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We prove short-time existence of ϕ-regular solutions to the planar anisotropic curvature flow, including the crystalline case, with an additional forcing term possibly unbounded and discontinuous in time, such as for instance a white noise. We also prove uniqueness of such solutions when the anisotropy is smooth and elliptic. The main tools are the use of an implicit variational scheme in order to define the evolution, and the approximation with flows corresponding to regular anisotropies.

§1. Introduction

In this paper we consider the anisotropic curvature flow of planar curves, corresponding to the evolution law [START_REF] Almgren | Flat flow is motion by crystalline curvature for curves with crystalline energies[END_REF] V = κ ϕ + ∂G ∂t in the Cahn-Hoffmann direction n ϕ . We shall assume that the forcing term G has the form

G = G 1 + G 2 with G 1 , G 2 satisfying: i) G 1 ∈ C 0 ([0, ∞)) does not depend on x; ii) G 2 ∈ C 1 ([0, ∞); Lip(R 2 
)). Observe that (1) is only formal, as ∂G 1 /∂t does not necessarily exist, however the motion can still be defined in an appropriate way (see Definition 2). Notice also that we include the case of G being a typical path of a Brownian motion, which is necessary to take into account a stochastic forcing term as in [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF].

In the smooth anisotropic case, the first existence and uniqueness results of a classical evolution in can be found in [START_REF] Angenent | Parabolic equations for curves on surfaces I. Curves with p-integrable curvature[END_REF], where S. Angenent showed existence, uniqueness and comparison for a class of equations which include [START_REF] Almgren | Flat flow is motion by crystalline curvature for curves with crystalline energies[END_REF] in the case G = G 2 and ϕ regular. The existence and uniqueness of a weak solution for the forced flow, with a Lipschitz continuous forcing term, follows from standard viscosity theory [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF].

The crystalline curvature flow was mathematically formalized by J. Taylor in a series of papers (see for instance [START_REF] Taylor | Crystalline variational problems[END_REF][START_REF] Taylor | Motion of curves by crystalline curvature, including triple junctions and boundary points[END_REF]). In two-dimensions, the existence of the flow in the non forced case G = 0 reduces to the analysis of a system of ODEs. It was first shown by F.J. Almgren and J. Taylor in [START_REF] Almgren | Flat flow is motion by crystalline curvature for curves with crystalline energies[END_REF], together with a proof of consistency of a variational scheme similar to the one introduced in Section 3. The uniqueness and comparison principle in the non forced case were established shortly after by Y. Giga and M.E. Gurtin in [START_REF] Giga | A comparison theorem for crystalline evolutions in the plane[END_REF]. The forced crystalline flow was studied in [START_REF] Bellettini | Approximation to driven motion by crystalline curvature in two dimensions[END_REF], however with strong hypotheses on the forcing to ensure the preservation of the facets.

It is only in relatively recent work that the flow has been studied with quite general forcing terms: in [START_REF] Giga | A comparison principle for singular diffusion equation with spatially inhomogeneous driving force for graphs[END_REF][START_REF] Giga | Evolution of regular bent rectangles by the driven crystalline curvature flow in the plane with a non-uniform forcing term[END_REF] a Lipschitz forcing is considered. However, [START_REF] Giga | A comparison principle for singular diffusion equation with spatially inhomogeneous driving force for graphs[END_REF] is restricted to the evolution of graphs (although with a general mobility), while [START_REF] Giga | Evolution of regular bent rectangles by the driven crystalline curvature flow in the plane with a non-uniform forcing term[END_REF] only considers rectangular anisotropies, and assumes that the initial datum is close to the Wulff shape. The paper [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF] deals with quite general forcing terms (roughly, the same as in this paper), but requires the anisotropy to be smooth. It shows the consistency of the variational scheme and a comparison for regular evolutions. In [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF], the authors show the existence of convex crystalline evolutions (extending their results of [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF]) with time-dependent (bounded) forcing terms and apply it to show the existence of volume preserving flows.

We show here a general existence result for the two-dimensional crystalline curvature flow, with "natural" mobility, which holds in two cases: for a general forcing G = G 1 depending only on time, and for a regular forcing G = G 2 with ∂G 2 /∂t continuous in time and Lipschitz continuous in space.

Our proof relies on estimates for the variational scheme introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], which show that, if the initial curve has a strong regularity (expressed in terms of an internal and external Wulff shape condition), then this regularity is preserved for some time which depends only on the initial radius. Extending these proofs to higher dimension would require quite strong regularity results for nonlinear elliptic PDEs, which do not seem available at a first glance.

The paper is organized as follows: in the Section 2 we define the "anisotropy" and introduce our notion of a "regular" curvature flow for smooth and nonsmooth anisotropies. In Section 3 we study the time-discrete implicit scheme of [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF], and extend some regularity results of [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF] to the flow with forcing. We then show in Section 4 the main existence results, for smooth anisotropies. The fundamental point is that the time of existence only depends on the regularity of the initial curve. In the smooth case, we also show uniqueness of regular evolutions. Eventually, in Section 5 we extend the existence result to the crystalline case, however this simply follows from an elementary approximation lemma (Lemma 1), and the fact that the time of existence is uniformly controlled in this approximation. §2. RW ϕ -condition and ϕ-regular flows We call anisotropy a function ϕ which is convex, one-homogeneous and coercive on R 2 . We will also assume that ϕ is even, i.e. ϕ is a norm, although we expect that the results of this paper still hold in the general case (but some proofs become more tedious to write).

We will always assume that there exists c 0 > 0 such that

(2) c 0 |x| ≤ ϕ(x) ≤ c -1 0 |x| ∀x ∈ R 2 .
We denote by ϕ • the polar of ϕ, defined as

ϕ • (ν) := sup x: ϕ(x)≤1 ν • x ν ∈ R 2 ,
it is obviously also a convex, one-homogeneous and even function on R 2 . Notice that from (2) it easily follows

c 0 |ν| ≤ ϕ • (ν) ≤ c -1 0 |ν| ∀ν ∈ R 2 .
We denote by W ϕ := {ϕ ≤ 1} the unit ball of ϕ, which is usually called the Wulff shape.

We say that ϕ is

smooth if ϕ ∈ C 2 (R 2 \ {0}) and ϕ is elliptic if ϕ 2 is strictly convex, that is ∇ 2 (ϕ 2 ) ≥ c
Id in the distributional sense, for some c > 0. It is easy to check that ϕ is smooth and elliptic iff ϕ • is smooth and elliptic. Given a set E ⊂ R 2 we let d E ϕ be the signed ϕ-distance function to ∂E defined as

d E ϕ (x) := min y∈E ϕ(x -y) -min y ∈E ϕ(y -x) ,
We let ν E ϕ := ∇d E ϕ be the exterior ϕ-normal to ∂E, n ϕ ∈ ∂ϕ • (ν ϕ ) be the so-called Cahn-Hoffmann vector field (where ∂ denotes the subdifferential), and κ ϕ := divn ϕ be the ϕ-curvature of ∂E, whenever they are defined. We also set

E c := R 2 \ E.
Following [START_REF] Bellettini | Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N[END_REF] we give the following definition:

Definition 1 (RW ϕ -condition). We say that a set E satisfies the inner RW ϕ -condition for some R > 0 if

(3) E = x: d E ϕ (x)≤-R (x + RW ϕ )
and for any r < R and x ∈ R 2 , (x + rW ϕ ) ∩ E c is connected. We say that E satisfies the outer R W ϕ -condition if its complementary E c satisfies the inner R W ϕ -condition.

