotor 

cortex.  This decrease of amplitude of the Mu and Beta rhythms is due to the 

desynchronisation  of neuronal activity in the sensorimotor cortex of the hemisphere 

opposed to the requested arm or hand, this phenomenon is called ERD for Event 

Related Desynchronisation [66]. The change in amplitude or energy contained in the 

Mu and Beta bands is the feature that must be extracted from EEG signals. This one 

can thus be quite simply obtained by estimating the energy of the signals obtained by 

two band pass filters, one covering the Mu band and the other the Beta band [66].   

Another procedure consists in making an autoregressive frequential analysis in an 

adaptive way in order to extract relevant parameters continuously with a greater speed 

[67]. After this step of feature extraction, classification is generally necessary to 

discriminate between the two classes (right-hand side or left) starting from the 

parameters which it was possible to extract from the signals.  Studies showed the good 

robustness of the linear discriminating analysis in this type of study [68].   

A continuous value is obtained from classification, and from this value, it is possible 

to control the interface in real time. The interface is thus controlled in a continuous 

way, allowing applications like the displacement of a cursor or an object on a screen. 

Several alternative communication interfaces use this approach to carry out the 

selection of item by controlling the displacement of a cursor towards the target 

corresponding to the choice of the subject [69-70]. A continuous control is even much 

more important in applications where the subject must control prosthesis or the 

displacement of his wheelchair [71-72]. These applications require, in addition to 
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continuous control, a good accuracy which is generally the case for BCI based on 

sensorimotor activity.   

Another advantage of the use of the Mu and Beta rhythms comes from the relatively 

good localization of them on the cortex, which makes it possible to consider 

applications based on only 2 EEG sensors [73].   

However the major disadvantage of asynchronous BCI like those based on the 

sensorimotor activity is the need for relatively long training sessions before being able 

to control the interface accurately. 

Insofar as these brain computer interfaces short-circuit the defective transmission of 

information between the brain and the muscles, it is possible to imagine building 

interfaces ensuring a faster transmission and thus acceleration in the execution of 

orders of the brain.  However, in practice, it is for the moment difficult to obtain 

higher performances in term of speed and reliability of transmission starting from 

brain computer interfaces. Experiments comparing  times of positioning  one cursor 

on the screen of a computer starting from a joystick and starting from the EEG signals 

coming from the sensorimotor cortex show the advantage in term of speed and 

accuracy of the use of the joystick [74]. Results of works on brain computer interfaces 

based on sensorimotor EEG signals show the very strong variability of the 

performances  as one of the main difficulty to overcome [75].  Indeed whatever the 

measures (EEG or ECoG), the methods of analysis of the signals, the studied subjects, 

it always remains a significant problem of performances reproducibility.  The origin 

of this problem is still difficult to define, for some researchers it is not due to the 

methods of measurements and analysis, in spite of the progress obtained following 

many works during the 20 last years, but more surely due to the higher difficulty for 

someone to control his EEG signals coming from the sensorimotor cortex than to 
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control his muscles [75]. Relatively long training sessions are necessary to control 

EEG signals, this training being done by a visual feedback of the tasks carried out on 

the screen of the computer. Nevertheless it remains difficult, including for the most 

gifted subjects, to reproduce with the same reliability and the same speed of the 

actions carried out by our muscles starting from the control of our cerebral activity in 

the sensorimotor cortex. 

Synchronous BCI  

In this type of interface, EEG signals used are not created in a spontaneous way by the 

user but are synchronised on stimulations sent by the interface. These stimulations are 

generally visual and more rarely auditory, and EEG signals are generally called 

evoked potential. Among the evoked potentials, those which are generally used to 

build a BCI are the SSVEP and P300.   

The wave P300 corresponds to a short positive deflection of the EEG signal which 

appears 300 ms after a rare and awaited stimulation within a great number of 

stimulations [76]. A well known experimental design used to obtain this P300, is 

referred to as the oddball paradigm [77].  A communication interface based on this 

paradigm, which makes it possible to select letters of the alphabet to spell words, is 

called P300 speller [78]. This P300 speller is generally formed by a 6x6 matrix 

containing 36 items (letters, numbers or characters) which it is possible to select. The 

experimental procedure consists in flashing successively each line and each column in 

a random way.  The selection of one item is carried out by the detection of the P300 

which will appear in response to an awaited stimulation which is the flashing of the 

line or the column containing the desired choice. These awaited stimulations are rare 

(2) since they appear in a random way among the succession of the flashing of each 

line and each column of the matrix (12:  6 lines and 6 columns). The detection of the 
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P300 is generally made by carrying out averages on a great number of stimulations, 

because these waves have very low amplitudes if one compares them with 

sensorimotor rhythms for example. Another difficulty to detect these P300 quickly 

lies in the fact that they are not as well localized as sensorimotor rhythms on the 

cortex, it exists indeed several cortical centres of the wave P300 [76]. The minimum 

number of electrodes to be used in the case of an interface containing P300 will be 

thus a priori higher than that necessary for a BCI based on sensorimotor rhythms. 

In spite of the difficulty of measurement and analysis of the P300, many BCI based on 

this type of wave were made, P300 speller being most known [79-80].  The major 

advantage of this type of interface lies in the absence of training necessary to the 

subject to control EEG signals since those are stimulated by the interface. 

Nevertheless, offline analysis of training session is generally needed in order to 

optimize the algorithms used to process the P300 which enormously vary from one 

person to another but also on the same subject according to its state of tiredness. The 

adaptation effort is thus deferred subject towards the software.   

Performances records in term of speed thus could be carried out on P300 speller [81]. 

In best case, the time needed to select a choice is of the same order of magnitude as 

that necessary to a subject having to move a cursor on a precise place of the screen 

with a mouse. These results let consider the possibility of fast information 

transmission through BCI systems. Nevertheless studies on the reproducibility and the 

reliability of these types of communication systems must be done, because the 

significant effort of concentration that is requested from the user involves rather 

quickly a tiredness of this one. Recently a commercial BCI became available: the 

Intendix® [82] is a typing device that uses visual evoked potentials running over a 

non-dedicated personal computer. 
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The other evoked potential often used for BCI is the visual evoked potential and in 

particular the SSVEP. This evoked potential is recorded on the visual cortex in the 

occipital lobe.  Contrary to P300, this evoked potential being better localised on the 

cortex, only 2 or 3 electrodes are necessary. The stimulation which allows the 

appearance of a SSVEP is induced by a flickering at a frequency higher than 6 Hz 

present on the target which the subject must gaze [83]. It is thus possible to build an 

interface containing different items which one associates different frequencies of 

flickering; the detection of item is carried out by a spectral analysis of the EEG 

signals which must reveal the frequency of the target that the subject gazed. The 

number of target may be from 4 to 48, the range of the frequencies usable from 6 to 

24 Hz and the resolution given for these SSVEP is of 0.2 Hz [83]. The use of SSVEP 

makes it possible to obtain information  transfer rate of 46bits/min with an accuracy 

of 95% [84].  Just like P300 speller, this type of interface requires an increased 

concentration of the subject, which lets predict a significant tiredness for the user. 

