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Abstract Many useful morphological filters are built as
more or less long concatenations of erosions and dilations:
openings, closings, size distributions, sequential filters,etc.

An efficient implementation of such concatenation
would allow all the sequentially concatenated operators run
simultaneously, on the time-delayed data. A recent algo-
rithm (see below) for the morphological dilation/erosion
allows such inter-operator parallelism.

This paper introduces an additional, intra-operator level
of parallelism in this dilation/erosion algorithm. Realized in
a dedicated hardware, for rectangular structuring elements
with programmable size, such an implementation allows
to obtain previously unachievable, real-time performances
for these traditionally costly operators. Low latency and
memory requirements are the main benefits when the per-
formance is not deteriorated even for long concatenations or
high-resolution images.

Keywords Mathematical Morphology, Serial Filters,
Real-Time Implementation, Dedicated Hardware

1 Introduction

Mathematical Morphology is very popular, self-contained,
image processing framework providing a complete set of
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tools from filtering, multi-scale image analysis to pattern
recognition. It has been used in a number of applications, in-
cluding the biomedical and medical imaging, video surveil-
lance, industrial control, video compression, stereology, or
remote sensing ( [8,16,18,19]).

In image-interpretation applications requiring a high
correct-decision liability, one often use robust multi-criteria
and/or multi-scale analysis. It generally consists of a serial
concatenation of alternating atomic operators dilation and
erosion with a progressively increasing computing window,
the so-called structuring element (SE). Its examples include:

– Alternate Sequential Filters (ASF) - that are concatena-
tions of openings and closings with a progressively in-
creasing structuring element, useful for multi-scale anal-
ysis [19,20].

– Size distributions - (aka granulometries) are concatena-
tions of openings allowing measuring the size distribu-
tion in a population of objects [14,17,28].

– Statistical learning - a selected set of morphological op-
eratorsζi can be separately applied to an imagef . Then
for every pixel f (x,y), the vector of valuesζi( f )(x,y)
can serve as a vector of descriptors for the pixel-wise
learning and classification [4].

Although built from basic blocks (the dilation and ero-
sion), these operators are costly due to the number of itera-
tions. The real-time capabilities (i.e., low latency) are even
more difficult to achieve due to the sequential data depen-
dence and high memory requirements.

The recently introduced algorithm for the dilation and
erosion [7] shows how to handle efficiently the implemen-
tation of such concatenations. It enables an inter-operator
level of parallelism where all the sequentially concatenated
operators can run simultaneously, on time-delayed data. Ob-
viously, it is fully exploited only if the algorithm is imple-
mented in an adequate hardware (HW).

In this paper, we propose a HW implementation of
the original algorithm and we introduce an additional,
intra-operator level of parallelism. Such an implementation
allows obtaining previously unachievable, real-time perfor-
mances for these traditionally costly operators. Section 2
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discusses the state of the art of existing dilation/erosion
algorithms and concludes by the novelties presented in this
paper. Section 3 and 4 recall the definitions and algorithmic
principles and Section 5 illustrates the functional scheme
of a sequential HW implementation. Then, Section 6 in-
troduces the parallel implementation allowing obtaining an
additional performance increase. Finally, Section 7 presents
results obtained on FPGA.

2 Fast Implementations of Morphological Filters

During the last decades, propositions of optimized imple-
mentations concentrated on the efficiency of computing the
dilation and erosion. The majority of authors measures this
efficiency as a number of comparisons per pixel. Neverthe-
less, the minimization of comparisons can result in high
memory requirements. It can even penalize the execution
time since the overall latency issues are neglected.

For the following, we define asoperator latency the
latency introduced by the dependence of the result on
future data samples. For example the max filteryi =
max(xi−2,xi−1, . . . , xi+2) has operator latency 2. We define
as algorithm latency any additional latency introduced by
the algorithm, e.g., the necessity to perform a reverse scan
on data. The latency is a time-less measure expressed in a
number of data samples.

Note that there is also an additional delay, calledcom-
puting latency, induced by the time needed to compute the
result after all data are available. It is a platform dependent
measure, independent of two previous latency definitions.
In the example above, the polyadic max can either be exe-
cuted sequentially on sequential machines, or in parallel on
the dedicated hardware.

Then the overall latency of the system is the sum of these
three terms.

2.1 Algorithmic Advances

The most efficient dilation/erosion algorithms are based on
the SE decomposition to a set of basic, more easily opti-
mized shapes, see [22, 30, 31]. A special attention is paid
to 1-D algorithms obtaining a significant gain in the overall
performance.

The most popular 1-D algorithm is called HGW (pub-
lished by van Herk [26], and Gill and Werman [9]). The
computation complexity per pixel isO(1), i.e., is indepen-
dent of the SE size. Nonetheless, the algorithm requires two
scans: forward and reverse. Lemonnier [12] proposes to
identify local extrema and propagate their values as long as
it is covered by the SE. Again, forward and reverse scans are
needed. Notice that in 2-D the reverse scan of the vertical
component multiplies the algorithm latency by a factor of
the image width.

Lemire [11] proposes a fast, stream-processing algo-
rithm for causal linear SE. It runs also on floating-point

data, has low memory requirements and zeroalgorithm
latency. However, an intermediate storage of local maxima
results in a random access to the input data. This problem
is solved in Dokladal and Dokladalova [7] using the strictly
sequential access to the data. It allows the real on-the-fly
computing and has zero algorithm latency.

A different approach represents the algorithm proposed
by Buckley and Van Droogenbroeck [25]. It detects the an-
chors – the portions of the signal unaffected by the operator
– and updates only the parts to be modified by the operation.
It has zero algorithm latency. However, the algorithm uses a
histogram which makes memory requirements dependent on
the number of gray levels.

