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Abstract

We consider random samples in R
d drawn from an unknown density.

When the support is assumed to be convex and with sharp boundary,
the convex hull is an estimator of the support that converges to S
with a rate of n−2/(d+1). When the boundary of the support is sharp
but the support is no longer assumed to be convex, the usual support
estimators converges with a rate of n−1/d or (ln(n)/n)−1/d. This paper
is devoted to presenting some new estimators of the support of the
density, which are based on some local convexity criteria and converge
to S with a rate of (n/ lnn)−2/(d+1) (and their boundary converges
toward ∂S with the same rate) when the support is assumed to have
a sharp C2 boundary. The convergence rate is also given when the
sharpness hypothesis is relaxed (and it is close to the optimal rate
when the dimension is two).

key words: Delaunay complex, polyhedron, support estimation,
topological data analysis, geometric inference.

1 Introduction

Let Xn = {X1, . . . ,Xn} be a random sample in R
d drawn from an unknown

density f . The density support S is defined by S = {x ∈ Rd, f(x) > 0},
where A denotes the closure of the set A. Estimation of S has various appli-
cations in statistics such as classification and clustering (see the discussion
in [2]) and has been widely studied. First let us cite the Devroye-Wise es-
timator [16] which is the union of small balls centered in the observations.
Such an estimator has been extensively studied and converges with a rate of
(lnn/n)1/d [2] (and provides a boundary estimator that converges with the
same rate [15]) when boundary is sharp. There are other support estimators
as in [14] where the support is estimated as a level set of a kernel-based den-
sity estimation that converges, with regard to the Hausdorff distance, with
rate n−1/d. Another idea is to work with an union of bins as in [21] and once
again the convergence rate is (lnn/n)1/d. Some estimators have also been
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studied without the sharpness hypothesis ([5] [4] focuses on the convergence
rate of the Devroye-Wise estimator, [19] presents an optimal estimator but
is limited to the case d = 2), and, of course that provides slower convergence
rates.

Each time (when the boundary is sharp) the convergence rate is far
from the convergence rate obtained when the support is convex (and the
boundary sharp) and is estimated by the convex hull of the observations
(denoted in this paper H(Xn)) Some asymptotic properties of this estimator
can be found for instance in [18], [3], [23] or [24] and the convergence rate
is n−2/(d+1) (proved for L1 and L2 convergence).

The convexity hypothesis is a strong assumption, but it can appear nat-
ural to try to built some density support estimators using tools strongly
linked with the convex hull but having a local “point of view”. A first idea
is to recall that the convex hull can also be defined as the union of the De-
launay simplices (see definition 1). In [17] it can be seen that a restriction of
the Delaunay polyhedron allows one to recover the topology of a manifold.
This work is not totally applicable for our purpose as, firstly the restriction
requires knowledge of the support, and, secondly, there are no specific re-
sults for the support estimation. Nevertheless it suggests the idea that the
support can be estimated using a restriction of the Delaunay polyhedron, i.e.
by removing some simplices. In [1] it has be seen that a restriction according
to a nearest neighbors criteria gives better results for the density support
estimation than the proved results (ones again with rate (lnn/n)1/d). Here
we propose another criteria to restrict the Delaunay polyhedron in a way
that gives a support estimator.

Definition 1. (The r−Delaunay polyhedron Dr.) A k−dimensional simplex
σ is the convex hull of k+1 points. For ease of writing we shall denote it by
σ = (x1, . . . , xd+1) (instead of H({x1, . . . , xd+1})). Let Xn = {X1, . . . ,Xn}
be a subset of R

d. A simplex σ = (x1, . . . , xd+1) belongs to Dr(Xn) (the
associated complex) if:

• It belongs to the Delaunay complex, i.e. all the vertices are in Xn and,
if we denote by Oσ and rσ the center and the radius of the hypersphere
circumscribed to σ = (x1, . . . , xd+1), B(Oσ, rσ) ∩ Xn = ∅;

• The simplex “is small” i.e. rσ ≤ r.

We can now define the support estimator as : Dr(Xn) =
⋃

σ∈Dr(Xn)
σ.

Another natural estimator that can be proposed to deal with non-convex
support estimation is the r−union of convex hulls. The idea here is that a
smooth enough set is locally convex and can be approximated by a union of
small convex sets.

Definition 2. (The r−union of convex hulls Hr.) Let Xn = {X1, . . . ,Xn}
be a subset of R

d. The r−union of convex hulls of this points, denoted
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Hr(Xn) is defined as follows:

Hr(Xn) =
⋃

i

H(B(Xi, r) ∩ Xn)

The major problem with such an estimator is its computational cost
because it may need the estimation of many convex hulls. The next proposed
estimator is close to the to the r−union of convex hulls and does not require
any convex hull computation. The underlying idea is that a convex hull is
also a union of simplices.

Definition 3. (The r−Rips Polyhedron Rr.) Let Xn = {X1, . . . ,Xn} be a
subset of Rd. Let us first define the r−Rips complex as follows: A simplex
σ belongs to Rr, the r−Rips complex, if the length of each of its edges is
smaller than r and if all its vertexes are in Xn.

Now, the r−Rips Polyhedron denoted Rr(Xn) is defined as follows.

Rr(Xn) =
⋃

σ∈Rr(Xn)

σ.