Considerations about synchronous and asynchronous BCIs  

The use of cognitive evoked potentials appears to be very interesting to make 

communication interfaces for people with severe disability; the principal reason is the 

absence of training requested from the subject. However, a lot of concentration for the 

subject and relatively powerful measure and processing systems are necessary; this 

can explain why no low cost synchronised BCI has been developed. On the other 

hand, there are systems at more accessible prices which use and treat sensorimotor 

EEG signals for bio-feedback or video games. Another interest of the use of the 

sensorimotor rhythms lies in the possibility of continuously control; moreover the 

systems having an asynchronous control are used in a more natural way by the 

subjects.   
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The debate on the choice of the type of interface (synchronous or asynchronous) is not 

closed; each approach has its advantages and its disadvantages. Significant work is 

still necessary as well for efficient measure and process systems as for adaptation of 

interfaces to the severe disabilities in order to democratise BCI systems. To federate 

and encourage the realization of BCI, various co-operative platforms allow exchange 

and mutualisation of drivers for measurement systems, signal processing for feature 

extraction and classification, standard interfaces design. In France, the INRIA 

developed in partnership with the INSERM and France Telecom R&D the OpenVIBE 

project [85] which gives access to many software tools for the design of a BCI. In 

United States, a project called BCI2000 [86] also gives the possibility to reach tools to 

develop a BCI.  

Performance evaluation  
As we saw above, a broad range of human-machine interfaces is available in the 

laboratories or in the trade making it possible to a person with disability to control a 

communication and environment control assistive device. An essential difficulty 

which arises then is the choice of the best interface for a given person. This problem is 

all the more complex here that the users concerned have physical and cognitive 

characteristics diverses. Thoughts on the evaluation of these characteristics to 

contribute to the choice of the assistive device were carried out of long standing [87]. 

However an evaluation of performance in this context cannot generally dissociate the 

sensor and the user. Thus we are brought to assess the human-machine system in 

particular by means of interaction models or of models of the user associated with a 

model of the task as in [88]. The objective in the particular case of assistive 

communication is to maximize the flow of information while minimizing the physical 

and mental workload of the user [89]. In what follows we shall review the methods 
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reported in the literature aiming at measuring the performances of alternative 

communication systems by distinguishing two cases: use or not of human-machine 

interaction models.  

Measurements of performance without interaction model  

A measurement of performance may be deduced of an experimentation concerning a 

panel of users with disability, generally compared with a pilot panel made up of 

people without disability. The question which arises here is the choice of the criteria 

of performance. Thus to evaluate a tilt sensor intended to emulate a mouse, Chen 

chooses to measure the accuracy of the pointing, this in a binary way (selections 

successful or not), as well as the time of realization of the task [90]. These two same 

parameters, action time and missed selections, are also adopted by Junker et al. for the 

evaluation of Cyberlink, a human-machine interface using simultaneously EMG and 

EEG  signals [2]. In [91] the authors developed a pointing device (IPDA: Integrated 

Pointed Device Aparatus) intended for people with tetraplegia, which assigns the 

pointing and clicking functions of a mouse to different devices and different body 

parts. The criterion selected to measure its performance, named OE (Operational 

Efficiency), is defined like the reverse of the task completion time.  

In some situations, it is possible to relate a level of motor deficit with the most 

suitable input sensors. Thus, for people with high-level spinal cord injuries, Bates 

listed the plausible interface sensors according to the level of the injury classically 

denoted as Cn, n numbering the cervical branch [92]. For example, an eye tracker 

device or tongue controlled switches would be candidates for being used for a C1 

spinal cord injury level. A chin joystick or shoulders switches could be selected from 

C3 to C5 whereas the use of EMG signals could be recommended from C1 to C8 by 

choosing the most suitable muscles.  
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In [93] the authors assess the ergonomics of an alternative mouse based on EMG 

signals collected on the Frontal, Masseter and Trapezius muscles. The objective is, at 

the same time, to evaluate the ergonomics of the EMG interface and to carry out a 

comparison between these muscular zones as control inputs. The measurement of 

performance uses questionnaires and some ergonomic criteria defined for a pointing 

task: time to reach a target from the previous one, numbers of mouse clicks before 

reaching a target and number of clicks on the wrong button.  Criteria of selection 

errors and movement times are also used by Chin et al. to evaluate a pointing task in 

order to compare an EMG interface and an eye-gaze tracking interface [22].  

The information theory initially developed for signals transmission in 

telecommunication [94] is often used to evaluate the human-machine or machine-

human transmission channel. It is in particular the case in the field of brain-computer 

interfaces. The recognition of control information in EEG signals being disturbed with 

errors, we can define an “Information Transfer Rate” (ITR) by analogy with the 

capacity of a noisy transmission channel [95-96]. If each item target among N has the 

same probability p of being selected without error, we are in the case of a symmetrical 

channel with N symbols whose capacity is given by: 
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This in particular makes it possible to choose, p being given, an optimal number N of 

targets to be proposed to the user, i.e. which maximizes C [95]. If we multiply this 

parameter by the number of commands per second m, we obtain the bandwidth (or 

“throughput”) TP of a given interface [97]:  
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Tonet et al. associate to the “throughput” a second parameter, the “latency”, defined 

as the time between the moment when a command is initiated and the moment when 

its effects start. They thus link the performance of a control interface to the needs of 

the assistive device [97]. The “Information Transfer Rate” can also be applied to 

human-machine interfaces based on switch sensors. Thus Huo et al. uses it as criterion 

of performance for the evaluation of a wireless magneto-inductive sensor controlled 

by the tongue [98]. The tests relate to a mouse emulation task and show an ITR of 

130, superior to that of the BCI interface described by Wolpaw [99] and also to those 

of other tongue-computer interfaces.  

Let us finally note that quantitative performance criteria are not always convenient 

during an evaluation on a panel of people with disability. Thus Betke and al. measure 

a completion time to compare a task of text selection on a virtual keyboard using a 

mouse and then a "camera mouse" (device allowing to carry out a visual tracking of a 

body feature), this on a panel of people without disability [100]. On the other hand, 

for their experiments on users with disability, they are satisfied with qualitative data.  

Measurements of performance with interaction models 

Direct communication 

As regards modelling in the field of assistive technology the majority of the studies 

reported in the literature aim at adapting to people with disabilities a model initially 

defined for people without disability. Koester and Levine, for example, modelled  the 

user performance for a text entry task with words prediction using a direct control of 

the keyboard with a headstick [101]. To the usual parameter "Keystroke Saving" (the 

number of keystrokes saved thanks to  the words prediction), which reflects only the 

motor component of the user activity, the authors substitute a cognitive component 

with a two parameters model, "Keypress Time" and "List Search Time" derived from 
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the KLM model (Keystroke Level Model) [102]. The experiments carried out starting 

from this model enable them to conclude that the time saved thanks to the keystroke 

saving is partly compensated by the time wasted to scan for the adequate word in the 

proposed list.  

Sanger and Henderson model the human-machine interaction in the case of an 

assistive communication device made up of a touch screen [103]. The objective is to 

optimize the communication rate (IR) according to the number b of items 

simultaneously on the screen, of the size w of the icons and of the average number m 

of items to select to reach a vocabulary element. They define IR for that by:  
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The entropy, according to the information theory, is the average value of  –p(x).log2 

p(x), x being a vocabulary element and p(x) its probability to be selected. TT(w, b, m) 

is the time necessary to select one item. It is divided in an action time MT, and a time 

RT for the choice of the item. RT may be given by the Hicks’ law which depends on 

the logarithm of the number b of possible choices [104]. The authors prefer here to 

use a linear law to take account of the imperfect knowledge of the interface by the 

users.  The action time MT is modelled classically by the Fitts’ law [105], frequently 

used in the analysis of pointing devices.   

