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Abstract Many useful morphological filters are built agools from filtering, multi-scale image analysis to pattern
more or less long concatenations of erosions and dilationscognition. It has been used in a number of applications, in-
openings, closings, size distributions, sequential filets, cluding the biomedical and medical imaging, video surveil-
An efficient implementation of such concatenatiotance, industrial control, video compression, stereology, or
would allow all the sequentially concatenated operators reemote sensing ( [8,16,18,19]).
simultaneously, on the time-delayed data. A recent algo- In image-interpretation applications requiring a high
rithm (see below) for the morphological dilation/erosiogorrect-decision liability, one often use robust multi-criteria
allows such inter-operator parallelism. and/or multi-scale analysis. It generally consists of a serial
This paper introduces an additional, intra-operator levebncatenation of alternating atomic operators dilation and
of parallelism in this dilation/erosion algorithm. Realized i erosion with a progressively increasing computing window,
a dedicated hardware, for rectangular structuring elemetite so-called structuring element (SE). Its examples include:
with programmable size, such an implementation allows
to obtain previously unachievable, real-time performances
for these traditionally costly operators. Low latency and . : .
memory requirements are the main benefits when the per- creasing structuring element, useful for multi-scale anal-

formance is not deteriorated even for long concatenations or ysIS [19’ .20]'. .
high-resolution images. — Sze digtributions - (aka granulometries) are concatena-

tions of openings allowing measuring the size distribu-
Keywords Mathematical Morphology, Serial Filters, tion in a population of objects [14,17, 28].

Real-Time Implementation, Dedicated Hardware — Statistical learning - a selected set of morphological op-
erators¢; can be separately applied to an imagd hen

for every pixel f(x,y), the vector of valueg(f)(x,y)
can serve as a vector of descriptors for the pixel-wise
learning and classification [4].

Alternate Sequential Filters (ASF) - that are concatena-
tions of openings and closings with a progressively in-

1 Introduction

Mathematical Morphology is very popular, self-contained, Although built from basic blocks (the dilation and ero-
image processing framework providing a complete set sibn), these operators are costly due to the number of itera-
tions. The real-time capabilities (i.e., low latency) are even

iégizg’t‘ésiz fr:‘fgrﬁatt)i%‘fjﬁedggs‘ﬁbar d Monge more difficult to achieve due to the sequential data depen-
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P. Dokkdal _ level of parallelism where all the sequentially concatenated
fﬂenter F§3f M?thehmaﬂcal Morphology (CMM) operators can run simultaneously, on time-delayed data. Ob-
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. In this paper, we propose a HW implementation of

V. Georgiev the original algorithm and we introduce an additional
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30614, Pilsen, Czech Republic allows obtaining previously unachievable, real-time perfor-
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discusses the state of the art of existing dilation/erosidata, has low memory requirements and zafgorithm

algorithms and concludes by the novelties presented in tlagency. However, an intermediate storage of local maxima

paper. Section 3 and 4 recall the definitions and algorithnriesults in a random access to the input data. This problem

principles and Section 5 illustrates the functional schenesolved in Dokladal and Dokladalova [7] using the strictly

of a sequential HW implementation. Then, Section 6 irsequential access to the data. It allows the real on-the-fly

troduces the parallel implementation allowing obtaining axomputing and has zero algorithm latency.

additional performance increase. Finally, Section 7 presents A different approach represents the algorithm proposed

results obtained on FPGA. by Buckley and Van Droogenbroeck [25]. It detects the an-
chors — the portions of the signal unaffected by the operator
—and updates only the parts to be modified by the operation.

2 Fast Implementations of Morphological Filters It has zero algorithm latency. However, the algorithm uses a
histogram which makes memory requirements dependent on

During the last decades, propositions of optimized impl&€ number of gray levels.

mentations concentrated on the efficiency of computing the Recently, Urbach and Wilkinson [24] propose an algo-

dilation and erosion. The majority of authors measures tijgm for arbitrary shaped 2-D flat SEs based on the compu-

efficiency as a number of comparisons per pixel. Neverth@tion of mult_lple horizontal linear SEs for_every pixel and

less, the minimization of comparisons can result in hig%)f:r'”g them in a look-up table. The result is then computed

memory requirements. It can even penalize the executi taking the maximum from the |.ntermed|ate values (stored

time since the overall latency issues are neglected. in the look-up table) corresponding to the shape of the SE.

For the following, we define asperator latency the The horizontal linear SE can be computed with one of the

latency introduced by the dependence of the result 8Rove mentioned 1-D algorithms.

future data samples. For example the max filjer=

max(X—2,Xi-1, ..., Xi+2) has operator latency 2. We define

as algorithm latency any additional latency introduced by2.2 Implementations

the algorithm, e.g., the necessity to perform a reverse scan

on data. The latency is a time-less measure expressed in the beginning of the 70's, Klein and Serra [10] propose a

number of data samples. texture analyzer for linear and rectangular SE by decomposi-

Note that there is also an additional delay, calbed+ tion based on the delay-line concept. More recently, Velten

puting latency, induced by the time needed to compute thend Kummert [27] propose also a delay-line based archi-

result after all data are available. It is a platform dependemtture supporting arbitrary-shaped SEs. However, the com-

measure, independent of two previous latency definitionsiexity being quadratie’(W?) (W denotes the length of the

In the example above, the polyadic max can either be eX8E), it becomes penalizing for large SEs. In Cheeal. [2],

cuted sequentially on sequential machines, or in parallel #1e authors show how to reduce the number of redundant

the dedicated hardware. comparisons within large SEs by merging adjacent smaller
Then the overall latency of the system is the sum of theS&s. The complexity become¥ [log,(W)]) with identical
three terms. memory requirements.