Let us note that the ε−Rips complex is frequently used for geometric
inference ([7], [25], [9], [8], [6], [13]). The computational cost is better than
the restricted Delaunay polyhedron or the union of convex hulls and it can
be computed on sets given via pairwise distances.

This paper is devoted to proving some asymptotic properties for the pro-
posed support estimator according to the Hausdorff distance dH . Namely,
if we suppose (as in [19]) that the density decreased to 0 as a power α ≥ 0
of the distance to the boundary (sharpness hypothesis is α = 0) then, for

some fixed radius r we have dH(Dr(Xn), S)
(

lnn
n

)2/(d+1+2α)
is e.a.s. bounded,

and when rn = (lnn/n)
2

d+1+2α we also have dH(Hrn(Xn), S)
(

lnn
n

)2/(d+1+2α)

and dH(Rrn(Xn), S)
(

lnn
n

)2/(d+1+2α)
being e.a.s. bounded. The estimators

boundaries converge to the support boundary with the same rate. It is the
same rate than in [19] but with estimators much more easy to compute.

Section 2 is dedicated to the notations and hypotheses used in the article.
Section 3 presents the associated theorem and gives a brief discussion on the
fact that the proposed estimators are expected to be homeomorphic to the
support. Section 4 is devoted to the proofs of the theorems.

2 Notations, definitions and hypotheses.

2.1 Notations and definitions

Throughout the paper the following notations are used:
The density support S is assumed to be a compact d−dimensional man-

ifold. Let us recall a definition.
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Definition 4. A set A is a is a d−dimensional manifold if for all x ∈ A, x
admits a neighborhood homeomorphic to Bd or B+

d with:

• Bd = {(x1, . . . , xd) ∈ R
d,
∑

x2i < 1}

• B+
d = {(x1, . . . , xd) ∈ R

d,
∑

x2i < 1, x1 ≥ 0}

The fact that S ⊂ R
d is a d−dimensional manifold implies that it has

a boundary (denoted ∂S) that is assumed to be C2 throughout the paper.
Together with the compactness hypothesis this allows us to define γS the
maximum value (for x ∈ ∂S) of the maximum (for the d directions) principal
curvature of ∂S, and rS = γ−1

S the minimum radius of curvature.
B(x, r) (resp. B(x, r)) is the open (resp. closed) d−dimensional ball of

radius r centered at x. When no radius or center are specified, the open
(resp. closed) ball are the unit open (resp. closed) ball of Rd.

Throughout the paper θd denotes the volume of the unit d−dimensional
ball. Some other volume constants are needed in the paper:

θd,α = θd−1B

(

α+ 1

2
,
d+ 1

2

)

with B the Beta function,

θellipsed,α = θd−1

∫ 1

−1
(1+t)

d−1+2α
2 (1−t)

d−1
2 dt = θd−12

α+1B

(

d+ 1 + 2α

2
,
d+ 1

2

)

,

θlensd,α = 2
d−1
2

θd−1

d+ α
.

For a set A and a constant ε ≥ 0, the set A+ εB denotes the sum of A and
εB and is defined by A+ εB =

⋃

a∈A B(a, rn)
The distance used to characterize the difference between a support and

its estimator is the Hausdorff distance defined as follows.

Definition 5 (Hausdorff distance). Let A and B be two subsets of Rd. We
denote by A+ εB the set

⋃

a∈A B(a, ε)

dH(A,B) = inf{r > 0, A ⊂ B + εB and B ⊂ A+ εB}.

The distance between a point x and a set A, denoted d(x,A) is the usual
one, i.e. d(x,A) = infa∈A ||x−A||.

To a d−simplex σ, one can associate rσ and Oσ, the associated radius
and center which are those of the hypersphere circumscribed to the vertices
of σ.

2.2 Hypotheses

The theorem and properties exposed in the following requires strong hy-
potheses.
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The first one is that the support is d−dimensional (with d the dimension
of the observation space). It is a strong hypothesis for potential applications
as it excludes dealing with sparsity phenomena where the dimension of the
support is supposed to be smaller than the dimension of the observation
space. However we strongly believe that it is, in fact, a “comfort hypothesis“
and that an adaptation to a d′−dimensional smooth manifold is possible.

The second hypothesis is that the boundary of the support is a smooth
C2 manifold. This has the great advantage of allowing us to introduce γS , the
maximum value for the principal curvature of ∂S, and the radius rS = γ−1

S .
Even if this is a strong assumption, it can be considered as not so restrictive
in regard to the obtained convergence rate.

Lastly, the support has to be compact and the density f has to satisfy
the following condition: there exists an f0 > 0 and an α > 0 such that
f(x) ≥ f0d(x, ∂S)

α. When α = 0 the boundary is sharp. It is an usual
hypothesis that allows us to deal with non-sharp boundaries (as in [19]).

These three hypotheses are made throughout the paper. They are re-
called in all the theorems of Section 3, which are the main ones in order to
give self-contents statements. However, we will not recall them in Section 4
where the proofs are given.

3 Properties of the estimators

3.1 About the restricted Delaunay polyhedron

Let us begin by considering Drn(Xn) under the sharpness hypothesis. First
let us first imagine that rn(ln(n)/n)

−1/d → 0. In this case, according to
Penrose ([22]) we have Drn(Xn) → ∅ (because for every simplex of the
Delaunay complex, the associated radius rσ is larger than the minimum
length of its edges and so larger than the minimum distance between two
points). Let us now imagine that rn ≥ rS + ε and focus on the following
example : S = B(0, 1) \ B(0, rS). One can easily imagine that keeping the
Delaunay simplices of radius that are close to rS gives P (0 ∈ DrS+ε)(Xn) 9
0.