Pointing Tasks 

The Fitts’ law defines that the response time is given by:  

IDbaMT ´+=       (4) 

Where the constants “a” and “b” are empirically determined and ID is the index of 

difficulty calculated in terms of the distance (D) between the starting point and the 

centre of the target and width (W) of the target:  
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Originally designed as a model of human psychomotor behaviour, such law leads to a 

performance measurement standardized and validated by many researchers, being 

actually used in the International Standard ISO 9241, Part 9: "Requirements for non-

keyboard input devices". The performance index is defined by IP = 1/b or, to combine 

the parameters “a” and “b” in only one metric, IP = ID/MT ("throughput" expressed in 

bits/s) [106]. It does not allow however a complete analysis of the pointing movement 

[107].  Thus to evaluate the performances of an EMG-based interface using the neck 

muscle EMG signals as well as a head orientation sensor, Williams and Kirsch 

associate the “throughput” parameter of the Fitts’ law to other indicators allowing to 

analyze more precisely the quality of movement  [26]: initial reaction time, 

effectiveness of the path (variation between the path carried out and the straight line), 

overshoot (the number of occurrences of the cursor reaching the target then leaving it 

before the end of the dwell time), mean velocity and direction ratio (evaluation of the 

capacity of the subject to move the cursor in diagonal compared to horizontal or 

vertical movements).  

Lopresti et al. undertook a study aiming at analyzing if neck movement limitations 

imply a reduction of performance during the use of a head control sensor [108]. They 

note in particular that, for a pointing task with this interface, their panel of people 

without disability satisfied to the Fitts’ law contrary to the group of 10 people with 

disabilities (6 with multiple sclerosis, 3 with sustained cervical, 1 with spinal 

stenosis). They are then brought to model the performance of these people by more 

precisely analyzing the movement according to 3 phases:  

· the reaction phase where the person perceives the goal and initiates the 

movement: the subjects with disabilities have average reaction times longer 
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than the subjects without disability; 

· The ballistic phase corresponding to the fast movement towards the target: the 

motor difficulties of the subjects with disabilities result in the presence of 

several peaks in the profile speed whereas we note only one peak for the 

subjects without disability; 

· The homing phase where the movement is slowed down and controlled better 

to position on the target. As in the reaction phase the time passed in this phase 

by the people with disabilities is longer on average than that passed by the 

people without disability; 

To evaluate the performances of an algorithm of adaptive adjustment of head 

movement sensors sensitivity, these same authors measure three parameters: the 

accuracy (proportion of icons selected successfully during their experiments on a 

pointing task), the “throughput” ID/MT and the overshoot (relationship between the 

distance covered after having exceeded the target and the distance to the target) [109].  

In a similar way Tanimoto et al. present an analysis software of the pointing 

movement which draws the trajectory of the cursor on the screen [110]. For people 

with tetraplegia they note that this trajectory does not follow a " Fitts’ configuration» 

but is punctuated with stopping periods. Then they characterize it by parameters like 

the time in the stopping period before the click or the times during the moving and 

positioning phases, quite similar in their definitions to the ballistic and homing phases 

described above, as well as the distances covered, the velocities and the stopping 

times during these two phases.  

The Fitts’ law, usually used to analyze and evaluate the performances of the pointing 

tasks, is not verified for some persons with disabilities. Thus Gump et al., after an 

experimentation relating to 8 subjects with cerebral palsy, conclude that for a majority 
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of these subjects the movement time MT is better represented by a ballistic law 

(function of the square root of the distance to the target) that by the Fitts’ law [111]. 

The authors explain this by the oculomotor difficulties of the subjects. These 

conclusions are however partly contradicted in [112]. Here, for the same type of 

subjects as previously, the authors choose to carry out their experiments on a very 

simple manual pointing task to be free from cognitive problems which might affect 

the movement accuracy. This time the Fitts’ law is checked in spite of the significant 

motor difficulties of the subjects.  

Felton et al. [113] successfully used the Fitts’ to the evaluation of performance on a 

target acquisition task during sensorimotor rhythm-based BCI training. The 

participants in the study were both disable and able bodied volunteers but with the 

inclusion criteria of consistent target acquisition task accuracy exceeding 80%, 

justified by the fact that the Fitts’ law emphasizes time over accuracy. However, a few 

researches may find that the accuracy should be taken in account in the general 

evaluation of pointing tasks systems, especially in the case of BCI systems that may 

present great performance variation within the same session. 

Gajos et al. describe a Supple++ software which generates user interfaces 

automatically adapted to the motor capacities of the person [114]. Observing that the 

Fitts’ law is not always checked for people with disabilities, they propose to model the 

pointing task in a personalized way. They try for that, for each user, the possible 

combinations of 7 parameters: a constant term, the index of difficulty ID = log2 (1 + 

D/W) of the Fitts’ law (with D the distance to be crossed and W the width of the 

target), log2 (W), log2 (D), W, 1/W and D.  
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Scanning systems 

The scanning systems controlled by adapted switches, only method usable for many 

people with severe disability, generate an intrinsically slow communication (about 1 

to 2 words per minute). It is thus necessary to optimize the communication rate and 

this in a personalized way in order to adapt to the great diversity of the physical and 

cognitive capacities of the users concerned. The parameters which we can adjust for 

this purpose are summarized by the model initially defined by Rosen and 

Goodenough-Trepagnier giving the average time T necessary to select a word [115-

116]: 

tLCT ´´=      (6) 

Where C is the linguistic cost (the average number of language units per word), 

function of the selected language (alphabetical, phonemes, etc). L is the average 

number of actions to select a language unit and t is the average time per action. This 

model initially developed for direct communication devices has been extended to the 

scanning systems by Damper [117]. The product L.t is then a function of the type of 

scanning, of the geometrical structure of the matrix of items and of the elementary 

scanning delay. This study does the assumption that, after each selection of item, the 

scan starts again at the beginning of the matrix. Bhattacharya then extends the model 

to scannings starting from the selected item [118]. In addition to the probability of 

selection of each item ki, it is necessary in this case to use that of the digraphs (ki, kj). 