Clienti et al. [3] proposes a highly parallel morpholog-
ical System-on-Chip. It is based on a set of neighbourhood
2.1 Algorithmic Advances processors optimized forx@& SE, interconnected in a par-
tially configurable pipeline. Larger SE is obtained by ho-
The most efficient dilation/erosion algorithms are based omothecy(see Basic Notions belowgquiring to instantiate
the SE decomposition to a set of basic, more easily opgi-deep pipe of these processors or multiple image scans.
mized shapes, see [22, 30, 31]. A special attention is paid A similar approach has been published by Deforges
to 1-D algorithms obtaining a significant gain in the overadll. [5]. Based on Xu’s [30] decomposition combined with a
performance. stream implementation, the authors propose a pipeline archi-
The most popular 1-D algorithm is called HGW (pubtecture composed of the elementary parametrizable blocks.
lished by van Herk [26], and Gill and Werman [9]). Thét handles an arbitrary convex shape of structuring element
computation complexity per pixel i€ (1), i.e., is indepen- in only one scan of the input image. However, using large
dent of the SE size. Nonetheless, the algorithm requires t®%& will require the proportional increase of the atomic HW
scans: forward and reverse. Lemonnier [12] proposes rasources, concatenated in a deep pipe. The principal limita-
identify local extrema and propagate their values as longta&en comes from a limited programmability of such a pipe.
itis covered by the SE. Again, forward and reverse scans are To complete this brief survey, we can also cite the sys-
needed. Notice that in 2-D the reverse scan of the vertitalic architectures proposed by Diamantaras and Kung [6],
component multiplies the algorithm latency by a factor dflalamaset al. [13] or Shihet al. [21] for gray-scale or bi-
the image width. nary morphology. Their common inconvenience is the need
Lemire [11] proposes a fast, stream-processing algofFan intermediate storage for 2-D structuring element and a
rithm for causal linear SE. It runs also on floating-poiribng response time of the system.



2.3 Novelty of this Paper [es(T)](X) = r&ig [f(X+Db)] 4)

All previous algorithms optimize the dilation/erosion algo- The dilation and erosion by convex structuring elements
rithm, rather than the entire operator chain. The performanaify the homothecy. Let B be some convex structuring el-
will inevitably decrease for more complex applications witement, and B the change of scale &, withr > 1,r € Z.
long loops (iterations, idempotence) or concatenations. Then for the dilation we have

Consider some serial morphological fil@e d¢ ... d¢

(with 6 ande standing for dilation and erosion, see Section osf=0s...08f. ®)
3 below for details). If the atomic operatadsande use se- r—times

guential access to data then the enfian run on pipelined, . ) .
time-delayed data. If the atomic algorithdsande - in ad- The _homothecy gllows obtz_alnl_ng large-size dilations by re-
dition - have zero algorithm latency, then the entire clfainP€ating several times the dilation by a small SE.

inherits the same properties: sequential data access and zerGOmbinations of dilations and erosions form other
algorithm latency. This is an interesting property, since coriPerators. The basic concatenation products are opening
puting ¢ suddenly becomes very efficient: in stream, withe = 98€s and closingps = esds. From here we can form
only the (further irreducible) operator latencyf the Alternating Filters obtained g8p, ¢y, y¢y and ¢y¢.

In comparison with the preceding state of the art, thehe nu_mper of comb!nat|ons obtained .from two fllte.rs. is
Dokladal [7] algorithm extends the possibility to implemerfi@ther limited. Other filters can be obtained by combining
erosion/dilation filters with the arbitrarily large, 2-D SE ifWo families of filters. This leads to morphological Al-
only one scan over the image, with the minimal algorithigrnate Sequential Filters (ASF), originally proposed by
latency and memory requirements. If implemented in a deatérnPerg [23], and studied in Serra [19], Chapter 10. In
icated hardware, we can obtain the same features even%\"erilv it is a family of operators parametrized by some
the implementation of long concatenatighs A ez, obtalned by the alternatlr!g concatenation of two

This paper starts from the sequential HW implemef@Milies of increasing and decreasing filtgé} and{yi},
tation of the Dokladal algorithm (published in BartovskyesPectively, such thai, <... < ¢y <& <...<é&n.
et al. [1]). It describes more deeply the implementation 1he most known ASF are those based on openings and
features and optimization techniques. It shows how f°SiNgs, obtained by taking = yandé = ¢ :
exploit the inter-operator parallelism . Additionally, it A = P o Agl
introduces another intra-operator parallelism in the compu- -

_tati_on of the 2-D erosion/dilation. The 2-D erosion/diIatiorgtamng with a closing, and

is implemented as a run-time programmable block. The
operation (erosion or dilation), the size and the origin of the aAgrA — A2 g1yt )

SE can be modified on-the-fly between two frames.

Several such blocks concatenated in a pipeline allow adtarting with an opening.
taining previously unachievable, real-time performances for The second application example is the size distribution
operators in the form of. We can reach almost 100Hzof a population of objects [14, 17, 28]. One way to compute
HDTV 1080p performance, independent of the lengtlf of them is the residue from a sequence of openings

sd(A) =y =y ®)

The following section briefly recalls the principles of the
sed algorithm, [7]. It starts by the 1-D dilation algorithm,
ollowed by the principle of separation of the n-D dilation

into perpendicular 1-D computations, preserving the stream
aspects at all levels.

