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Local Convex Hull support and boundary

estimation

Catherine Aaron,Université Blaise Pascal

December 2, 2013

Abstract

We consider random samples in Rd drawn from an unknown den-
sity. This paper is devoted to presenting a new estimator of the sup-
port of the density, which is based on a local convexity criteria. We
prove that the estimator is consistent and that it also provides a con-
sistent estimator for the boundary. Some convergence rates are given
depending on different asumptions and one can also prove that when
the boundary is smooth enough and when the density go to 0 as a
power of the distance to the boundary the estimator is (eventually
almost surely) homeomorph to the support.

Key Words: Convex-Hull polyhedron, support estima-

tion, topological data analysis, geometric inference.

1 Introduction and further notations

Let X1, . . . , Xn be a sample drawn from f an unknown density function
defined on Rd. We are concerned in the problem of estimating

S = {x ∈ Rd, f(x) > 0} and ∂S = S \ S̊
the support, ∂S its boundary (with A denoting the closure of the set A

and Å its interior). We also expect that the estimated support is, eventually
almost surely homeomorph to the support in a way to be able estimate some
topological invariants (a sequence of event An occurs eventually almost surely
when 1An

a.s.−→ 1).
All this points has been, one by one, studied for a long time let us cite,

[Che76], [DW80], [CF97], [Kle04], [Mei06] (a review of different method can
be found in [CF09]) for the problem of the support estimation, [CRC04]
[HPT95], for the problem of the problem of the boundary estimation and
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[CCSM11], [CCSL09], [CGOS11], [Car05], [ZC05], [CZCG05] for the problem
of the topological recognition but they are rarely mixed together (However
one can cite).

To understand a little the kind of problem that occurs let us focus on
two specific methods. First, if we now that the support is convex (but that
is a strong assumption), one can naturally estimate it with the convex hull
of the observations: Ĥ = H(Xn) (here H(A) denotes the convex hull of the
set A and Xn = {X1, . . . , Xn} denotes the set associated to the sample).
This estimator clearly fulfill our three goals. The support estimator is Ĥ is
obviously homeomorph to the support its convergence rate has been exten-
sively studied (see for instance [Efr65], [B8́2], [Rei03], [Sch88] or [DW96]), ,
its natural boundary estimator is ∂Ĥ also converges.

Second, if no hypothesis on the support can be made (and that is a more
challenging case), the most used (because the simplest) support estimator is
the Devroye-Wise estimator ([Che76], [?]) defined as follows:

Ŝr =
⋃

X∈Xn

B(X, r)

Here B(X, r) denotes the closed ball centered in x and of radius r.
The properties of Ŝr as a support estimator has been extensively studied

(see [BCP08] or [BCMP09]). Properties of ∂Ŝr as an estimator of ∂S has
also been studied in ([CRC04]). Such an estimator can also be related to
the topology recognition via α−shape method ([ES97], [EKS83]). The main
problem is that we empirically observed that the “best” parameter r when
using the Devroye-Wise estimator to estimate the support can gives not con-
verging estimator for its boundary (and the topological recognition problem).
To understand this phenomena is quite easy. To evaluate the estimator it is
usually proposed to evaluate the measure of the symmetric difference |Ŝr∆S|
or dH(S, Ŝr) the Hausdorff distance defined as follows:

|A∆B| = |(A ∩ Bc) ∪ (Ac ∩ B)| where Ac denotes the complementary of
the set A and |A| the Lebesgue measure of the set A.

dH(A,B) = max(maxa∈A(minb∈B ||a−b||),maxb∈B(mina∈A ||a−b||)) where
||a− b|| denotes the euclidean distance between the two points.

For both criteria it is easy to see that we can have very small “distances”
between sets but the existence of very small “holes” in the estimator (i.e.
with the existence of x ∈ S such that B(x, ε) ⊂ Ŝr). If there exists such
“holes” located far from the boundary (and that empirically happen, it can
be observed in section 5) ∂Ŝr is not a good estimator of of ∂S. To avoid
such a problem, it is common ([CRC04]) to impose S ⊂ Ŝr when estimating
the boundary. Obviously imposing such a condition will decrease the perfor-

2



mance of the support estimator. More precisely here the support estimator
will “overfill” too much the support.

We propose, in this paper to study the following support estimator:

Ĥr =
⋃

X∈Xn

H(B(X, r) ∩ Xn)

The first idea was to decrease the “overfilling problem” (see Figure 1),
as, even if B(X, r) overfill S the fact that we now use H(B(X, r) ∩ Xn) may
decrease this problem when the boundary of the support is smooth enough.
We so expect to improve the boundary estimation and the support estimation
in the case of support close to a d′−dimensional manifold (with d′ ≤ d the
dimension of the observation).

Figure 1: Even if the two balls “overfill” a lot the support, the local convex
hulls does not overfill that much the support.

Let us notice that the first idea of using a local-convex hull estimator
has been introduced in ??, with nearest-neighbors instead of fixed radius,
and apply it to estimate not only the support but also the level line of the
density and use it in home-range estimation. As the method gives very good
results it has been applied in various paper in ecologic problem, home-range
estimation and so on. However, it has never been mathematically studied.

The paper is dedicated to a first study of such an estimator, focusing
on the estimation of the support, its boundary and the recognition of the
topological properties.

In Section 2 we settle a general theorem that only requires that the sup-
port is compact. Then, in section 3 we study some convergence rates accord-
ing to two sets of shape conditions. The first one is the standarness that
has been originally introduced in [CF97] and that is an usual assumption in
support estimation. The second one concern the smoothness of the boundary
(with a condition close to C2) and the density that we assume to decrease to
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0 as a power α of the distance to the boundary (this set of assumption is a
case of this used in ??).

To conclude the theoretical study of Ĥr, in section 4 we focus on the
recognition of the topology. We prove that, when the boundary of the support
is smooth enough and when the density decreases to 0 as a power α of
the distance to the boundary the choice of a rn sequence proportional to
(lnn/n)1/(d+2α+1) provides estimators eventually almost surely homeomorph
to S.