Moreover, if we want that the performances calculated with the ideal models 

correspond to those measured in practice, it is necessary to take account of the 

selection errors which can be numerous with users with severe disabilities. In [119] it 

is proposed a users errors modelling by classifying them in two categories : timing 

errors (the user actuates the sensor too late) and selection errors (the user selects a 

wrong element (block, row or item)).  
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In the models evoked above, the user performance is reflected by the elementary 

scanning delay Tscan. This time is adjusted in an empirical way in the commercialized 

systems or in an adaptive way in some studies [1, 120]. The action on a switch 

following a visual stimulus (change of color or appearance of an item) may be 

modelled using the MHP model (Model Human Processor) initially developed by 

Card, Moran and Newell for computer tasks of low cognitive level (reaction to 

stimuli) [102]. It requires a time Tact = Tp + Tc + Tm where Tp, Tc and Tm are 

respectively the elementary perception, cognition and motor times. This model is used 

in [121] for the design of a simulator aiming at assessing the assistive communication 

devices. It is also the case in [118] but by adding an additional cognitive time 

following the study reported in [122]. Keates et al. indeed tested the applicability of 

the MHP model on a panel of people with disabilities for a simple task: the activation 

of an adapted switch in reaction to a visual stimulus. They noted, on the one hand, 

motor times on average higher than those measured on people without disability, and, 

on the other hand, the presence of an additional cognitive time compared to the 

theory, corresponding to the decision of releasing the sensor. In [123] it is also noted 

for the use of a scanning communication device that some persons with disabilities do 

not conform to the MHP model due to motor disorders (persons with cerebral palsy) 

or cognitive disorders (persons with cranial trauma). Finally, in [1], it is proposed an 

improvement of  the MHP model applied to scanning communication devices, the 

"three-zone behaviour model", which takes into account the fact that, very often, the 

user, accustomed to the scanning rate, starts to react before the visual stimulus 

appears. 
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Conclusions 
In the last 20 years, driven by technical advances and government initiatives, assistive 

devices aimed to AAC increased enormously in number and variety. Access to AAC 

equipments can be made by means of electrical biosignals, which control is possible 

even for people with severe motor impairments.  

The EMG signal has the advantage of almost instantaneous response, and with four 

muscles available it is possible to establish control over a cursor. At first, it may not 

be very intuitive to move a cursor using, for instance, facial muscles. As studies 

indicate, diagonal movements are usually executed by horizontal and vertical 

displacements, but with increasingly user ability during training. The major caveat of 

using muscles is the fatigue that may impede prolonged time of activity. The number 

of muscles available varies greatly among patients with motor impairments, leading to 

a vast amount of strategies on using the EMG signal. For users with severe motor 

impairments it is expected that few muscles can be explored and therefore limiting the 

applications to scanning systems or cursor control in an unnatural way, as explained 

before. One possible improvement in the future is to develop signal processing 

algorithms that allow more reliable progressive signals encoding during contractions, 

what could improve dramatically performance of EMG-based AAC systems. 

The use of the EEG signals has gone by intensive research over the last two decades 

and has proved to be effective for various applications, as indicated by Wolpaw [3]. 

The BCI systems present high performance variability and present technical problems 

that must receive special attention, such as contamination by EMG signals. 

Additionally, BCI systems are not indicated to everyone, as there are people incapable 

of efficiently modulate brain waves. But since the head is the last site to suffer 

degradation in cases of severe disability, its use should be considered in extreme 

motor impairment conditions. 
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The EOG signal has two advantages displayed by the two previous biosignals. As the 

EEG signal, the ability of a person to control biological process associated with the 

EOG signal is preserved even in extreme situations of motor impairment; and similar 

to the EMG signal, the EOG signal presents low response time. One of the 

applications of the EOG signal is cursor control task, although is generally deprecated 

when compared to gaze-based systems, that also use eye motion but spare the user the 

necessity of using electrodes attached to the skin. In fact, this last disadvantage is 

shared with the use of EEG and EMG signals, demanding proper skin preparation and 

electrodes placement, in what concerns position and possibly orientation. Dry 

electrodes adoption is an option, with electrical characteristics meeting the needs for 

recording electrical biosignal suitable to signal processing tools currently in use. The 

mechanical characteristics in the other hand, present the problem of higher mass when 

compared to gelled electrodes given the presence of pre-amplifier circuitry due to 

high electrode-skin impedance. 

The choice of the ideal solution for AAC is not trivial. It is well established that 

rehabilitation technologies deployment demands that each patient is analyzed 

individually. Unfortunately, there are few commercial devices available that explore 

electrical biosignals, and it is not probable that this picture is going to change in the 

short term. One of the reasons is the different degrees that the same condition (e.g. 

tetraplegia) afflicts different people, demanding not only user training but also user 

customization. For instance, in [124] the participant in a study for the deployment of a 

BCI was submitted to a functional magnetic resonance imaging (fMRI) to find the 

best sites to place electrodes. Beyond commercial approach, successfully adoption of 

the device depends on several factors, among them the caregiver ability to learn and 

personalize the new tool [125]. Therefore, it is necessary to close the gap between the 
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knowledge required by the caregivers and the system complexity during set-up, 

support and training.  

Other considerations include aesthetics, as a device aiming for communication is 

likely to be used during social circumstances. Also, when idealizing the system, it 

should be considered the user effort in the operation of a device that ideally should be 

used for several hours a day. Most of the studies however, are conducted with patients 

only in the Phase I clinical trials, with few sessions per week, proving only the 

technical viability to transform electrical biosignals into commands, but failing in 

providing insights about the device operation in daily basis. Finally, assistive devices 

should have an operation principle as simple as possible. Solutions such as presented 

in [20] with a single muscle controlling the cursor position in two axes does not seem 

to be very easy to operate. In this case, the system complexity moved towards the 

user, which was obligated to execute an apparently hard task to achieve a simple 

operation.  

According to the 1990 U.S Census Bureau’s National Health Interview Survey, about 

one-third of assistive devices not needed for survival are unused or abandoned just 3 

months after they were initially acquired [6]. Nevertheless, some efforts of the 

world’s scientific community for trying to change this paradigm and that are cited in 

this article, are synthesized in Table 1. 

If factors such as aesthetics are subjective, the quantitative analysis of an AAC system 

is an objective and vital step in the choice for a given patient. It was observed that for 

the same task, i.e. cursor control, different measures are taken, preventing effective 

comparison of different sensors. The Fitts’ law used to measure efficiency of pointing 

control device is a general accept method, and has even been used in the ISO 9241 
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norm for device evaluation, despite its adoption should be carefully analyzed as some 

solutions do not follow a “Fitts’ law” approach. 

Despite the situation people with severe motor impairments are found, several 

solutions for AAC are available, exploring last abilities remaining. For instance, one 

person with tetraplegia at the C2 level may present control only from the neck up. 

Even though, all of the three biosignals addressed in this article could be explored by 

this user. Besides the user capability of using a given system, other considerations 

should be made, such as ergonomics, and also performance. An optimal choice of the 

control interface of an assistive device supposes an individualized assessment of the 

human-machine interaction. For that it is often interesting to call upon models of 

human-machine performance. Those interesting in our context of study are defined for 

a task or a category of tasks, for example Fitts’ law for a pointing task, Hick’s law for 

a choice of alternatives, MHP model for the simple motor reaction to a visual or an 

auditory stimulus. When we call upon this type of models, well established for people 

without disability, it is however essential to verify that they are adapted to the motor, 

perceptive and cognitive capacities of the person with disability concerned. 

Competing interests 
The author(s) declare that they have no competing interests. 

Authors’ contribution 
PP analysed the study over sensors classification. CGP and AAO analysed current 

literature on use of EMG signals on alternative communication. ELN was responsible 

for the EOG section. EL carried out the analysis on EEG. GB was responsible for the 

section on performance methods. AAO and GB supervised, revised and gave the final 

approval of the manuscript. All authors read and approved the final manuscript.  



 -42- 

Acknowledgment 
The authors would like to thank the Brazilian and the French governments for 

supporting this study by mean of the Project CAPES/COFECUB n. 627/09. 

References 
1. Ghedira S, Pino P, Bourhis G: Conception and Experimentation of a 

Communication Device with Adaptive Scanning. ACM Trans Access Comput 

2009, 1:1-23. 

