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Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach

This paper deals with state estimation of Powered Two Wheeled (PTW) vehicle and robust reconstruction of related unknown inputs. For this purpose, we consider a unknown input high order sliding mode observer (UIHOSMO). First, a motorcycle dynamic model is derived using JourdainŠs principle. In a second time, we consider both the observation of the PTW dynamic states, the reconstruction of the lean dynamics (roll angle φ(t)) and the rider's torque applied on the handlebar. Finlay, several simulation cases are provided to illustrate the efficiency of the proposed observer.

I. INTRODUCTION

.

 to detect borderline cases of loss-of-control. These research are very few sustainable if they are not propped by a system estimating the dynamic states of the PTW.

, helping in states observation of motorcycle model and the reconstruction of rider's action.

Sliding mode based observer (SMO) for system states estimation in the presence and/or absence of unknown inputs has been the subject of several work from the control community. Today, one can notice that observation theory has matured and has succeed to deal with many technical issues where some restrictive conditions related to the observability and the reconstruction of unknown inputs were released even suppressed. In its simplest version, a SMO uses the same structure as a traditional Luenberger observer with an injection term related to the system's output. However, it is necessary that the system's unknown inputs and outputs satisfy the so-called matching condition [START_REF] Edwards | On development and applications of sliding mode observers[END_REF]. To overcome this limitation, system coordinates transformation are introduced and the use of sliding mode differentiator (SMD) for the auxiliary output generation is generalized [START_REF] Levant | Robust Exact Differentiation via Sliding Mode Technique[END_REF], [START_REF] Floquet | A canonical form for the design of unknown input sliding mode observers[END_REF]. This allows to use a powerful optimization technique, like linear matrix inequality (LMI), to offer a systematic design procedure of the observer gain [START_REF] Tan | An LMI Approach for Designing Sliding Mode Observers[END_REF]. Nevertheless, the chattering of these observers requires filtering [START_REF] Fridman | Observation and Identification Via High-Order Sliding Modes[END_REF].

To avoid filtering, the discontinuous output injection is replaced by a continuous super-twisting algorithm (STA) [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF]. In this new version, the relative degree of the system's outputs with respect to the unknown inputs must be equal to the system order. This restriction is resolved by the introduction of the high-order sliding mode observers (HOSMO) [START_REF] Fridman | Observation of linear systems with unknown inputs via high-order sliding-modes[END_REF] based on the high-order robust exact sliding mode differentiator [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] where the notion of strong observability and strong detectability were presented [START_REF] Fridman | Observation of linear systems with unknown inputs via high-order sliding-modes[END_REF]. It remains at least that the outputs relative degree must exist which brings a novel restriction treated by the development of the concept of weakly observable subspaces detailed in [START_REF] Fridman | Higher-order sliding modes observation for linear systems with unknown inputs[END_REF].

This paper is organized as follows: a succinct problem statement is provided in section II. Sections III and IV are dedicated respectively to motorcycle modelling and the synthesis of the UIHOSMO. Simulation results are given is section V. The conclusion in section VI wrap up the paper.

II. PROBLEM STATEMENT

Our study concerns the identification of all relevant inputs and dynamic states helping in a next stage to quantify the risk of loss-of-control when cornering. Indeed, poor cornering is responsible for most PTW accidents (singlevehicle motorcycle crashes).

To perform a safe cornering, riders should consider : 1) the appropriate speed when starting the corner, 2) the road condition (under weak friction) and 3) weather conditions do not allow optimal visibility for driving.

Early warning systems are based generally on related work carried out for standard cars [START_REF] Slimi | Advanced Motorcycle-Infrastructure-Driver Roll Angle Profile for Loss Control Prevention[END_REF]. The goal is the synthesis of a function giving the maximum safe speed at which a vehicle can be kept on the road while moving at a constant speed on a circular section. This speed depends, among other factor, on the lateral friction which its computing involves all the dynamic states of the bike and a good modelling of the tireroad contact. This makes the success of such warning system strongly dependent on the availability of dynamic states of the motorcycle. This challenge constitutes the contribution of our ongoing work.