In section 5 we present some simulations and comparisons between Ĥr

and Ŝr for the estimation of the support and its boundary..
Additional notations.

Here we give some additional notations used in the paper.
for a set A, the Minkowsi sum (resp. difference) of A and balls of radius

ε are respectively denotes Aε and A−ε with the following definitions.

Aε =
⋃

a∈A

B(a, ε) and A−ε = {a ∈ A,B(a, ε) ⊂ A}

The Hausdorff distance between two sets A andB can be written dH(A,B) =
inf{ε, A ⊂ B+ε, B ⊂ A+ε}

Let A be a d′ dimensional set in Rd. If we denote by N(A, ε) the inner
covering number (i.e. the minimal number of small balls, of radius ε and cen-
tered in A that cover A), we clearly may guarantee the existence of positive
values λ(A) and rA such that: N(A, ε) ≤ λ(A)ε−d′ when ε ≤ rA.

2 Universal consistency

Here we are interrelated in a very general result on Ĥrn the main assumptions
are that the support is compact, d−dimensional (with d the dimension of the
observation space), with a d′ dimensional boundary (when the boundary is
smooth enough d′ = d − 1 but here we also allow all the cases where d′ ∈
[d−1, d[ such as C× [0, 1] where C is the cantor set and d′ = 1+ ln(2)/ ln(3)
or the inside of the Koch snowflake where d′ = 4/3). We also requires the
existence of sequences rn that satisfies some condition very similar to those
required in [CRC04].

Theorem 1. Let S ⊂ Rd be a compact d−dimensional set such that its
boundary ∂S is d′−dimensional. Let Xn = {X1, . . . , Xn} be the set of inde-
pendent random observations drawn from a distribution PX with support S.
Assume that:
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a) S ⊂ Ŝrn/4 eventually almost surely

b) rn → 0 almost surely

Then:

i) |Ĥrn∆S| ≤ λ(∂S)ωd2
drd−d′

n eventually almost surely.

ii) dH(∂Ĥrn , ∂S) → 0 almost surely.

The rest of the section is dedicated to the proof of this theorem.

Lemma 1. If S ⊂ Ŝr/4 then (Ĥr ∩ Sc) ∪ (Ĥc
r ∩ S) ⊂ ∂S+r.

Proof. First let us focus on Ĥr ∩ Sc. It is obvious that Ĥr ⊂ Ŝr ⊂ S+r.
So Ĥr ∩ Sc ⊂ S+r ∩ Sc ⊂ ∂S+r. To prove the last inclusion let us choose
x ∈ S+r ∩ Sc, x ∈ Sc and there exists a y ∈ S with ||x − y|| ≤ r so [x, y]
intersects ∂S at a point z with ||x− z|| ≤ r.

Second we study Ĥc
r ∩ S and divide this set as follows: Ĥc

r ∩ S = (Ĥc
r ∩

S−r/2)∪ (Ĥc
r ∩ (S \ S−r/2)). Then we prove that Ĥc

r ∩ (S \ S−r/2)∂S+r/2 and
that Ĥc

r ∩ S−r/2 = ∅.

1) Ĥc
r ∩ (S \ S−r/2) ⊂ S \ S−r/2 ⊂ ∂S+r/2. To prove the last inclusion let us
pick x ∈ S \S−r/2 as B(x, r/2)∩Sc 6= ∅. there exists y ∈ B(x, r/2)∩Sc.
Once again the [x, y] (of length inferior to r/2) intersects the boundary.

2) To achieve the proof we now prove that Ĥc
r ∩ S−r/2 = ∅.

If there exists a point x ∈ Ĥc
r ∩ S−r/2 Let us first remark that x /∈

H(B(x, r/2) ∩ Xn). This is because if x ∈ H(B(x, r/2) ∩ Xn), then
there exists at least an observation (let us denote it Xi) in B(x, r/2)
and as B(x, r/2) ⊂ B(Xi, r) we have x ∈ H(B(Xi, r) ∩ Xn) so x ∈ Ĥr.

Now, as x /∈ H(B(x, r/2) ∩ Xn) there exists a unit vector u such that:
∀Xi ∈ Xn ∩ B(x, r/2) then < Xi − x, u >≤ 0. Let us define the point
y = x+ (r/4)u (see Figure 1) it satisfies the three following properties:

i) ||x− y|| = r/4.

ii) B(y, r/4) ⊂ B(x, r/2) ⊂ S (because x ∈ S−r/2) and so y ∈ S.

iii) B(y, r/4) ∩ Xn = ∅ and so y ∈ Ŝc
rn/4

.

Finally y ∈ S ∩ Ŝc
r/4 = ∅.
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Figure 2:

Corollary 1. If S ⊂ Ŝrn/4 eventually almost surely then (Ĥrn ∩Sc)∪ (Ĥc
rn ∩

S) ⊂ ∂Srn eventually almost surely

Lemma 2. If ∂S id d′−dimensional. If rn is a sequence that converges to 0.
|∂S+rn | ≤ λ(∂S)ωd2

drd−d′

n .

Proof. Let us cover ∂S with the minimum number (N(∂S, rn)) of balls of
radius rn centered in xi ∈ ∂S. We have

∂S ⊂
N(∂S,rn)
⋃

i=1

B(xi, rn)

So, using the triangle inequality

∂S+rn ⊂
N(∂S,rn)
⋃

i=1

B(xi, 2rn)

So |∂S+rn | ≤ N(∂S, rn)ωd2
drdn.

And, as rn → 0, then, for n large enough |∂S+rn | ≤ λ(∂S)ωd2
drd−d′

n →
0.

Corollary 2. If ∂S id d′dimensional with d′ < d. If rn is a sequence that
converges to 0 almost surely. |∂S+rn| ≤ λ(∂S)ωd2

drd−d′

n eventually almost
surely.