We say that E satisfies the R W ϕ -condition if it satisfies both the inner and outer R W ϕconditions.

Remark 1. Notice that, if E satisfies the R W ϕ -condition for some R > 0, then ∂E is locally a Lipschitz graph. Moreover, when ϕ is smooth, the R W ϕ -condition implies that ∂E is of class C 1,1 and |κ ϕ | ≤ 1/R a.e. on ∂E. In this case the connectedness condition in Definition 1 is automatically satisfied whenever (3) holds. However, in the nonsmooth case one can have some pathological examples if one removes the connectedness condition, as the one depicted in Fig. 1 when the Wulff shape is a square. Remark 2. It is not difficult to show that E satisfies the inner R W ϕ -condition iff (3) holds and the following property holds: for all x such that d

E ϕ (x) = -R ′ > -R, the set ∂E ∩(x+R ′ ∂W ϕ ) is connected.
By (3) it follows that ∂E ∩ (x + R ′ ∂W ϕ ) is either a segment (possibly a point) or the union of two segments. In particular, if ϕ is elliptic, this is equivalent to say that there exists a unique point in ∂E minimizing the ϕ-distance from x. Definition 2 (ϕ-regular flows). We say that a map [0, T ] ∋ t → P(R 2 ) defines a ϕ-regular flow for (1) if

(1) E(t) satisfies the RW ϕ -condition for all t ∈ [0, T ] and for some R > 0;

(2) there exist an open set U ⊂ R 2 and a vector field

z ∈ L ∞ ([0, T ] × U ; R 2 ) such that (a) ∂E(t) ⊂ U for all t ∈ [0, T ], (b) d E ϕ (t, x) := d E(t) ϕ (x) ∈ C 0 ([0, T ]; Lip(U )), (c) z ∈ ∂ϕ • (∇d E ϕ ) a.e. in [0, T ] × U , (d) divz ∈ L ∞ ([0, T ] × U );
(3) there exists λ > 0 such that, for any t, s with 0 ≤ t < s ≤ T and a.e. x ∈ U , there holds

(4) d E ϕ (s, x) -d E ϕ (t, x) - t s div z(τ, x) dτ -G(s, x) + G(t, x) ≤ λ(s -t) max t≤τ ≤s |d E ϕ (x, τ )| .
Observe that (4) implies that (d -G) is Lipschitz continuous, so that (4) can be rewritten as ( 5)

∂(d E ϕ -G) ∂t (t, x) -div ∇ϕ • (∇d E ϕ )(t, x) ≤ λ|d E ϕ (t, x)| .
for a.e. (t, x) ∈ [0, T ] × U . In case G is C 1 in time, equation [START_REF] Angenent | Parabolic equations for curves on surfaces I. Curves with p-integrable curvature[END_REF] expresses the fact that ∂E(t) evolves with speed given by (1).

An approximation result.

We now show that, given any set E satisfying the RW ϕ -condition for a general anisotropy ϕ, there exist smooth and elliptic anisotropies ϕ ε → ϕ and sets E ε → E, as ε → 0, such that E ε satisfies the RW ϕε -condition.

Lemma 1. Let ϕ be a general anisotropy and let ϕ ε be smooth and elliptic anisotropies converging to ϕ, with ϕ ε ≥ ϕ. Let E ⊆ R 2 satisfy the RW ϕ -condition for some R > 0. Then there exist sets E ε , with ∂E ε → ∂E as ε → 0 in the Hausdorff sense, such that each E ε satisfies the RW ϕε -condition.

Proof. Let

E ε := (x + RW ϕε ) : (x + RW ϕε ) ⊂ E E ε := R 2 \ (x + RW ϕε ) : (x + RW ϕε ) ⊂ E c ε .
Notice that, by definition, E ε satsifies the innner RW ϕε -condition and E ε satisfies the outer RW ϕεcondition, so that we have to prove that E ε also satisfies the inner RW ϕε -condition.

Step 1. Let us show that ∂E ε → ∂E as ε → 0, in the Hausdorff sense. In fact, this is obvious from the construction: since W ϕε ⊂ W ϕ and for any x ∈ E, there exists z ∈ E with x ∈ z + RW ϕ ⊂ E, we see that the distance from x to E ε (and then E ε ) is bounded by the Hausdorff distance between RW ϕ and RW ϕε . An estimate for the complement can be derived in the same way, so that d H (∂E ε , ∂E) ≤ Rd H (W ϕ , W ϕε ).

Step 2. We now prove that E ε satisfies the outer RW ϕ -condition. We first show that, for all x ∈ ∂ E ε , there exists y such that (6)

E ε ⊂ (y + RW ϕ ) c and x ∈ ∂(y + RW ϕ ) . Indeed, if x ∈ ∂ E ε ∩∂E, (6) 
readily follows from the fact that E satisfies the outer RW ϕ -condition.

If x ∈ ∂ E ε \ ∂E, then by definition of E ε there exists x 1 ∈ R 2 such that (x 1 + RW ϕε ) ⊆ E ε and x ∈ ∂(x 1 + RW ϕε ) .
Let ℓ x be the maximal arc of ∂(x 1 + RW ϕε ) containing x and contained in the interior of E, and let y 1 , y 2 ∈ ∂E be the endpoints of ℓ x . Notice that ϕ ε (y 1y 2 ) < 2R. Let y 3 := (y 1 + y 2 )/2, R ′ := ϕ(y 1y 2 )/2 ≤ ϕ ε (y 1y 2 )/2 < R. As E satisfies the inner RW ϕ -condition, the set (y 3 + R ′ W ϕ ) has connected intersection with E c , so that the set (∂E \ ∂ E ε ) ∩ (y 3 + R ′ W ϕ ) contains a connected arc lx joining y 1 and y 2 (see Figure 2). Let S x be the subset of E such that ∂S x = ℓ x ∪ lx and set

E ′ := E ε ∩ (y 3 + R ′ W ϕ ). Notice that S x ⊂ E ′ . As E ′ is a convex set, there exists y such that x ∈ ∂(y + RW ϕ ) and E ′ ⊂ (y + RW ϕ ) c . Moreover, since E satisfies the outer RW ϕ -condition, the set E∩ int(y+RW ϕ ) ⊇ S x ∩ int(y+RW ϕ ) is connected. This implies that E ε ⊂ (y + RW ϕ ) c
and proves [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF].