This illustrates that, in order to use Drn as a S estimator, the suitable
v rn values has to be smaller than rS , but may not decrease toward 0 too
quickly. Theorem 1 gives the non-intuitive result that a constant sequence
is suitable.

Theorem 1. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables drawn with an unknown
density f . Suppose that the support S of the density is a d−dimensional
manifold with a C2 boundary ∂S. Suppose that there exists f0 > 0 and
α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α. Then for a fixed radius r < rS, we
have:
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dH(Dr(Xn), S)

(

lnn

n

)
2

d+1+2α

is e.a.s. bounded

and

dH(∂Dr(Xn), ∂S)

(

lnn

n

)
2

d+1+2α

is e.a.s. bounded.

The explicit expression for the constant is long but is obtained by choos-
ing the maximum of the constants form Lemmas 2, 3 and 4. Obviously
small values for r give large values for maxx∈S d(x,Dr) and large values for
r increase maxx∈Rr d(x, S).

When α = 0, a convergence rate of (ln(n)/n)
2

d+1 is obtained as an-
nounced in the introduction. It is very close to the convergence rate obtained
for a convex set when using H(Xn) to estimate the support.

When α ≥ 0 and d = 2 the convergence rate, proved to be optimal in

[19], is n− 2
3+2α . Here again, the proposed estimators converge with the same

power but applied to (n/ ln n) instead of n.

3.2 About the other proposed estimators

Since the construction of all the three proposed estimators was based on the
same idea of using a convex hull characterization with the introduction of
local restriction , it is natural to look for a link between these estimators.
This is given by the following property.

Property 1. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables. Suppose that the sup-
port S of the density is a d−dimensional manifold with a C2 boundary ∂S.
Suppose that there exists f0 > 0 and α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α.

Then, for any radius sequence rn = λ
(

lnn
n

)
2

d+1+2α there exists a fixed radius
r0, with 0 < r0 < rS such that:

Dr0 ⊂ Rrn ⊂ Hrn e.a.s.

The first inclusion is a direct corollary of Lemma 4 and holds e.a.s. The
second inclusion is obvious and deterministic (we have Rr ⊂ Hr for all values
of r).

Theorems 2, 3, 4 and 5 are corollaries of Proper 1, Theorem 1 and Lemma
6.

Similar results can be easily established for every support estimator that
is a polyhedron that contains Dr and such that all the edges are (e.a.s.)
smaller than a O((ln(n)/n)1/(d+1). The following theorems give the consis-
tency results of Rrn and Hrn .
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Theorem 2. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables. Suppose that the sup-
port S of the density is a d−dimensional manifold with a C2 boundary ∂S.
Suppose that there exists f0 > 0 and α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α.

For all sequences rn = λ
(

lnn
n

)
2

d+1+2α we have

dH(Rrn(Xn), S)

(

lnn

n

)
2

d+1+2α

is e.a.s. bounded

and

dH(∂Rrn(Xn), ∂S)

(

lnn

n

) 2
d+1+2α

is e.a.s. bounded.

Theorem 3. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables. Suppose that the sup-
port S of the density is a d−dimensional manifold with a C2 boundary ∂S.
Suppose that there exists f0 > 0 and a α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α.

If rn
(

n
lnn

) 1
d+1+2α → +∞ then

dH (Rrn(Xn), S) r
−2
n is bounded e.a.s.

and
dH (∂Rrn(Xn), ∂S) r

−2
n is bounded e.a.s.

Theorem 4. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables. Suppose that the sup-
port S of the density is a d−dimensional manifold with a C2 boundary ∂S.
Suppose that there exists f0 > 0 and α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α.

For all sequences rn = λ
(

lnn
n

)
2

d+1+2α we have

dH(Hrn(Xn), S)

(

lnn

n

) 2
d+1+2α

is e.a.s. bounded

and

dH(∂Hrn(Xn), ∂S)

(

lnn

n

)
2

d+1+2α

is e.a.s. bounded

Theorem 5. Let Xn = {X1, . . . ,Xn} be a sample of n independent and
identically distributed R

d−valued random variables. Suppose that the sup-
port S of the density is a d−dimensional manifold with a C2 boundary ∂S.
Suppose that there exists f0 > 0 and α ≥ 0 such that f(x) ≥ f0d(x, ∂S)

α. If

rn
(

n
lnn

)
1

d+1+2α → +∞ then

dH (Hrn(Xn), S) r
−2
n is bounded e.a.s.

and
dH (∂Hrn(Xn), ∂S) r

−2
n is bounded e.a.s.
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3.3 A remark about topology preservation

There exist new statistical methods that use estimation of topological invari-
ants for real life data (see [8], [6] or [13]). This is a motivation to find support
estimators that preserve the topology of the support (see [11], [10], [12]). We
observed that our proposed estimators are homeomorphic to the support but
we are not yet able to prove it and that is part of further work. However
we can already notice two encouraging facts. First let us recall that, in [?]
a Delaunay complex restriction is presented, let us denote it D(S), that is
(under a reasonable hypothesis) homeomorphic to S. Our estimator Dr sat-
isfies D(S)(Xn) ⊂ Dr(Xn) (e.a.s. it will be clear from the proof of Theorems
1) and so D(S) is included in every proposed estimator (because of Property
1).

