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Abstract 

 

We report a dramatic increase of foam stability for catanionic mixtures (myristic acid 

and cetyl trimethylammonium bromide, CTABr) with respect to pristine CTABr solutions. 

This increase was related to the low surface tension, high surface concentration and high 

viscoelastic compression moduli, as measured with rising bubble experiments and 

ellipsometry. Dialysis of the catanionic mixtures has been used to decrease the concentration 

of free surfactant ions (CTA
+
). The equilibrium surface tension is reached faster for non 

dialysed samples, due to the presence of these free
 
ions. As a consequence, the foamability of 

the dialysed solutions is lower. Foam coarsening has been studied using multiple light 

scattering: it is similar for dialysed and non dialysed samples and much slower than for pure 

CTABr foams.  
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1. Introduction 

Aqueous mixtures of anionic and cationic surfactants (catanionic mixtures) show strongly 

synergetic behaviour due to mutual electrostatic attraction.
1
 This leads in particular to 

deviation from ideal mixing,
2
 for instance a dramatic decrease in interfacial tension at peculiar 

ratios has been reported.
3, 4

 Additional peculiarities such as a two-dimensional gas/condensed 

phase transition
5
 and an adsorption energy barrier

6
 were also observed at the air-water 

interface. Although some points remain to be elucidated, such behaviours are essentially 

captured by using or adjusting thermodynamic theories.
7
 The hypothesis for thermodynamic 

equilibrium is essentially met in catanionic systems where at least one of the surfactant 

molecules is “short”, i.e. typically up to 8-12 carbon atoms, and holds even if the other 

surfactant molecule is significantly longer.
8, 9

 In such systems, surfactant aggregates, in 

particular vesicles, form spontaneously,
10

 their size distribution arises from a competition 

between energetic and entropic contributions
11

 and they adapt quickly to the outer conditions 

(ionic strength, temperature, pH if applicable etc.).
12, 13

 

However, some catanionic systems do not achieve equilibrium within an experimental 

timescale which can reach several months. For instance, mixtures of linear fatty acids and 

linear cationic surfactants (e.g. myristic acid and cetyl trimethylammonium bromide or 

hydroxide) form bilayers which are in a quasi-solid state (gel phase) at room temperature.
14-16

 

As a consequence, the aggregates in solution (discs, icosehedra, lamellar phases etc.
17

) are 

quenched at room temperature, which is illustrated e.g. by a size distribution of vesicles which 

is dependent on sample history instead of final composition.
18

 This restrained dynamics, 

combined with strong local electrostatic constraints,
19

 probably accounts for the high rigidity 

of the bilayers at zero frequency, as measured by atomic force microscopy on vesicles.
20

 

We expect these peculiar dynamic and mechanical properties of the bilayers to provide 

original interfacial behaviours, and outstanding properties to systems where adsorption 

processes and monolayer elasticity are critical. In particular, it has been shown before that 

such catanionic systems stabilize oil-in-water emulsions with no significant coarsening over 

several months, and it has been suggested that the adsorption of rigid bilayer fragments - a 

Pickering-like effect - accounts for these properties.
21

 

Here, we focus on the interfacial properties of air/water interfaces prepared from solutions of 

rigid catanionic bilayers below the melting point of the surfactant chains (classically referred 

to as “gel-phase”). With respect to the above-mentioned properties, the most relevant points to 
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investigate are not only the static interfacial properties as determined at large timescales (Sec. 

3.2), but also the dynamics of the adsorption process which show very peculiar two-step 

processes (Sec. 3.3). This allows us to propose a first explanation for both the foamability and 

the remarkable foam stability that we report on these systems (Sec. 3.4). 

 

2. Material, preparation and methods 

2.1. Materials 

Myristic acid (C13COOH, Fluka; Mw = 228 g mol
-1

) was recrystallized twice from hot 

acetonitrile, and cetyl trimethylammonium bromide (CTABr, Mw = 364 g mol
-1

, cmc = 0.36 

gL
-1

) was purchased from Sigma and used as such. Solutions were prepared with MilliQ 

water. 