(6)

3 Basic principles

Let dg, g: Z2 — R be a dilation and an erosion on grey-scal
images, parametrized by a structuring elem@nassumed
rectangular, flat (i.eB c Z?) and translation-invariant, de-

fined as
%B(f) = Voes fo 1)
&(f) = Ayeg o (2) 4 Algorithm Description

The hat™ denotes the transposition of the structuring eler 1 1.p Dilation Algorithm
ment, equal to the set reflecti@®= {x | —x € B}, andf,

denotes the translation of the functiérby some vectob. e gigorithm principles and properties have been originally
The SEB is equipped with an origin € B. Below,B(x) de-  yplished in [7]. We briefly recall the main important prin-

notesB placed with it§ origin ax. . _ciples for HW implementation.
The implementation of (1) and (2) consists of searching Fqor some 1-D input signdl: 1...N — R, the algorithm
the extremum off within the scope oB computes the valudsf(wp) = f(rp). The SEB, B C Z,

[Ge(f)](x) = Te%x[f (x—Db)] B  1see Appendix for the 1-D dilation pseudocode



is a line segment, containing its origin, and not necessarily 11 i N
symmetric. Consequently, the size®fs given by the span R

from the centre to the left and to the rigl8E1 and SE2. : V] R R

The length ofB is SE1+ SE2+ 1. The coordinatesvp and ) J‘h: m,

r p stand for the currentriting andreading positions. y A : R,

The algorithm uses a FIFO queue Q. The queue supports
operationspush, pop and dequeue (modifying the FIFO’s Fig. 1 Decomposition of dilation by a rectangkinto two 1-D dila-
content) and querieBont and back. The input signalf is tions by segments andV, see (9).
read sequentially. A newly read valde= f(rp) is inserted
in the FIFO queue as a pa{f,rp}, the samplef and read- . . .
ing positionr p (code line 3)In this pair, one can indepen-M2de. The distance betweeps andwpr is the (further ir-

dently access either the value or the position by indexidgduciPle) operator latency.

For example the last stored element's value can be acce t% pere is one instance of the horizontal dilation running at

(without dequeing it) by a query Q.back()[1]. e current linej, andN instances of vertical dilation, i.e.,

The algorithm does not store non decreasing intervi18€ PEr each column.

(see [7] for details and proof). The values that appear to be-

long to increasing or constant intervals are dequeued (code

lines 1-2). Consequently, the values stored in the queue aréequential Hardware Implementation
always ordered in a decreasing order.

The old values, uncovered by the SE, are retrieved frdimthis section, we firstly describe in details the implemen-
the queue (code lines 4-5). The result of the diladgfi(x) tation of the 1-D dilation in a basic block that (thanks to
is read at the front of the queue (code line 7). The restite separability) can be used as a building brick in any di-
becomes available as soon as enough input data have bBensional system. We illustrate this below on a 2-D dilation
read, otherwise the output is empty (code line 9). or erosion. Secondly, we show how the intra-operator paral-

lelism can be introduced to increase the performance.

4.2 2-D Dilation Algorithm ) )
5.1 1-D Algorithm Implementation

The separability of n-D morphological dilation into lower ) ) ) ) )
dimensions is a well known property. For example, a rect€ 1-D algorithm presented in Section 4 is a system with

angular SER decomposes &8 = H &V whereH andV are sequential behavior. It containsadile loop that can not be
horizontal and vertical segments ands the Minkowski ad- Unrolled (uncertain number of iterations). The common way

dition. Then the dilation by a rectangRecan be computed t© implement such a system is tMealy Finite-State Ma-

by concatenation of two perpendicular 1-D dilations chine (FSM, see [15])The FSM issues all the necessary op-
erations over the memory as well as it controls the input and
O = Oy 0. (9) output data-flow. It consists of 2 statESl, S2}.

The sequential access to the data in 1-D makes that two
perpendicular 1-D computations can be assembled into 2-D
with sequential access at both levels, 2-D and 1-D, for both
input and output data. There is no additional latency and no
intermediate storage (the data are pipelined).

Q.back()[1]1=<F
output) — — — — - ~
f‘ Q.dequeue(); /}

See the example of dilation by a rectanfleH ©V of o end ofdata ‘Z”}Tf
anN x M imagef, Fig. 1. The image is sequentially read in 1 Qpop(); Qpush(E. ;|
the raster-scan mode, line by line from left to right. The vari- o e T I ’
ous indices p andwp denotereading andwriting positions,
respectively, for the segmerttsandV, and the rectangli.

The computation is illustrated for colunirand linej, i.e., End of data

(utput) — — — — — — - .
i return (Qfront()[1]);'

the resultdrf (i, j) is to be written atvpg.
The computation obr = dydy decomposes as follows: . . -

The current reading position & coincides withr py, that Fig. 2 State diagram of the 1-D Algorithm FSM. State transition-con

. o Th It of the hori | dilati H. ditions are typeset in bold; the output signals are given ghadow

is rpr = I pu. The result of the horizontal dilation, ®pH,  ounding box.

is immediately read by the vertical dilation in the respective

column, that isvpy = rpy. The result of the vertical dilation

dy is written at the writing positiompg, i.e.,dy = WpR. The S1 stateDequeues all useless values. It is a data de-
Notes: pendent stage of the algorithm as it dequeues an a priori un-

- Therp, andwp; run over the image in the raster scaktnown amount of pixels. This is represented in the code by



Input fifo empty Bi'iiofnffro?ioﬁl 7777777 i The 2 invokes the oldest queued pépixel, stampg by
[INPUT comparator MR oureur . Front() operation. The read pixel is a correct resulfphas
N A><B < B PSR comparator 3 already reached or exceeded 82 parameter. This output
‘s comparator2, [ " allowing condition (line 6) is checked by Comparator 3. The
| ] — . deletion of outdated values is performed by comparing the
‘ = B Switch I currentvalue of the reading-position stamp withtpealue
SELeSE2 Nt stamp+je] S request - of the oldest pair. Notice that the deletion has no impact on
- — ———J|Ptkdc | | | ihe output dilation value because Pop() operation (lines 4
(E back(DL) _dequeue, pop| < | e 1 and 5) issued by the Control unit has an effect only with the
e} back QuEUE front=F] ~ nextclock edge.
| E e - \ The switch request logic is used only in the parallelized
| |

version of the architecture, see Section 6. It is a simple block
containing several comparators which generate a signal with
the last output value of each parallel segment. Its purpose is
to inform the switch connected to the output that the end of
the segment has been reached and the following segment is
the while statement (code line 1). Consequently, its comptf be processed.