Recently, Urbach and Wilkinson [24] propose an algo-
rithm for arbitrary shaped 2-D flat SEs based on the compu-
tation of multiple horizontal linear SEs for every pixel and
storing them in a look-up table. The result is then computed
by taking the maximum from the intermediate values (stored
in the look-up table) corresponding to the shape of the SE.
The horizontal linear SE can be computed with one of the
above mentioned 1-D algorithms.

2.2 Implementations

In the beginning of the 70’s, Klein and Serra [10] propose a
texture analyzer for linear and rectangular SE by decomposi-
tion based on the delay-line concept. More recently, Velten
and Kummert [27] propose also a delay-line based archi-
tecture supporting arbitrary-shaped SEs. However, the com-
plexity being quadraticO(W 2) (W denotes the length of the
SE), it becomes penalizing for large SEs. In Chienet al. [2],
the authors show how to reduce the number of redundant
comparisons within large SEs by merging adjacent smaller
SEs. The complexity becomesO(⌈log2(W )⌉) with identical
memory requirements.

Clienti et al. [3] proposes a highly parallel morpholog-
ical System-on-Chip. It is based on a set of neighbourhood
processors optimized for 3×3 SE, interconnected in a par-
tially configurable pipeline. Larger SE is obtained by ho-
mothecy(see Basic Notions below)requiring to instantiate
a deep pipe of these processors or multiple image scans.

A similar approach has been published by Deforgeset
al. [5]. Based on Xu’s [30] decomposition combined with a
stream implementation, the authors propose a pipeline archi-
tecture composed of the elementary parametrizable blocks.
It handles an arbitrary convex shape of structuring element
in only one scan of the input image. However, using large
SE will require the proportional increase of the atomic HW
resources, concatenated in a deep pipe. The principal limita-
tion comes from a limited programmability of such a pipe.

To complete this brief survey, we can also cite the sys-
tolic architectures proposed by Diamantaras and Kung [6],
Malamaset al. [13] or Shihet al. [21] for gray-scale or bi-
nary morphology. Their common inconvenience is the need
of an intermediate storage for 2-D structuring element and a
long response time of the system.
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2.3 Novelty of this Paper

All previous algorithms optimize the dilation/erosion algo-
rithm, rather than the entire operator chain. The performance
will inevitably decrease for more complex applications with
long loops (iterations, idempotence) or concatenations.

Consider some serial morphological filterζ = δε . . . δε
(with δ andε standing for dilation and erosion, see Section
3 below for details). If the atomic operatorsδ andε use se-
quential access to data then the entireζ can run on pipelined,
time-delayed data. If the atomic algorithmsδ andε - in ad-
dition - have zero algorithm latency, then the entire chainζ
inherits the same properties: sequential data access and zero
algorithm latency. This is an interesting property, since com-
puting ζ suddenly becomes very efficient: in stream, with
only the (further irreducible) operator latency ofζ .

In comparison with the preceding state of the art, the
Dokladal [7] algorithm extends the possibility to implement
erosion/dilation filters with the arbitrarily large, 2-D SE in
only one scan over the image, with the minimal algorithm
latency and memory requirements. If implemented in a ded-
icated hardware, we can obtain the same features even for
the implementation of long concatenationsζ .

This paper starts from the sequential HW implemen-
tation of the Dokladal algorithm (published in Bartovsky
et al. [1]). It describes more deeply the implementation
features and optimization techniques. It shows how to
exploit the inter-operator parallelism inζ . Additionally, it
introduces another intra-operator parallelism in the compu-
tation of the 2-D erosion/dilation. The 2-D erosion/dilation
is implemented as a run-time programmable block. The
operation (erosion or dilation), the size and the origin of the
SE can be modified on-the-fly between two frames.

Several such blocks concatenated in a pipeline allow ob-
taining previously unachievable, real-time performances for
operators in the form ofζ . We can reach almost 100Hz
HDTV 1080p performance, independent of the length ofζ .

3 Basic principles

LetδB, εB: Z2→R be a dilation and an erosion on grey-scale
images, parametrized by a structuring elementB, assumed
rectangular, flat (i.e.,B ⊂ Z

2) and translation-invariant, de-
fined as

δB( f ) =
∨

b∈B fb (1)

εB( f ) =
∧

b∈B̂ fb (2)

The hat̂ denotes the transposition of the structuring ele-
ment, equal to the set reflection̂B = {x | −x ∈ B}, and fb
denotes the translation of the functionf by some vectorb.
The SEB is equipped with an originx ∈ B. Below,B(x) de-
notesB placed with its origin atx.

The implementation of (1) and (2) consists of searching
the extremum off within the scope ofB

[δB( f )](x) = max
b∈B

[ f (x−b)] (3)

[εB( f )](x) = min
b∈B

[ f (x+b)] (4)

The dilation and erosion by convex structuring elements
verify the homothecy. Let B be some convex structuring el-
ement, andrB the change of scale ofB, with r > 1, r ∈ Z.
Then for the dilation we have

δrB f = δB . . .δB︸ ︷︷ ︸
r−times

f . (5)

The homothecy allows obtaining large-size dilations by re-
peating several times the dilation by a small SE.

Combinations of dilations and erosions form other
operators. The basic concatenation products are opening
γB = δBεB and closingϕB = εBδB. From here we can form
the Alternating Filters obtained asγϕ, ϕγ, γϕγ andϕγϕ.
The number of combinations obtained from two filters is
rather limited. Other filters can be obtained by combining
two families of filters. This leads to morphological Al-
ternate Sequential Filters (ASF), originally proposed by
Sternberg [23], and studied in Serra [19], Chapter 10. In
general, it is a family of operators parametrized by some
λ ∈ Z

+, obtained by the alternating concatenation of two
families of increasing and decreasing filters{ξi} and{ψi},
respectively, such thatψn ≤ . . .≤ ψ1≤ ξ1≤ . . .≤ ξn.