In order to prove that E ε satisfies the outer RW ϕ -condition, by Remark 2 it remains to show that, given x with

d Eε ϕ = R ′ < R, the set ∂ E ε ∩ (x + R ′ ∂W ϕ ) is connected. If ∂ E ε ∩ (x + R ′ ∂W ϕ ) ⊂ ∂E this follows directly from the fact that E satisfies the outer RW ϕ -condition. Otherwise, there exists x ∈ (∂ E ε \ ∂E) ∩ (x + R ′ ∂W ϕ ). In this case we claim that ∂ E ε ∩(x+R ′ ∂W ϕ ) = {x}. Indeed, since ℓ x is a strictly convex arc, we have ℓ x ∩(x+R ′ ∂W ϕ ) = {x}. Hence, if ∂ E ε ∩ (x + R ′ ∂W ϕ ) contains another point y = x, then y ∈ S x . As S x ∩ (x + R ′ W ϕ ) = ∅, it follows that E ∩ (x + (R ′ + δ)W ϕ )
contains at least two connected components for δ > 0 sufficiently small, contradicting the fact that E satisfies the outer RW ϕ -condition. Hence the set (∂E \ ∂ E ε ) ∩ (y 3 + R ′ W ϕε ) is a connected arc lx joining y 1 and y 2 .

Step 3. We prove that E ε satisfies the inner RW ϕε -condition by reasoning as in Step 2, with E replaced by ( E ε ) c (and ϕ replaced by ϕ ε ). The only difference is due to the fact that ( E ε ) c now satisfies inner RW ϕ -condition and the outer RW ϕε -condition. Therefore, letting

R ′ := ϕ ε (y 1 - y 2 )/2 < R, the set (y 3 + R ′ W ϕ ) ∩ E ε is connected, so that (∂ E ε \ ∂E ε ) ∩ (y 3 + R ′ W ϕε )
contains a connected arc joining y 1 and y 2 . In the rest of the proof one can proceed as in Step 2.

Q.E.D.

Lemma 1 has the following direct consequence.

Corollary 1. Let E ⊆ R 2 satisfy the RW ϕ -condition for some R > 0.
Then E is ϕ-regular in the sense of [START_REF] Bellettini | Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N[END_REF], that is, there exists a vector field

n ϕ ∈ L ∞ ({|d E ϕ | < R}, R 2 ) such that n ϕ ∈ ∂ϕ • (∇d E ϕ ) a.e. in {|d E ϕ | < R}, and divn ϕ ∈ L ∞ loc ({|d E ϕ | < R}).
Proof. Take a sequence ϕ ε of smooth and elliptic anisotropies converging to ϕ, with ϕ ε ≥ ϕ. By Lemma 1 we can approximate E in the Hausdorff distance with sets E ε satisfyng the RW ϕεcondition. In particular, letting

n ϕε = ∇ϕ • ε (∇d Eε ϕε ) ∈ L ∞ (R 2
) and recalling Remark 1, we have that divn ϕε ∈ L ∞ loc ({|d Eε ϕε | < R}). Therefore, any weak* limit n ϕ of n ϕε , as ε → 0, satisfies the thesis.

Q.E.D.

Remark 3. Notice that, given an arbitrary anisotropy ϕ, it is relatively easy to approximate it with smooth and elliptic anisotropies ϕ ε . For instance, one may let

F ε := {η ε * ϕ • ≤ 1}⊕B(0, ε), with η r (x) := r -d η x
r , and ϕ ε (x) := sup ν∈Fε ν • x. It is easy to check that the anisotropies ϕ ε are smooth and elliptic, and converge locally uniformly to ϕ as ε → 0. §3. The time-discrete implicit scheme

The results of this section hold in any dimension d ≥ 2 and are stated in this general form. Up to minor improvements, they are essentially stated in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF][START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF]. Following [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF] we recall the definition and some properties of the implicit scheme introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF]. Given a set E ⊂ R d with compact boundary (we assume without loss of generality that it is bounded), we define for s > t ≥ 0 a transformation T t,s by letting T t,s (E) = {x ∈ B R : w(x) < 0}, where B R = B(0, R), R is large and w is the minimizer of [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF] min

w∈L 2 (BR) BR ϕ • (Dw) + 1 2(s -t) BR w(x) -d E ϕ (x) -G(s, x) + G(t, x) 2 dx ,
whose existence and uniqueness is shown by standard methods. One checks easily [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF][START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF][START_REF] Almeida | Mean curvature flow with obstacles[END_REF] that for R large, the level set T t,s (E) of w does not depend on R, and it is a solution to the variational problem

(8) min P ϕ (F ) + 1 s -t F d E ϕ (x) + G(s, x) -G(t, x) dx ,
where the minimum is taken among the subsets F of R d with finite perimeter, and we set

P ϕ (F ) := ∂ * F ϕ • (ν F (x))dH 1 (x).
It follows that the set T t,s (E) has boundary of class C 1,α , outside a compact singular set of zero H 1 -dimension [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] (when d = 2, the set T t,s (E) has boundary of class C 1,1 ). The variational problem above is the generalization of the approach proposed in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], for building mean curvature flows without driving terms, through an implicit time discretization. For s = t + h, the Euler-Lagrange equation for T t,t+h (E) at a point x ∈ ∂T t,t+h (E) formally reads as

d E ϕ (x) = -h κ ϕ (x) + G(t + h, x) -G(t, x) h ,
with κ ϕ being the ϕ-curvature at x of ∂T t,t+h (E), so that it corresponds to an implicit timediscretization of [START_REF] Almgren | Flat flow is motion by crystalline curvature for curves with crystalline energies[END_REF]. Observe also that this approximation is trivially monotone:

indeed if E ⊆ E ′ then d E ϕ ≥ d E ′
ϕ , which yields w ≥ w ′ , w and w ′ being the solutions of [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF] for the distance functions d E ϕ and d E ′ ϕ respectively. We deduce that {w < 0} ⊆ {w ′ < 0}, that is,

(9) E ⊆ E ′ =⇒ T t,t+h (E) ⊆ T t,t+h (E ′ ).
Consider now the Euler-Lagrange equation for [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF], which is

(10) -(s -t)div z + w(x) = d E ϕ (x) + G(s, x) -G(t, x) for x ∈ B R , with ϕ(z(x)) ≤ 1 and z(x) • ∇w(x) = ϕ • (∇w(x))
a.e. in B R (by elliptic regularity one knows that w is Lipschitz).

We show that if E is regular enough, then we have an estimate on the quantity div z+(G(s, x)-G(t, x))/(st) near the boundary of E. The technique is adapted from [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF].

Lemma 2. Assume that E is a bounded set which satisfies the δW ϕ -condition for some δ > 0.

Let a < b be such that X a,b := {max{w, d E ϕ } ≥ a} ∩ {min{w, d E ϕ } ≤ b} ⊆ {|d E ϕ | < δ}. Then div z ∈ L ∞ (X a,b ) and (11) div z + G(s, •) -G(t, •) s -t L ∞ (X a,b ) ≤ div n E ϕ + G(s, •) -G(t, •) s -t L ∞ (X a,b )
.