III. MOTORCYCLE DYNAMICS

A. Modeling Assumptions

The study of the dynamics of motorcycle vehicles highlights two main modes of motion: in-plane mode representing the motorcycle movements in its plane of symmetry including the longitudinal motion and that of suspensions and the out-of-plane mode which describes the lateral dynamics when cornering [START_REF] Sharp | The stability and control of motorcycles[END_REF], [START_REF] Sharp | A Motorcycle Model for Stability and Control Analysis[END_REF]. The last mode involves the roll inclination, the yaw rotation, the steering and the lateral motions of the bike. We consider here only the out-ofmode dynamics of the two-wheeled vehicle. The coupling between the two modes is materialized, when neccesery, by considering a variable longitudinal velocity that appears in the lateral dynamics. In this study, the motorcycle is represented as two linked bodies: the rear one G r which includes the chassis, engine and the rear wheel and the front body G f which represents the steering assembly and the front wheel. In that case, we recover the well known two bodies Sharp's model which allows to simulate 4 degrees of freedom (DOF): the lateral displacement v y , the yaw rotation ψ, the roll inclination ϕ and the handlebar steer angle δ with respect to the rider torque input τ r applied on the motorcycle's handlebar (Fig. 1).

B. Motorcycle Motion Equations

Let ℜ v be a reference frame attached to the motorcycle at point v in which the motion of the overall mechanical system will be expressed. With respect to the inertial reference frame ℜ o , ℜ v is referred by the velocity vector components v x , v y of point v, and the yaw rotation ψ around the ℜ o z-axis (Fig. 2). In ℜ v , the linear velocity vector of the two bodies are respectively defined by:

c r • v • c f • O • i o j o ℜ o ℜ v i v j v ψ
v oGr = v ov + ω oGr × r vGr (1) v oG f = v ov + ω oGr × r vB + ω oG f × r BG f
where ω oGr and ω oG f are the angular velocity vector of each body, expressed in ℜ v by:

ω oGr = ψk + φi (2) 
ω oG f = ω oGr + δk δ
By differentiating (1) and ( 2), the linear and the angular acceleration of G r and G f can be written for i = r, f as following:

a oGi = ∂v oGi ∂ϑ θ + a R,Gi (3) 
ǫ oGi = ∂ω oGi ∂ϑ θ + ǫ R,Gi
where ϑ = [v y , ψ, φ, δ] T denotes the vector of generalized velocities. From the Jourdain's principle of dynamics [START_REF] Rill | Simulation von Kraft-fahrzeugen[END_REF], the dynamic model of the motorcycle vehicle can be expressed by:

M θ = Q (4) 
where the mass matrix M is symmetric and positive definite and obtained directly from the Jacobian matrices by:

M = i=r,f m i ∂v T oGi ∂ϑ ∂v oGi ∂ϑ + ∂ω T oGi ∂ϑ I i ∂ω oGi ∂ϑ ( 5 
)
and Q is the vector of the generalized efforts, given by:

Q = Q δ + Q g + Q T + i=r,f ∂v T oGi ∂ϑ m i (g -a R,Gi ) - i=r,f ∂ω T oGi ∂ϑ (I i ǫ R,Gi + ω oGi × I i ω oGi ) (6) 
In ( 4) and ( 5), I i is the inertia tensor matrix, Q δ includes the effect of the rider's torque and also the handlebar damping, Q g represents the gyroscopic effect resulting from the tires' spin, Q T includes the effect of the tire's sideslip force and g is the gravity force vector.

C. Tire/Road Interaction and Wheels Gyroscopic Effect

To describe the tire motion, a new reference frame ℜ T (c, i T , j T , k T ) is introduced at the contact point c of each wheel's tire. k T is the normal vector to the road surface along the F z force.