The most known ASF are those based on openings and
closings, obtained by takingψ = γ andξ = ϕ :

ASFλ = γλ ϕ λ . . .γ1ϕ 1 (6)

starting with a closing, and

ASFλ = ϕ λ γλ . . .ϕ 1γ1 (7)

starting with an opening.
The second application example is the size distribution

of a population of objects [14, 17, 28]. One way to compute
them is the residue from a sequence of openings

sd(λ ) = ||γλ −γλ−1|| (8)

The following section briefly recalls the principles of the
used algorithm, [7]. It starts by the 1-D dilation algorithm,
followed by the principle of separation of the n-D dilation
into perpendicular 1-D computations, preserving the stream
aspects at all levels.

4 Algorithm Description

4.1 1-D Dilation Algorithm

The algorithm principles and properties have been originally
published in [7]. We briefly recall the main important prin-
ciples for HW implementation.

For some 1-D input signalf : 1. . .N→R, the algorithm1

computes the valueδB f (wp) = f (rp). The SEB, B ⊂ Z,

1 See Appendix for the 1-D dilation pseudocode



4

is a line segment, containing its origin, and not necessarily
symmetric. Consequently, the size ofB is given by the span
from the centre to the left and to the right,SE1 andSE2.
The length ofB is SE1+ SE2+1. The coordinateswp and
rp stand for the currentwriting andreading positions.

The algorithm uses a FIFO queue Q. The queue supports
operationspush, pop and dequeue (modifying the FIFO’s
content) and queriesfront and back. The input signalf is
read sequentially. A newly read valuef := f (rp) is inserted
in theFIFO queue as a pair{ f ,rp}, the samplef and read-
ing positionrp (code line 3).In this pair, one can indepen-
dently access either the value or the position by indexing.
For example the last stored element’s value can be accessed
(without dequeing it) by a query Q.back()[1].

The algorithm does not store non decreasing intervals
(see [7] for details and proof). The values that appear to be-
long to increasing or constant intervals are dequeued (code
lines 1-2). Consequently, the values stored in the queue are
always ordered in a decreasing order.

The old values, uncovered by the SE, are retrieved from
the queue (code lines 4-5). The result of the dilationδB f (x)
is read at the front of the queue (code line 7). The result
becomes available as soon as enough input data have been
read, otherwise the output is empty (code line 9).

4.2 2-D Dilation Algorithm

The separability of n-D morphological dilation into lower
dimensions is a well known property. For example, a rect-
angular SER decomposes asR = H⊕V whereH andV are
horizontal and vertical segments and⊕ is the Minkowski ad-
dition. Then the dilation by a rectangleR can be computed
by concatenation of two perpendicular 1-D dilations

δR = δV δH . (9)

The sequential access to the data in 1-D makes that two
perpendicular 1-D computations can be assembled into 2-D
with sequential access at both levels, 2-D and 1-D, for both
input and output data. There is no additional latency and no
intermediate storage (the data are pipelined).

See the example of dilation by a rectangleR=H⊕V of
anN×M image f , Fig. 1. The image is sequentially read in
the raster-scan mode, line by line from left to right. The vari-
ous indicesrp andwp denotereading andwriting positions,
respectively, for the segmentsH andV , and the rectangleR.
The computation is illustrated for columni and line j, i.e.,
the resultδR f (i, j) is to be written atwpR.

The computation ofδR = δV δH decomposes as follows:
The current reading position ofδR coincides withrpH , that
is rpR = rpH . The result of the horizontal dilation, atwpH ,
is immediately read by the vertical dilation in the respective
column, that iswpH = rpV . The result of the vertical dilation
δV is written at the writing positionwpR, i.e.,δV = wpR.

Notes:
- The rpr and wpr run over the image in the raster scan

i

j
RV

R H

H V

wp  = wp

rp  = rp

wp  = rp

N
1

1

M

H

V
R

Fig. 1 Decomposition of dilation by a rectangleR into two 1-D dila-
tions by segmentsH andV , see (9).

mode. The distance betweenrpR andwpR is the (further ir-
reducible) operator latency.
- There is one instance of the horizontal dilation running at
the current linej, andN instances of vertical dilation, i.e.,
one per each column.

5 Sequential Hardware Implementation

In this section, we firstly describe in details the implemen-
tation of the 1-D dilation in a basic block that (thanks to
the separability) can be used as a building brick in any di-
mensional system. We illustrate this below on a 2-D dilation
or erosion. Secondly, we show how the intra-operator paral-
lelism can be introduced to increase the performance.

5.1 1-D Algorithm Implementation

The 1-D algorithm presented in Section 4 is a system with
sequential behavior. It contains awhile loop that can not be
unrolled (uncertain number of iterations). The common way
to implement such a system is theMealy Finite-State Ma-
chine (FSM, see [15]). The FSM issues all the necessary op-
erations over the memory as well as it controls the input and
output data-flow. It consists of 2 states{S1,S2}.

S1

S2

End

Start

Q.push({F, rp});
Q.pop();

return (Q.front()[1] );

return (Q.front()[1] );

Q.dequeue();

Q.back()[1] > F

End of data

not End of data

Q.back()[1] ≤ F
output:

output:

output:

output:

Fig. 2 State diagram of the 1-D Algorithm FSM. State transition con-
ditions are typeset in bold; the output signals are given in ashadow
bounding box.

TheS1 stateDequeues all useless values. It is a data de-
pendent stage of the algorithm as it dequeues an a priori un-
known amount of pixels. This is represented in the code by
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Fig. 3 Overview of implemented 1-D architecture. The FSM part man-
ages computation, memory part contains the data storage–queues

thewhile statement (code line 1). Consequently, its compu-
tation time varies from 1 to the SE size clock cycles in the
worst case when all the previously stored pixels are unnec-
essary.

The Enqueue current sample signal (code line 3) is is-
sued upon the transition fromS1 to S2.

The S2 state handles the code lines 4 and 5,Delete too
old values, and the lines 6 to 9Return valid value or Return
empty. These instructions are independent and executed in
parallel. Consequently, the execution ofS2 takes only one
clock cycle.