The point i) of Theorem 1 is now a direct corollary of Corollary 1 and 2
Let us now look at the last part of the theorem, i.e. the convergence of

the boundary. A direct corollary of Lemma 1 is the following.
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Corollary 3. Let S ⊂ Rd be a compact set such that its boundary ∂S is
d′ dimensional (d′ < d). Let Xn = {X1, . . . , Xn} be the set of independent
random observations drawn from a distribution PX with support S. Assume
that:

S ⊂ Ŝrn/4 eventually almost surely

rn → 0 almost surely

Then ∂Ĥrn ⊂ ∂S+rn eventually almost surely

To finish the proof of theorem 1 we now only need to prove the following
Lemma.

Lemma 3. if rn → 0 almost surely then:

max
x∈∂S

d(x, ∂Ĥrn) → 0 almost surely.

Proof. The proof is similar to the proof of the case 2 for Theorem 1 in
[CRC04].

Let us proceed by contradiction and suppose that there exists a ε > 0
and a subsequence yn in ∂S such that d(yn, ∂Ĥrn) > 2ε. The compactness of
∂S ensures the existence of a subsequence that converges toward y ∈ ∂S. As
in [CRC04], for n large enough B(y, ε) ∩ ∂Ĥrn = ∅ eventually with positive
probability. As B(y, ε) ∩ Xn 6= ∅ for n large enough (with probability 1 )
(as in “On boundary estimation” Th1 case 2). we have B(y, ε) ∩ Ĥrn 6= ∅
and so B(x, ε) ⊂ int(Ĥrn) The natural inclusion Ĥrn ⊂ Ŝrn implies that
B(x, ε) ⊂ int(Ŝrn) and that lead to a contradiction exactly as in (as in
[CRC04] Th1 case 2).

3 Convergences rates

3.1 Shape conditions

A common hypothesis in the topic of support estimation is that the support
is standard with respect to the Lebesgue measure.

Definition 1. A Borrel S ⊂ Rd is said to be standard with respect to a
Borel measure µ is there exists a λ > 0 and a δ > 0 such that: µ(B(x, ε))
≥ δ|B(x, ε)| for all x ∈ S and 0 < ε ≤ λ

When we are also interested in the boundary estimation and convergence
rates one can also need that the support is partly expendable.
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Definition 2. A bounded Borel set S ⊂ Rd is said to be partly expandable if
there exist constants r > 0 and C(S) ≥ 1 such that dH(∂S, ∂S

+ε) ≤ C(S)ε
for all 0 ≤ ε ≤ r.

In, [HPT95] one can also find the following hypotheses : ∂S is of regularity
γ and the density is α−quickly decreasing (see Definition 4). Here, we replace
the γ regularity of ∂S by the fact that balls roll freely inside and outside S
(see Definition 3) that is closely related to γ = 2 (see [Wal99]).

Definition 3. We will say that a ball of radius Rout > 0 (resp. Rin > 0)
rolls freely outside (resp. inside) S if, for all x ∈ ∂S there exists a O−

x ∈ Rd

(resp. Ox ∈ Rd) such that: x ∈ (O−
x , Rout) ⊂ Sc (resp. x ∈ (Ox, Rin) ⊂ S).

Definition 4. A density f supported by S is said to be α−quickly decreasing
if there exists a α ≥ 0 and a f0 > 0 such that: f(x) ≥ f0d(x, ∂S)

α for all
x ∈ S.

If balls rolls freely inside and outside S then S let us denote has a lot of
“good” properties that are proved in [Wal99] (for Properties 1 and 2) and
[CRC04] (Property 3) detailed here

Property 1. If balls of radius RS rolls freely inside and outside S then ∂S
is a (d− 1)−dimensional manifold

Property 2. If balls of radius RS rolls freely inside and outside S then for
all x ∈ ∂S there exists a unique inward pointing unit normal vector ux and
we also have: for all (x, y) ∈ ∂S2 ||uy − ux|| ≤ ||x− y||/RS

Property 3. If balls of radius RS rolls freely inside and outside S then S is
partly expendable and C(S) = 1

Remark: In all of the following we will use the notation Ox, O
−
x and

ux as they are defined in Definitions 3 and Property 2.

3.2 Convergence rate under standardness assumption

Theorem 2. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from
a distribution PX on Rd. Let denote Xn = {X1, . . . , Xn} the set of the n first
observations. Assume that the support S of PX is compact partly expandable
(with a constant C(S)), standard with respect to PX and its boundary ∂S is
d′−dimensional. Let us consider the Local-Convex-Hull estimator:

Ĥrn(Xn) =

n
⋃

i=1

H(B(Xi, rn) ∩ Xn)
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where

rn = c

(

2 ln(n)

δωdn

)1/d

for some c > 4.

then,

|S∆Ĥrn(Xn)| ≤ λ(∂S)ωd2
drd−d′

n e.a.s.

dH(∂S, ∂Ĥrn(Xn)| ≤ c(S)rn e.a.s.

Proof. Theorem 3 in ‘[CRC04] ensures that S ⊂ Ŝrn/4 eventually almost
surely. So we can apply Theorem 1 and have that :

|S∆Ĥrn(Xn)| ≤ λ(∂S)ωd2
drd−d′

n e.a.s.

Remarks:

1) When only focusing on the support estimation we do not need the partly
expendable hypothesis.

2) In the most regular case when d′ = d−1 we obtain the usual convergence
rate rn.

Within the application of Theorem 1 we have ∂Hrn ⊂ ∂Srn and using the
partly expendable property assumption we have maxx∈∂Ĥrn

(miny∈∂S(||x −
y||)) ≤ c(S)rn.

Let us now consider x ∈ ∂S. If x ∈ ∂S ∩ Ĥc
rn, Theorem 3 in [CRC04]

ensures that there exists (eventually almost surely) an observation Xi in Xn

such that ||Xi − x|| ≤ rn/4 and so d(x, ∂Ĥrn) ≤ rn/4. If x ∈ ∂S ∩ Ĥrn then
x ∈ Ĥrn ⊂ Srn and so d(x, ∂Hrn) ≤ rn.