R • j ζ γ i T j T F y F z v oc α c • Fig. 3. Tire reference frame
The linear velocity vector at point location c i is expressed in ℜ v by:

v ocr = v ov + ω oGr × r vcr (7) 
v oc f = v ov + ω oGr × r vc f + δe δ × r cηc f
From ( 7), the tires sideslip angles are defined by:

α r = -atan j v • v ocr i v • v ocr (8) 
α f = -atan j v • v oc f i v • v oc f + δ cos ǫ
The equivalent tire effort at the center of each wheel is governed by:

F T = F y j T + F z k T (9) 
where F y = F y (α, γ) is obtained from the sideslip angle α and the camber angle γ computed by sin γ = j ζ • k T . Consequently, the contribution Q T of the tire/road contact forces in the vector of the generalized efforts Q is given by:

Q T = i=f,r ∂v oci ∂ϑ T F T,i (10) 
To compute the contribution of the gyroscopic effect Q g , let first write the spin velocity vector ω s,i equation of each tire in ℜ v reference frame:

ω osr = ω oGr + ξr j v (11) 
ω os f = ω oGr + δk δ + ξf j ξ From (3), the contribution of the gyroscopic effect in the vector of the generalized efforts Q is :

Q g = - i=r,f i iy ∂ω T si ∂ϑ ǫ R,si (12) 

D. Linearized Model

The motorcycle dynamic model ( 4) is linearized around the straight-running trim trajectory and can be expressed by the following state-space:

ẋv = A v x v + B v τ r (13) 
Here, x v = [v y , ψ, φ, δ, ϕ, δ, F yr , F yf ] T denotes the state vector. A v is a time-varying matrix related to the forward velocity v x while B v is a time-invariant vector. F yr and F yf represent respectively the tires sideslip forces introduced in the state space representing the tire relaxation.

IV. STATES AND UNKNOWN INPUTS ESTIMATION

In this section, we aim to estimate the motorcycle states and reconstruct both roll angle ϕ and rider's torque τ r by using a HOSMO [START_REF] Fridman | Observation of linear systems with unknown inputs via high-order sliding-modes[END_REF].

At first, we recall some important definitions about observability and detectability of linear systems (for proofs see [START_REF] Fridman | Observation of linear systems with unknown inputs via high-order sliding-modes[END_REF], [START_REF] Isidori | Nonlinear Control Systems[END_REF]). Consider the following SISO system, where x ∈ R n and ζ ∈ R is the unknown input:

ẋ = Ax + Bu + Dζ (14) y = Cx Definition 4.1:
In the absence of unknown input (ζ = 0), system ( 14) is observable if and only if the observability matrix P such that:

P =     C . . . CA n-1     (15) 
has the full rank. Otherwise, it is detectable if the system's invariant zeros are stable.

Definition 4.2: The relative degree of the output y with respect to the unknown input ζ is the number r such that:

CA j D = 0 j = 1, • • • , r -2 CA r-1 D = 0 Definition 4.3:
In the presence of an unknown input, system ( 14) is strongly observable if and only if the relative degree r satisfies: r = rank(P ). Otherwise, it is strongly detectable if and only if the relative degree r exists and ( 14) is minimum phase system. In that case, r ≤ rank(P ).

As previous, consider the MIMO system of the form [START_REF] Fridman | Higher-order sliding modes observation for linear systems with unknown inputs[END_REF], where x ∈ R n , y ∈ R m is the output vector and ζ ∈ R m is the unknown input vector.

Definition 4.4: In the absence of unknown inputs (ζ = 0), system ( 14) is observable if and only if the observability matrix P such that:

P =                 C 1 . . . C 1 A n-1 . . . C m . . . C m A n-1                 (16) 
has the full rank, where

C i , i = 1, • • • , m is the i-th row of the matrix C.
Definition 4.5: The relative degree of the output y with respect to the unknown input ζ is the vector r = [r 1 , • • • , r m ] such that:

C i A s D j = 0 i, j = 1, • • • , m, s = 1, • • • , r i -2 C i A ri-1 D j = 0 and: det     C 1 A r1-1 D 1 • • • C 1 A r1-1 D m . . . . . . . . . C m A rm-1 D 1 • • • C m A rm-1 D m     = 0 Definition 4.6:
In the presence of an unknown input, system ( 14) is strongly observable if and only if the total relative degree r T = r 1 + • • • + r m satisfies: r T = rank(P ). Otherwise, it is strongly detectable if and only if the relative degree vector r = [r 1 , • • • , r m ] exists, and ( 14) is minimum phase.