5.2 1-D Block Architecture

The HW implementation can be separated into 2 areas
(Fig. 3), the FSM part and the memory part. The FSM
manages entire computing procedure and temporarily stores
values in the memory part. The memory instantiates one
FIFO queue in the case of horizontal direction (horizontal
scan) andN FIFO queues in the vertical case (N is the
image width). The queues are addressed by a moduloN
Page counter (active in the case of vertical direction).

The Control unit is a sequential circuit that manages the
state transitions. It increments therp, wp and manages the
Page and position Stamp counter appropriately. The Control
unit also performs the queue memory operations and handles
the backward full flags used for data-flow control.

Principle

In the beginning ofS1, the last queued pixel is invoked by
Back() operation from the queue and fetched to the Com-
parator 1. The pixel value is compared with the value of
the current sample.Notice that the comparator evaluates all
three possible relations (>,<,=) at the time, for both dila-
tion and erosion.The Control unit decides on the basis of
comparison results and selected morphological function (di-
lation or erosion) whether the enqueued pixel is to be de-
queued (lines 1-2). Otherwise, the current pixel is extended
with the reading position stamp and enqueued (line 3).

TheS2 invokes the oldest queued pair{pixel, stamp} by
Front() operation. The read pixel is a correct result ifrp has
already reached or exceeded theSE2 parameter. This output
allowing condition (line 6) is checked by Comparator 3. The
deletion of outdated values is performed by comparing the
current value of the reading-position stamp with therp value
of the oldest pair. Notice that the deletion has no impact on
the output dilation value because Pop() operation (lines 4
and 5) issued by the Control unit has an effect only with the
next clock edge.

The switch request logic is used only in the parallelized
version of the architecture, see Section 6. It is a simple block
containing several comparators which generate a signal with
the last output value of each parallel segment. Its purpose is
to inform the switch connected to the output that the end of
the segment has been reached and the following segment is
to be processed.

The entire set of parameters, i.e., SE dimensions and
selection of the morphological function, is run-time pro-
grammable at the beginning of the line for 1-D, and of the
frame for the 2-D implementation, respectively. In addition,
no further controller is needed; the internal behavior is
driven only by the regular scan order data-flow.

5.2.1 Reducing the impact of data-dependency

Hereafter, we briefly describe two techniques brought to the
system for higher throughput and lesser area occupation.

Number of dequeue steps

The data-dependent number of dequeue steps (below
denoted bySteps) has an unpleasant consequence on the
HW design: longer balancing FIFOs (see Fig. 4), lower data
throughput. For HW design it is important to minimize the
worst case upper boundStepsorig=SE−1.

The number of stored pixels is within[1,SE[. Suppose
that we are to dequeueD pixels. We know that the pixels
are queued in a strictly decreasing order. Thus, if theDL-th
pixel (DL< D) can be dequeued then also all previous pixels
can be dequeued. This can be done at the same time. Hence,
the worst-case number of dequeue steps is

Steps = max
D<SE

(DdivDL+DmodDL) (10)

whereD denotes the number of pixels to be dequeued and
div and mod the integer division and the remainder opera-
tions.D can be regarded as a uniformly distributed, random
variableD ∈ [1,SE[. Then we need to find the optimalDL
that minimizesSteps (Eq. 10) for allD such as

DLoptim = arg min
DL<D

max
D<SE

(DdivDL+DmodDL) (11)

The optimalDLoptim brings us the minimal number of de-
queue stepsStepsoptim

Stepsoptim = min
DL<D

max
D<SE

(DdivDL+DmodDL) (12)
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Table 1 exemplifies, for someSE widths, the original and re-
duced number of dequeue Steps, obtained with optimalDL.
Notice that more than one optimalDL can exist.

The SE is user programmable.DLoptim also is pro-
grammable, though it is useless to make it accessible to
the user; it can instead be read from a LUT for every given
user-specified SE.

Table 1 Optimal dequeue lengthDL, original and reduced number of
dequeue steps for selected SE widths

SE width 3 11 21 31 41
Stepsorig 2 10 20 30 40
DLoptim 2 3, 4 4, 5, 6 5, 6, 7 6, 7
Stepsoptim 2 4 7 9 10

Pixel addressing

The absolute pixel addressing in the queues can be advanta-
geously replaced in the HW by using the modulo addressing.
Instead of the absolute reading positionrp, we use the rel-
ative modulo positionstamp = rpmodSE. The pixels are
enqueued byQ.push( f ,stamp) (code line 3).

The delete condition of line 4 changes accordingly. Us-
ing the modulo addressing, a stored pixel becomes outdated
whenever its modulo address equals the current pixels’ one
(stamp = Q. f ront()[2]).

The advantage of the modulo addressing is a smaller data
width. It fits into ⌈log2(SE−1)⌉ bits, whereas the absolute
addressing requires⌈log2(N − 1)⌉ bits. This is mainly ad-
vantageous for vertical orientation usingN queues for a unit.

5.3 2-D Dilation Implementation

Recall that dilation is separable into lower dimensions,
Eq. 9. The dilation by a rectangle can be implemented using
two 1-D dilation blocks, Fig. 4.

WP

RP

x 1-D

DILAT

1-D

DILAT

balanc. 

FIFO

input 

FIFO

output 

FIFO
horizontal unit vertical unit

Fig. 4 2-D implementation is composed of 1-D blocks for respective
directions.

The computing latency of the dilation varies per each
pixel. In order to preserve the input/output stream flow, one
needs to compensate the different latencies by insertion of
balancing FIFOs. The FIFO fills when the preceding block
outputs data faster than the subsequent block can read. The
depth of this FIFO directly defines the upper bound of the
system latency of the 2-D block.

Obviously, the FIFOs should be as small as possible. The
necessary depth infers from the dequeuing worst case

Finput =
Stepshor +2
StreamRate

−1 (13)

Fbalance = N

(
Stepsver +2
StreamRate

−1

)
(14)

where Stepshor and Stepsver are numbers of the dequeue
steps in horizontal and vertical directions (12).