We so have dH(∂S, ∂Ĥrn(Xn)| ≤ max 0.25, 1, c(S)rn e.a.s. and the fact
that c(S) ≥ 1 achieve the proof.

3.3 Convergence rate under stronger shape condition

In this part we will assume that balls rolls freely inside and outside S and
denote RS = min(Rout, Rin) we will also assume that the density is α−quickly
decreasing.

In a certain way this set of assumption is stronger on the support shape
but less restrictive for the density.
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Under such assumptions we have asymptotic results given Theorem 3 that

shows that the specific choice of sequences rn proportional to
(

lnn
n

)
1

d+1+2α

provides a support estimator Ĥrn that converges (for the symmetric differ-
ence measure) with a rate close to the optimal one with similar assumptions
([HPT95]).

Theorem 3. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from
a distribution PX associated to a α−quickly decreasing density. Assume that
balls of radius RS roll freely inside and outside the support S of PX . If
rn = λ(lnn/n)1/(d+1+2α) then:

|Ĥrn∆S|(n/ lnn)2/(d+1+2α) is e.a.s. bounded

dH(∂Ĥrn , ∂S)(n/ lnn)
2/(d+1+2α) is e.a.s. bounded

The following of the section is dedicated to the proof of Theorem 3. As
usual it is divided into two parts: the study of the asymptotic behavior of
Ĥr ∩ Sc and the one of Ĥc

r ∩ S. The section 3.4 is devoted to prove the
following Lemma about the asymptotic behavior of Ĥrn ∩ Sc, it is an easy
and deterministic result with no assumption on f .

Lemma 4. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from a
distribution PX . Assume that balls of radius RS roll freely inside and outside
the support S of PX .

When rn =
(

λ lnn
n

)
1

d+1+2α For n large enough to have rn < RS/4

Ĥrn ∩ Sc ⊂ ∂S
+

2r2n
RS

(1+o(1))

The section 3.5 is devoted to prove the following Lemma about the asymp-
totic behavior of Ĥc

rn ∩ S, here we have an asymptotically and probabilistic
result.

Lemma 5. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from
a distribution PX associated to a α−quickly decreasing density. Assume that
balls of radius RS roll freely inside and outside the support S of PX .

When rn =
(

λ lnn
n

)
1

d+1+2α , there exists an explicit constant b(λ):

b(λ) =
19

32RS
+

1

2

(

(3d− 1 + 2α)(α+ 1)4d+1+2α

(d+ 1 + 2α)λf0ωd

)1/(α+1)

such that:
Ĥc

rn ∩ S ⊂ ∂Sb(λ)r2n eventually almost surely

And Section 3.6 is devoted to prove Theorem 3 using Lemmas 4 and 5.
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3.4 Asymptotic behavior Ĥr ∩ Sc

Lemma 4 is a direct corollary of the following result.

Lemma 6. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from a
distribution PX . Assume that balls of radius RS roll freely inside and outside
the support S of PX . For all r < RS/4 we have:

if x ∈ Ĥr ∩ Sc then d(x, ∂S) ≤ RS −
√

R2
S − 4r2.

Proof. If x ∈ Ĥr then there exists a Xi ∈ Xn and d + 1 observations
Xi1 , . . . , Xid+1

in B(Xi, r) such that x ∈ H({Xi1, . . . , Xid+1
}). The distance

between two Xij is less than 2r (because they are in B(Xi, r)) and so the
distance between x and any Xij is also bounded by 2r (because x is in the
convex hull of the points). So x ∈ H(B(x, 2r) ∩ S) that is impossible when
d(x, ∂S) > RS −

√

R2
S − 4r2 (see Figure 3 to be convinced).

Figure 3:

3.5 Asymptotic Behavior of S ∩ Ĥc

r

In the standard case or usual proofs for the Devroye-Wise estimator, results
are obtained saying that a “large” distance imply existence of a ball of “large”
radius that does not contain any observation. Here we will consider empty
balls when points are “far” from the boundary but replace balls by tangent
cylinders when considering points close to the boundary.

11



3.5.1 Some results about empty balls

Theorem 4. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from
a distribution PX associated to a α−quickly decreasing density. Assume that
balls rolls freely inside and outside the support S of PX then:

lim
n→∞

sup
( n

lnn

)1/(d+α)

d(Xn, S) ≤
(

2

f0ωd−1B(α + 1, d)

)1/d+α

almost surely.

Where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the Beta function.

Proof is given in appendix.

3.5.2 Some results about empty cylinders

Definition 5. Let u be a unit vector we can define the cylinder: Cu(x, r, h) =
{y, | < y − x, u > | ≤ h, ||y − x− < y − x, u > u|| ≤ r}

Figure 4:

Property 4. Let x and x′ be two points and u and u′ and two unit vectors.
Let us denote ||x− x′|| = εx, ||u− u′|| = εu. Let us define:

e1 = εx + 2(
√
r2 + h2 + εx)εu

e2 = εx +
√
r2 + h2εu

When εx and εu are small enough to have e1 ≤ r and e2 ≤ h, we have:
Cu′

(x′, r − e1, h− e2) ⊂ Cu(x, r, h)

proof is let to the reader.

Definition 6. Tangent cylinders: For all x ∈ ∂S we can define C(x, r, h) =
Cux(x, r, h)

12



Lemma 7. if X1, . . . , Xn are drawn from a distribution PX associated to
a α−quickly decreasing density. Assume that balls of radius RS rolls freely
inside and outside the support S of PX .

For any λ > 0, µ > 1 such that λf0ωd−1(µ−1)α+1

(α+1)Rα+1
S

− 2d−2
d+1+2α

= c > 1 let

us denote rn and hn the sequences: rn =
(

λ lnn
n

)
1

d+1+2α (1 + o(1)) and hn =

µ r2n
2RS

(1 + o(1)).
We have:
“for all x ∈ ∂S, C(x, rn, hn) ∩ Xn 6= ∅” eventually almost surely.

Proof is given in appendix.

3.5.3 Proof of Lemma 5

We now have all the tools to prove the Lemma 5.