From definition (4.1), the motorcycle dynamics ( 13) is neither observable nor detectable. Indeed, for all v x in the allowable velocities range, the observability index is equal to 6 which is less than the system order (n = 8), in addition, the motorcycle dynamics has one unstable invariant zero which makes the motorcycle dynamics to be a non-minimum phase.

A. Estimation of the Roll Angle and Rider's Torque

In order to make the system observable, the motorcycle model ( 13) is rewritten such that the roll angle ϕ and the steering torque τ r are considered as unknown inputs. In fact, the unstable invariant zero is a direct consequence of the counter-steering phenomena generated by the motorcycle roll. In this case, the new system equation is written as:

ẋp = A p x p + D pp ζ (17) 
y pp = δ ψ = C pp x p D pp = D p B p ζ T = ϕ τ r
where x p = [v y , ψ, φ, δ, δ, F yr , F yf ] T denotes the state vector and matrices A p , B p and D p are given by: 

B p =              0.016 -0.006 -0.019 0.008 0 0 0              D p =              -26
            
From definition (4.5), the output y pp in (17) has a relative degree vector r = [2, 1] with respect to the unknown input vector In addition, system (17) has 3 stable invariant zeros for all v x in the allowable velocities range. It results from (4.6), that ( 17) is also strongly detectable. This definition implies that only r T = r 1 + r 2 system's states can be estimated exactly while the observation of the remaining states are asymptotically exact.

As before, to estimate the system's state x p and the unknown input vector ζ, it is necessary to separate the clean states from those contaminated by the unknown inputs. To achieve this, system ( 17) is transformed to a new coordinates system ξ p = T x p that the closed-loop system dynamics 

(A p -C pp L pp , D pp , C pp ) is expressed by: ξ11 = ξ 12 (18 
where ξ T p = [ξ T 1 , ξ T 2 ] ∈ R n and ξ T 1 = [ξ 11 , ξ 12 , ξ 12 ] ∈ R rT and ξ T 2 = [ξ 21 , • • • , ξ 24 ] ∈ R n-rT .
Next, the state observer is designed as:

ż = A p z + L pp (y pp -C pp z) (19) θ2 = A 21 ϑ 1 + A 22 ϑ 2 xp = z + T -1 ϑ
in which xp is the vector of estimated states, z ∈ R n and ϑ ∈ R n is given by (recall that n = 7, r = [2, 1] and r T = 3):

ϑ = ϑ 1 ϑ 2 R rT R n-rT =      v 1,1 v 1,2 v 2,1 ϑ 2      (20) 
Once again, v i ∈ R rM +k+1 is the nonlinear part of the observer where i = 1, • • • , m and r M = max(r i ). 

           
is a solution of the discontinuous vector differential equation by considering k = 1 as:

vi,1 = -3λ

1 4 |v i,1 -y p + C p z| 3 4 sign(v i,1 -y p + C p z) + v i,2
vi,2 = -2λ

1 3 |v i,2 -vi,1 | 2 3 sign(v i,3 -vi,1 ) + v i,3 (21) 
vi,3 = -1.5λ

1 2 |v i,3 -v2 | 1 2 sign(v i,3 -vi,2 ) + v i,4 vi,4 = -1.1λsign(v i,4 -vi,3 )
Finally, the reconstruction of the unknown input vector is possible by using: 

φ τr = D-1 v 1,3 v 2,2 - a 11,11
Remark 4.1: In the strong observability case, all system's states are exactly estimated and the coordinates transformation matrix ξ = T x is none than the observability matrix P . However, in the strong detectability case, only r system's states are exactly estimated where r is the relative degree. Consequently, it is simple to show that the r first lines of the coordinates transformation matrix T are the same of those of the observability matrix P . The expression of the remaining nr lines are explicitly described and proven in [START_REF] Ilchmann | Tracking with prescribed transient behaviour for nonlinear systems of known relative degree[END_REF].