Proof. Let f : R → [0, +∞) be a smooth increasing function with f (t) = 0 if t ≤ 0. Since (w, z) solves [START_REF] Bellettini | On a crystalline variational problem. II. BV regularity and structure of minimizers on facets[END_REF], we find

X a,b (w -d E ϕ )f (w -d E ϕ ) dx = X a,b ((s -t)div z + G(s, x) -G(t, x)) f (w -d E ϕ ) dx = (s -t) X a,b (div z -div n E ϕ )f (w -d E ϕ ) dx + X a,b (s -t)div n E ϕ + G(s, x) -G(t, x) f (w -d E ϕ ) dx =: I + II.
We have, observing that X a,b has Lipschitz boundary (for a.e. choice of a, b),

I = -(s -t) X a,b (z -n E ϕ ) • ∇(w -d E ϕ )f ′ (w -d E ϕ ) dx + (s -t) ∂X a,b f (w -d E ϕ )(z -n E ϕ ) • ν X a,b dH 1 =: I 1 + I 2 . First I 1 ≤ 0 since z • ∇w = ϕ • (∇w) and z • ∇d E ϕ = ϕ • (∇d E ϕ )
. We claim that also I 2 ≤ 0. Indeed, on one hand, when f (w

-d E ϕ ) > 0, w > d E ϕ hence, ν X a,b = ν {d E ϕ ≤b} = ∇d E ϕ /|∇d E ϕ |, H 1 -almost everywhere on {min{w, d E ϕ } = b} while ν X a,b = ν {w≥a} = -∇w/|∇w|, H 1 -almost everywhere on {max{w, d E ϕ } = a}. It follows that f (w -d E ϕ )(z -n E ϕ ) • ν X a,b ≤ 0 on both {min{w, d E ϕ } = b} and {max{w, d E ϕ } = a} so that I 2 ≤ 0. We conclude that I ≤ 0, hence (12) 
X a,b (w -d E ϕ )f (w -d E ϕ ) dx ≤ X a,b (s -t)div n E ϕ + G(s, x) -G(t, x) f (w -d E ϕ ) dx.
Let q > 2, let r + := r ∨ 0, and let {f n } be a sequence of smooth increasing nonnegative functions such that f n (r) → r + (q-1) uniformly as n → ∞. From ( 12) we obtain

X a,b ((w -d E ϕ ) + ) q dx ≤ X a,b (s -t)div n E ϕ + G(s, x) -G(t, x) ((w -d E ϕ ) + ) q-1 dx ≤ X a,b (s -t)div n E ϕ + G(s, x) -G(t, x) + ((w -d E ϕ ) + ) q-1 dx.
Applying Young's inequality we obtain

(w -d E ϕ ) + L q (X a,b ) ≤ (s -t)div n E ϕ + G(s, •) -G(t, •) + L q (X a,b ∩{w>d E ϕ })
.

A similar proof, reverting the signs, shows that

(w -d E ϕ ) - L q (X a,b ) ≤ (s -t)div n E ϕ + G(s, •) -G(t, •) - L q (X a,b ∩{w<d E ϕ })
It follows that

(s -t)div z + G(s, •) -G(t, •) L q (X a,b ) ≤ (s -t)div n E ϕ + G(s, •) -G(t, •) L q (X a,b
) , and letting q → ∞ we obtain [START_REF] Bellettini | Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N[END_REF]. Observe that the estimate we may obtain is a bit more precise, in fact we have shown: [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF] ess inf

X a,b ∩{w<d E ϕ } div n E ϕ + G(s, •) -G(t, •) s -t ≤ div z(x) + G(s, x) -G(t, x) s -t ≤ ess sup X a,b ∩{w>d E ϕ } div n E ϕ + G(s, •) -G(t, •) s -t for a.e. x ∈ X a,b . Q.E.D.
We also recall Lemma 3.2 from [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]: Lemma 3. Let x 0 ∈ B R and ρ > 0, and let t ≥ 0. Let w solve (14) min

w∈L 2 (BR) BR ϕ • (D w) + 1 2h BR ( w(x) -(ϕ(x -x 0 ) -ρ) -G(x, t + h) + G(x, t)) 2 dx . Then (15) w(x) ≤    ϕ(x -x 0 ) + h 1 ϕ(x -x 0 ) + ∆ h (t) -ρ if ϕ(x -x 0 ) ≥ √ 2h 2 √ 2h + ∆ h (t) -ρ otherwise,
where

∆ h (t) := G(•, t + h) -G(•, t) L ∞ (BR) .
We deduce an estimate on w -

d E ϕ , if E has an inner ρW ϕ -condition: indeed, in this case, if h = s -t, d E ϕ (x) ≤ inf ϕ(x -x 0 ) -ρ : d E ϕ (x 0 ) = -ρ with, in fact, equality in {-ρ ≤ d E ϕ ≤ ρ ′ }
, where ρ ′ ≥ 0 is the radius of an outer ρ ′ W ϕ -condition. It follows from ( 15) that ( 16)

w(x) ≤ inf ϕ(x -x 0 ) -ρ + h 1 ϕ(x -x 0 ) + ∆ h (t) : d E ϕ (x 0 ) = -ρ for x with d E ϕ (x) ≥ -ρ + √ 2h, and more precisely if ρ ′ ≥ d E ϕ (x) ≥ -ρ/2, (17) w 
(x) ≤ d E ϕ (x) + 2h ρ + ∆ h (t),
as soon as h ≤ ρ 2 /16. §4. Smooth anisotropies 4.1. Existence of ϕ-regular flows.

We will prove, in dimension d = 2, an existence result for the forced curvature flow, first in case the anisotropy is smooth and elliptic. For technical reason, we need the forcing term G to be either time-dependent only (case G 2 = 0), or smooth (globally Lipschitz in space and time, case G 1 = 0). Theorem 1. Assume G 1 = 0 or G 2 = 0, and let (ϕ, ϕ • ) be a smooth and elliptic anisotropy and E 0 ⊂ R 2 an initial set with compact boundary, satisfying both an RW ϕ -internal and external condition. Then, there exist T > 0, and a ϕ-regular flow E(t) defined on [0, T ] and starting from

E(0) = E 0 .
More precisely, there exist R ′ > 0 and a neighborhood

U of 0≤t≤T ∂E(t) in R 2 such that the sets E(t) satisfy the R ′ W ϕ -condition for all t ∈ [0, T ], the ϕ-signed distance function d E ϕ (t, x) from ∂E(t) belongs to C 0 ([0, T ]; Lip(U )) ∩ L ∞ ([0, T ]; C 1,1 (U )), (d E ϕ -G) ∈ Lip([0, T ] × U ) and (18) 
∂(d E ϕ -G) ∂t (t, x) -div ∇ϕ • (∇d E ϕ )(t, x) ≤ λ|d E ϕ (t, x)| .
for a.e. (t, x) ∈ [0, T ] × U , where λ is a positive constant. Finally, the time T , the radius R ′ , the set U , and the constant λ depend only on R and G.