Secondly we can notice that the n1/(d+1) rate used for the radius sequence
make the use of the rn−Rips complex Rrn , consistent with the estimation
of the Betti numbers ([20]).

4 Proofs

In this section we prove Theorem 1. Firstly, in Section 4.1 we give the main
idea of the proof and then we detail some useful lemmas and properties in
Section 4.2. Proof for Property 1, and Theorems 2, 3, 4 and 5 are left to
the reader because all the useful properties are established within the proof
of Theorem 1, namely:

• Property 1 is a corollary of Lemma 4.

• Theorems 2, 3, 4 and 5 are corollaries of Property 1 and Lemma 6.

4.1 Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In the first one we consider
points that belong to S but not to Dr. In the second part we consider points
that belong to Dr and not to S. For both parts the aim is to prove that
points are (e.a.s.) close to ∂S.

4.1.1 First part

Let us pick a x that belongs to S but not to Dr. There are two possible
cases: x does not belongs H(Xn) or it belongs to H(Xn) but is in a “big”
simplex.

Lemma 1.

sup
x∈S,x/∈H(Xn)

d(x, ∂S) ≤ 2





(2d+ 1 + 2α) ln(n)

(d+ 1 + 2α)θellipsed,α f0r
d−1
2

S n





2
d+1+2α

e.a.s.
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Lemma 2. For any fixed radius r < rS,

sup
x∈S,x∈H(Xn),x/∈Dr

d(x, ∂S) ≤ rS + r

rS





lnn

f0θlensd,α r
d−1
2 n





2
d+1+2α

e.a.s.

Proof of Lemma 1 Let us denote:

sup
x∈S,x/∈H(Xn)

d(x, ∂S) = dsup.

First, one can easily prove that there exists a point y∗ ∈ ∂H(Xn) and a
point x∗ ∈ ∂S such that ||x∗ − y∗|| = dsup (existence because of S compact-
ness and localization on the boundaries because of the maximum). Let −→u x∗

denote the unit vector, normal to ∂S at the point x∗ which points outward

from S. Then the open half space H
−→u x∗

y∗ = {x ∈ R
d,
−→
y∗x−→u x∗ > 0} does not

intersect Xn (y∗ ∈ ∂H(Xn) implies that there exists an open half space that
contains y∗ and that does not intersect Xn and, the fact that the half space
is not the named one contradicts the maximality of the distance between
the boundary of S and the boundary of H(Xn)). Let us denote by z the
midpoint of the two points x∗ and y∗. We have d(z, ∂S) = a = dsup/2. All
the previous considerations imply that every ellipsoid Ez,a does not intersect
Xn. See Figure 1 for the construction. Application of Lemma 12 proves that

a = 0.5dsup ≤
(

(2d+1+2α) ln(n)

(d+1+2α)θellipsed,α f0r
d−1
2

S n

)
2

d+1+2α

e.a.s.

Figure 1: Construction of an empty ellipsoid for Lemma 1
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Proof of Lemma 2 Let us denote:

max
x∈S,x∈H(Xn),x/∈D̊r

d(x, ∂S) = dmax

This max is realized for a given point x, with x ∈ S and x ∈ H(Xn) but
x /∈ D̊r. As x belongs to H(Xn) there exists a simplex σ of the Delaunay
complex such that x belongs to σ. This simplex does not belong to Dr

so rσ > r. As r is constant, Oσ /∈ S e.a.s. (otherwise there exists a ball
centered in S and of radius r that does not contains any observation, which
is impossible e.a.s. according to Lemma 10). As x ∈ σ ⊂ B(Oσ, rσ) we have
dmax ≤ maxy∈B(Oσ ,rσ)

d(y, ∂S) = d∗.

As in the previous proof we can establish the existence of y∗ ∈ S(Oσ , rσ)∩
S and x∗ ∈ ∂S such that ||x∗−y∗|| = d∗. Moreover the fact that we are at the
maximum of the distance ensures that the plane tangent to S at the point
x∗ is parallel to the plan tangent to S(Oσ , rσ) ∩ S at the point y∗. So the

vector
−−→
x∗y∗ normal to S at the point x∗ is parallel to the vector

−−−→
Oσy

∗ which is
normal to S(Oσ , rσ)∩S at the point y∗. This implies that y∗, x∗ and Oσ are

collinear. Let us now defineOr such that
−−−→
y∗Or = (rn/rσ)

−−−→
y∗Oσ. We obviously

have: B(Or, rn) ⊂ B(Oσ, rσ) so B(Or, rn)∩Xn = ∅ and d(Or, ∂S) ≤ rn− d∗.
See Figure 2 for construction.

Or

σ

x∗

Oσ

dsup

y∗

Figure 2: Construction of an empty C for Lemma 2

According to Lemma 11, we have

dmax ≤ d∗ ≤ rS + r

rS





lnn

f0θ
lens
d,α r

d−1
2 n





2
d+1+2α

e.a.s.
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4.1.2 Second part

Let us pick a x that belongs toDr but not to S. Here x belongs to a (unique)
simplex σ and we will study the two possible cases : Oσ ∈ S and Oσ /∈ S.