tation time varies from 1 to the SE size clock cycles in the The entire set of parameters, i.e., SE dimensions and
worst case when all the previously stored pixels are unn&&lection of the morphological function, is run-time pro-

Fig. 3 Overview of implemented 1-D architecture. The FSM part ma
ages computation, memory part contains the data storageequ

essary. grammable at the beginning of the line for 1-D, and of the
The Enqueue current sample signal (code line 3) is is- frame for the 2-D implementation, respectively. In addition,
sued upon the transition fro8L to 2. no further controller is needed; the internal behavior is

The S2 state handles the code lines 4 and8lete too  driven only by the regular scan order data-flow.
old values, and the lines 6 to ®eturn valid value or Return
empty. These instructions are independent and executedsi@.1 Reducing the impact of data-dependency
parallel. Consequently, the execution & takes only one
clock cycle. Hereafter, we briefly describe two techniques brought to the
system for higher throughput and lesser area occupation.

5.2 1-D Block Architecture Number of dequeue steps

The HW implementation can be separated into 2 arepfe data-dependent number of dequeue steps (below
(Fig. 3), the FSM part and the memory part. The FSMenoted bySeps) has an unpleasant consequence on the
manages entire computing procedure and temporarily stopg# design: longer balancing FIFOs (see Fig. 4), lower data
values in the memory part. The memory instantiates ofioughput. For HW design it is important to minimize the
FIFO queue in the case of horizontal direction (horizontgjorst case upper bourslepsorig=SE — 1.
scan) andN FIFO queues in the vertical cashl (s the The number of stored pixels is withii, SE[. Suppose
image width). The queues are addressed by a moNulothat we are to dequeu® pixels. We know that the pixels
Page counter (active in the case of vertical direction).  are queued in a strictly decreasing order. Thus, ifitheth

The Control unit is a sequential circuit that manages thgel (DL< D) can be dequeued then also all previous pixels
state transitions. It increments thp, wp and manages the can be dequeued. This can be done at the same time. Hence,

Page and position Stamp counter appropriately. The Contigd worst-case number of dequeue steps is
unit also performs the queue memory operations and handles

the backward full flags used for data-flow control. Seps= Ign%)E((D divDL+ DmodDL) (10)
<

Principle whereD denotes the number of pixels to be dequeued and
div and mod the integer division and the remainder opera-

In the beginning ofS1, the last queued pixel is invoked bytions.D can be regarded as a uniformly distributed, random

Back() operation from the queue and fetched to the CoiyariableD € [1,SE[. Then we need to find the optimBIL

parator 1. The pixel value is compared with the value #pat minimizesteps (Eqg. 10) for allD such as

the current sampléNotice that the comparator evaluates all . .

three possible relations-(<,=) at the time, for both dila- ~ Plopim =arg min max(DdivDL +DmodbL)  (11)

tion and erosionThe Control unit decides on the basis of

comparison results and selected morphological function (dibe optimalDLgpim brings us the minimal number of de-

lation or erosion) whether the enqueued pixel is to be déleue stepStepsyyim

gueued (lines 1-2). Otherwise, the current pixel is extended

with the reading position stamp and enqueued (line 3). StepSoptim = Min max(DdivDL +DmodDL) (12)



Table 1 exemplifies, for sont&E widths, the original and re- Obviously, the FIFOs should be as small as possible. The
duced number of dequeue Steps, obtained with optidhal necessary depth infers from the dequeuing worst case
Notice that more than one optimaL can exist.

The SE is user programmableDLopim also is pro- Stepshor+2_

grammable, though it is useless to make it accessible to Finput = SreamRate (3)
the user; it can instead be read from a LUT for every given Sepsye + 2
user-specified SE. alance = <SreamR’aIe - > (14)

Table 1 Optimal dequeue lengtBL, original and reduced number of WN€re S€pshor and Seps,er are numbers of the dequeue
dequeue steps for selected SE widths steps in horizontal and vertical directions (12).

SEwidth T3] 1T [ 21 [ 31 [ 41 _ The output FIFO ensures a permanent stream delayln_ all
circumstances. Its maximal size is a sum of both FIFOs (in-

Sepsyi 2] 10 20 30 40 . . S
Dfi?:g > T3 4745656767 put and balancing). The instantaneous filling of output FIFO
Sepsoptim | 2 | 4 7 9 10 is complementary to the filling of both FIFOs combined.

The overall delay does not change. If more 2-D blocks are
pipelined to form compound operators (e.g., opening, clos-
ing, ASF), only one output FIFO at the end is necessary.

Pixel addressing

merged fifo depth of

The absolute pixel addressing in the queues can be advantawtrro horizontal t_l—':%: ouT 0 : output FIFO
geously replaced in the HW by using the modulo addressir: oar =1 balancing| - outhut
Instead of the absolute reading positiqn we use the rel- 1D 7 Ny

. . . output.front ] \ output.back
ative modulo positiorstamp = rpmodSE. The pixels are DILAT balancing back balancing.front

enqueued b. pUSh(.f.’Stamp.) (code line 3). . Fig. 5 Merged FIFO replaces the balancing and output FIFOs to re-
The delete condition of line 4 changes accordingly. Uguce memory requirements.

ing the modulo addressing, a stored pixel becomes outdated
whenever its modulo address equals the current pixels’ one
(stamp = Q. front()[2]). The output and balancing FIFOs can be merged (see
The advantage of the modulo addressing is a smaller daig. 5) into one memory thanks to the following proper-
width. It fits into [log,(SE — 1)] bits, whereas the absoluteties: 1) the vertical unit reads exactly one pixel from the
addressing requiredog,(N — 1)]| bits. This is mainly ad- balancing FIFO for each pixel written to the output FIFO.
vantageous for vertical orientation usiNgjueues for a unit. Consequently, filling of these two FIFOs is complementary;
the occupied memory spaces can not collide with each
other, 2) the read/write activity is at most 1 access per 2
5.3 2-D Dilation Implementation clock cycles. Hence, reading ports of both FIFOs can use
one memory port and the writing ports can use the other

Recall that dilation is separable into lower dimension§}emory port (without overloading it). Merging both FIFOs

Eq. 9. The dilation by a rectangle can be implemented usifgfluces the memory to approximately one half. The result
two 1-D dilation blocks, Fig. 4. memory (see Fig. 5) has two pairs of standard FIFO ports,

but it contains only one dual-port RAM.