Theorem 1 will be proved by time-discretization. Before, we need the following technical lemma.

Lemma 4. Let ϕ, ϕ • be smooth and elliptic, and a set E satisfy a R W ϕ -condition for some R > 0. We also assume that E is simply connected (∂E is a C 1,1 Jordan curve). Let δ ∈ (0, R) and consider a set F (also simply connected), such that

E δ ⊂ F ⊂ E δ . Assume that κ F ϕ L ∞ (∂F ) ≤ K for a constant K < 1/(2δ). Then F has a R ′ W ϕ -condition, with R ′ = min{R -δ, (1 -2δK)/K}.
Proof. We assume that ∂F is at least C 2 . If the result holds in this case, then given a more general C 1,1 set we can smooth it slightly, use the result for the approximations, and then pass to the limit.

Step 1. We have E δ \ E δ = x∈∂E x + δW ϕ , and for any x ∈ ∂E, the set x + δW ϕ is tangent to ∂E δ (respectively, ∂E δ ) at exactly one point xδn ϕ (x) (resp., x + δn ϕ ). We can define Γ +

x and Γ - x as the two arcs on ∂(x + δW ϕ ) delimited by the points x ± δn ϕ (x), the exponent + andindicating that Γ ±

x meets ∂E right "after" or "before" x, relative to an arbitrarily chosen orientation of the curve.

A first observation is that ♯(∂F ∩ Γ ± x ) = 1 for all x. Indeed, we check that this value is a continuous function of x. If not, there will exist for instance a point where ♯(∂F ∩ Γ +

x ) has a "jump", that is, where ∂F is tangent to Γ +

x and contains a small piece of arc which is inside x + δW ϕ and tangent to its boundary: in this case, we deduce that κ F ϕ (x) is larger than 1/δ or less than -1/δ, a contradiction.

Since this value is continuous, it can only be odd (since E δ ⊂ F ⊂ E δ ), moreover if it were larger than 1, there would be a connected component of F (as well as one of its complement) in E δ \ E δ , a contradiction.

Step 2. Let ρ < min{Rδ, (1 -2δK)/K}. Assume that there exists y ∈ F such that W := y + ρW ϕ ⊂ F and y + ρW ϕ meets ∂F in at least two points z -, z + (with z + "after" z -with respect to the orientation along ∂E). These points must be isolated (otherwise there would be a point on ∂F with curvature equal to 1/ρ > K). Observe also that W ∩(E δ \E δ ) is connected (since E δ has an inner (Rδ)W ϕ -condition). To z + , we can associate a unique x + such that z + ∈ Γ +

x + , and to z -a unique x -such that z -∈ Γ - x -. Then, the piece of curve Γ of ∂F between z -and z + lies in the region of E δ \ E δ bounded by Γ -

xand Γ + x + , which contains points at "distance" at most 2δ from W : more precisely, Γ ⊂ y + (ρ + 2δ)W ϕ . Hence, there exists s ∈ (ρ, ρ + 2δ] such that Γ is contained in y + sW ϕ and tangent to its boundary, and thus a point of curvature larger than 1/s ≥ 1/(ρ + 2δ) > K on ∂W ϕ , which is a contradiction. Therefore, the Wulff shapes y + ρW ϕ which lie inside F can touch its boundary at most in one point, and an inner condition of radius min{Rδ, (1 -2δK)/K} easily follows.

The proof of the outer condition is identical. Q.E.D.

Remark 4. We can refine the lemma to consider a situation where E has an inner R i W ϕcondition and a outer R o W ϕ -condition, for two given radii R i , R o > δ. We assume that -K o ≤ κ F ϕ ≤ K i for two nonnegative constants K i , K o , (still less than 1/(2δ)). It is then deduced that F has a inner R ′ i W ϕ -condition and a outer

R ′ o W ϕ -condition, with R ′ i = min{R i -δ, (1 -2δK i )/K i }, R ′ o = min{R o -δ, (1 -2δK o )/K o }.
Proof of Theorem 1. From ( 11) and ( 13), we will obtain some regularity of the boundary of T t+h,t (E), which will allow to iterate the variational scheme. To simplify (and without loss of generality) we assume that the initial curve is a Jordan curve (E 0 is simply connected). If not, one may evolve separately each connected component of the boundary.

Step 1.a.: The case G 1 = 0. In the case G 1 = 0, there exists C such that ∆ h (t) ≤ Ch. It follows from [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] that if E satisfies the ρW ϕ -condition, then, by solving [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF] 

with s = t + h, (19) |w(x) -d E ϕ (x)| ≤ h C + 2 ρ in {|d E ϕ | < ρ/2}
. By standard comparison (using for instance Lemma 3 again) one also can check that w < 0 if d E ϕ ≤ ρ/2, and w > 0 if d E ϕ ≥ ρ/2, so that the boundary of T t,t+h (E) is at (ϕ-)distance of order h from ∂E, if h ≤ ρ 2 /36 (Lemma 3). We also observe that the Hausdorff distance between the sets E and T t,t+h (E) is of the same order, or equivalently,

d E ϕ -d T t,t+h (E) ϕ L ∞ (R d ) ≤ (C +2/ρ)h.
A further observation is that if E is simply connected, also T t,t+h (E) is. Indeed, if not, there would be a connected component of either T t,t+h (E) or its complement in the set {|d

E ϕ | ≤ h(C + 2/ρ)}. Assume F is a connected of T t,t+h (E) wich lies in {|d E ϕ | ≤ h(C + 2/ρ)}, so that |F | ≤ 2hP ϕ (E)(C + 2/ρ
). One has that (using the isoperimetric inequality)

P ϕ (F ) + 1 h F d E ϕ (x) + G(t + h, x) -G(t, x) dx ≥ 2 |W ϕ ||F | -2|F | C + 1 ρ ≥ 2 |F | |W ϕ | -|F | C + 1 ρ
which is positive if h is small enough (depending on C, ρ, P ϕ (E)), showing that T t,t+h (E) \ F has an energy strictly lower than T t,t+h (E) in ( 8), a contradiction.

Sending both a and b to 0, one deduces from ( 11) that T t,t+h (E) has C 1,1 boundary, and moreover div n

T t,t+h (E) ϕ + 1 h (G(t + h, •) -G(t, •)) L ∞ (∂T t,t+h (E)) ≤ div n E ϕ + 1 h (G(t + h, •) -G(t, •)) L ∞ (E△T t,t+h (E))
.