Proof. Let us suppose that Ĥc
rn∩S * ∂Sbr2n . There exists a point x ∈ Ĥc

rn∩S
such that d(x, ∂S) = dn > br2n. Let us denote y

∗ the point of ∂S that realizes
d(x, ∂S) = dn. As x ∈ Ĥc

rn there exists a unit vector u such that for all Xi

in B(x, rn/2) ∩ Xn, < u,Xi − x >≥ 00 (see the proof of Theorem 1).

Let us denote ρn =
(

2 lnn
f0ωd−1B(α+1,d)n

)
1

d+α

(notice that ρn << rn)). We are

going to prove that, if dn ≥ 3ρn then there exists a “too large” ball that does
not contains any observation, and, if dn ≤ 3ρn then there exists a “too large”
tangent cylinder that does not contains any observation.

First case: if dn > 3ρn. First notice that : d(x, ∂S) = dn ⇒ B(x, dn) ⊂
S ⇒ B(x, 3ρn) ⊂ S. Let us define z∗ = x − (3ρn/2)u: as ||x− z∗|| = 3ρn/2
we have z∗ ∈ S. For n large enough to have 3ρn ≤ rn/2 we also have
B(z∗, 3ρn/2)∩Xn = ∅. That is impossible (eventually almost surely) accord-
ing to Lemma 4 to Lemma 4.

Second case: if dn ≤ 3ρn
We are going to distinguish two cases: u = uy∗ (see figure 5) or not

(see figure 6). Each time we exhibit cylinders that does not contain any
observation.

First sub-case: u = uy∗ . See Figure 5 to be convinced that:

C(y∗,
√

r2n/4− 4d2n, dn) ∩ Xn = ∅

The upper bound dn ≤ 3ρn allows us to write:

C(y∗,
√

r2n/4− 4d2n, dn) = C(y∗, (rn/2)(1 + o(1)), dn)

13



Figure 5: empty cylinder construction when u = uy∗

The Lower bound dn > br2n allows us to write:

C(y∗, (rn/2)(1 + o(1)), br2n) ∩ Xn = ∅
Second sub-case: u 6= uy∗ .

Figure 6: empty cylinder construction when u 6= uy∗

Let us define w = u− < u, u′ > u′, v = w/||w|| and z∗ = y∗ +
(
√

r2n/4− 4d2/2)v. See Figure 6 (projection in the plan (x, u, uy∗)) to be
convinced that we have:

Cuy∗ (z∗,
√

r2n/4− 4d2n/2, dn) ∩ Xn = ∅

14



The upper bound dn ≤ 3ρn allows us to write

Cuy∗(z∗, (rn/4)(1 + o(1)), dn) ∩ Xn = ∅
The upper bound dn > br2n allows us to write

Cuy∗ (z∗, (rn/4)(1 + o(1)), br2n) ∩ Xn = ∅
We have not yet finish the proof because the exhibited cylinder is not

tangent cylinder. The rolling balls properties implies (see Figure 7) that
d(z∗, ∂S) ≤ αn = −RS +

√

R2
S + r2n/16 ∼ r2n/(32RS)

Let us chose z ∈ ∂S such that d(z, z∗) ≤ αn we have d(z, y∗) ≤ αn + rn/4

Figure 7: distance to the boundary

so ||uz − uy∗|| ≤ (rn/4 + αn)/RS (according to Property 2). so, applying
Property 4

C
(

z,
rn
4
(1 + o(1)),

(

b− 3

32RS

)

r2n(1 + o(1))

)

∩ Xn = ∅

In both cases (u = u′ or u 6= u′), if dn ∈ [br2n, 5ρn] there exists a z ∈ ∂S
such that:

C
(

z,
rn
4
(1 + o(1)),

(

b− 3

32RS

)

r2n(1 + o(1))

)

∩ Xn = ∅

Lemma 9 ensures that dn ∈ [br2n, 5ρn] is not possible (eventually almost
surely) when:

b >
19

32RS

+
1

2

(

(3d− 1 + 2α)(α+ 1)4d+1+2α

(d+ 1 + 2α)λf0ωd

)1/(α+1)
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3.6 proof of Theorem 3

A direct consequence of Lemmas 4 and 5 is that Hr∆S ⊂ ∂Sar2n(1+o(1)) with
a = max(2/RS, b(λ)). Property 1 ensures that ∂S is a (d − 1)−manifold
so, exactly as in the proof of Theorem 1 we have that |∂Sar2n(1+o(1))| ≤
λ(∂S)ωd2

dar2n(1 + o(1)) that proves the first point of Theorem 3.
Hr∆S ⊂ ∂Sar2n(1+o(1)) ⇒ ∂Hrn ⊂ ∂Sar2n(1+o(1)) and so Property 3 allows

us to have maxx∈∂Hrn
(d(x, ∂S)) ≤ ar2n(1 + o(1)). The rolling balls property

and Hr∆S ⊂ ∂Sar2n(1+o(1)) also imply that,

1) for all x ∈ ∂S ∩Hc
rn , x+ar

2
n(1+ o(1))u ∈ Hrn (eventually almost surely),

so for all x ∈ ∂S ∩Hc
rn, d(x, ∂Hrn) ≤ ar2n(1 + o(1)).

2) for all x ∈ ∂S ∩Hrn, x−ar2n(1+ o(1))u ∈ Hc
rn (eventually almost surely),

so for all x ∈ ∂S ∩Hrn, d(x, ∂Hrn) ≤ ar2n(1 + o(1)).

So we also have: maxx∈∂S(d(x, ∂Hrn)) ≤ ar2n(1 + o(1)). And dH(Hrn, S) ≤
ar2n(1 + o(1)).

4 Preservation of the topology

In this section we are interest in the recognition of the topological properties
of the support. In other words we are going to prove that, when balls roll
freely inside and outside S, and when the density is α−quickly decreasing

then the choice of a radius sequence rn = λ
(

lnn
n

)2/(d+1+2α)
gives support

estimator that is (eventually almost surely) homeomorph to the unknown
support.