1 input horizontal unit balanc. vertical unit output

e we FIFO FIFO FIFO 5.4 Clock rate
sty Bvelpeiliy P

N ﬂ%—' == DILAT DILAT

m The overall average clock rate stays in the interval from 2
clock cycles per pixel in the best case, up to 3 clock cycles

Fig. 4 2-D implementation is composed of 1-D blocks for respectiv@er pixel in the worst case. The current rate between 2 and 3

directions. clock cycles per pixel is data dependent.

A temporarily worst case arrives whenever a

The computing latency of the dilation varies per ea(monotonously decreasing signal is followed by a high

pixel. In order to preserve the input/output stream flow, o lue. This makes a number of samples to be dequeued at

needs to compensate the different latencies by insertiont ¢ ime (code lines 1 - 2, and the S1 state of the FSM), and

balancing FIFOs. The FIFO fills when the preceding blocqge computing latency temporarily increases. However, the

outputs data faster than the subsequent block can read. Fpgrage computing Iate_ncy femaif‘s unchanged, compen-
depth of this FIFO directly defines the upper bound of t ted by the fact that during the entire monotonous decrease
system latency of the 2-D block of the signal no values have been dequeued. Therefore, the

average clock cycles per pixel rate remains constant.




5.5 Memory requirements The total memory needs to implement the 2-D dilation are
331+17=349 kbits. This is far below the mere size of the

The memory requirements of the 2-D architecture consistiofage itself 800« 600 x 8bpp= 3.84 Mbits which, at any

horizontal and vertical computation-involved memories andoment, does not need to be stored.

two balancing FIFOs, defined by (13) and (14).

In the vertical case, the algorithm uses a several queues.

InstantiatingN separated memories would be resource in= )

efficient because the FPGA RAM blocks could not be ef- Parallel Hardware Implementation

ploited. Instead, these queues are gathered in a single dual- ) .

port memory (see Fig. 6) since only one queue is accesdads section develops and implements the concept of the

at the time (the others are idle). A single memory block alg$€Viously mentionedintra-operator parallelismin the di-

allows using an off-chip memory. lation/erosion operator. Its main objective is to increase the
throughput while maintaining the beneficial properties of the
proposed algorithm, namely the sequential data access and

Address: 0 H-1 21 ((N-D*H)-1 N*H-1 minimal algorithmlatency as much as possible.
| Quever | Queve2 | .. | QueueN | The principle is based on utilization of concurrently
Q1.bacij Q2back—" QN.back/“J working units that process different parts of the image
Q1.front Q2. front QN.front

simultaneously. The number of units used in parallel for
F|g 6 Vertical Queues are mapped into linear memory space side IB?rizontal and vertical directions defines the pal’a||e|ism de-
side. The front and back pointers are stored at separatedrgem  gree (PD). Considering that the input data are fetched line by
line, we propose a solution minimizing the waiting-for-data
) . periods of all units.
Every queue has a related pair of front and back pointers thg jmage partition for 2-D dilation conforms to the in-
which must be retained throughout the entire computatigfysection of two horizontal and vertical partitions (Fig. 7).

process. The appropriate pair is always read before the Qal-granularity is determined by the PD. The horizontal par-
ticular queue is used and the modified pointers are storad (partition of image among horizontal units) is inter-

back after the computation left the queue. These pointers Ig e whereas the vertical units use the partition into com-
stored in a separated pointer memory. The queues are

. ; A Ct blocks.
ciently packed into RAM blocks resulting in a small mem-
ory extension.
Let WxH denote the widtkheight of the rectangular Horizontal Vertical Final segments
SE, and bpp bits per pixel. The memory contribution per : e VIHIoVIHZ oV
2-D unit is given by: : o vi | va | va|=[Hioviliirovalrovs
H2 H2°V1|H2°V2[H2°V3
. H3 H3 *Vi[H3 V[ H3 oV3
Mhor =W(bpp+ [logy(W —1)1) [bits]  (15) : -1
Myer =N(H (bpp + [log,(H — 1) 1)+ ) Fig. 7 Example of image partition foPD=3: image is divided hori-
e (H(bpp+flogy( D [bits] (16) zontally line by line and intd®D equal stripes in a vertical direction.
+2[log,(H - 1)) The final image partition is obtained by intersection.

The following example illustrates the very low memory con-
sumption achieved thanks to the stream processing. Neitherpring the parallel processing the computation runs si-

the input, nor the output or any working image are buffereghyjtaneously at multiple segments of the image, see Fig.

_ Example: Consider a dilation of 8bpp, SVGA imag@ These segments must belong to different columns and
(i.e., 800x600=NxM) by a square, 31x31 SE. lines,i.e., must be placed on a diagonal.