The output FIFO ensures a permanent stream delay in all
circumstances. Its maximal size is a sum of both FIFOs (in-
put and balancing). The instantaneous filling of output FIFO
is complementary to the filling of both FIFOs combined.
The overall delay does not change. If more 2-D blocks are
pipelined to form compound operators (e.g., opening, clos-
ing, ASF), only one output FIFO at the end is necessary.

balancing

FIFO

output

FIFO

0

depth of

output FIFO

output.front

balancing.back

output.back

balancing.front

input FIFO

merged !fo 

1-D

DILAT
1-D

DILAT

horizontal unit

vertical unit

IN
OUT

Fig. 5 Merged FIFO replaces the balancing and output FIFOs to re-
duce memory requirements.

The output and balancing FIFOs can be merged (see
Fig. 5) into one memory thanks to the following proper-
ties: 1) the vertical unit reads exactly one pixel from the
balancing FIFO for each pixel written to the output FIFO.
Consequently, filling of these two FIFOs is complementary;
the occupied memory spaces can not collide with each
other, 2) the read/write activity is at most 1 access per 2
clock cycles. Hence, reading ports of both FIFOs can use
one memory port and the writing ports can use the other
memory port (without overloading it). Merging both FIFOs
reduces the memory to approximately one half. The result
memory (see Fig. 5) has two pairs of standard FIFO ports,
but it contains only one dual-port RAM.

5.4 Clock rate

The overall average clock rate stays in the interval from 2
clock cycles per pixel in the best case, up to 3 clock cycles
per pixel in the worst case. The current rate between 2 and 3
clock cycles per pixel is data dependent.

A temporarily worst case arrives whenever a
monotonously decreasing signal is followed by a high
value. This makes a number of samples to be dequeued at
the time (code lines 1 - 2, and the S1 state of the FSM), and
the computing latency temporarily increases. However, the
average computing latency remains unchanged, compen-
sated by the fact that during the entire monotonous decrease
of the signal no values have been dequeued. Therefore, the
average clock cycles per pixel rate remains constant.
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5.5 Memory requirements

The memory requirements of the 2-D architecture consist of
horizontal and vertical computation-involved memories and
two balancing FIFOs, defined by (13) and (14).

In the vertical case, the algorithm uses a several queues.
InstantiatingN separated memories would be resource in-
efficient because the FPGA RAM blocks could not be ex-
ploited. Instead, these queues are gathered in a single dual-
port memory (see Fig. 6) since only one queue is accessed
at the time (the others are idle). A single memory block also
allows using an off-chip memory.

Queue 1 Queue 2 . . . Queue N

0 H-1 2*H-1 ((N-1)*H)-1 N*H-1Address:

Q1.back

Q1.front

Q2.back

Q2.front

QN.back

QN.front

Fig. 6 Vertical Queues are mapped into linear memory space side by
side. The front and back pointers are stored at separated memory.

Every queue has a related pair of front and back pointers
which must be retained throughout the entire computation
process. The appropriate pair is always read before the par-
ticular queue is used and the modified pointers are stored
back after the computation left the queue. These pointers are
stored in a separated pointer memory. The queues are effi-
ciently packed into RAM blocks resulting in a small mem-
ory extension.

Let W×H denote the width×height of the rectangular
SE, and bpp bits per pixel. The memory contribution per
2-D unit is given by:

Mhor =W (bpp+ ⌈log2(W −1)⌉) [bits] (15)

Mver =N(H(bpp+ ⌈log2(H−1)⌉)+

+2⌈log2(H−1)⌉)
[bits] (16)

The following example illustrates the very low memory con-
sumption achieved thanks to the stream processing. Neither
the input, nor the output or any working image are buffered.

Example: Consider a dilation of 8bpp, SVGA image
(i.e., 800×600=N×M) by a square, 31x31 SE.

The computation (the queues) requires (15) and (16)

Mhor = 31(8+5) = 403 bits

and

Mver = 800(31(8+5)+2×5) = 330.4 kbits

resulting in a total of 331 kbits for the 2-D dilation.
The input and the balancing FIFOs require (13) and (14)

Finput +Fbalance = (N +1)(
Steps+2

StreamRate
−1)8bpp=

= (800+1)(
9+2

3
−1)8bpp≈ 17 kbits

The total memory needs to implement the 2-D dilation are
331+17=349 kbits. This is far below the mere size of the
image itself 800× 600× 8bpp= 3.84 Mbits which, at any
moment, does not need to be stored.

6 Parallel Hardware Implementation

This section develops and implements the concept of the
previously mentionedintra-operator parallelism in the di-
lation/erosion operator. Its main objective is to increase the
throughput while maintaining the beneficial properties of the
proposed algorithm, namely the sequential data access and
minimal algorithmlatency as much as possible.

The principle is based on utilization of concurrently
working units that process different parts of the image
simultaneously. The number of units used in parallel for
horizontal and vertical directions defines the parallelism de-
gree (PD). Considering that the input data are fetched line by
line, we propose a solution minimizing the waiting-for-data
periods of all units.

The image partition for 2-D dilation conforms to the in-
tersection of two horizontal and vertical partitions (Fig. 7).
Its granularity is determined by the PD. The horizontal par-
tition (partition of image among horizontal units) is inter-
leaved, whereas the vertical units use the partition into com-
pact blocks.

Horizontal

H1
H2
H3
H1
H2
H3. . .

. . .

. . .

. . .

Vertical

º =V1 V2 V3

H1 º V1
H2 º V1
H3 º V1
H1 º V1
H2 º V1
H3 º V1

H1 º V2
H2 º V2
H3 º V2
H1 º V2
H2 º V2
H3 º V2

H1 º V3
H2 º V3
H3 º V3
H1 º V3
H2 º V3
H3 º V3

Final segments

Fig. 7 Example of image partition forPD=3: image is divided hori-
zontally line by line and intoPD equal stripes in a vertical direction.
The final image partition is obtained by intersection.