 

2.2. Solution preparation 

The catanionic mixtures have been prepared as described previously:
22

 suitable amounts of 

C13COOH and CTABr are mixed with water at a typical weight fraction of surfactant of 1% 

and heated at 50°C ± 0.1°C for 3 days. The resulting mixture is dialyzed against a 100-fold 

volume of water (SpectraPor regenerated cellulose membranes, 10 kDa cutoff). In a typical 

preparation, the dialysis water is changed after 1 hour, 4 hours, 24 hours, 48 hours and 5 days. 

The effective composition of the mixtures is controlled by the initial composition and the time 

of dialysis.
22

 The compositions of the various samples investigated here and their conditions 

of preparation are summarized in table 1. 

 

2.3. Foam production 

Foam samples were prepared by vigorous hand shaking. We produced foams in cylindrical 

plastic containers (27 mm internal diameter, 120 mm height) filled with 20 mL of surfactant 

solution at the bulk concentration c = 1 gL
-1

. 

 

2.3. Tensiometry 

We measured the surface tension  by using the Wilhelmy plate method and the pendant 

drop/rising bubble tensiometer apparatus (Teclis, France). In the first method, the air-water 
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interface is created in a home-made Teflon circular trough (diameter = 8 cm, depth = 3 cm) 

and the surface tension is monitored up to a time t = 10
5
 s by a pressure transducer (Nima, 

UK);  always reaches a constant value at long times, called e afterwards.In the pendant 

drop/rising bubble method, the surface tension is calculated by image analysis from the shape 

of the drop or bubble using the Laplace equation.
23

 Usually, we monitored the change of 

surface tension during adsorption up to a time t = 10
4
 s. Above the latter time, liquid 

evaporation and non-Laplacian shape may introduce artefacts in the surface tension 

evaluation. Initial volumes for bubble and drop changed from 6 to 12 µL and no feedback 

control for volume or area was selected since it perturbed the adsorption kinetics. As a result, 

bubbles/drops tend to detach as surface tension drops significantly. 

 

2.4. Ellipsometry 

We performed multiple angle of incidence (MAI) measurements
24

 using an imaging 

ellipsometer (Nanofilm, Germany) working with green laser light ( = 532 nm). A fixed 

compensator (= 45°) and 4-zone averaging nulling scheme were adopted. Solutions were 

prepared in a circular trough (diameter = 8 cm, depth = 3 cm). We waited from one to four 

hours (after preparation) before measuring the ellipsometric angles Ψ and Δ (around the 

Brewster angle B = 53.1° for the air-water interface).
24

 Measured ellipsometric angles  and 

at a given incident angle  are related to the ratio of the Fresnel reflection coefficients r in p 

and s polarization by rp/rs = tan exp(i. Ψ and Δ were measured from  = 52° to 54.5° in 

steps of 0.1°. The data were fitted with a single homogeneous layer model, characterized by a 

refractive index nl and a thickness d, between the air (nAir = 1) and water (nH2O = 1.333) bulk 

phases (see Supporting Information). 

 

2.5. Multiple light scattering  

In order to study the foam evolution we measured the multiply scattered light intensity Is 

during foam aging. This technique is also known as diffusing wave spectroscopy (DWS).
25, 26

 

In this study we adopted an optical scheme detecting the multiply scattered light in 

transmission. The source of radiation was a laser (Coherent, Compass 315M-100) working at 

 = 533 nm. The foam cell was a plastic cylinder of 120 mm height and with an internal 

diameter of 27 mm. The diffused transmitted light was collected by an optical fibre (Oz 
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Optics) equipped with a focus lens designed to collect a spot size of the same order than the 

laser speckle. A photomultiplier (Hamamatsu) and a correlator (Correlator.com, Flex2k-12x2) 

were used together with the software Flex2k. In order to follow the foam evolution in time 

(usually up to 10
5 

s), we performed 10 measurements of duration = 10 s, followed by 10 

measurements of 120 s and measurements of 7200 s until the foam bubbles became too large 

for the validity conditions of the method to be fulfilled. 