Lemma 3.

max
x∈σ∈Dr,Oσ∈S

d(x, ∂S) ≤ 1

2rS

(

(2d + α)

(d+ α)θd,αf0

ln(n)

n

) 2
d+α

e.a.s.

Lemma 4.

max
x∈σ∈Dr,Oσ /∈S

d(x, ∂S) ≤ a2 (ln(n)/n)
2/d e.a.s.

Proof of Lemma 3 For all σ such that belongs to Dr and such that

Oσ ∈ S we have rσ ≤
(

(2d+α)
(d+α)θd,αf0

ln(n)
n

) 1
d+α

(this is a corollary to Lemma

10) and so its edges are smaller than 2
(

(2d+α)
(d+α)θd,αf0

ln(n)
n

)
1

d+α
. We conclude,

according to Lemma 6, that for all x ∈ Dr such that Oσ ∈ S we have

d(x, ∂S) ≤ 1
2rS

(

(2d+α)
(d+α)θd,αf0

ln(n)
n

)
2

d+α
e.a.s.

Proof of Lemma 4 Let σ be simplex that belongs to Dr and such that
Oσ /∈ S. If rσ ≤ r we can pick a point x∗ ∈ σ that realizes the minimum of
the distances maxx∈∂S ||x−Oσ||. Let us denote −→u x∗ the unit vector, tangent
to ∂S at the point x∗ and that points outward from S. Let us denote O+

S

(resp. O−
S ) the point that satisfy

−−−→
x∗O+

S = −rS
−→u x∗ (resp.

−−−→
x∗O+

S = +rS
−→u x∗).

Let us now define the point Or such that S(Or, r)∩S(O−
S , rS) = S(Oσ, rσ)∩

S(O−
S , rS). Figure 3 shows that B(Or, r)∩S ⊂ B(Oσ, σ)∩S. This first step

allows us to fix the radius as r and avoid working with a radius rσ varying
between 0 and r.

Now, as B(Or, r)∩Xn = ∅, Lemma 11 implies that y′+l′ ≤ a(ln(n)/n)2/(d+1)

e.a.s. (see Figure 4 for a depiction of the definitions for l, l′, y′ and h, and
choose the value for a according to Lemma 11). We have the following
system of equation that links l, l′, y′ and h, when we fix l′ + y′ = εn:














(rS − l)2 + h2 = r2S
(r − l − l′ − y′)2 + h2 = r2

(rS − l′)2 + h′2 = r2S
(r − y′)2 + h′2 = r2

⇒



















h2 = 2rrS
rS−rεn + o(εn)

l = r
rS−rεn + o(εn)

h′2 = 2rrS
rS−rεn + o(εn)

y′ = rS
r+rS

εn + o(εn)

The maximum edge length of σ, zσ, is bounded above by 2
√
h2 + l2 and

so zσ ≤ 2
√

2rrS
rS−rεn + o(εn) (e.a.s.). Now we can apply Lemma 6 to obtain

that d(σ, S) ≤ 1
8rS

4 2rrS
rS−rεn + o(εn) =

r
rS−rεn + o(εn). To conclude, we apply

11



x∗ Oσ

Or O
−

S
O

+
S

rσ

r

Figure 3: First construction for Lemma 4

Figure 4: Definition of some useful lengths for Lemma 4

Lemma 11 which proves that εn ≤ rS+r

(f0θlens
d,α

)
2

d+1+2α r
d−1

d+1+2α rS

(

lnn
n

)
2

d+1+2α e.a.s.

That concludes the proof as we now have:

d(σ, S) ≤ (rS + r)r
2α

d+1+2α

(rS − r)rS(f0θlensd,α )
d−1

d+1+2α

(

lnn

n

)
2

d+1+2α

e.a.s.
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4.1.3 Conclusions

For Theorem 1 Lemmas 1, 2, 3 and 4 prove that both d(Dr, S) and
d(∂Dr, ∂S) are e.a.s. bounded. Namely, let us denote:

a1 = (2

(

2d+ 1 + 2α

d+ 1 + 2α

)
2

d+1+2α

(f0θ
ellipse
d,α )−

2
d+1+2α ,

a2 =
rS + r

rSr
d−1

d+1+2α

(f0θ
lens
d,α )−

2
d+1+2α ,

a3 =
(rS + r)r

2α
d+1+2α

rS − r
(f0θ

lens
d,α )−

2
d+1+2α .

The bound is max(a1, a2, a3). The constants a1 and a2 boundmaxx∈S(d(x,Dr))
and decrease as r increases. The constant a3 bounds maxx∈Dr(d(xS)) and
increases as r increases.

For Property 1 Within the proof of Lemma 4 one can see that the maxi-

mum edge length of Dr is e.a.s. bounded by 2
√
2a3rS

(

lnn
n

)
1

d+1+2α . The fact
that a3(r) is a bijective function from ]0, rS [ to R

∗
+ gives Property 1.

4.2 Proof of useful Lemmas

We are now going to describe several Lemmas which will be used to finish
the proofs of Lemmas 1, 2, 3 and 4. Let us recall that the proofs of these
Lemmas are based on the fact that in each case the contrary implies the
existence of some subset of S that does not contain any observation. To
prove that this is not possible (e.a.s.) we will first set some gives some
geometric lemmas, then we will give lower bounds for the probability that
an observation belongs to these sets. Finally we will give the proofs of
Lemmas 10, 12 and 11 which are required for Lemmas 1, 2, 3 and 4.