2. Junker A, Sudkamp T, Eachus T, Mikov T, Wegner J, Livick S, Heiman-Patterson T: 

Hands-free computer access for severely disabled. Brain Actuated Technologies 

Inc., Yellow Springs,2001. 

3. Barreto AB, Scargle SD, Adjouadi M: A practical EMG-based human-computer 
interface for users with motor disabilities. Journal of Rehabilitation Research and 

Development 2000, 37:53-64. 

4. Kim D, Agarwal AK, Delisle M, Tyler M, Beebe DJ: Geometric optimization of a 

tongue-operated switch array. In Annual International Conference of the IEEE 

Engineering in Medicine and Biology; 23 October 2002; Madison, WI, USA. 2002: 

2441-2442. 

5. Lee Y, Lee M: SMS Application Using EMG Signal of Clenching Teeth for e-
Health Communication. Telemedicine and e-Health 2008, 14:593-597. 

6. Enderle JD, Blanchard SM, Bronzino JD: Introduction to Biomedical Engineering 

second edn: Elsevier Academic Press 2005. 

7. Stashuk D: EMG signal decomposition: How can it be accomplished and used? 

Journal of Electromyography and Kinesiology 2001, 11:151-173. 

8. Trejo LJ, Wheeler KR, Jorgensen CC, Rosipal R, Clanton ST, Matthews B, Hibbs 

AD, Matthews R, Krupka M: Multimodal neuroelectric interface development. 
IEEE Transactions on Neural Systems and Rehabilitation Engineering 2003, 11:199-

204. 

9. Han J-S, Zenn Bien Z, Kim D-J, Lee H-E, Kim J-S, S. LR: Human-Machine 
Interface for wheelchair control with EMG and its Evaluation. In Engineering in 

Medicine and Biology Society Proceedings of the 25th Annual International 

Conference of the IEEE; 17-21 Sept. 2003; Daejeon, South Korea. 2003: 1602-1605. 

10. Choi C, Kim J: A real-time EMG-based assistive computer interface for the 
upper limb disabled. In Proceedings of the 2007 IEEE 10th International 

Conference on Rehabilitation Robotics; June 12-15; Noordwijk, The Netherlands. 

2007: 459-462. 

11. Wand M, Szu-Jou CS, Schultz T: Wavelet-based front-end for electromyographic 

speech recognition. In Proceedings of Interspeech, Interspeech 2007; August 27-31; 

Antwerp, Belgium. 2007: 686-689. 

12. Chin C, Barreto A: Neural control of the computer cursor based on spectral 

analysis of the electromyogram. In 2nd International IEEE EMBS Conference on 

Neural Engineering 2005; 16-19 March 2005; Arlington, USA. 2005: 446-449. 

13. Chin CA, Barreto A: Enhanced hybrid electromyogram / eye gaze tracking cursor 
control system for hands-free computer interaction. In Engineering in Medicine 

and Biology Society, 2006 EMBS '06 28th Annual International Conference of the 

IEEE; Aug. 30 2006-Sept. 3 2006; New York, USA. 2006: 2296-2299. 

14. Kumaran RS, Narayanan K, Gowdy JN: Myoelectric signals for multimodal speech 

recognition. In Proc Interspeech'2005 - Eurospeech; September 4-8, 2005; Lisbon, 

Portugal. 2005: 1189-1192. 



 -43- 

15. Bekinschtein TA, Coleman MR, III JN, Pickard JD, Manes FF: Can 

electromyography objectively detect voluntary movement in disorders of 
consciousness? J Neurol Neurosurg Psychiatry 2008, 79:826-828. 

16. Luna PS, Osorio E, Cardiel E, Hedz P-R: Communication aid for speech disabled 

people using Morse codification. In Proc 24th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society. 2002: 2434-2435. 

17. Patterson PE: Development of an inexpensive environmental remote control 

system for a quadriplegic individual. Biomedical Sciences Instrumentation 1995, 

31:275-280. 

18. Park H-J, Kwon S-H, Kim H-C, Park K-S: Adaptive EMG-driven communication 
for the disabled. In BMES/EMBS Conference; Atlanta, USA. 1999: 656. 

19. EMG Impulse system [www.ablenetinc.com] 

20. Perez-Maldonado C, Wexler AS, Joshi SS: Two-dimensional cursor-to-target 
control from single muscle site sEMG signals. IEEE Transactions on Neural 

Systems and Rehabilitation Engineering 2010, 18:203-209. 

21. Chin C, Barreto A, Zhai J, Li C, Y. L: New classification algorithm for 

electromyography-based computer cursor control system. In Proceedings IEEE 

SoutheastCon 2005; 8 April 2005 through 10 April 2005. 2005: 428-432. 

22. Chin CA, A. B, J.G. C, M. A: Integrated electromyogram and eyegaze tracking 

cursor control system for computer users with motor disabilities Journal of 

Rehabilitation Research and Development 2008, 45:161-174. 

23. Lyons EC, Barreto AB, Adjouadi M: Development of a hybrid hands-off human 
computer interface based on electromyogram signals and eye-gaze tracking. In 

Proceedings of the 23rd Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society; 25-28 October; Istanbul, Turkey. 2001: 1423-1426. 

24. Surakka V, Illi M, Isokoski P: Gazing and frowning as a new human--computer 

interaction technique. ACM Trans Appl Percept 2004, 1:40-56. 

25. Huang C-N, Chen C-H, Chung H-Y: Application of facial electromyography in 
computer mouse access for people with disabilities. Disability and Rehabilitation 

2006, 28:231-237. 

26. Williams MR, Kirsch RF: Evaluation of head orientation and neck muscle EMG 

signals as command inputs to a human-computer interface for individuals with 
high tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering 2008, 16:485-496. 

27. Chen Y-L, Kuo T-S, Chang WH, Lai J-S, D. EJ: A novel position sensors-
controlled computer mouse for the disabled. In Proceedings of the 22nd Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society; 

July 23-28 Chicago, USA. 2000: 2263-2266. 

28. Chang G-C, Kang W-J, Luh J-J, Cheng C-K, Lai J-S, Chen J-JJ, Kuo T-S: Real-time 

implementation of electromyogram pattern recognition as a control command of 
man-machine interface. Medical Engineering & Physics 1996, 18:529-537. 

29. Tarng Y-H, Chang G-C, Lai J-S, Kuo T-S: Design of the human/computer 
interface for human with disability - using myoelectric signal controlled. In Proc 

Annual International Conference of the IEEE Engineering in Medicine and Biology; 

30 October 1997 through 2 November 1997. 1997: 1909-1910. 

30. Moon I, Kim K, Ryu J, Mun M: Face direction-based human-computer interface 

using image observation and EMG signal for the disabled. In Proceedings of the 

IEEE International Conference on Robotics and Automation; September. 2003: 1515-

1520. 

31. Fukuda O, Arita J, Tsuji T: An EMG-controlled omnidirectional pointing device. 
Systems and Computers in Japan 2006, 37:55-63. 

32. Saponas TS, Tan DS, Morris D, Balakrishnan R, Turner J, Landay JA: Enabling 
always-available input with muscle-computer interfaces. In UIST '09: 22nd 

annual ACM symposium on User interface software and technology; New York, NY, 

USA. ACM; 2009: 167-176. 