The computation (the queues) requires (15) and (16)

‘_g Input (0,N) (N, 2N) (2N, 3N) (3N, 4N)
£ Block H1  (0,N/3) (N/3,2N/3) (2N/3,N) (3N, 10N/3)
= Block H2 0 (N, 4N/3) (4N/3, 5N/3) (5N/3,2N)
and 5 Block H3 0 [ (2N, 7N/3) (7N/3, 8N/3)
HICVA[ H1 °V2[HI °V. °V1[HTOV2[ H1°V: °Vi[H1 °V2[H1 °V3 °VA[H1 °V2[H1°V3
) % H2°V1[H2°V2[H2°V: OVA| H2°V. oV ;ozwav; 20V3 ov;ox +°vil
. . H3°Vi[H3°V2[H3oV. °V1[H3oV. oV SVA| H3°V2[H3°V3 oV SV2| H3°V3
Myer = 800(31(8+5) + 2 x 5) = 3304 kbits g [ooiimosino) [monmosises S mo)  jecalise oo
& : : : : : : :
o

resulting in a total of 331 kbits for the 2-D dilation. : w NI S Wi
The input and the balancing FIFOs require (13) and (141 120/ THer/ e XX
(a) (b) (c)

Seps+2
Finput + Foalance = (N + 1)(m —1)8bpp= Fig. 8 Image partitioning and switch routing in parallel procagsior
PD=3. Decomposed in time - (a) beginning of processing, (baftdy
_ (800—|— l)(9—|-2 . 1)8bpp% 17 kbits kN pixels, k=1..3. The shading denotes the state : Dark Gizging

computed, Light Gray - already computed, White - waiting.



The input data rate can be theoreticdbp-times faster a fraction of the original image width. The area of the FSM
than the computational throughput of one unit. Thereforef vertical units increases linearly with
each image line needs to be buffered in a line buffer. The
line buffers are filled at the external (fast) pixel rate and read
by the internaPD-times slower rate. 6.2 Switching
Figure 8 gives an example f&®D = 3. We have three
horizontal (H1 .. H3), and tree vertical (V1 .. V3) processinghe routing of the computation units is handled by a switch
units. As soon as the line buffer receives the first pixel, thdock. Every switch contains input ports from previous
first horizontal unit H1 starts the processing and feeds ténits and the same number of output ports linked to the sub-
sults to the first vertical unit V1. Its output is fed to the firssequent units. The purpose of the switch is to manage op to
output line, see Fig. 8(a). AfteX received pixels, the out- interconnection channels. Notice that they are bidirectional
put of H1 is connected to V2 which belongs to output linéorward data and backward FIFO full flag. As described in
1. Since the H1 left V1 and line 2 is read, the H2 can stdrig- 8, the output switching of all input ports is circular, j.e
processing second line feeding V1 connected to output liM@, V2 ... Vn, V1, V2, ... and so forth. This property makes
2, see Fig. 8(b). When the 2N input pixel is received, the Hfie switching easier because the only condition to evaluate
connects to V3, H2 connects to V2 and H3 connects to Vig,when to switch and whether the requested output unit is
see Fig. 8(c), and so on. available.
The moment when to switch a given port is provided by
the preceding unit'Switch Request logic. It generates a re-
6.1 Architecture guest every time it crosses the border of adjacent segments.
If the desired unit is free, the switch reconnects the channel.
If-not, the switch sets high the FIFO full flag of requesting

separable generic parts scalable rby: PD: input buffer, unit to stall it until the desired destination unit is freed and

horizontal and vertical parts and output buffer. The ian?e channel can be established. All the channels are switched
buffer is mainly composed of the 1-mmu|tip|exér andn 'ndependently so stalling one unit does not affect the others.

line buffers (we omitted the control logic). It divides the fast
input stream intan (n-times slower) streams processed bY  input data

The parallel architecture depicted in Fig. 9 contains fo

'Y

computational units as described above. The output buffer ¢ Output data <C

'
composesh slow streams of the processed data into a S|m- { e — » 'g
gle, fast, output stream respecting the image horizontal scan e T &
order. The operator blocks can be concatenated into mcg;eSWItch Control A0 dest'"a“on identifier F'fofull'é
complex functions (opening, closing, ASF, etc.). The bufferg request block A [Faft 5
are used only at the beginning and at the end of the chain.™ g run — o

< |
set of set of
,,,,,,,,,,,,,,, Input data N(1n) B:N(1) A(Z A ™ o fuII
VERTICAL PART | ‘OUTPUT BUFFER| N v
1 ine buSEEEEES Signals to/from switch basic units for ports B:N

Fig. 10 Basic unit of the switch. Every switch containasic units
for a correct routing betweeaminput/output ports.

Figure 10 depicts the basic unit of the switch for one pair
of input/output ports referred to as A. Ropairs of ports this
. ] , ] . circuitry is instantiatedh-times. Each input port possesses a
Fig. 9 Overview parallel 2-D architecture. The horizontal andivef  a|ated control unit block that manages all channel transi-
stages can be instantiated several times between inputtduiffersto . ideri h ilabili fth d .
create compound operators. tions considering the availability of the requested partition.
If this is still occupied, the requesting computation unit is

stalled by holding its FIFO full flag active.

%{—jK ~
Stream clock Processing clock Stream clock

Both horizontal and vertical parts instantiatébalanc-
ing FIFOs,n horizontal or vertical units, and one switch
that manages the interconnection. Each horizontal unit alongexperimental results
with the front-end FIFO conforms to Section 5.2.

The width of the processing area proportionally affectBhe proposed 2-D stream processing architectures have
both vertical memories, see (14) and (16). The area of daeen implemented in VHDL, and targeted to the Xilinx
ery horizontal unit remains unchanged, since every unit pigirtex5 FPGA (XC5VSX95T-2) using the XST synthesis
cesses the entire line. The overall memory of the horizontabl. The processing clock frequency is 100 MHz. Notice
part is a factor ofi. Contrarily, the memory requirements othat the queues are gathered in a block RAM memory,
every vertical part is divided by because it processes onlyand thus its access time augments the critical path delay.