From the static intensity, we could gain information on the bubble size evolution. In fact, 

the intensity Is is proportional to l
*
/L,

25
 where l

*
 is the mean free path of light photons and L is 

the thickness of the foam sample; l
*
 depends on the mean bubble radius R in the foam and on 

the foam liquid fraction , i.e. Is ~ R/ 

Results presented in this article were obtained within 10 days after solution preparation. 

The experiments were conducted at room temperature, being 20 ± 2 ºC. 

 

3. Results and Discussion 

3.1 Brief summary of the known behaviour of the studied systems 

The co-solubilisation of myristic acid (C13COOH) and cetyltrimethyl ammonium bromide 

(CTABr) at 50°C, and the subsequent dialysis have been studied recently by Michina et al.
22

 

and Kopetzki et al..
18

 Upon association, both amphiphilic molecules form gel phase (solid-

like) mixed bilayers of CTA
+
, C13COOH and C13COO

-
 and release their counter-ions H

+
 and 

Br
-
 ions.

15, 19
 The initial composition and the time of dialysis td determine their effective 

composition, the nature of the aggregates (possible presence of mixed micelles in addition to 

the bilayers), their morphology and their properties. If we define the molar fraction of 

myristic acid f as: 

 
   CTABrCOOHC

COOHC
f




13

13 ,  

then the general behaviour of these mixtures is summarized as follows: 

(i) Upon dialysis, f increases (CTA
+
 is extracted from the mixture) until a value of f ≈ 0.66 is 

reached (in typically 25 days). No CTA
+
 extraction occurs in mixtures prepared at an initial 

fraction f0 = 0.66 and above.  
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(ii) Mixtures prepared at an initial fraction f0 < 0.66 form ill-defined aggregates of bilayers. 

Mixtures prepared at f0 = 0.66 form elongated vesicles prior to dialysis, which swell to 

spherical vesicles upon dialysis 

(iii) Upon dialysis, H
+
Br

-
 ions released upon association of both amphiphilic molecules are 

extracted. The extraction remains incomplete if vesicles are present, as 30% of the ions 

remain encapsulated 

(iv) The bilayers coexist with CTA
+
 ions with concentrations in the 10

-4
 – 10

-2
 mol·L

-1
 range, 

depending on composition, present either under the form of free ions or micelles. Upon 

dialysis, the amount of such free CTA
+
 decreases and reaches the minimal value of 10

-4
 

mol·L
-1

 as f reaches the maximal value of f = 0.66. 

The final pH is 6.5 (MilliQ water) and shows no noticeable dependency on composition. 

The effective compositions of the sample investigated here and their conditions of 

preparations are summarized in table 1 using estimated values from ref. 
22

.  

 

f0 dialysis f [Br
-
]/[CTA

+
] [CTA

+
] outside 

bilayers
 

0.33 NO 0.33 1 > 10 mM 

0.55 NO 0.55 1 > 0.5 mM 

0.66 NO 0.66 1 > 0.1 mM 

0.33 48 hours 0.58 <0.05 0.4 mM 

0.55 48 hours 0.62 <0.05 2.5 mM 

0.66 48 hours 0.66 0.30 0.1 mM 

Table 1. Initial and final values of f, dialysis time, final values of [Br
-
]/[CTA

+
] and 

concentration of [CTA
+
] outside the bilayers as estimated by Michina et al.[ref] 

 

Once the dialysis is stopped, the samples show little evolution, except the CTA-rich samples 

(f < 0.5) that tend to phase separate. 