 -44- 

33. Radwin RG, Vanderheiden GC, Lin M-L: A method for evaluating head-controlled 
computer input devices using Fitts' law. Human Factors 1990, 32:423-438. 

34. Hill FJ, McRae LP, McClellan RP: Speech Recognition as a Function of Channel 
Capacity in a Discrete Set of Channels. The Journal of the Acoustical Society of 

America 1968, 44:13-18. 

35. Stepp CE, Heaton JT, Rolland RG, Hillman RE: Neck and face surface 
electromyography for prosthetic voice control after total laryngectomy. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering 2009, 17:146-155. 

36. Hoit JD, Banzett RB, Lohmeier HL, Hixon TJ, Brown R: Clinical Ventilator 

Adjustments That Improve Speech. Chest 2003, 124:1512-1521. 

37. Denby B, Schultz T, Honda K, Hueber T, Gilbert JM, Brumberg JS: Silent speech 
interfaces. Speech Communication 2010, 52:270-287. 

38. Ki-Seung L: EMG-Based Speech Recognition Using Hidden Markov Models 
With Global Control Variables. IEEE Transactions on Biomedical Engineering 

2008, 55:930-940. 

39. Kumar S, Kumar DK, Alemu M, Burry M: EMG based voice recognition. In 

Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing 

Conference; 14-17 Dec. 2004. 2004: 593-597. 

40. Maier-Hein L, Metze F, Schultz T, Waibel A: Session independent non-audible 

speech recognition using surface electromyography. In Proceedings of IEEE 

Automatic Speech Recognition and Understanding Workshop; Costa Rica. 2005: 307-

312. 

41. Manabe H, Zhang Z: Multi-stream HMM for EMG-based speech recognition. In 

26th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society; 1-5 Sept. 2004; San Francisco, USA 2004: 4389-4392. 

42. Chan ADC, Englehart K, Hudgins B, Lovely DF: Myoelectric signals to augment 

speech recognition. Med Biol Eng Comput 2001, 39:500-504. 

43. Jou S-C, Schultz T, Walliczek M, Kraft F, Waibel A: Towards continuous speech 
recognition using surface electromyography. In Proceedings of INTERSPEECH - 

ICSLP; Sept. 17-21; Pittsburgh, USA. 2006: 573-576. 

44. Nöjd N, Hannula M, Narra N, Hyttinen J: Electrode position optimization for facial 

EMG measurements for human-computer interface. Methods of Information in 

Medicine 2008, 47:192-197. 

45. Doyle TE, Kucerovsky Z, Greason WD: Design of an electroocular computing 

interface. In Canadian Conference on Electrical and Computer Engineering; 7-10 

May 2006; Ottawa, Canada. 2006: 1458-1461. 

46. Lv Z, Wu X, Li M, Zhang C: Implementation of the EOG-based Human 
Computer Interface System. In 2nd International Conference on Bioinformatics and 

Biomedical Engineering, ICBBE; Shanghai. 2008: 2188-2191. 

47. Borghetti D, Bruni A, Fabbrini M, Murri L, Sartucci F: A low-cost interface for 
control of computer functions by means of eye movements. Computers in Biology 

and Medicine 2007, 37:1765-1770. 

48. Usakli AB, Gurkan S, Aloise F, Vecchiato G, Babiloni F: On the use of 

electrooculogram for efficient human computer interfaces. Computational 

Intelligence and Neuroscience 2009, Vol 2010 Article ID 135629, 135625 pages. 

49. Dhillon HS, Singla R, Rekhi NS, Jha R: EOG and EMG Based Virtual Keyboard: 

A Brain-Computer Interface. In 2nd IEEE International Conference on Computer 

Science and Information Technology, ICCSIT; Beijing. 2009: 259-262. 

50. Barea R, Boquete L, Mazo M, López E: Wheelchair guidance strategies using 
EOG. Journal of Intelligent and Robotic Systems: Theory and Applications 2002, 

34:279-299. 

51. Barea R, Boquete L, Mazo M, López E: System for assisted mobility using eye 
movements based on electrooculography. IEEE Transactions on Neural Systems 

and Rehabilitation Engineering 2002, 10:209-218. 



 -45- 

52. Kim K-H, Yoo J-K, Kim HK, Son W, Lee S-Y: A practical biosignal-based human 

interface applicable to the assistive systems for people with motor impairment. 
IEICE Transactions on Information and Systems 2006, E89-D:2644-2652. 

53. Kim Y, Doh N, Youm Y, Chung WK: Development of human-mobile 

communication system using electrooculogram signals. In Proceedings 

International Conference on Intelligent Robots and Systems; 29 Oct. - 3 Nov. 2001; 

Maui, USA. 2001: 2160-2165. 

54. Yagi T, Kuno Y, Koga K, Mukai T: Drifting and blinking compensation in electro-
oculography (EOG) eye-gaze interface. In IEEE International Conference on 

Systems, Man and Cybernetics, 2006 SMC '06 8 October 2006 through 11 October 

2006; Taipei, Taiwan. 2007: 3222-3226. 

55. Jacob RJK: Eye movement-based human-computer interaction techniques: 

Toward non-command interfaces. Advances in Human-Computer Interaction 1993, 

4:151-190. 

56. Yamagishi K, Hori J, Miyakawa M: Development of EOG-based communication 
system controlled by eight-directional eye movements. In Proceedings of the 28

th
 

IEEE EMBS Annual International Conference; Aug. 30 - Sept. 3, 2006; New York, 

USA. 2006: 2574-2577. 

57. Hori J, Sakano K, Saitoh Y: Development of communication supporting device 

controlled by eye movements and voluntary eye blink. In 26th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society; 

Sept. 1-5, 2004; San Francisco, USA. 2004: 4302-4305. 

58. Wu C-M, Huang K-G, Chang S-H, Hsu S-C, Lin C-G: EOG single switch morse 
code translate input device for individuals with the motor neuron disease. In 

TENCON'07- IEEE Region 10 Conference; 30 Oct. - 2 Nov. 2007. 2007: 1-4. 

59. Tsai J-Z, Lee C-K, Wu C-M, Wu J-J, Kao K-P: A feasibility study of an eye-writing 

system based on electro-oculography. Journal of Medical and Biological 

Engineering 2008, 28:39-46. 

60. Schalk G, et al.: Two-dimensional movement control using electrocorticographic 

signals in humans. Journal of Neural Engineering 2008, 5:75. 

61. Wolpaw JR, McFarland DJ: Control of a two-dimensional movement signal by a 

noninvasive brain-computer interface in humans. Proceedings of the National 

Academy of Sciences of the United States of America 2004, 101:17849-17854. 

62. Wolpaw J, McFarland D, Neat G, Forneris C: An EEG-based brain-computer 

interface for cursor control. Electroencephalography and clinical neurophysiology 

1991, 78:252-259. 

63. Farwell LA, Donchin E: Talking off the top of your head: toward a mental 
prothesis utilizing event-related brain potentials. Electroenceph clin Neurophysiol 

1988, 70:510-523. 

64. Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, 

Iversen I, Kotchoubey B, Neumann N, Flor H: The thought translation device 

(TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation 

Engineering 2000, 8:190-193. 

65. Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M, Bogdan M, 

Rosenstiel W, Birbaumer N: Nessi: An EEG-Controlled Web Browser for 
Severely Paralyzed Patients. Computational Intelligence and Neuroscience 2007, 

2007:5 pages. 

66. Pfurtscheller G, Silva FHLd: Event-related EEG/MEG synchronization and 

desynchronization: basic principles. Clin Neurophysiol 1999, 110:1842-1857. 

67. Schlögl A, Flotzinger D, Pfurtscheller G: Adaptive Autoregressive Modeling used 
for Single-Trial EEG Classification. Biomed Techn 1997, 42:162-167. 

68. Vidaurre C, Scherer R, Cabeza R, Schlögl A, Pfurtscheller G: Study of discriminant 
analysis applied to motor imagery bipolar data. Med Bio Eng Comput 2007, 

45:61-68. 



 -46- 

69. Blankertz B, Dornhege G, Krauledat M, Schröder M, Williamson J, Murray-Smith R, 

Müller K-R: The Berlin Brain-Computer Interface presents the novel mental 

typewriter Hex-o-Spell. In Proceedings of the 3rd International Brain-Computer 

Interface Workshop and Training Course; Verlag der Technischen Universität Graz 

2006: 108-109. 

70. Obermaier B, Müller G, Pfurtscheller G: 'Virtual Keyboard’ controlled by 
spontaneous EEG activity. IEEE Transactions on In Neural Systems and 

Rehabilitation Engineering 2003, 11:422-426. 

71. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R: EEG-based neuroprosthesis 

control: A step towards clinical practice. Neuroscience Letters 2005, 382:169-174. 

72. Millán J, Renkens F, Mourino J, Gerstner W: Non-Invasive Brain-Actuated 
Control of a Mobile Robot. In Proceedings of the 18th International Joint 

Conference on Artificial Intelligence; Acapulco, Mexico. 2003 

73. Bin L, Bo H, Xiaorong G, Shangkai G: Bipolar electrode selection for a motor 

imagery based brain-computer interface. J Neural Eng 2008, 5:342-349. 

74. Hochberg L, Serruya M, Friehs G, Mukand J, Saleh M, Caplan A, Branner A, Chen 

D, Penn R, Donoghue J: Neuronal ensemble control of prosthetic devices by a 
human with tetraplegia. Nature 2006, 442:164-171. 

75. Wolpaw J: Brain-computer interfaces as new brain output pathways. J Physiol 

2007, 579.3:613-619. 

76. Hansenne M: Le potentiel évoqué cognitif P300 (I): aspects théorique et 

psychobiologique. Neurophysiol Clin 2000, 30:191-210. 

77. Fabiani M, Gratton G, Karis D, Donchin E: Definition, identification, and 

reliability of measurement of the P300 component of the event-related brain 
potential. . Adv Psychophysiol 1987, 2:1-78. 

78. Vaughan T, McFarland D, Schalk G, Sellers E, Wolpaw J: Multichannel data from 

a brain-computer interface (BCI) speller using a P300 (i.e., oddball) protocol. 
Soc Neurosci Abs 2003. 

79. Piccione F, Giorgy F, Tonin P, Priftis K, Giove S, Silvoni S, Palmas G, Beverina F: 

P300-based brain computer interface: Reliability and performance in healthy 
and paralysed participants. Clinical Neurophysiology 2006, 117:531-537. 

80. Sellers E, Krusienski D, McFarland D, Vaughan T, Wolpaw J: A P300 event-related 

potential brain-computer interface (BCI): The effects of matrix size and inter 
stimulus interval on performance. Biological Psychology 2006, 73:242-252. 

81. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalon R, Gramatic FF, 

Edlinger G: How many people are able to control a P300-based brain-computer 

interface (BCI)? Neuroscience Letters 2009, 462:94-98. 

82. Personal EEG-based spelling system [http://www.intendix.com/] 

83. Gao X, Xu D, Cheng M, Gao S: A BCI-based environmental controller for the 

motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering 2003, 11:137-140. 

84. Jia C, Xu H, Hong B, Gao X, Zhang Z, Gao S: A Human Computer Interface 
Using SSVEP-Based BCI Technology. Lecture Notes in Computer Science 2007, 

4565/2007:113-119. 

85. Arrouët C, Congedo M, Marvie J-E, Lamarche F, Lécuyer A, Arnaldi B: Open-
ViBE: A Three Dimensional Platform for Real-Time Neuroscience. Journal of 

Neurotherapy 2005, 9:3-25. 

86. Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J: BCI2000: A 

General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on 

biomedical engineering 2004, 51:1034-1043. 

87. Rosen MJ, Goodenough-Trepagnier C: The Tufts-MIT prescription guide: 

assessment of users to predict the suitability of augmentative communication 
devices. Assistive Technology 1989, 1:51-61. 



 -47- 

88. Biswas P, Samanta D: Friend : a communication aid for persons with disabilities. 
IEEE Transactions on neural systems and rehabilitation engineering 2008, 16:205-

209. 

89. Abascal J: Users with disabilities: maximum control with minimum effort. 

AMDO2008 2008:449-456. 

90. Chen Y: Application of tilt sensors in human-computer mouse interface for 
people with disabilities. IEEE Transactions on neural systems and rehabilitation 

engineering 2001, 9:289-294. 

91. Chen HC, al. e: Pointing device usage guidelines for people with quadriplegia : a 

simulation and validation study utilizing an integrated pointing device 
apparatus. IEEE Transactions on neural systems and rehabilitation engineering 

2009, 17 279-286. 

92. Bates R: A Computer Input Device Selection Methodology for Users with High-
Level Spinal Cord Injuries. In Proceedings of the 1st Cambridge Workshop on 

Universal Access and Assistive Technology (CWUAAT); 25th-27th March; Trinity 

Hall, University of Cambridge. 2002 

93. Belda-lois, al. e: Ergonomic assesment of an alternative PC mouse system based 
on EMG. Technology and disability 2006, 18:117-125. 

94. Shannon CE: A Mathematical Theory of Communication. Bell System Technical 

Journal 1948, 27:379-423 and 623-656. 

95. Wolpaw JR, Ramoser H, McFarland DJ, Pfurtscheller G: EEG-based 

communication : improved accuracy by response verification. IEEE Transactions 

on neural systems and rehabilitation engineering 1998, 6:326-333. 

96. Obermaier B, Neuper C, Guger C: Information transfer rate in a five-classes 

brain-computer interface. IEEE Transactions on neural systems and rehabilitation 

engineering 2001, 9:283-288. 

97. Tonet O, al e: Defining brain-machine interface applications by matching 
interface performance with device requirements. Journal of neuroscience methods 

2008, 167:91-104. 

98. Huo X, Wang J, Ghovanloo M: A magneto-inductive sensor based wireless 
tongue-computer interface. IEEE transactions on neural systems and rehabilitation 

engineering 2008, 16:497-503. 

99. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain-
computer interfaces for communication and control. Clinical Neurophysiology 

2002, 113:767-791. 

100. Betke M, Gips J, Fleming P: The Camera Mouse: Visual tracking of body features 

to provide computer access for people with severe disabilities. IEEE Transactions 

on Neural Systems and Rehabilitation Engineering 2002, 10:1-10. 

101. Koester H, Levine S: Modeling the speed of text entry with a word prediction 

interface. IEEE Transactions on rehabilitation engineering 1994, 2:177-187. 