During the parallel processing the computation runs si-
multaneously at multiple segments of the image, see Fig.
8. These segments must belong to different columns and
lines,i.e., must be placed on a diagonal.

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

Input

Block

Block
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D
a
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a
l
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H2
H3

(0 , N/3)

(0 , N)

0
0

(N/3 , 2N/3)
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(N , 4N/3)
0

(2N/3 , N)

(2N , 3N)

(4N/3 , 5N/3)
(2N , 7N/3)

(3N , 10N/3)

(3N , 4N)

(5N/3 , 2N)
(7N/3 , 8N/3)

R
o

u
ti

n
g

S
e

g
m

e
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t

. . .

. . .

. . .

H1 º V1
H2 º V1
H3 º V1
H1 º V1

H1 º V2
H2 º V2
H3 º V2
H1 º V2

H1 º V3
H2 º V3
H3 º V3
H1 º V3

. . .

. . .

. . .

H1 º V1
H2 º V1
H3 º V1
H1 º V1

H1 º V2
H2 º V2
H3 º V2
H1 º V2

H1 º V3
H2 º V3
H3 º V3
H1 º V3

. . .

. . .

. . .

H1 º V1
H2 º V1
H3 º V1
H1 º V1

H1 º V2
H2 º V2
H3 º V2
H1 º V2

H1 º V3
H2 º V3
H3 º V3
H1 º V3

. . .

. . .

. . .

H1 º V1
H2 º V1
H3 º V1
H1 º V1

H1 º V2
H2 º V2
H3 º V2
H1 º V2

H1 º V3
H2 º V3
H3 º V3
H1 º V3

(a) (b) (c) (d)

Fig. 8 Image partitioning and switch routing in parallel processing for
PD=3. Decomposed in time - (a) beginning of processing, (b .. d)after
kN pixels, k=1..3. The shading denotes the state : Dark Gray -being
computed, Light Gray - already computed, White - waiting.
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The input data rate can be theoreticallyPD-times faster
than the computational throughput of one unit. Therefore,
each image line needs to be buffered in a line buffer. The
line buffers are filled at the external (fast) pixel rate and read
by the internalPD-times slower rate.

Figure 8 gives an example forPD = 3. We have three
horizontal (H1 .. H3), and tree vertical (V1 .. V3) processing
units. As soon as the line buffer receives the first pixel, the
first horizontal unit H1 starts the processing and feeds re-
sults to the first vertical unit V1. Its output is fed to the first
output line, see Fig. 8(a). AfterN received pixels, the out-
put of H1 is connected to V2 which belongs to output line
1. Since the H1 left V1 and line 2 is read, the H2 can start
processing second line feeding V1 connected to output line
2, see Fig. 8(b). When the 2N input pixel is received, the H1
connects to V3, H2 connects to V2 and H3 connects to V1,
see Fig. 8(c), and so on.

6.1 Architecture

The parallel architecture depicted in Fig. 9 contains four
separable generic parts scalable byn ≡ PD: input buffer,
horizontal and vertical parts and output buffer. The input
buffer is mainly composed of the 1-to-n multiplexer andn
line buffers (we omitted the control logic). It divides the fast
input stream inton (n-times slower) streams processed by
computational units as described above. The output buffer
composesn slow streams of the processed data into a sin-
gle, fast, output stream respecting the image horizontal scan
order. The operator blocks can be concatenated into more
complex functions (opening, closing, ASF, etc.). The buffers
are used only at the beginning and at the end of the chain.

H1

H2

Hn

INPUT BUFFER HORIZONTAL PART

. . .

. . .

. . .

. . .

. . .

. . .

VERTICAL PART OUTPUT BUFFER

Stream clock Processing clock Stream clock 

switch

basic

unit

basic

unit

basic

unit

line bu!ersline bu!er "fomux "fo demux

V1

V2

Vn

switch

basic

unit

basic

unit

basic

unit

Fig. 9 Overview parallel 2-D architecture. The horizontal and vertical
stages can be instantiated several times between input/output buffers to
create compound operators.

Both horizontal and vertical parts instantiaten balanc-
ing FIFOs,n horizontal or vertical units, and one switch
that manages the interconnection. Each horizontal unit along
with the front-end FIFO conforms to Section 5.2.

The width of the processing area proportionally affects
both vertical memories, see (14) and (16). The area of ev-
ery horizontal unit remains unchanged, since every unit pro-
cesses the entire line. The overall memory of the horizontal
part is a factor ofn. Contrarily, the memory requirements of
every vertical part is divided byn because it processes only

a fraction of the original image width. The area of the FSM
of vertical units increases linearly withn.

6.2 Switching

The routing of the computation units is handled by a switch
block. Every switch containsn input ports from previous
units and the same number of output ports linked to the sub-
sequent units. The purpose of the switch is to manage up ton
interconnection channels. Notice that they are bidirectional:
forward data and backward FIFO full flag. As described in
Fig. 8, the output switching of all input ports is circular, i.e.,
V1, V2 ... Vn, V1, V2, ... and so forth. This property makes
the switching easier because the only condition to evaluate
is when to switch and whether the requested output unit is
available.

The moment when to switch a given port is provided by
the preceding unit’sSwitch Request logic. It generates a re-
quest every time it crosses the border of adjacent segments.
If the desired unit is free, the switch reconnects the channel.
If not, the switch sets high the FIFO full flag of requesting
unit to stall it until the desired destination unit is freed and
the channel can be established. All the channels are switched
independently so stalling one unit does not affect the others.

...

...

. . .

Control

block A

A(1:n)   - destination identi!er

A:N(1)  - source identi!er

B:N(1)N(1:n) A(2)
set of

Fifo full

set of

Input data
A(n)

Halt

Fifo full

Input data

IN
P

U
T

 P
O

R
T

 A

 Signals to/from switch basic units for ports B:N

O
U

T
P

U
T

 P
O

R
T

 AOutput data

Fifo full
Switch 

request

Fig. 10 Basic unit of the switch. Every switch containsn basic units
for a correct routing betweenn input/output ports.