We emphasize two characteristics of this system that are particularly relevant to the work 

presented afterwards : first, the bilayers are in the gel phase, i.e. are solid-like bilayers with 

slow lateral diffusion and exchange with the outer solution. In addition, these bilayers are in 
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coexistence with small concentrations of “free” CTA
+
, present either under the form of 

monomers, or micelles in non-dialyzed samples at f0 = 0.33. It was shown that the 

concentration of free CTA
+
 decreases upon dialysis (table 1). This was assigned to an increase 

in the cohesive energy of the bilayers as the composition approaches the optimum ratio of f = 

0.66. The concentration of myristic acid outside the bilayers was below the detection limit (< 

10
-5

 M). Upon dilution, these concentrations slowly equilibrate again with timescales far 

above the experimental times investigated here (weeks). We therefore consider that dilution 

will decrease equally the total bulk concentration and the concentration of free surfactants in 

solution. 

 

3.2. Equilibrium surface tension and interfacial profile 

Fig. 1 presents the equilibrium surface tension e as determined by the Wilhelmy plate 

method for CTABr (f = 0) and for the six surfactant mixtures. For CTABr, at c = 0.01 gL
-1

 e 

begins to deviate significantly from the air-water value ( = ca 72 mN m
-1

) and saturates 

around 35 mN m
-1

, at the solubility limit, in good agreement with the literature data.
28

 Using 

the Gibbs equation before saturation, we determine the surface concentration  in CTABr as a 

function of the bulk concentration cCTABr (see solid line in Fig. 2): 

)(ln2

1
)(

CTABr

e

CTABr
cRT

c






,        (1) 

where R is the ideal gas constant is and T is the absolute temperature. This yields values 

of  that increase with the bulk concentration up to about 1 mg/m² (corresponding to a surface 

area of 62 Å² per molecule), which is well above the mean surface per molecule in the 

C13COOH/CTABr bilayers (around 20 Å² at f > 0.50).
15, 18, 22

 

Contrary to CTABr, no significant differences in e were observed for catanionic 

mixtures as the bulk concentration was changed. Typically, e 25 mN m
-1

 was found, 

significantly lower than for CTABr even at the highest concentration studied and comparable 

to the surface tension of pure myristic acid above the melting point, i.e.,  27.9 mN m
-1

 at 

343 K.
29

 The small surface tension of the mixtures can be assigned to the strong attractive 

interaction between polar heads which enhances significantly the surface coverage as 

compared to CTABr alone (as confirmed by the ellipsometry measurements, see below). 
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Furthermore, it is worth noting (inset of Fig. 1) the small increase of e with increasing f, 

independently on the residual amount of bromide ions.  

Fig. 2 shows ellipsometric results for catanionic mixtures in the same range of 

concentrations. We fitted the thickness d of the layer keeping constant the refractive index nl 

= 1.45, being close to the refractive index of CTABr and C13COOH (see Supporting 

Information). In a first approximation, this analysis allows to evaluate the surface 

concentration
30

  = d (nl-nH2O)/(n/c), where n/c ( n/c = 0.12 mL g
-1

) is the refractive 

index increment. A clear increase of  from ca 0.2 to 0.7 mg m
-2

 (from ca 277 to 87 Å²) was 

observed for CTABr between 0.01 and 0.1 gL
-1

in agreement with the values calculated from 

Eq. 1 (see solid line in Fig. 2). For catanionic mixtures, the surface concentrations are 

higher than for CTABr, and  remains close to 1 mg m
-2

. If one assumes that the layer 

composition is similar to that of the most stable bilayers, i.e. f=0.66, the value of the average 

area per molecule drops to 45Å². 