Theorem 5. Let X1, X2, . . . be a sequence of i.i.d. observations drawn from
a distribution PX associated to a α−quickly decreasing density. Assume that
balls of radius RS roll freely inside and outside the support S of PX . When
rn = λ(lnn/n)1/(d+1+2α):

“∂Ĥrn is homeomorph to ∂Ŝ” eventually almost surely.
“Ĥrn is homeomorph to Ŝ” eventually almost surely.

Proof. We first prove the announced result for the boundary, then for the
support.

When, focusing on the boundary we are going to prove that we can (even-
tually almost surely) define uniquely the function ϕrn : ∂Ĥrn → ∂S such that
||ϕ(x)−x|| = miny∈∂S ||x−y||. And this function is (eventually almost surely)
a continuous bijection.

Definition:

16



First let us notice that balls rolls freely inside and outside S implies for
any x such that d(x, ∂S) < RS there exists a unique y ∈ ∂S that realizes
min ||x−y|| and as Theorem 5 ensures that for n large enough ∂Ĥrn ⊂ ∂SRS/2

(eventually almost surely) then the function ϕrn is uniquely defined (eventu-
ally almost surely).

Continuity:
Let us define ϕ : ∂SRS/2 → ∂S such that ||ϕ(x)− x|| = miny∈∂S ||x− y||

and let us prove that ϕ is continuous.
For all x with d(x, ∂S) < RS. For all ε ≤ RS − d(x, ∂S) for x′ ∈ B(x, ε) ,

we have :

1) ϕ(x′) ∈ B(x′, ||ϕ(x)− x′||) (because min d(x′, ∂S) ≥ ||x′ − ϕ(x)||)

2) and ϕ(x′) /∈ B̊(Oϕ(x), RS) (because B̊(Oϕ(x), RS) ⊂ S̊)

That implies that: ||ϕ(x′)− ϕ(x)|| ≤ 4εRS

RS−d(x,∂S)
(see Figure 4). So ϕ is con-

tinuous and so does ϕrn its restriction on the boundary of the estimator.

Figure 8:

Surjectivity:
Theorem 3 implies that there exists a a such thatHrn∆S ⊂ ∂S+ar2n (even-

tually almost surely). For any x ∈ ∂S ∩ Ĥc
rn let us define y = x + ar2nux we

have y ∈ Ĥrn eventually almost surely and so [x, y] crosses ∂Ĥrn at a point x∗

that satisfies ϕrn(x
∗) = x For any x ∈ ∂S∩Ĥrn let us define y = x−ar2nux we

have y ∈ Ĥc
rn eventually almost surely and so [x, y] crosses ∂Ĥrn at a point

x∗ that satisfies ϕrn(x
∗) = x.

Injectivity:
The injectivity is the most difficult point.

17



Here we denote: ρn = 2
(

2 lnn
f0ωd−1B(α+1,d)n

)
1

d+α

and εn = ar2n (with a the

suitable value such that ∂Hrn ⊂ ∂Sar2n(1+o(1)).
Let us first notice that ∂Ĥrn is a random polytope with a finite number

of faces. Let us suppose that ϕrn is not injective and exhibit x and y such
that ϕ(x) = ϕ(y) = z and < x− y, uz >> 0.

The first case is the following: [x, y] ∩ ∂Ĥr 6= [x, y], as ∂Ĥrn is a random
polytope with a finite number of faces one can suppose that [x, y] ∩ ∂Ĥrn =
{x, y}. Let us define x∗ as follows: if ]x, y[⊂ Ĥr let us choose x∗ = x, If
]x, y[⊂ Ĥc

r let us choose x∗ = y. x∗ ∈ ∂Ĥrn so there exists an observation
Xi such that x∗ ∈ ∂H(B(Xi, rn) ∩ Xn) and, the way we define x∗ implies
that there exists a vector u, such that < u, uz >> 0 and such that for all
observation X in (B(Xi, rn) ∩ Xn) < x∗ −X, u >≤ 0.

The second case is [x, y]∩∂Ĥr = [x, y] and there exists a vector u orthogo-
nal to y−x such that for all observationX in (B(Xi, rn)∩Xn)< x−X, u >≤ 0.

Figure 9:

For both cases there exists x∗ ∈ ∂Ĥrn , Xi ∈ Xn and u with < u, uz >> 0
such that x∗ ∈ ∂H(B(Xi, rn)∩Xn) and for all observation X in (B(Xi, rn) ∩
Xn) < x∗ − X, u >> 0. As x∗ ∈ ∂Ĥrn we also have that for all X ∈ Xn

x∗ /∈ H̊(X, rn).

Let Xi be an observation such that x∗ ∈ ∂H(B(Xi, rn) ∩ Xn). If < x∗ −
Xi, u >≤ rn − 2ρn, let us define y∗ = Xi + (rn − ρn)u, we have B(y, ρn) ⊂
{z ∈ B(Xi, rn), < x∗ − z, u >> 0} and so B(y, ρn) ∩ Xn = ∅

According to Theorem 3 ||x∗ − z|| ≤ εn (e.a.s.), so ||Xi − z|| ≤ rn + εn.
We also have:

1) Xi ∈ Bc(O−
z , RS) (because Xi ∈ S)

2) ||Xi − y∗|| = rn − 2ρn ≤ rn

18



Figure 10:

3) For n large enough < y∗ − Xi, uz >≥ 0 (because y∗ − Xi = (rn − ρn)u,
for n large enough rn − ρn > 0 and < u, uz >≥ 0).

This three points together imply that ||y∗ −Oz|| ≤ en ∼ 5r2n
2RS

(e.a.s.) (see

Figure 12) so d(y∗, S) ≤∼ 5r2n
2RS

(e.a.s.) and finally we can (e.a.s.) find a point
ŷ ∈ S such that B(ŷ, ρn − en) ∩ Xn = ∅ that is (e.a.s.) impossible according
to Lemma 4 for the given values of rn and ρn.

As a first conclusion we now have: For every observation Xi such that
x∗ ∈ ∂H(B(Xi, rn) ∩ Xn), < x∗ −Xi, u >≥ rn − 2ρ (e.a.s.) (*).