The measured performance foon-parallel architectures
(PD=1) in terms ofoverall latency, clock cycles per pixel
and FPGA area are given by Tables 2 and 3.

Table 2 Timing and area vs. SE, SVGA image siBB=1.
Size of SE (sq.)[ 3x3 [ TIxI1] 2Ix21[ 31x31 [ 41x41

A
Latency [clk] | 1908 | 9474 | 18888 28351 37969 (a) Testimage (b) Zoom on test
Av.rate [clk/px] | 2.344 | 2.356 | 2.360 | 2.361 | 2.361
Registers 212 232 242 242 252
LUTs 584 761 859 859 953
Block RAMs 2 6 13 13 28
Table 3 Timing, frame rate and area w.r.t. image, SE = 31x31 squar
PD=1.
Sizeoflmage | CIF | VGA [ SVGA | XGA [ 1080p
Latency [clK] 12826 | 23465 | 28351 | 37472 | 69548 "
Av. rate [CKIpx] | 2.371 | 2.376 | 2.361 | 2.383 | 2.368 (c) ASF* filtered (d) Zoom on ASF
%ﬁgﬂ?&gﬂgg S g?g igg gg ii 2&55 Fig. 11 (a) Experimental 800600 lotus image. (b) Zoom on the fine
Registors 3T 7 a7 15 553 veinous texture disadvantageous for the algorithm. (cuRe$ ASF*
[UTs 761 953 559 559 1057 filter, see Eq. 6 or 7. (d) Zoom on the ASfiltered image.
Block RAMs 7 13 13 13 26

One can observe that the overall latency is factor of thgpie 4 Timing vs. degree of intra-operator parallelist. SVGA
SE size, the image widtfboth caused by operator latency)mage, SE = 31x31 square.
and the pixel rate (computing latencyjhe average pixel 2 T 3 1 4] 56
rate (AR) remains constant (Table 2). The average pixel ratehatency [CK] 17243 | 9561 | 7244 | 5818 | 4893
can be expressed by (17) and the stream frame-per-secongy rate [clk/px] | 1.220 | 0.824 | 0.625 | 0.505 | 0.426
(FPS) ratio by (18)Tproc is overall time consumed by pro- ~“Exp.speedup | 1.938 | 2.869 | 3.785 | 4.682 | 5.554
cessing andqk= 100 MHz is clock frequency of computa-

tion units. Table 5 Area vs. degree of intra-operator paralleli®D. SVGA im-
Tproc — 2SE2(N+ M + SE2) /PD age, SE = 31x31 square.
AR= NM [clk/px] (17) ) 2 T 3 ] 456
FPS fakPD [fr/s] (18) Registers 650 | 978 | 1280 | 1605 | 1938
= r's LUTs 2138 | 3227 | 3862 | 4875 | 6054
ARNM +2555(N +M + SE2) Block RAMS | 13 | 14 | 14 | 18 | 21
M, N denote the width and height of the imag&, denotes Reg. buf 661 | 969 | 1279 | 1587 | 1896
the width of the structuring element from the origin right- ~_LUTsbuf [ 1408 | 2086 | 2776 [ 3459 | 4135
wards.

Concerning the area occupation (see the Xilinx docu-
mentation [29]), the number of registers is quasi-constant;
the number of LUTs and BRAM blocks increases linearly
with the SE and image sizes (Table 3). Although the vertPat the latencies of parallel versions are merely fractions
cal memory (size is given by (16)) is packed into the RANdivided byPD) of non-parallel values.
block, the amount of the used memory always exceeds the
theoretical value. It is caused by a different memory organi- The FPGA area results, Table 5, are separated into 2
zations; e.g., the required word is 13 bits whereas availalgi®oups: the area of computing parts and buffers. The area of
memories are of width 36 bits and its fractions. input and output buffers is linear w.r.t. bdthandPD since

The experimental frames-per-second (FPS) rate is dheir essential components &P line buffers (FIFO mem-
tained on a natural test image (see Fig. 11). The worst-casies with independent ports df elements). The area of the
FPS is a theoretical worst-case performance of the systeperator units in terms of Slice registers and LUTs is propor-
expected on the synthetic saw-shaped data. tional to PD as well becausa independent circuits are in-

Table 4 presents the relative speed-up of the parallel atantiated in a parallel manner. Although the overall vertical
chitecture vs. the intra-operator parallelif. In terms of memory requirements remain unaffectedRiy, practically
overall latency and average processing rate, the processmgnumber of occupied RAM blocks slightly increases. Itis
domain clock cycle is considered as a reference unit. Naaused by a different memory organization.
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Table 6 Timing and frame rate vs. image size, PD = 6, SE = 31x3dong, fixed-length pipe lacks the flexibilit¢onsider another

square application for the illustration of the problertine size distri-
Size ofImage | CIF [ VGA | SVGA| XGA [ SXGA[1080p butions, exemplified by Fig. 12. Contrarily to ASF, the size
Catency [CIK] 22081 3996] 4893 | 6390] 7391 | 11641 distributions are often sampled sparsely, the SE increments
Av. rate [clk/px] | 0.443[0.431| 0.426[0.426| 0.427 | 0.418 by more than one and, at the same time, one often goes to
Experimental FP$2075] 724 | 472 | 290 | 174 | 113 much larger SE sizes. Every openifyg, } in (8) needs to be
Worst-Case FPS| 1915] 640 | 411 | 246 | 151 | 96 output and stored in the memory to compute the subtraction.