Since (G(t + h, x) -G(t, x))/h is L-Lipschitz in x for some L > 0, and div n E ϕ is bounded by 4/ρ 2 in {|d E ϕ | ≤ ρ/2}, we deduce (20) div n T t,t+h (E) ϕ + 1 h (G(t + h, •) -G(t, •)) L ∞ (∂T t,t+h (E)) ≤ div n E ϕ + 1 h (G(t + h, •) -G(t, •)) L ∞ (∂E) + 4h ρ 2 C + 2 ρ ≤ div n E ϕ + 1 h (G(t, •) -G(t -h, •)) L ∞ (∂E) + h L + 4 ρ 2 C + 2 ρ ,
provided h is small enough (depending on ρ, L, C). Eventually, it follows that the curvature of ∂T t,t+h (E) (since d = 2, the total and mean curvature coincide) has a global estimate 1/ρ + 2C + O(h), and one will deduce from Lemma 4 that for h small enough, this new set also satisfies the ρ ′ W ϕ -condition, with ρ ′ = ρ/(1 + (2C + O(h))ρ) > 0, provided the assumptions of the lemma are fulfilled.

We now consider E 0 , R as in Theorem 1, and let for h > 0 and any n ≥ 1,

E h n = T (n-1)h,nh (E 0 ). We also define E h (t) = E h [t/h] for t ≥ 0. A first observation is that if x ∈ (E 0 ) R , x + RW ϕ ⊂ E 0 so that if r(t) solves ṙ = -(1/r + C) with r(0) = R, for any η > 0 (small), x + (r(t) -η)W ϕ ⊂ E h (t)
for h small enough, as long as r(t) ≥ η. The function r(t) solves r(t) -Rln 1+Cr(t) 1+CR /C = -Ct, and given δ ∈ (0, R) (which will be precised later on), there exists T 1 (R, C, δ) such that if t ≤ T 1 and h > 0 is small enough, ( 21)

(E 0 ) δ ⊂ E h (t) ⊂ (E 0 ) δ . We let U = {|d E ϕ | ≤ δ}. Letting E h 1 = T 0,h (E 0 ), we deduce from (20) that if h < R 2 /36 is small enough, A h 1 := div n E h 1 ϕ + 1 h (G(h, •) -G(0, •)) L ∞ (∂E h 1 ) ≤ 1 R + C + 1 4 C + 2 R =: M 1 .
For n ≥ 1, we then define iteratively the sets E h n+1 = T nh,(n+1)h (E h n ) and let

A h n+1 := div n E h n+1 ϕ + 1 h (G((n + 1)h, •) -G(nh, •)) L ∞ (∂E h n+1 )
.

Let now R 1 = (2M 1 + C)) -1 .
As long as A n ≥ 2M 1 , one can deduce from Lemma 4, using [START_REF] Evans | Motion of level sets by mean curvature[END_REF] and provided we had chosen δ < R 1 /2, that E h n+1 satisfies the R 1 W ϕ -condition, so that (20) holds (with E = E h n , ρ = R 1 ) and

A h n+1 ≤ A h n + h L + 4 R 2 1 C + 2 R 1 .
By induction, we deduce that (letting

B = (L + 4/R 2 1 )(C + 2/R 1 )) A h n+1 ≤ M 1 + (n + 1)hB as long as nh ≤ min{T 1 , M 1 /B} := T > 0.
We observe that since δ < R 1 /2, as long as nh ≤ T , not only ∂E h n ⊂ U , but all the signed distance functions to the boundaries of E h n are in C 1,1 (U ). Notice that T and the width δ of the strip U depend only on R, C, L.

Step 1.b.: The case G 2 = 0. We now show that we can obtain a similar control in case of a space independent forcing term, which can be the derivative of a continuous function G 2 (a relevant example is a Brownian forcing). In that case, we can consider the algorithm from a different point of view: given the set E, we first consider the set E ′ with signed distance function

d E ′ ϕ := d E ϕ (x) + G(s) -G(t)
, then, we apply to this set E ′ the algorithm with G ≡ 0, that is, we solve ( 7) for E = E ′ and G = 0:

min w∈L 2 (BR) BR ϕ • (Dw) + 1 2(s -t) BR w(x) -d E ′ ϕ (x) 2 dx , 
and then let E ′′ = {w < 0}. It is clear that this is equivalent to the original algorithm, so that E ′′ = T t,s (E). Assume in addition that E has an inner r i W ϕ -condition and a outer r o W ϕ condition, for some radii r i , r o > 0. If (st) is small enough, then E ′ has the inner r ′ i W ϕ -condition and outer r ′ o W ϕ condition with

r ′ i = r i -G(s) + G(t) and r ′ o = r o + G(s) -G(t). In particular, d E ′ ϕ = d E ϕ (x) + G(s) -G(t) is locally C 1,1 in the strip {-r ′ i < d E ′ ϕ < r ′ o }
and the surface ∂E ′ has a curvature which satisfies a.e. ( 22)

- 1 r ′ o ≤ div n E ′ ϕ ≤ 1 r ′ i .
As before, from [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] we have that, if h = st is small enough, then

(23) |w(x) -d E ′ ϕ (x)| ≤ 2h min{r ′ i , r ′ o } ,
showing that the boundary of T t,t+h (E) remains close to the boundary of E ′ (provided r ′ i , r ′ o are controlled from below).

From [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF] (with G = 0, E = E ′ ) and ( 22), [START_REF] Giga | A comparison principle for singular diffusion equation with spatially inhomogeneous driving force for graphs[END_REF], we obtain that if h is small enough,

- 1 r ′ o - 2h (r ′ o ) 2 min{r ′ i , r ′ o } ≤ div n T t,t+h (E) ϕ ≤ 1 r ′ i + 2h (r ′ i ) 2 min{r ′ i , r ′ o }
, and in particular we can deduce from Lemma 4 and Remark 4 that T h (E) satisfies the inner r ′′ i W ϕ and outer r ′′ o W ϕ -conditions with

r ′′ i ≥ r ′ i - ch r ′ i , r ′′ o ≥ r ′ o - ch r ′ o ,
for some constant c > 0.

As in the previous step, we now consider E 0 , R as in Theorem 1, we let E h 0 = E 0 and define for each n ≥ 0,

E h n+1 := T nh,(n+1)h (E h n ). Let r 0 o = r 0 i = R.
The previous analysis shows that E h 1 has the inner r 1 i W ϕ and the outer r 1 o W ϕ -conditions with

r 1 i ≥ r 0 i -G(h) + G(0) - ch R , r 1 o ≥ r 0 o + G(h) -G(0) - ch R , provided |G(h) -G(0)| ≤ R/2
(for some constant c > 0). Now, assuming that n is such that

r n i ≥ r 0 i -G(nh) + G(0) - cnh R , r n o ≥ r 0 o + G(nh) -G(0) - cnh R ,
we deduce that 

r n+1 i ≥ r 0 i -G((n + 1)h) + G(0) - c(n + 1)h R , r n+1 o ≥ r 0 o + G((n + 1)h) -G(0) - c(n + 1)h R , as long as |G((n + 1)h) -G(0)| + c(n + 1)h/R ≤ R/2. Define T such that max 0≤t≤T |G(t) -G(0)| + ct/R ≤ R
h (t, x) -G(t, x) -d h (s, x) + G(s, x)| ≤ c|t -s| if |t -s| ≥ h, for some constant c), up to a subsequence (h k ) it converges uniformly to some d with d -G ∈ Lip([0, T ] × U ), moreover, at each t > 0, E h k (t) converges (Hausdorff) to a set E(t) with d(t, x) = d E(t) ϕ (x).
Let us establish [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF]. For n ≤ T /h -1 and x ∈ ∂E h n+1 , by definition of the scheme we have