4.2.1 Geometric preliminaries

Covering numbers

Lemma 5. Let εn be sequence that converges to 0. There exists N0 and
a constant c0(S) such that, for all n > N0, ν0(n) the covering number of
S with small balls of radius εn centered in S satisfies ν0(n) ≤ c0(S)r

−d
n .

That is, one can deterministically find points x1, . . . , xν0(n) in S such that

S ⊂ ⋃B(xi, εn) with ν0(n) ≤ c0(S)ε
−d
n

This is a well known result that we will use to get probabilistic inequali-
ties. Namely, the two constants used will be : c0(S) when we will deal with
empty balls centered in S or empty ellipsoids centered in S (for Lemmas 1
and 3) and c0(S + rB) when we deal with empty balls centered outside of S
but that intersect (Lemmas 2 and 3).

13



Interpolation type Lemma. To bound the distance between a point
that belongs to a simplex σ (whose vertices belongs to S) and S (used in
the second part of the proof of Theorem 1) we need the following lemma
whose proof is similar to the error bound when estimation is done via linear
interpolation. This proof is left to the reader.

Lemma 6. If x belongs to a simplex σ = (x1, . . . , xk+1) such that every xi
belongs to S then d(x, S) ≤ max(||xi − xj||2)/8rS .

Local Properties of S and some probability bounds

Lemma 7. There exists a ε0 such that, for all x ∈ R
d such that d(x, ∂S) =

ε ≤ ε0, there exists a unique x∗ = argminy∈∂S ||−→yx||.

Proof. Let us orient ∂S so that, for all y ∈ ∂S, the vector −→u y is the unique
unit vector normal to ∂S at the point y that points outward from S. As ∂S
is C2, the Gauss map that associates −→u y to y is C1 and −→u y −−→u z = Ay

−→yz+
oy(||−→yz||). Compactness of ∂S implies that there exists ε1 > 0 such that, for
all ε ≤ ε1, for all x ∈ ∂S and for any vector −→v , ||(Id − εAx)

−→v || ≥ 2
3 ||−→v ||.

Compactness of ∂S also implies that there exists an ε2 such that for all
x ∈ ∂S and for any vector −→v with ||−→v || ≤ ε2, ||oy(||−→v ||)|| ≤ ||−→v ||/3. Let us
choose ε0 = 0.5min(ε1, ε2).

Let us notice that the compactness of ∂S implies that for all x ∈ R
d

there exists a x∗ = argminy∈∂S ||−→yx|| and −−→
xx∗ is a vector normal to ∂S at

the point x∗.
Let us suppose that there exists a point x ∈ S (the proof when x ∈ Sc

is exactly the same) such that d(x, ∂S) = ε ≤ ε0, and that there exist

two points x∗1 and x∗2 in ∂S that realize the minimum i.e. ||−−→x∗1x|| = ||−−→x∗2x|| =
miny∈∂S ||−→yx||. We have x = x∗1−ε−→u x∗

1
= x∗2−ε−→u x∗

2
which implies ||−−→x∗1x

∗
2|| ≤

2ε. Let us recall that −→u x∗
2
= Ax∗

1

−−→
x∗1x

∗
2 + ox∗

1
(||−−→x∗1x

∗
2||) and so

x∗2 − ε−→u x∗
2
− (x∗1 − ε−→u x∗

1
) =

−−→
x∗1x

∗
2 + εAx∗

1

−−→
x∗1x

∗
2 + εox∗

1
(||−−→x∗1x

∗
2||).

This concludes the proof as it implies that O = ||x−x|| ≥ ||−−→x∗1x
∗
2||/3.

Lemma 7 implies the following corollary.

Corollary 1. Let X be a random variable of density f .
For all x such that d(x, ∂S) ≤ ε0 we can define the unique x∗ ∈ ∂S such

that ||−−→xx∗|| = d(x, ∂S) and denote −→ux =
−−→
xx∗/||−−→xx∗||.

Thus, for all rn ≤ d(x, ∂S) one can define uniquely the following ellip-
soid:

E∗
x,rn = {y, (

−→xy.−→u x)
2

r2n
+

||−→xy − (−→xy.−→u x)
−→u x||2

rSrn
≤ 1}

14



which satisfies:

P (X ∈ Ex,rn) ≥ f0θ
ellipse
d,α r

d−1
2

S r
d+1+2α

2
n (1 + o(1))

The sketch of the proof is as follows: First, the uniqueness is a corollary
of Lemma 7 (it is important to define uniquely the ellipsoid to prove Lemma
12). Then the probability bounds comes from the hypothesis on f . Without
giving details of the calculation they are based on

P (X ∈ Ex,rn) ≤ P (X ∈ E0,rn)

with O the point that satisfies
−−→
x∗O = rn

−−→
x∗x/||−−→x∗x||, and:

P (X ∈ EO,rn) ∼
∫ rn

−rn

f0(t+ rn)
αθd−1

(

√
rnrS

√

1− t2

r2n

)d−1

dt.

(See Figure 5). Applying a variable changes t/rn = u gives the result.