Figure 10 depicts the basic unit of the switch for one pair
of input/output ports referred to as A. Forn pairs of ports this
circuitry is instantiatedn-times. Each input port possesses a
related control unit block that manages all channel transi-
tions considering the availability of the requested partition.
If this is still occupied, the requesting computation unit is
stalled by holding its FIFO full flag active.

7 Experimental results

The proposed 2-D stream processing architectures have
been implemented in VHDL, and targeted to the Xilinx
Virtex5 FPGA (XC5VSX95T-2) using the XST synthesis
tool. The processing clock frequency is 100 MHz. Notice
that the queues are gathered in a block RAM memory,
and thus its access time augments the critical path delay.
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The measured performance fornon-parallel architectures
(PD=1) in terms ofoverall latency, clock cycles per pixel
and FPGA area are given by Tables 2 and 3.

Table 2 Timing and area vs. SE, SVGA image size,PD=1.

Size of SE (sq.) 3x3 11x11 21x21 31x31 41x41
Latency [clk] 1908 9474 18888 28351 37969
Av. rate [clk/px] 2.344 2.356 2.360 2.361 2.361
Registers 212 232 242 242 252
LUTs 584 761 859 859 953
Block RAMs 2 6 13 13 28

Table 3 Timing, frame rate and area w.r.t. image, SE = 31x31 square,
PD=1.

Size of Image CIF VGA SVGA XGA 1080p
Latency [clk] 12826 23465 28351 37472 69548
Av. rate [clk/px] 2.371 2.376 2.361 2.383 2.368
Experimental FPS 384 130 85 51 20.5
Worst-case FPS 319 106 68 41 16
Registers 231 237 242 242 253
LUTs 761 853 859 859 1057
Block RAMs 7 13 13 13 26

One can observe that the overall latency is factor of the
SE size, the image width(both caused by operator latency)
and the pixel rate (computing latency).The average pixel
rate (AR) remains constant (Table 2). The average pixel rate
can be expressed by (17) and the stream frame-per-second
(FPS) ratio by (18).Tproc is overall time consumed by pro-
cessing andfclk= 100 MHz is clock frequency of computa-
tion units.

AR =
Tproc−2SE2(N +M+SE2)/PD

N M
[clk/px] (17)

FPS =
fclkPD

ARN M+2SE2(N +M+SE2)
[fr/s] (18)

M, N denote the width and height of the image,SE2 denotes
the width of the structuring element from the origin right-
wards.

Concerning the area occupation (see the Xilinx docu-
mentation [29]), the number of registers is quasi-constant;
the number of LUTs and BRAM blocks increases linearly
with the SE and image sizes (Table 3). Although the verti-
cal memory (size is given by (16)) is packed into the RAM
block, the amount of the used memory always exceeds the
theoretical value. It is caused by a different memory organi-
zations; e.g., the required word is 13 bits whereas available
memories are of width 36 bits and its fractions.

The experimental frames-per-second (FPS) rate is ob-
tained on a natural test image (see Fig. 11). The worst-case
FPS is a theoretical worst-case performance of the system
expected on the synthetic saw-shaped data.

Table 4 presents the relative speed-up of the parallel ar-
chitecture vs. the intra-operator parallelismPD. In terms of
overall latency and average processing rate, the processing
domain clock cycle is considered as a reference unit. Note

(a) Test image (b) Zoom on test

(c) ASF4 filtered (d) Zoom on ASF4

Fig. 11 (a) Experimental 800×600 lotus image. (b) Zoom on the fine
veinous texture disadvantageous for the algorithm. (c) Result of ASF4

filter, see Eq. 6 or 7. (d) Zoom on the ASF4 filtered image.

Table 4 Timing vs. degree of intra-operator parallelismPD. SVGA
image, SE = 31x31 square.

PD 2 3 4 5 6
Latency [clk] 14243 9561 7244 5818 4893
Av. rate [clk/px] 1.220 0.824 0.625 0.505 0.426
Exp. speed up 1.938 2.869 3.785 4.682 5.554

Table 5 Area vs. degree of intra-operator parallelismPD. SVGA im-
age, SE = 31x31 square.

PD 2 3 4 5 6
Registers 650 978 1280 1605 1938
LUTs 2138 3227 3862 4875 6054
Block RAMs 13 14 14 18 21
Reg. buf 661 969 1279 1587 1896
LUTs buf 1408 2086 2776 3459 4135

that the latencies of parallel versions are merely fractions
(divided byPD) of non-parallel values.

The FPGA area results, Table 5, are separated into 2
groups: the area of computing parts and buffers. The area of
input and output buffers is linear w.r.t. bothN andPD since
their essential components arePD line buffers (FIFO mem-
ories with independent ports ofN elements). The area of the
operator units in terms of Slice registers and LUTs is propor-
tional to PD as well becausen independent circuits are in-
stantiated in a parallel manner. Although the overall vertical
memory requirements remain unaffected byPD, practically
the number of occupied RAM blocks slightly increases. It is
caused by a different memory organization.
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Table 6 Timing and frame rate vs. image size, PD = 6, SE = 31x31
square

Size of Image CIF VGA SVGA XGA SXGA 1080p
Latency [clk] 2208 3996 4893 6390 7391 11641
Av. rate [clk/px] 0.443 0.431 0.426 0.426 0.427 0.418
Experimental FPS2075 724 472 290 174 113
Worst-Case FPS 1915 640 411 246 151 96

The ultimate timing results (PD=6) versus the image size
are listed in Table 6. It illustrates the real performance of the
architecture. It allows to achieve at least 96 fps with 1080p
image size (full HD TV image size).