-d E h n ϕ (x) -h div n E h n+1 ϕ (x) -G(t + h, x) + G(t, x) = 0. As (G(t + h, •) -G(t, •))/h is L-Lipschitz in U , there holds (G(t + h, x) -G(t, x)) -G(t + h, Π ∂E h n+1 (x)) -G(t, Π ∂E h n+1 (x)) ≤ Ch|d E h n+1 ϕ (x)|
where C depends only on L and ϕ, where we set

Π ∂E h n+1 (x) = x -d E h n+1 ϕ (x)n E h n+1 ϕ (x). Choose now x ∈ U such that d E h n+1 ϕ (x) ≥ 0.
In this case, it follows that

d E h n ϕ (x) -d E h n ϕ (Π ∂E h n+1 (x)) ≤ ϕ(x -Π ∂E h n+1 (x)) = d E h n+1 ϕ (x).
Hence,

d E h n+1 ϕ (x) -d E h n ϕ (x) -hdiv n E h n+1 ϕ (x) ≥ -d E h n ϕ (Π ∂E h n+1 (x)) -hdiv n E h n+1 ϕ (Π ∂E h n+1 (x)) + O h|d E h n+1 ϕ (x)| = G(t + h, Π ∂E h n+1 (x)) -G(t, Π ∂E h n+1 (x)) + O h|d E h n+1 ϕ (x)| = G(t + h, x) -G(t, x) + O h|d E h n+1 ϕ (x)| .
Dividing by h and letting h → 0 + , we then get

∂(d E ϕ -G) ∂t (t, x) -div ∇ϕ • (∇d E ϕ )(t, x) ≥ O |d E ϕ (t, x)| (t, x) ∈ U × [0, T ] ∩ {d E ϕ (t, x) > 0}, which implies ∂(d E ϕ -G) ∂t (t, x) -div ∇ϕ • (∇d E ϕ )(t, x) ≥ O |d E ϕ (t, x)| (t, x) ∈ U × [0, T ].
By taking x ∈ U such that d E h n+1 ϕ (x) ≤ 0, reasoning as above we get

∂d E ϕ ∂t (t, x) -div ∇ϕ • (∇d E ϕ )(t, x) -g(t, x) ≤ O |d E ϕ (t, x)| (t, x) ∈ U × [0, T ],
thus obtaining [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF]. Q.E.D.

Remark 5. When ϕ(x) = |x| and G 2 = 0, the an existence and uniqueness result for ϕ-regular flows has been proved in [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF] in any dimension.

Uniqueness of ϕ-regular flows.

We now show uniqueness of the regular evolutions given by Theorem 1.

Theorem 2. Given an initial set E 0 , the flow of Theorem 1 is unique. More precisely, if two flows E, E ′ are given, starting from initial sets E 0 ⊆ E ′ 0 , then E(t) ⊆ E(t) for all t ∈ [0, min{T, T ′ }] (where T, T ′ are respectively the time of existence of regular flows starting from E 0 and E ′ 0 ). The thesis essentially follows from the results in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]. Indeed, in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF] it is proved a comparison result for strict C 2 sub-and superflows, based again on a consistency result for the scheme defined in Section 3. A strict C 2 subflow is defined a in Theorem 1, except that d E ϕ (t, x) is required to be in C 0 ([0, T ]; C 2 (U )), and ( 18) is replaced with (for 0

≤ t < s ≤ T , x ∈ U ) (24) d E ϕ (s, x) -d E ϕ (t, x) - t s div ∇ϕ • (∇d E ϕ )(τ, x) dτ -G(s, x) + G(t, x) ≤ -δ(s -t)
for some δ > 0. A superflow will satisfy the reverse inequality, with -δ(st) replaced with δ(st). For technical reasons (in order to make sure, in fact, that the duration time of these flows is independent on δ), we will ask that these flows are defined, in fact, in a tubular neighborhood W of 0≤t≤T ∂E(t), not necessarily of the form [0, T ] × U . The thesis then follows from the consistency result in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]Thm. 3.3], once we show the following approximation result. Lemma 5. Let E(t) be an evolution as in Theorem 1, starting from a compact set E 0 satisfying the RW ϕ -conditions for some R > 0. Then, for any ε > 0, there exists T ′ > 0 (depending only on R), a set E ′ 0 and a strict C 2 subflow E ′ (t) starting from E ′ 0 such that for all t ∈ [0, T ′ ], E(t) ⊂⊂ E ′ (t) ⊂ {d E ϕ ≤ ε}. Proof. We sketch the proof and refer to [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] for more details. The idea is to let first d α = d E ϕαtα/(4λ), for some small α > 0, with α(T + 1/(4λ)) < ε. One can then deduce from (18) that, for all s > t,

d α (s, x) -d α (t, x) - t s div ∇ϕ • (∇d α )(τ, x) dτ -G(s, x) + G(t, x) ≤ (s -t)(λ max t≤τ ≤s |d E ϕ (x, τ )| -α)+ ≤ λ(s -t) max t≤τ ≤s |d α (x, τ )| + α(s -3 4 λ -1 ) .
Let T ′ := min{T, 1/(2λ)}, and let β = α/(8λ): then if we let W = {(t, x) : 0 ≤ t ≤ T , |d α (t, x)| < β}, we deduce that for (t, x), (s, x) ∈ W ,

d α (s, x) -d α (t, x) - t s div ∇ϕ • (∇d α )(τ, x) dτ -G(s, x) + G(t, x) ≤ -β(t -s) .
Hence {d α ≤ 0} is almost a C 2 subflow, except for the fact that it is not C 2 . However, this is not really an issue, as we will now check. Consider indeed a spatial mollifier

(25) η r (x) = 1 r d η x r where as usual η ∈ C ∞ c (B(0, 1); R + ), R d η(x) dx = 1. Let d α r = η r * d α (for r small). Observing, as before, that G(s, x) -G(t, x) is (s -t)L-Lipschitz in x, one has |η r * (G(s, •) -G(t, •))(x) - (G(s, x) -G(t, x))| ≤ (s -t)Lr.
Hence, the level set 0 of d α r will be a strict C 2 subflow, for r small enough, if we can check that the difference [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF] η r * (div ∇ϕ

• (∇d α )(τ, •))(x) -div ∇ϕ • (η r * ∇d α )(τ, x)
can be made arbitrarily small for r small enough and any (τ, x) ∈ W (possibly reducing slightly the width of W ). Now, for (τ, x) ∈ W ,

η r * (div ∇ϕ • (∇d α )(τ, •))(x) = B(0,r) η r (z)D 2 ϕ • (∇d α (τ, x -z)) : D 2 d α (τ, x -z) dz while div ∇ϕ • (η r * ∇d α )(τ, x)) = B(0,r) η r (z)D 2 ϕ • ((η r * ∇d α (τ, •))(x)) : D 2 d α (τ, x -z) dz .
The difference in ( 26) is therefore

B(0,r) η r (z)(D 2 ϕ • (∇d α (τ, x -z)) -D 2 ϕ • ((η r * ∇d α (τ, •))(x))) : D 2 d α (τ, x -z) . Now, since D 2 ϕ • is at least continuous (uniformly in {ϕ • (ξ) ≥ 1/2}), ϕ • (∇d α ) = 1 a.e.
in W , while D 2 d α is globally bounded (and ∇d α uniformly Lipschitz), this difference can be made arbitrarily small as r → 0, and we actually deduce that, in such a case, E ′ (t) = {d α r ≤ 0} is a strict C 2 -superflow starting from E ′ 0 = {d E ϕ ≤ β}, which satisfies the thesis of the Lemma. Q.E.D.