 

3.3. Adsorption and surface relaxation 

For non ionic surfactant systems a plateau value in the dynamic surface tension curves ( 

vs. t) is reached after a complete surfactant adsorption onto the interface. Diffusion-limited 

adsorption shows the following asymptotic behaviours: for short times t~t
1/2

, whereas for 

long times t~t-1/2
. By contrast, adsorption limited by a energy barrier can be described by 

simple exponential function t ~ exp(-t/), where  is a characteristic relaxation time.
31

 

When the adsorption barrier is due to electrostatic effects, Bonfillon et al.
32

 described the 

adsorption of charged surfactants as a combination of diffusion and adsorption barrier 

processes. In the first adsorption stage, diffusion brings molecules and charges at the interface 

creating a repulsive potential, hence depletion and accumulation of surfactant below the 

interface. However, the latter surfactant can overcome this barrier in a final adsorption stage 

when the concentration is large enough, leading to t ~ t.
32

 This process has been modelled 

later by Diamant et al.
33

 

Dynamic surface tension curves for the catanionic mixtures, are shown in Figs. 3a, 3b. 

Note that for each tcurve, the experimental data correspond to surface tensions evaluated 

in a region where the Laplace equation could be safely applied, far before bubble/drops 
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detachment or observation of a non Laplacian shape. The following observations can be 

made: 

 i) asymptotic values are in good agreement with the equilibrium surface tensions 

measured by the Wilhelmy plate method, 

 ii) two distinct relaxations are usually observed, 

 iii) significant differences between the pendant drop and rising bubble data are observed, 

with relaxations for pendant drop experiments slower than for rising bubble ones, 

 iv) a singularity in the first derivative of tbetween the two relaxations is usually 

observed, 

 v) within the same method, the relaxation rates increase with the bulk concentration. 

At t = 1 s, values for (t) shown in Fig. 3 could be related to the adsorption of free 

CTABr. This can be clearly observed for ND catanionic mixtures focusing on c = 1 gL
-1

 at 

increasing CTABr content (i.e. decreasing f). For f = 0.66, (t) > 60 mN m
-1

; for f = 0.55, (t) 

= ca 55 mN m
-1

; and for f = 0.35, (t) = ca 43 mN m
-1

. Indeed, it has been shown before that 

the gel-phase bilayers are in coexistence with free CTABr molecules and with CTABr-rich 

micelles when f is small enough. The concentration of free monomers decreases as the 

effective molar fraction of myristic acid f increases, due to the increase in the interaction with 

CTABr molecules as f approaches fcritical = 0.66.
22

 If we assume that the adsorption of the 

amphiphiles forming the bilayers is much slower than the adsorption from the free molecules 

and micelles, we can explain why the surface tension at short times is larger for larger f. More 

quantitatively, the dynamic surface tension at t = 1 s, (t=1) (Fig. 3), can be plotted as a 

function of the concentration cCTABr,FREE of the surfactants which are not inserted in the 

bilayers estimated from the data of Michina et al.
22

 (Figure 6 in reference 
22

) or as a function 

of the concentration cCTABr,TOTAL considering all CTABr molecules in solution and calculated 

as:  















f

f

Mw

CTABrMw
cc TOTALCTABr

1)COOHC(

)(
1/

13

, . 

In Fig. 4, we present the comparison between (t=1) (data from Fig. 3) vs cCTABr,FREE and 

cCTABr,TOTAL) with the equilibrium surface tension e of pure CTABr solutions (data from  Fig. 

1). The e curve lies between the two estimated plots. This comparison confirms the 

observation that for short times (t < 10 s) adsorption of free CTABraccounts only partially for 
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(t). The free CTABr concentration underestimates the amount of surfactant contributing to 

adsorption at the surface. This means that there is a small but significant extra contribution 

due to the dissolution of surfactant from the micelles or the less stable vesicles (with f < 0.66).  

In turn, for dialyzed catanionic mixtures, when the amount of free CTABr is reduced, (t) 

remains larger than 60 mN m
-1

 for 0 < t < 10 s. This is also observed for ND solutions with f = 

0.66, which contain the most stable vesicles. 