Let us choose a Xi such that x∗ ∈ ∂H(B(Xi, rn) ∩ Xn). As x∗ is in
∂H(B(Xi, rn) ∩ Xn) there exists k observations (1 ≤ k ≤ d) X(1), . . . , X(k)

in B(Xi, r) such that x∗ ∈ H({X(1), . . . , X(k)}). As we also have, for all
observation X in B(Xi, rn), < X − x∗, u >≤ 0 we have that X(1), . . . , X(k)

also belong to the plan {z, < x∗ − z, u >= 0} so ||x∗ −X(i)|| ≤ 2
√

ρrn − ρ2n
and for all i, j ||X(i) −X(j)|| ≤ 2

√

ρnrn − ρ2n. For n large enough such that

2
√

ρrn − ρ2n ≤ rn−2ρn we have x∗ ∈ H(B(X(1), rn)∩Xn) with ||x∗−X(1)|| <
rn − 2ρn that is impossible according to (*).

We now have proved the announced result for the boundary.

We can now construct a function ψ : S → Hrn as follows:
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Figure 11:

1) if x ∈ S−RS/2 then ψ(x) = x

2) if x ∈ S \ S−RS/2 let us define:

a) g(x) = argmin(d(x, ∂S))

b) x′ = g(x) − RS

2
ug(x) (let us remark that the rolling ball property

implies that x′ ∈ ∂(S−RS/2))

c) z = ϕ−1
rn (g(x))

ψ(x) = x′ − 2||x′−z||.||x′−x||
RS

ug(x)

Figure 12: Construction for ϕ
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The function ψ is continuous on S \ S−RS/2 (eventually almost surely)
because ϕ−1

rn is continuous (eventually almost surely), g(x) is continuous and
ux is continuous (Property 2). The continuity on S is easily obtained (basi-
cally if xn ∈ S \ S−RS/2 is such that xn → x ∈ ∂(S−RS/2) then x′n → x and
so ψ(xn) → x)

It is also easy to see that its is bijective because its reverse function is the
following:

1) if x ∈ S−RS/2 then ψ−1(x) = x

2) if x ∈ Ĥrn \ S−RS/2 let us define:

a) h(x) = argmin(d(x, ∂Ĥrn))

b) x′′ = ϕrn(h(x))

c) x′ = x′′ − RS

2
ux′′

ψ(x) = x′ − ||x−x′||RS

||x′′−x′||2
ux′′

And so we build an homeomorphism from S to Hrn.

5 some simulations

4 simulated simulations on “toy” examples drawn as follows.

Figure 13: 500 realizations in B(0, 1) of X = (r cos θ, r sin θ) with θ  
U([0, 2π]) and r  U([0, 1]).

Figure 14: 500 realizations in B(0, 1)\B(0, 0.5) of X = (r cos θ, r sin θ) with
θ  U([0, 2π]) and r  U([0.5, 1]).

Figure 15: 500 realizations in B(0, 1)\B(0, 0.9) of X = (r cos θ, r sin θ) with
θ  U([0, 2π]) and r  U([0.9, 1]).

Figure 16: 500 realizations of an uniform distribution on the star shape
S = [−1, 1]2 \ (∪iB(Ci, 1)), C1 = (−1,−1), C2 = (−1, 1),, C3 = (1,−1),
C4 = (1, 1).

Figure 18: 500 realizations of distribution on a asterisk shape with the
following distribution k ∈ {0, 1, 2, 3} P (θ = kπ/4) = 1/4, (x, y)  
U([−1, 1]× [−0.05, 0.05], X = (cos(θ)x+ sin(θ)y, cos(θ)y − sin(θ)x).
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For each simulation it is first presented the estimated (Monte Carlo) mea-
sure of the symmetric difference for various values of the radius r (the as-
terisked point on this plot locates the best radius for the result for r∗ =
maxx∈S d(x,Xn)). Then we plot the Devroye Wise (DW) estimator for the
best radius according to the measure of the symmetric difference (Monte-
Carlo) and for the best radius according to the boundary estimation i.e. r∗

(?[CRC04]). Finally we plot the Local convex hull estimator, once again for
the best radius value.

It can be notice that, has announced in the introduction, the Devroye
Wises estimator with the best radius according to the support estimation is
not accurate to estimate the boundary and the topological properties, and the
the Devroye Wises estimator with the best radius according to the boundary
estimation overfills a lot the support. The Local Convex Hull estimator,
with the best radius according to the support estimation over performs the
support estimation and the boundary estimation. Even when the support
does not fullfills the rolling balls property we always obtain estimated support
homeomorph to the support.
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Figure 13: Results for a disc

Finally we applied the method to a set of 5323 locations of epicenters of
earthquakes of magnitudes superior to 6. We changed a little the way to fix
the neighborhood in a matter to take into account the spherical coordinates
and obtain the following map for the earthquakes.
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Figure 14: Result for a CD shape
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Figure 15: Result for a CD shape

6 conclusion and further works

The local convex hull method allows us to estimates the support, its bound-
ary (with a rate close to the optimal one), and to recover its topology with
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Figure 16: Result for a star shape
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Figure 17: Result for an asterisk shape

only one parameter r and a method less sensitive to the choice of the param-
eter than the Devroye-Wise estimation. That are encouraging results but we
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Figure 18: Result for epicenters

need to find a practical way to choose suitable value for the radius for a given
problem. In addition to this practical problem some theoretical issues can
also be pointed out: We would like to study the properties of this estimator
when the support is less than d−dimensional (with d the dimension of the
observation space). We strongly believe that it behaves very well but need
to prove it. What happen when the density go to infinity when points gets
close to the boundary ? Is our estimator linked with the α−convexity ?

Moreover, in [GW04] the authors used the local-convex hull idea not only
to estimate the support but also to estimate the level line of the density.
We strongly believe that their idea is very well adapt to the case where
the support is compact because it helps to decrease the bias of the density
estimation when considering points near to the boundary.
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A Appendix (or supplementary material : proofs

of Lemmas ? and ?