For small sizes, a long pipeline is underusetd the work-
load of the processing units unbalangcetiereas for large
The ultimate timing resultsRD=6) versus the image sizeone may still need several image scans.
are listed in Table 6. Itillustrates the real performance of the For example, for sizek = 5, 10, 15, 20, 25, as in Fig. 12,
architecture. It allows to achieve at least 96 fps with 108QRe Clienti SPOC will require 7 image scans. The 16 pro-
image size (full HD TV image size). cessor pipe is underused fdr= 5, 10, 15, whereas it will
The worst case occurs on artificial saw-shaped imag&juire 2 scans fok = 20, 25.
with no constant plateaus. Such an image infers the maximal oyr processing unit with programmable SE size avoids
number of algorithm’s while-loop iterations. The best casging the homothecy. This allows optimal workload distri-

fps (not mentioned in the table) is obtained with a constagtion over the entire pipe, so important for processing large
image. A real, unfiltered image containing textures or ragnages in real-time systems.

dom noise achieves performance somewhere between best
and worst cases. For instance at 1080p, the worst case is 96
fps, best case 140 fps, achieved experimental performance is
113 fps.

This frame rate remains constant for any morphological
serial filter (such as ASF). Obviously, the FPGA area in-
creases accordingly to the size of the ASF. The implementa-
tion is eased by the fact that one can use an off-chip memory.

7.1 Comparison with existing HW implementations
Table 7 presents a comparison with other recent architec- 3X 10’ Size distribution
tures. The table is divided into three sections. The process-
ing unit section presents the features of a single 2D compu-
tational unit. The second part the HW specifications, and the
third part the performance on a given application, an ASF

filter.

One can see that Clienti [3] offers a high throughput
for small 3x3 rectangular SEs. Similarly, the Chien ASIC
chip [2] provides very reasonable performance on small SEs. 5 10 15 20 25 30
On the other hand, &orges [5] directly offers large, non- - Size of A
rectangular, convex SE, but with a lower processing rate. (b) Size distribution sck)

The programmability is not mentioned, namely, the possi- o _
bility to control the SE shape after the synthesis is not cleifd: 12 The size distribution of the texture grain.

Although all these solutions are efficient for small SE
sizes or short concatenations, they become more or less pe-
nalized for longer filters. This issue is illustrated in an Exam-
ple Application, Table 71t estimates the performances on a
five-stage ASF= ¢11.11V1111 - .. $3.3)8x3. Decomposed 8 Conclusions
into a sequence of dilations and erosions, it can be realized
as ASP = £11,1101.21 . .. E5x503x3. Notice that it makes This paper describes an efficient implementation of serial
use of a progressively increasing SE. On neighborhood proerphological filters with flat, rectangular structuring ele-
cessors, large SE can be obtained using the homothecy Eqnénts of arbitrary size. The efficiency is obtained through
The Clienti SPOC instantiates 16 ok3 processing units. the following properties:

Hence, the ASFwill require 5 image scans with the entire— The computational complexity is linear w.r.t. the image
image necessarily buffered in the memory. Chien also usgzge and independent of the SE size.
the homothecy. This deteriorates the throughput. — The overall latency is mostly equal to the latency of

One could immediately figure out to instantiate a longéhe operator, inferred by the size of the used structuring

pipein order to reduce the number of image scaklas, a element.

N
T

[y
T

- Residue of opening

o
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Table 7 Comparison of several FPGA and ASIC architectures conegmmiorphological dilation and erosion

Processing unit HW System Example Application ASE
Parallel] Supported| Throughput] fyax | Clock rate|| Number of| Supported|| Image FPS
degree SE [Mpx/s] | [MHz] | [clk/px] units image scans
Clienti [3] 4 arb. 3x3 403 100 0.25 16 1024x1024f| 5 80
Chien [2] 1 disk 5x5 190 200 1.052 1 720x480 27 215
Déforges [5] 1 arb. convex 50 50 1 1 512x512 11 17.2
This paper 6 rectangles 234 100 0.426 17 1920x1080| 1 113

* Number of available stages varies with size of used FPGA

— It uses strictly sequential access to the data at all algoa|gorithm 1: df+~1D_DILATION (rp, wp, f, SE1, SE2,
rithm levels.

— Low memory consumptions (far below the size of the
image) allow embedding on a single chip complex operators : . ;

ablegto) process large in?ages. ’ P P P S|gnaldvalluef(rdp) " ShEl’ SIT:Z ) ShE ?zhe anal
— Two levels of parallelism: i) the inter-operator parallelism g\ivszngfflﬁ(g qu:geuté N -length of the signal
in serial concatenationd = d¢ ... d¢, allow running all
these atomi® and ¢ operators simultaneously, and ii) the '
intra-operator parallelism in every atomic dilation/erosion.1 while Q.back(}1] <f do

The intra-operator parallelism is scalable (tested up to six} | Q.dequeue(); /I Dequeue useless valuess
and allows the decomposition of fast streams into several _
slower streams processed in parallel without altering thd Q-Push(f, p}) ;

Input: rp, wp - reading/writing position; f - input

Result output signal valuég f (wp)

/I Enqueue the current sample

streaming property of the system. 4 if wp - SE1 > Q.front()[2] then
5 | Q.pop(); /I Delete too old value
The architecture serves as a basic building block to be if rp= min (N, wp + SE2) then
used for construction of more complex operators such as \ return (Q.front()[1] ) ; /I Return valid value
ASF, granulometries, etc., with the same properties and pes- else
formance. The performances obtained on an FPGA are ap- | return ({}); /I Return empty

proaching the 100Hz HDTV 1080p standard. These perfor-

mances are far above what has been reported in the literature.

These performances allied to the programmability are ex-

tremely interesting. They open the accessibility of advancgéferences

morphological operators in industrial systems running under

severe time constraints. The number of examples includés J. Bartovsk, E. Dokladalo, Petr Dokhdal, and V. Georgiev.

the on-line production control, aging material defectoscopy, rci'fgggez%rfgitecwre for compound morphological opegatdn

etc., wherever one requires processing of high resolution iny- sy Chien, S.-Y. Ma, and L.-G. Chen. Partial-resuitse archi-

ages and low latency. tecture and its design technique for morphological openativith
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