In order to quantify the observations made in the whole time range studied, we fitted (t) 

curves considering two time intervals (before and after a singular point) using the empirical 

function introduced recently by Moorkanikkara and Blankschtein:
34

 









































m

i

n

ie

tt

t

t





2

1

)(

)(0         (2) 

where n, m are two adimensional parameters and i is a characteristic relaxation time. For 

n = m, Eq. 2 correspond to the function introduced by Rosen and Gao to describe (t) curves 

of ionic surfactants and their mixtures.
35

 We fitted 5 parameters (e, i, n, m) in each time 

interval where a relaxation was observed (see Supporting Information). In most of the cases, 

two relaxation times 1 and are needed to describe experimental (t) curves shown 

in Fig. 3. For f =0 .55, rising bubble experiments could be fitted by one relaxation. Typical 

values for n and m are in the 0.1-5 range. In Fig. 5 we plotted the characteristic times 1 and 

. In the first interval at low concentrations, fitted  values are in good agreement with the 

literature value of pure water (ca 72 mN m
-1

); and in the second interval, fitted e values are 

in good agreement with the experimental values shown in Fig. 1 (ca 25 mN m
-1

).  

Rising bubble and pendant drop experiments clearly differ from each other, especially for the 

ND samples with f = 0.66. In this case, which changes from ca 2000 to 200 s is almost ten 

times higher than for rising bubble experiments. These differences are usually due to the 

depletion of surfactants form the interface in the case of pendant drops, which is enhanced by 

electrostatic effects.
36

We will not discuss further these differences and focus afterwards on the 

rising bubble data. 

For non dialyzed catanionic mixtures, 1 decreases by increasing the concentration :  ~ 

c
-1/2

 (see Fig.5a). This is much slower than for diffusion-limited adsorption, for which the 

asymptotic behaviour of the surface tension is:
31
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2/1

0

2

4
)( 












tDc

RT
t e

e


 ,       (3) 

where R is the gas constant, T is the temperature, e is the equilibrium surface concentration 

and D0 is the diffusion coefficient. This leads to a characteristic time ~ c
-2

. However, the 

scaling predicted by eq. 3 applies to the concentration of free surfactant, or of surfactant 

rapidly available (in labile aggregates such as mixed micelles). It is very difficult to estimate 

the actual CTABr concentration contributing to 1. It lies probably between cCTABr,FREE and 

cCTABr,TOTAL as discussed above. Moreover, adsorption is slowed down by the charges present 

at the surfaces, which are progressively screened by increasing bulk concentration. Hence the 

adsorption rate may appear less dependent on the overall bulk concentration than predicted by 

equation 3.

For dialyzed mixtures, show the scaling ~ c
-1/2

 just for f = 0.58, 0.62 (see Fig. 5b). For f 

= 0.66,  remain approximately constant as the concentration is changed. This indicates that 

no free surfactant is available in this case, and therefore suggests that the free surfactant 

molecules detected at this composition (table 1) are encapsulated in the vesicles and can not 

reach the interface during this initial step. Consistently, this concentration-independent 

behaviour is only observed when vesicles are present after dialysis. 

 For all mixtures  does not vary much (remaining around ca 3000 s) when c and f are 

varied.  

The relaxation time  could correspond to the time needed to overcome the repulsive 

interfacial barrier.
32

 In fact, for f = 0.55, 0.58, 0.62 and 0.66(ND) we found n, m = ca. 1, t 

~ t, as observed by Bonfillon et al.
32

 However, the model leads as for standard diffusion, to a 

characteristic time ~ c
-2

. It is again possible that the actual free concentration increases very 

slowly with the overall concentration as discussed above for 1. 

Alternatively,  may account for the dissolution time needed to free additional surfactant 

molecules from bilayers.
37

Chang et al. model the dynamic adsorption process of surfactants at 

the air-water interface by: 

.
),(),(

2

2

0 q
x

txc
D

t

txc










  

where the term q = k1- k2·c, which is the aggregation dissolution rate, is added to the classical 

Fickian law for diffusion; k1 and k2 are rates for the transfer of free surfactants into the 
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aggregates. Chang et al. found good agreement with experiments on solutions of other 

catanionic surfactants, using only k1, i.e. a concentration independent rate of transfer. This 

process would account for the limited concentration variation of 2 seen here.