A.1 proof of Lemma 4

Proof. Let X be drawn from a distribution PX associated to a α−quickly
decreasing density. Assume that balls rolls freely inside and outside the
support S of PX .

We are first going to bound the probability P (X ∈ B(x, rn)) for any
sequence rn → 0 and any x ∈ S.

For x ∈ S with d(x, ∂S) = z0 < r.

for any z ∈ [0, z0 + r] let us denote A(z) = S(Oy, RS) ∩ B(x, r) and
A(z) its d− 1dimensional measure.

Figure 19: Probability that an observation belong to a given ball

P (X ∈ B(x, r)) ≥
∫ z0+r

z=0

zαf0A(z)dz

P (X ∈ B(x, r)) ≥
∫ z0+r

z=z0

zαf0A(z)dz

When r = rn = o(1), we have z = O(rn), z0 = O(rn) and A(z) ≥
ωd−1h(z)

d−1 with h(z) = z20 + 2zz0 − z2 + r2n + o(r2n) and so h(z) =
r2n − (z − z0)

2 + 2z20 + o(r2n) and so
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P (X ∈ B(x, rn)) ≥
∫ z0+r

z=z0

zαf0wd−1(r
2
n − (z − z0)

2)
d−1
2 dz

Let us substitute z by u = (z − z0)
2/r2n we have:

P (X ∈ B(x, rn)) ≥
f0ωd−1

2
rα+d
n (1 + o(rn))

∫ 1

z=0

u(α−1)/2(1− u)(d−1)/2du

P (X ∈ B(x, rn)) ≥
f0ωd−1B(α+1

2
, d+1

2
)

2
rα+d
n (1 + o(rn))

For x ∈ S d(x, ∂S) = z0 < r.

P (X ∈ B(x, r)) ≥
∫ r

z=0

zαf0ωd−1r
d−1dz

So

P (X ∈ B(x, r)) ≥
∫ r

z=0

zαf0ωd−1z
d−1dz

P (X ∈ B(x, r)) ≥ f0ωd−1r
d+α

d+ α

And we have: For all rn → 0, for all x ∈ S

P (X ∈ B(x, rn)) ≥
f0ωd−1B(α+1

2
, d+1

2
)

2
rα+d
n (1 + o(rn))z

So, we obtain (as in “On boundary estimation”)

lim sup
n→+∞

( n

lnn

)1/(d+α)

dh(Xn, S) ≤
(

2

ωd−1f0B(α+1
2
, d+1

2
)

)1/(d+α)
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A.2 proof of lemma 9

Lemma 8. if X is drawn from a distribution PX associated to a α−quickly
decreasing density. Assume that balls of radius RS rolls freely inside and
outside the support S of PX then: for all x ∈ ∂S, for all r > 0, for all
h ≥ RS −

√

R2
S − r2 we have:

P (X ∈ C(x, r, h)) ≥ f0ωd−1

∫ r0

0

zα
(

1− z

RS

)d−1

dz

with

r0 = RS

h−RS +
√

R2
S − r2

√

R2
S − r2

Figure 20:

Corollary 4. if X is drawn from a distribution PX associated to a α−quickly
decreasing density. Assume that balls of radius RS rolls freely inside and

outside the support S of PX then: for all x ∈ ∂S, for rn =
(

λ lnn
n

)
1

d+1+2α (1 +

o(1)) and hn = µ r2n
2RS

(1 + o(1)) with µ > 1 we have

P (X ∈ C(x, r, h)) ≥ f0ωd−1(µ− 1)α+1λ

(α+ 1)(2RS)α+1

lnn

n
(1 + o(1))

Lemma 9. if X1, . . . , Xn are drawn from a distribution PX associated to
a α−quickly decreasing density. Assume that balls of radius RS rolls freely

inside and outside the support S of PX . rn =
(

λ lnn
n

)
1

d+1+2α (1 + o(1)) and

hn = µ r2n
2RS

(1 + o(1)) with µ > 1 and λf0ωd−1(µ−1)α+1

(α+1)Rα+1
S

− 2d−2
d+1+2α

= c > 1 Then:

“for all x ∈ ∂S C(x, rn, hn) ∩ Xn 6= ∅” eventually almost surely.
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Proof. We are going to prove that:

+∞
∑

n=1

P (∃x ∈ ∂S, C(x, rn, hn) ∩ Xn = ∅) <∞

.
Let us denote εn = (lnn)−2. Let us cover ∂S with N(∂S, εnr

2
n) small

deterministic balls, centered in points xi ∈ ∂S and that have a radius εnr
2
n.

If ∃x ∈ ∂S, C(x, rn, hn)∩Xn = ∅ then exists a xi such that x ∈ B(xi, εnr2n).
and ||ux − uxi

|| ≤ R−1
S εnr

2
n (according to Walther 99 Th1). So, according to

Property ?? we can find explicit values for r′n and h
′
n such that: C(xi, r′n, h′n) ⊂

C(x, rn, hn), r′n = rn(1 + o(1)) and h′n = hn(1 + o(1)).
So:

pn = P (∃x ∈ ∂S, C(x, rn, hn) ∩ Xn = ∅) ≤ P (∃xi, C(xi, r′n, h′n) ∩ Xn = ∅)

According to corollary 4

pn ≤ N(∂S, εnr
2
n)

(

1− f0ωd−1(µ− 1)α+1λ

(α+ 1)(2RS)α+1

lnn

n
(1 + o(1))

)n

pn ≤ λ(∂S)ε−d+1
n (lnn)−2d+2λ−2 d−1

d+1+2αn
2d−2

d+1+2αn
−

f0ωd−1(µ−1)α+1λ

(α+1)(2RS )α+1 +o(1)

With the chosen value for εn

pn ≤ λ(∂S)λ−
2d−2

d+1+2αn−c+o(1)

As c > 1 we have
∑

pn <∞ and we can apply the Borrel-Cantelli Lemma
ton conclude.
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