The worst case occurs on artificial saw-shaped image
with no constant plateaus. Such an image infers the maximal
number of algorithm’s while-loop iterations. The best case
fps (not mentioned in the table) is obtained with a constant
image. A real, unfiltered image containing textures or ran-
dom noise achieves performance somewhere between best
and worst cases. For instance at 1080p, the worst case is 96
fps, best case 140 fps, achieved experimental performance is
113 fps.

This frame rate remains constant for any morphological
serial filter (such as ASF). Obviously, the FPGA area in-
creases accordingly to the size of the ASF. The implementa-
tion is eased by the fact that one can use an off-chip memory.

7.1 Comparison with existing HW implementations

Table 7 presents a comparison with other recent architec-
tures. The table is divided into three sections. The process-
ing unit section presents the features of a single 2D compu-
tational unit. The second part the HW specifications, and the
third part the performance on a given application, an ASF
filter.

One can see that Clienti [3] offers a high throughput
for small 3×3 rectangular SEs. Similarly, the Chien ASIC
chip [2] provides very reasonable performance on small SEs.
On the other hand, D́eforges [5] directly offers large, non-
rectangular, convex SE, but with a lower processing rate.
The programmability is not mentioned, namely, the possi-
bility to control the SE shape after the synthesis is not clear.

Although all these solutions are efficient for small SE
sizes or short concatenations, they become more or less pe-
nalized for longer filters. This issue is illustrated in an Exam-
ple Application, Table 7.It estimates the performances on a
five-stage ASF5 = ϕ11×11γ11×11 . . . ϕ3×3γ3×3. Decomposed
into a sequence of dilations and erosions, it can be realized
as ASF5 = ε11×11δ21×21 . . . ε5×5δ3×3. Notice that it makes
use of a progressively increasing SE. On neighborhood pro-
cessors, large SE can be obtained using the homothecy Eq. 5.
The Clienti SPOC instantiates 16 of 3×3 processing units.
Hence, the ASF5 will require 5 image scans with the entire
image necessarily buffered in the memory. Chien also uses
the homothecy. This deteriorates the throughput.

One could immediately figure out to instantiate a longer
pipe in order to reduce the number of image scans.Alas, a

long, fixed-length pipe lacks the flexibility.Consider another
application for the illustration of the problem: the size distri-
butions, exemplified by Fig. 12. Contrarily to ASF, the size
distributions are often sampled sparsely, the SE increments
by more than one and, at the same time, one often goes to
much larger SE sizes. Every opening{γBi} in (8) needs to be
output and stored in the memory to compute the subtraction.
For small sizes, a long pipeline is underusedand the work-
load of the processing units unbalanced, whereas for largeλ
one may still need several image scans.

For example, for sizesλ = 5, 10, 15, 20, 25, as in Fig. 12,
the Clienti SPOC will require 7 image scans. The 16 pro-
cessor pipe is underused forλ = 5, 10, 15, whereas it will
require 2 scans forλ = 20, 25.

Our processing unit with programmable SE size avoids
using the homothecy. This allows optimal workload distri-
bution over the entire pipe, so important for processing large
images in real-time systems.

(a) Example of a texture
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Fig. 12 The size distribution of the texture grain.

8 Conclusions

This paper describes an efficient implementation of serial
morphological filters with flat, rectangular structuring ele-
ments of arbitrary size. The efficiency is obtained through
the following properties:
− The computational complexity is linear w.r.t. the image
size and independent of the SE size.
− The overall latency is mostly equal to the latency of
the operator, inferred by the size of the used structuring
element.



11

Table 7 Comparison of several FPGA and ASIC architectures concerning morphological dilation and erosion

Processing unit HW System Example Application ASF5

Parallel Supported Throughput fmax Clock rate Number of Supported Image FPS
degree SE [Mpx/s] [MHz] [clk/px] units image scans

Clienti [3] 4 arb. 3x3 403 100 0.25 16* 1024x1024 5 80
Chien [2] 1 disk 5x5 190 200 1.052 1 720x480 27 21.5
Déforges [5] 1 arb. convex 50 50 1 1* 512x512 11 17.2
This paper 6 rectangles 234 100 0.426 11* 1920x1080 1 113
* Number of available stages varies with size of used FPGA

− It uses strictly sequential access to the data at all algo-
rithm levels.
− Low memory consumptions (far below the size of the
image) allow embedding on a single chip complex operators
able to process large images.
− Two levels of parallelism: i) the inter-operator parallelism
in serial concatenationsζ = δε . . . δε, allow running all
these atomicδ andε operators simultaneously, and ii) the
intra-operator parallelism in every atomic dilation/erosion.
The intra-operator parallelism is scalable (tested up to six)
and allows the decomposition of fast streams into several
slower streams processed in parallel without altering the
streaming property of the system.

The architecture serves as a basic building block to be
used for construction of more complex operators such as
ASF, granulometries, etc., with the same properties and per-
formance. The performances obtained on an FPGA are ap-
proaching the 100Hz HDTV 1080p standard. These perfor-
mances are far above what has been reported in the literature.
These performances allied to the programmability are ex-
tremely interesting. They open the accessibility of advanced
morphological operators in industrial systems running under
severe time constraints. The number of examples includes
the on-line production control, aging material defectoscopy,
etc., wherever one requires processing of high resolution im-
ages and low latency.

Appendix: The 1-D Dilation Pseudocode

Algorithm 1 : df←1D DILATION (rp, wp, f, SE1, SE2,
N)

Input : rp, wp - reading/writing position; f - input
signal valuef (rp); SE1, SE2 - SE size
towards left and right; N - length of the signal;
Q - a FIFO-like queue

Result: output signal valueδB f (wp)

while Q.back()[1] ≤ f do1

Q.dequeue() ; // Dequeue useless valuess2

Q.push({f, rp}) ; // Enqueue the current sample3

if wp - SE1 > Q.front()[2] then4

Q.pop() ; // Delete too old value5

if rp = min (N, wp + SE2) then6

return (Q.front()[1] ) ; // Return valid value7

else8

return ({}) ; // Return empty9
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