 

3.4. Foam stability and foamability 

In Fig. 6, we show the average multiple scattered light intensity Is as a function of foam 

age. The scattering volume is fixed in space and it lies above the macroscopic interface 

between the drained liquid and the foam. In the first stages of foam aging, drainage takes 

place followed by coarsening.
27

 

Is ~ R/ increases monotonically with foam age for CTABr, whereas for the mixtures, a 

small decrease can be seen in the first stages of aging. This decrease can be due either to a 

decrease of the mean bubble size R or to a local increase of the liquid fraction in the scattering 

volume. 

In the first hypothesis, coarsening leads to a decrease of the size of many small bubbles and 

the increase of size of few large bubbles that in order to expand tend to move upwards. Thus, 

in the scattering volume an increasing concentration of small bubbles could explain a decrease 

of Is. 

In the second hypothesis, the decrease of Is could be explained by a local increase in the liquid 

fraction profile (z) of the scattering volume due to drainage. In fact, two boundaries for the 

liquid fraction profile can be considered. Just after foam production, we can suppose  =  

everywhere in the foam independently on the foam height. Whereas, at the equilibrium, (z) = 

k (/ R)
2
 [pg - p0 - g(z-z0)]

-2
, where k is a geometrical constant, pg is the gas pressure in the 

bubble, p0 is the liquid pressure at the top of the foam (z = z0) and g(z-z0) represents the 

hydrostatic contribution to the liquid pressure.
38

 Being   0.36, there will be a significant 

liquid flow from the top to the bottom of the foam during equilibration; and this net flow, 

passing through the scattering volume, could generate a local increase of  in time affecting Is. 

For CTABr, after 10
2
 seconds, drainage is almost completed (see Fig. 7) and Is follows a 

scaling exponent of 1/3 typical of wet foam coarsening ( ≈ 0.12). After 10
3
 seconds, the 

scaling exponent changes to 1/2 as it is expected for dry foam coarsening ( ≈ 0.07).
39

 After a 

foam age of 10
4
 seconds, the bubbles are large as it can be seen by the photographic images in 

Fig. 7 and the validity conditions of the multiple scattering analysis (Is ~ R) are not fulfilled 
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(R/L > 0.1).
27

 Hence the fast time variation of R (faster than t
1/2

) seen in the figure cannot be 

regarded any more as the true time variation. Note that due to the very limited variation of R, 

the agreement with the scaling laws at shorter times can only be considered as indicative. 

Foams prepared from catanionic mixtures solutions of 1 gL
-1

 last much longer than 

CTABr foams, foam collapse starting only after around 10
5
 seconds. Note that when the 

intensity reaches the value around 10
5
 count s

-1
, the foam is composed just by a few bubbles 

that can be stable even for longer time. 

For f = 0.35, we observed that the volume of foam produced (= foamability) from non 

dialyzed solution is as high as for the pure surfactant solutions and much higher than for 

dialysed solution (see Fig. 7). This difference in foamability is due to the lower concentration 

of free CTABr in the non dialysed solutions as demonstrated in the previous section. Note 

also that the foams made with dialysed solutions are wetter (higher  and lower Is). 

For f0 = 0.55, dialyzed and non dialyzed foams behave similarly and the increase of Is is 

monotonic in the last stages of aging, with a trend similar to CTABr foam but shifted towards 

a longer foam age. For f0 = 0.66, Is shows a minimum around 10
3
 seconds followed by an 

increase up to the foam collapse; as discussed before, the minimum is likely due to a local 

increase of the liquid fraction because of drainage, more important for these foams which are 

wetter just after production. From photographic images (Figs 7e, 7f), we noted the formation 

of a dense foam layer: at the top, the foam is similar to the other foams observed in the other 

cases; at the bottom layer, an accumulation of closely packed spherical bubbles in the liquid 

phase is observed. This dense foam layer is also present for the dialysed sample with f0 =0.55. 