Figure 5: Probability integration in an ellipsoid

Lemma 8. If X is a random variable of density f , x ∈ S is a deterministic
point, and rn a radius sequence such that rn → 0 then

P (X ∈ B(x, rn)) ≥
1

2
f0θd,αr

d+α
n (1 + o(1)).

Here again we only present the idea of the proof. The limit case that
bounds the probability is given when x ∈ ∂S and, for this case,

P (X ∈ B(x, rn)) ∼
∫ rn

0
θd−1f0t

α(r2n − t2)
d−1
2 dt.

15



Figure 6: Probability integration in a disc

Lemma 9. Let r be a radius with r < rS, let εn be a sequence that converges
toward 0 and let xn be a point sequence such that that xn does not belong to
S and such that d(x, ∂S) = r − εn. If X is a random variable of density f
then

P (B(xn, r) ∩ S) ≥ f0θ
lens
d,α

r
d−1
2 r

d+1+2α
2

S

(rS + r)
d+1+2α

2

ε
d+1+2α

2
n (1 + o(1)).

This case is the same as illustrated in Figure 4. Let us recall that the
solutions for y′, l, l′ and h′ (with y′ + l′ = εn):



















h2 = 2rrS
rS−rεn + o(εn)

l = r
rS−rεn + o(εn)

h′2 = 2rrS
rS−rεn + o(εn)

y′ = rS
r+rS

εn + o(εn)

Referring to Figure 7 we see that :

P (B(xn, r)∩S) ≤
∫ y′

0
f0(t+l′)αθd−1

(

t

y′

)d−1

dt ≤
∫ y′

0
f0t

αθd−1

(

t

y′

)d−1

dt.

4.2.2 Probability bounds for the existence of a given “empty”

set

The previous section establishes the uniqueness of the ellipsoid-type set and
gives lower bounds for the probability for one observation to fall in a given
set (ellipsoid, ball or lens). To conclude the proof we now need to bound
the probability that there exists an empty set.

16



Figure 7: Probability integration in a lens

Lemma 10. Let rn be the sequence rd+α
n = 2λ

θd,αf0
lnn
n with λ ≥ 1 then

P (exists x ∈ S such that B(x, rn) ∩ Xn = ∅) = O(n
d

d+α
−λ+o(1)).

As a corollary ; for all λ > 1+ d
d+α , and for all x ∈ S, B

(

x,
(

2λ
θd,αf0

lnn
n

) 1
d+α

)

contains at least one observation e.a.s.

Proof. Let us first cover S with ν0 ≤ c0(S)ε
−d
n r−d

n small balls of radius rnεn
as in Lemma 5 and let us denote x∗i the centers of these balls. Let us suppose
that there exists an x ∈ S such that B(x, rn) ∩ Xn = ∅. Then there exists
an i such that B(x∗i , rn(1− εn)) ∩ Xn = ∅. Lemmas 5 and 8 imply that

P (∃i, B(x∗i , rn)∩Xn = ∅) ≤ c0(S) ln(n)r
−d
n ε−d

n

(

1− f0θd,α
2

rd+α
n (1 + o(1))

)n

.

and so, for the given rn:

P (∃i, B(x∗i , rn) ∩ Xn = ∅) = O
(

ε−d
n ln(n)−

d
d+αn

d
d+α

−λ+o(1)
)

.

The choice of εn = ln(n)−
1

d+α concludes the proof.

Lemma 11. For all x /∈ S such that d(xn, ∂S) ≤ r − (a ln(n)/n)2/(d+1+2α)

with a = λ (rS+r)
d+1+2α

2

f0θlens
d,α r

d−1
2 r

d+1+2α
2

S

and λ > 1 we have B(x, r) ∩ Xn 6= ∅ e.a.s.

Proof. Let us define En,a,r = {x /∈ S, d(x, ∂S) ≤ r − (a ln(n)/n)2/(d+1+2α)}
and E0 = {x /∈ S, d(x, ∂S) ≤ r}. Let us now cover En,a,r with νn ≤

17



c(En,a,r)ε
−d
n ≤ c(E0)ε

−d
n small deterministic balls of radius εn, and centered

at the xi.
Let us suppose that there exists an x ∈ En,a,r such that B(x, r) ∩

Xn is empty. Then there exists a deterministic xi ∈ En,a,r such that
B (xi, r(1− εn)) does not contains any observation.

Let us denote

pn = P (∃x ∈ En,a,r,B(x, r) ∩ Xn = ∅).

Applying Lemma 9 and a reasoning similar to previous one we have:

pn ≤ p∗n = c(E0,rS )ε
−d
n

(

1− λ
lnn

n
(1 + o(1))

)n

= O(ε−d
n n−λ+o(1)).

When λ > 1, the choice of ε = (lnn)−1, for instance, leads to
∑

pn < ∞
and so concludes the proof.

Corollary 2. When, r < rS, if x /∈ S and B(x, r) ∩ Xn = ∅ then

d(x, ∂S) ≥ r − (rS + r)

f0θlensd,α r
d−1

d+1+2α rS

(

lnn

n

)
2

d+1+2α

e.a.s.

Lemma 12. For all x ∈ S such that d(x, ∂S) ≥
(

λ

f0θ
ellipse
d,α

r
d−1
2

S

lnn
n

) 2
d+1+2α

and λ > 1 + 1
d+1+2α we have

Ex,d(x,∂S) ∩ Xn 6= ∅ e.a.s.