102. Card SK, Moran TP, Newell A: The Psychology of Human-Computer Interaction. 

Hillsdale, NJ (USA): Lawrence Erlbaum Associates; 1983. 

103. Sanger TD, Henderson J: Optimizing assisted communication devices for children 

with motor impairments using a model of information rate and channel capacity. 
IEEE Transactions on neural systems and rehabilitation engineering 2007, 15:458-

468. 

104. Hick WE: On the rate of gain of information. Quarterly Journal of Experimental 

Psychology 1952, 4:11-26. 

105. Fitts PM: The information capacity of the human motor system in controlling the 
amplitude of movements. Journal of experimental psychology 1954, 47:381-391. 

106. Zhai S: On the validity of throughput as a characteristic of computer input. 

Almaden Research Center, San Jose, California,2002. 

107. MacKenzie IS, Kauppinen T, Silfverberg M: Accuracy measures for evaluating 

computer pointing devices. In Proceedings of the ACM conference on human 

factors in computing systems, CHI2001. 2001: 9-16. 



 -48- 

108. Lopresti EF, Brienza DM, Angelo J: Neck range of motion and use of computer 
head controls. Journal of Rehabilitation Research and Development 2003, 40:199-

212. 

109. Lopresti EF, Brienza DM: Adaptive software for head-operated computer 

controls. IEEE Transactions on neural systems and rehabilitation engineering 2004, 

10:102-111. 

110. Tanimoto Y, al. e: Imaging of computer input ability for patient with tetraplegia. 

IEEE Transactions on instrumentation and measurement 2006, 55:1953-1958. 

111. Gump A, LeGare M, Hunt DL: Application of Fitts’law to individuals with 

cerebral palsy. Perceptual and Motor Skills 2002, 94. 

112. Smits-Englesman BCM, Rameckers EAA: Children with congenital spastic 
hemiplegia obey Fitts’law in a visually guided tapping task. Exp Brain Research 

2007, 177:431-439. 

113. Felton EA, Radwin RG, Wilson JA, Williams JC: Evaluation of a modified Fitts 

law brain-computer interface target acquisition task in able and motor disabled 
individuals. Journal of Neural Engineering 2009, 6. 

114. Gajos KZ, Wobbrock JO, Weld DS: Automatically generating interfaces adapted 
to user’s motor and vision capabilities. In Proceedings of the 20th annual ACM 

symposium on User interface software and technology; Newport, Rhode Island, USA. 

2007: 231-240. 

115. Rosen MJ, Goodenough-Trepagnier C: Factors affecting communication rate in 

non-vocal communication systems. In Proceedings of the 4
th
 annual conference on 

rehabilitation engineering; Washington DC. 1981: 194-196. 

116. Levine S, Goodenough-Trepagnier C: Customised text entry devices for motor-

impaired users. Applied ergonomics 1990, 21.1:55-62. 

117. Damper RI: Text composition by the physically disabled: a rate prediction model 

for scanning input. Applied ergonomics 1984, 15.4:289-296. 

118. Bhattacharya S, Samanta D, Basu A: Performance models for automatic 
evaluation of virtual scanning keyboards. IEEE Transactions on neural systems 

and rehabilitation engineering 2008, 16:510-519. 

119. Bhattacharya S, Basu A, Samanta D: Computanional modelling of user errors for 

the design of virtual scanning keyboards. IEEE Transactions on neural systems 

and rehabilitation engineering 2008, 16:400-409. 

120. Simpson RC, Koester HH, Lopresti E: Evaluation of an adaptative row/column 

scanning system. Technology and disability 2006, 18:127-138. 

121. Biswas P, Robinson P: Performance comparison of different scanning systems 

using a simulator. In Proceedings of the 9th European Conference for the 

Advancement of the Assistive Technologies in Europe AAATE’07. 2007: 873-877. 

122. Keates S, Clarkson J, Robinson P: Investigating the applicability of user models 

for motion-impaired users. In Proceedings of the fourth international ACM 

Conference on Assistive Technologies; Arlington, Virginia, United States. 2000: 129-

136. 

123. Bourhis G, Pino P, Dumas C, Biard N, Stoll F: Modelisation of "the person with 

disabilities - aid to communication" system: some experimental results. AMSE 

Periodicals, Modelling C 2004 2004, 65:121-130. 

124. Brumberg JS, Kennedy PR, Guenther FH: Artificial speech synthesizer control by 

brain-computer interface. In 10th Annual Conference of the International Speech 

Communication Association, INTERSPEECH 2009; Brighton. 2009: 636-639. 

125. Kintsch A, Depaula R: A framework for the adoption of Assistive Technology. In 

ASSETS 2002. 2002: 1-10. 

 

 



 -49- 

Tables 

Table 1 - Summary of methods suitable for alternative communication. 

Method based 

system 

Reference Description / Application 

[1] Switch device controls scan-based system 

[17] Morse code-based system controlled by sip-

and-puff device. 

[27] Head motion detected by a motion sensor 

allows the user to control a cursor on the 

screen. Click and double click was 

performed by the user inflating the cheek 

and touching the switches. 

Mechanical 

[90] Tilt sensors for cursor control. 

[9] Device control such as wheelchairs, 

indicating the possibility of being used for 

AAC purposes. 

[11, 38-41,43]  Recorded from vocal articulation muscles, 

EMG signal features are used in the task of 

speech recognition. 

[19] EMG offers switch-based control signal 

used in a scanning system. 

[18] Morse code-based systems. 

EMG 

[20, 25, 28, 29, 93] Cursor control / pointing device established 

by EMG signals recorded from muscles that 

can be controlled by people with tetraplegia 

at the C4 level. 

[47-48] A system for writing in an alphanumeric 

matrix based on two EOG channels 

(vertical and horizontal) 

[54, 56-57] Cursor control by eye movement direction. 

[58] Eye movements are translated to Morse 

code symbols to issue command messages.  

EOG 

[59] Sequences of eye movements are associated 

to symbols (10 Arabic numerals and 4 

arithmetic operators). 

[8, 62] EEG (Mu and Beta rhythms) operate a 1D 

graphic device. 

[63-65,69-70,78-80, 

82] 

Language support controlling spelling 

systems. 

[74] Cursor control using spike activities 

detected by implanted electrodes 

EEG  

[71-72, 83-84] Device control such as appliances or a 

wheelchair, indicating the possibility of 

being used for AAC purposes 
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[2] Both EEG and EMG signals are applied to 

cursor control, including click. 

[3, 12, 21] EMG signals from facial muscles are used 

to control a cursor in 2D. The EEG signal 

acts as an ON/OFF switch. 

[100] Using a camera, the system tracks the 

computer user’s movements to control the 

cursor on the screen. 

[13, 22-23] EOG signals define the absolute cursor 

position on the screen and EMG signals are 

used for small displacements. 

[14, 42] EMG signals from muscles of vocal 

articulation are used to complement audio 

signals information in the task of speech 

recognition. 

[24] Cursor control system with the position 

controlled by gaze and the object selection 

activated by frowning. 

[30] Images and EMG signals are used to 

determine face position that can be used to 

intent expression. 

Hybrid 

systems and 

others 

[49] Virtual keyboard writer system based on 

two EOG channels and one EMG channel 

for letter selection. 
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