 

4. Conclusions and Outlook 

In conclusion, the dramatic increase of foam stability for catanionic mixtures respect to 

pure CTABr
 
can be related to the low surface tension and high surface concentration. The 

tension is low even at very low surfactant concentration and is similar for dialysed and non 

dialysed samples, ~ 25 mN m
-1

. The high surface concentration  should be accompanied 

by high elastic and viscous compression moduli as confirmed by preliminary oscillating 

bubble experiments. The equilibrium surface tension is reached in two steps; the first one is 

related to the presence of CTABr
 
molecules, either free, or contained in labile aggregates. The 

second step is similar for dialysed and non dialysed samples, and may be controlled either by 
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a repulsive electrostatic barrier or by dissolution of surfactants from bilayers located in the 

subphase. 

Foamability is related to concentration of free surfactants and is higher for non dialysed 

samples: for solutions with f = 0.35 that contain the largest amount of free CTABr, 

foamability is comparable to that of pure CTABr solutions. Multiple scattered light intensity 

Is increases following the scaling laws predicted for wet and dry foam coarsening for f = 0.35 

and f0 = 0.55. For f = 0.66 a minimum is observed at short times and it could be related to a 

local increase of the liquid fraction due to drainage, the initial liquid fraction in these foams 

being very large. The rate of coarsening is similar for dialysed and non dialysed samples and 

much slower than for pure CTABr foams.  

Interfacial rheology studies using oscillating bubble experiments and by an interfacial 

bicone rheometer are currently in progress, together with a confocal microscopy investigation 

of the surface of the solutions, which may elucidate the role played by aggregates located in 

the subphase near the air-water interface. 

 

Supporting information: 

In this file, we provide 1) ellipsometric data as a function of the angle of incidence for CTABr 

and a for a catanionic solution, and 2) all parameters of the fits of dynamic surface tension 

data. This information is available free of charge via the Internet at http://pubs.acs.org/.  
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Figures

 

Fig. 1 Equilibrium surface tension e, measured by Wilhelmy plate method, of pure 

CTABr (f 0= 0), non dialyzed ND and dialyzed D catanionic mixtures as a 

function of bulk concentration. The inset is a plot of e vs f. 
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Fig. 2 Thickness d and surface concentration  evaluated from ellipsometric fits for a 

single homogeneous interfacial layer as a function of bulk concentration for 

pure CTABr (f0 = 0) and for non dialyzed ND and dialyzed D catanionic 

mixtures. The solid line represents the (cCTABr) curve calculated from Fig.1 

using the Gibb’s equation (Eq. 1). 
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Fig. 3 Dynamic surface tension curves for non dialyzed (a) and dialyzed (b) 

catanionic mixtures. Solid lines are fits of the data using Eq. 2. 
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Fig. 4 Equilibrium surface tension e (dotted line) as in Fig.1 and surface tension 

(t=1) extracted from Fig. 3 as a function of the free CTABr surfactant (solid 

line) and total CTABr surfactant (dashed line) concentration. Lines are guides 

to the eye. 
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Fig. 5 Relaxation times from the fits of (t) shown in Fig. 3 using Eq. 2 for non 

dialyzed (a) and dialyzed (b) catanionic mixtures. Lines are guides to the eye. 
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Fig. 6 Multiply scattered light intensity Is as a function of foam age. Foams were 

made from non dialyzed (ND) and dialyzed (D) catanionic mixtures at the bulk 

concentration c = 1 g L
-1

. f0 = 0 corresponds to pure CTABr. 
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Fig. 7 Photographic images taken at foam age = 10
2 

s (a,d), 10
3 

s (b,e), 10
4 

s (c,f). 

Foams were made from non dialyzed (a,b,c) and dialyzed (d,e,f) catanionic 

mixtures at the bulk concentration c = 1 g L
-1

. f0 = 0 corresponds to pure 

CTABr. 
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