V. SIMULATION RESULTS

In this section, the unknown input high order sliding mode observer is constructed for the presented motorcycle model. Some simulations and discussions are provided to illustrate the effectiveness and the ability of the UIHOSMO in estimating simultaneously the dynamic states and both roll angle and the applied torque by the rider on the handlebar. The observer is designed in such a way to estimate all the dynamic states and unknown inputs from only the knowledge of steering angle δ(t) and the yaw rate ψ(t). The parameters λ i , i = 1, 2 of the differentiator [START_REF] Slimi | Advanced Motorcycle-Infrastructure-Driver Roll Angle Profile for Loss Control Prevention[END_REF] are chosen as follows λ 1 = λ 2 = 10000. The Luenberger gain L pp of ( 25) is computed by pole placement at: -15, -30, -45, -60, -150, -165, -180, and the obtained matrix is: 

L pp =              -254
            
The change of coordinates matrix T is given in equation ( 23). With these parameters and matrices, the UIHOSMO is implemented with initial conditions x(0) = [0.1745 0.1745 -0.2618 -0.0873 50 50 0] and φ(0) = 0. These initial conditions correspond to a early cornering case with longitudinal speed at v x (t) = 15m/s. 

A. Initial Conditions

A first simulation is performed with the same initial conditions x(0) = x(0). For different initial conditions, let us consider the initial conditions of the system as x(0) = [0 0 0 0 0 0 0.1] and φ(0) = 0. The simulation results concerning the dynamics states and their estimations are depicted in figures 5 (top), 6 and 4. The lateral forces on each wheel (rear and front) are illustrated in figure 7. Finally, the unknown inputs (roll angle φ(t) and rider torque τ (t) are shown in figures 5 (bottom) and 8. One can conclude that the UIHOSMO provides satisfactory results. In this work, only state and unknown input estimation is considered, but it is possible to deal with the problem of oscillations by parameter adjustment of the observer (λ).

T =             0 0 0 0 1 0 0 0 -51, 4 0 1 -208, 44 0 0 0 1 0 0 0 0 0 0 6, 28 -1 0, 14 -4, 08 0 0 -1 -3, 82 0 -0.08 4, 3 0 0 0 -1.14 × 10 4 0 -275, 19 1.3 × 10 3 1 0 0 -8, 13 × 10 3 0 -194, 85 -4, 3 × 10 3 0 1             (23) 

B. Simulation With Uncertain Parameters

In order to illustrate the performances of the proposed observer in the presence of modeling uncertainties, the observer is designed by using the motorcycle nominal model and applied to the system with 20% parameters variation with respect to nominal values. As shown in figures 9, 10 and 11 the observer provides accurate estimations for almost the state variables. The effect of the uncertainties can be seen only in the estimation of the lateral forces and rider torque. Nevertheless, the obtained estimations are acceptable. As To end the simulation part, let us consider the abilities of the proposed observer in noisy measurement case. A centered random noise in the range [-0.0001, 0.0001] is added to the measurements δ(t) and ψ(t). The obtained results are depicted in the figure 14. The states are correctly estimated expect the steering angle rate δ(t). This problem can be solved by reducing the value of the parameters λ i , i = 1, 2, for example, with the values λ 1 = λ 2 = 10, the obtained 

0

VI. CONCLUSION

In this article, the problem of observer design for simultaneously estimating the dynamics states of a motorcycle, an unknown inputs (rider's action) and the lateral forces on each wheel (front and rear) is considered. For that purpose, an Unknown Inputs High Order Sliding Mode observer is proposed. A motorcycle model similar to the well-known Sharp model is derived using JourdainŠs principle. The observability of the initial model is not guaranteed, then a transformation of this last into a model with two inputs by considering the unobservable state φ(t) as an unknown input as well as the rider torque applied on the handlebar. The obtained model is then exploited to construct the Unknown Inputs High Order sliding mode observer. Some simulation results are provided in order to illustrate the efficiency of the High Order Sliding Mode Observer. 
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 12131415 Fig. 12. Longitudinal velocity with respect to time