Proof. The proof is basically the same as for the previous lemmas (Lemmas
10 and 11).

Let us first cover S with c0(S)ε
−d
n small deterministic balls of radius

εn centered at the xi. Let us suppose that there exists an x ∈ S such that
d(x, ∂S) = ρn and Ex,ρn∩Xn = ∅. There exists an xi such that x ∈ B(xi, εn).

First, the C2 smoothness of the boundary implies that −→u xi
= −→u x +

εnOx(1) and the compactness of S allows us to have a uniform upper bound
i.e. −→u xi

= −→u x + εnO(1).
Let us first note that Ex,d(x,∂S) ⊂ B(x,√rSρn). For all y ∈ Ex,d(x,∂S) and

so ||x− y|| = O(ρn).
This allows us to have

(−→u x.
−→xy)2 = (−→u xi

.−→xiy)2 + εn
√
ρnO(1)

and

||−→xy − (−→u x.
−→xy)−→u x||2 = ||−→xiy − (−→u xi

.−→xiy)−→u xi
||2 + εnO(1).
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That implies that there exists a constant A such that:

Exi,
ρn

1+
Aεn(1+rS)

√
ρn

⊂ Ex,ρn

We can now apply Lemma 1:

P (∃x such that d(x, ∂S) = ρn and Ex,ρn ∩ Xn = ∅) ≤

c0(S)ε
−d
n






1− f0θ

ellipse
d,α r

d−1
2

S





ρn

1 + Aεn(1+rS)√
ρn





d+1+2α
2

(1 + o(1))







n

When ρ
d+1+2α

2
n = λ

f0θ
ellipse
d,α

r
d−1
2

S

lnn
n and εn

√
ρn

−1 → 0 we have:

P (∃i such that Ex,ρn ∩ Xn = ∅) ≤ c0(S)ε
−d
n n−λ+o(1).

If we now choose εn = (lnn)−a√ρn and λ > 1 + 1
d+1+2α we have

∑

P (∃x such that d(x, ∂S) ≥ ρn and Ex,ρn ∩ Xn = ∅) < ∞
This concludes the proof.

5 Conclusion and Perspective

First, as mentioned in the discussion on the hypothesis, it would be inter-
esting to remove the dimension hypothesis on the support to allow one to
deal with sparsity problems.

The radius for Dr (or radii sequence for Rrn or Hrn) that have to be
chosen and the convergence rate depends on some unknown parameters: f0,
α and rS . That is a classical problem in statistics and one may replace these
unknown quantities by their estimators. When α = 0 there exist estimators
for f0 (see [22] for instance), but, to our knowledge, there is none for f0 and
α in the general case, and we have not seen any for rS.

Another way to search is to have the usual dual approach replacing a
fixed radius sequence with a local one with a nearest-neighbors method. We
believe that this may remove the unknown f0 for the choice of the parameter
and give better results in practice when the density is far from uniform.

The proposed estimators have a long computational time (which is very
sensitive to the observation dimension) but we have chosen to present the
Hr estimator in a way that allows us to now introduce now Ho

r and H�
r . The

idea is very simple: the practical problem in Hr is the computation of the
convex hull. Let us replace it by the smallest set that contains B(Xi, r)∩Xn

with a given geometrical shape.
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Definition 6. Let Xn = {X1, . . . ,Xn} be a subset of Rd. The r−Union of
ellipsoids, denoted Ho

r (Xn), is defined as follows:

Ho
r (Xn) =

⋃

i

E(B(Xi, r) ∩ Xn)

where E(A) is the smallest ellipsoid that contains A.

Definition 7. Let Xn = {X1, . . . ,Xn} be a subset of Rd. The r−Union of
bins, denoted H�

r (Xn), is defined as follows:

H�

r (Xn) =
⋃

i

C(B(Xi, r) ∩ Xn)

where C(A) is the smallest bin that contains A (with the following bin defi-
nition : B is a bin if it is isometric to a πi[0, ai])

We believe that these new estimators may give similar results to the one
proposed here but with a better computational time (we already have a part
of the proof, as we obviously have Hr ⊂ Ho

r and Hr ⊂ H�
r ). A final result on

this new estimator together with theoretical result that allows one to deal
with a manifold of dimension smaller than d should give very interesting
and practical methods to deal with sparse data.

Another possible perspective is the introduction of the support estima-
tion in the nearest neighbor density estimation. When the density is esti-
mated with the nearest neighbors method there exists a bias for the points
located on (or close to) the boundary when the boundary is sharp. The idea
is to use the support estimation to reduce this bias. Once this point achieve
it can be imagined to adapt this method to the level set estimation that has
much more practical interest that the whole support estimation.

To conclude this long list of further potential work we can also notice that
the restricted Delaunay estimator provides a piecewise linear approximation
of the boundary with extremities lying on a subset of the observations,
a smoother estimator as a polynomial one, based on the identified points
may now be built and may over-perform ours (as in [19] but for higher
dimensions).

References

[1] C. Aaron. Using the k-nearest neighbor restricted delaunay polyhedron
to estimate the density support and its topological properties. submit-
ted to Electronic Journal of statistics.

[2] A. Baillo, A. Cuevas, and A. Justel. Set estimation and nonparametric
detection. The Canadian Journal of Statistics, 28:765–782, 2000.

20
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