Remark 6. The uniqueness result holds in any dimension d ≥ 2, with exactly the same proof. It is also not necessary to assume that G 1 or G 2 vanishes. §5. General anisotropies An important feature of Theorem 1 is that the existence time, as well as the neighborhood where d E ϕ is C 1,1 , are both independent on the anisotropy, and only depend on the radius R for which E 0 satisfies the RW ϕ -condition. This allows us to extend the existence result to general anisotropies, by the approximation argument given in Lemma 1.

Theorem 3. Assume G 1 = 0 or G 2 = 0, and let (ϕ, ϕ • ) be an arbitrary anisotropy. Let E 0 ⊂ R 2 an initial set with compact boundary, satisfying the RW ϕ -condition for some R > 0. Then, there exist T > 0, and a ϕ-regular flow E(t) defined on [0, T ] and starting from E 0 .

More precisely, there exist R ′ > 0 and a neighborhood U of 0≤t≤T ∂E(t) in R 2 such that the sets E(t) satisfy the R ′ W ϕ -condition for all t ∈ [0, T ], the ϕ-signed distance function d E ϕ (t, Remark 7. Comparison and uniqueness for such flows has been shown in [START_REF] Bellettini | Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N[END_REF][START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF][START_REF] Chambolle | Convergence of an algorithm for the anisotropic and crystalline mean curvature flow[END_REF], although the most general result in these references only covers the case of a time-dependent, Lipschitz continuous forcing term G(t) = G(0) + t 0 c(s) ds, with c ∈ L ∞ (0, +∞). Proof. Let ε > 0 and consider smooth and elliptic anisotropies (ϕ ε , ϕ • ε ), with ϕ ε ≥ ϕ, converging to (ϕ, ϕ • ) locally uniformly as ε → 0. By the approximation result in Lemma 1, we can find a sequence of sets E ε which satisfy the RW ϕε -condition, and such that ∂E ε → ∂E in the Hausdorff sense. For each ε we consider the evolution E ε (t) given by Theorem 1, with 0 ≤ t ≤ T ε . Since the times T ε and the width of the neighborhoods U ε depend only on R and G, up to extracting a subsequence we can assume that lim ε T ε = T for some T > 0, and there exists a neighborhood U of ∂E 0 such that R d \ U ε converges to R d \ U in the Hausdorff sense, as ε → 0. Possibly reducing T and the width of U we can then assume that T ε = T and U ε = U for all ε > 0.

Letting W := [0, T ] × U , and z ε (t, x) = ∇ϕ 
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Fig. 1 .

 1 Fig. 1. The pathological set described in Remark 1.

Fig. 2 .

 2 Fig. 2. The configuration in Lemma 1.

  x) from ∂E(t) belongs to C 0 ([0, T ]; Lip(U )), (d E ϕ -G) ∈ Lip([0, T ] × U ) and (27) ∂(d E ϕ -G) ∂t (t, x)div z(t, x) ≤ λ|d E ϕ (t, x)| for a.e. (t, x) ∈ [0, T ] × U , where λ is a positive constant and z ∈ L ∞ ([0, T ] × U ; R 2 ) is such that z ∈ ∂ϕ • (∇d E ϕ )a.e. in [0, T ] × U . The time T , the radius R ′ , and the constant λ, only depend on R and G.

( 29 )

 29 z • ∇d E ϕ = ϕ • (∇d E ϕ ) = 1 a.e. in W . Recalling that z ε • ∇d Eε ϕε = ϕ • ε (∇d Eε ϕε ) = 1 a.e. in W and letting ψ ∈ C ∞ c (W ), we have W ψ dxdt = W ψ z ε • ∇d Eε ϕε dxdt = -W d Eε ϕε (z ε • ∇ψ + ψdiv z ε ) dxdt.Passing to the limit in the righ-hand side we then getW ψ dxdt = -W d E ϕ (z • ∇ψ + ψdiv z) dxdt = W ψ z • ∇d E ϕ dxdtwhich gives[START_REF] Taylor | Motion of curves by crystalline curvature, including triple junctions and boundary points[END_REF]. Q.E.D.

  /4, and let U = {|d E0 ϕ | < R/4}: then, on one hand, ∂E h n ⊂ U for all n ≥ 0 with nh ≤ T , on the other hand, E h n satiafies the (R/2)W ϕ -condition, so that d (U ). Again, U and T depend only on G and R.Step 3: Conclusion. For t ∈ [0, T ] and h small, we letE h (t) = E h [t/h] , d h (t, x) = d → 0. Since d h -G is uniformly Lipschitz in [0, T ] × U (intime, in fact, we have |d

	E h n ϕ ∈ C 1,1 E(t) ϕ	(x), and
	we now send h	

  div z ε (t, x) ≤ λ|d Eε ϕε (t, x)| for a.e. (t, x) ∈ W , where the constant λ depends only on R and G. As d Eε ϕε -G are uniformly Lipschitz in (t, x), up to a subsequence we can assume that the functions d Eε ϕε converge uniformly in any compact subset of W to a function d E ϕ , such that for allt ∈ [0, T ] d E ϕ (t, •) is the signed ϕ-distance function to the boundary of E(t) := {x : d E ϕ (t, x) ≤ 0}. Moreover, E(0) = E 0 , E(t) is the Hausdorff limit of E ε (t) for each t ∈ [0, T ], and satisfies the R ′ W ϕ -condition, with R ′ = lim ε R ′ ε .Up to a subsequence we can also assume that there existsz ∈ L ∞ (W ) with z ε (t, x) * ⇀ z(t, x), div z ε * ⇀ div z and ∂ t (d ϕε Eε -G) * ⇀ ∂ t (d E ϕ -G) in L ∞ (W ),so that (27) holds a.e. in W . It remains to check that z(t, x) ∈ ∂ϕ • (∇d E ϕ (t, x)). Since by construction z(t, x) ∈ W ϕ for a.e. (t, x) ∈ W , it is enough to show that

			• ε (∇d Eε ϕε (t, x)), from (18) we get
	(28)	∂(d Eε ϕε -G) ∂t	(t, x)