a ij a 11 =

 11 m f + mr a 12 = m f k a 13 = mrh + m f j a 14 = m f e a 22 = m f k 2 + Irz + I f z cos 2 ǫ + I f x sin 2 ǫ a 23 = m f kj -Crxz + (I f z -I f x ) cos ǫ sin ǫ a 24 = m f ek + I f z cos ǫ a 33 = mrh 2 + m f j 2 + Irx + I f x cos 2 ǫ + I f z sin 2 ǫ a 34 = m f ej + I f z sin ǫ a 44 = m f e 2 + I f z parameters b ij b 12 = (m f + mr)vx b 22 = m f kvx b 23 = -(i f y /R f + i Ry /Rr)vx b 24 = -i f y /R f sin ǫvx b 32 = (m f j + mrh + i f y /R f + i Ry /Rr)vx b 34 = i f y /R f cos ǫvx b 35 = -(m f j + mrh)g b 36 = Z f ηm f eg b 42 = (m f e + i f y /R f sin ǫ)vx b 43 = -i f y /R f cos ǫvx b 45 = Z f ηm f eg b 46 = (Z f ηm f eg) sin ǫ

  ) ξ12 = a 11,11 ξ 11 + a 11,12 ξ 12 + a 11,13 ξ 13 + a 12,11 ξ 21 + • • • + a 12,14 ξ 24 + d 11 ϕ + d 12 τ r ξ13 = a 11,21 ξ 11 + a 11,22 ξ 12 + a 11,23 ξ 13 + a 12,21 ξ 21 + • • • + a 12,24 ξ 24 + d 21 ϕ + d 22 τ r ξ2 = A 21 ξ 1 + A 22 ξ 2

y T pp,new = ξ 11 ξ 13

  Each unknown input ζ i is bounded with |ζ i | ≤ ζ i,max and the (r M -r i +k) successive derivatives of ζ i are bounded by the same constant ζ ′ i,max , consequently the auxiliary variable v i

	Ap =	           	0 0 0 0 0 -64934.37 -45832.65	-0.899vx -0.015vx 0.028vx -0.163vx -2.373vx 0 31155.51 -42841.04	0.033vx 0.033vx -0.009vx 4.516vx 0 0 0	-0.057 0.016vx + 0.374 0.109 -0.059vx -0.025vx -15.611 1 0 5307.421	-1.862 -2.443 2.949 127.454 0 0 42580.46vx	0.018 -0.018 -0.021 0.035 0 -4.102vx 0	0.009 0.024 -0.012 -0.309 0 0 -4.101vx

  Av state matrix Av = M -1 E Bv input matrix Bv = M -1 [0, 0, 0, 1, 0, 0, 0]T , mr front and rear mass 30.65, 217.45 [kg] Z f front tire normal force -1005.3 [N] I f x , I f z front body inertia 1.23, 0.44 [kg.m 2 ] Irx, Irz, Crxz rear body inertia 31.18, 21.07, 1.73 [kg.m 2 ] i f y , iry wheels spin inertia 0.718, 1.051 [kg.m 2 ] R f , Rr wheels radius 0.304, Rr = 0.304 [m] σ f , σr tire's relaxation [m] a, b, h, e, f 0.948, 0.479, 0.615, 0.024, 0.028 [m]

		VII. APPENDIX
	motorcycle	
	vx, vy:	longitudinal and lateral velocity
	ϕ, ψ, δ:	roll, yaw and steer rotations
	τr:	rider torque
	F yf , Fyr:	lateral force
	M :	motorcycle mass matrix
	E:	motorcycle generalized effort vector
	notations	
	ẋ, ẍ:	derivatives of a variable x w.r.t time
	x:	estimate of a variable x
	x T :	transpose of vector or matrix x
	x f , xr	denotes front and rear
	motorcycle [15]	
	m f η	pneumatic trail 0.116 [m]
	ǫ	castor angle 0.4715 [rad]
	C δ	handlebar damping [N.m -1 .s]
	g	gravity force 9.81 [N]
	l	vehicle wheelbase [m]