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ABSTRACTS 
 
In this paper, the composition calculation in plasma 
out of thermal equilibrium is discussed and we test 
the viscosity formulations of Wilke, Gupta et al, 
Chapman Enskog and Sutherland in air plasma out 
of thermal equilibrium. Finally we applied the 
formulations to Fire II reentry.  
 
1. INTRODUCTION 

 
In a first step from the H theorem we discuss the 
composition obtaining in plasma out of thermal 
equilibrium. We apply the method to the air plasma. 
In a second step we discuss the viscosity 
formulation given by Wilke [1], Gupta et al [2], 
Sutherland [3] and by Chapman Enskog [4]. Finally 
we apply them to stagnation line of FIRE II reentry 
(Earth reentry – 1965). 
 
2.  COMPOSITION CALCULATION. 
 
The calculation of composition made in plasma out 
of thermal equilibrium is debatable, several 
methods can be used as pseudo kinetic method [5], 
maximization of entropy method [6], Gibbs free 
energy minimization [7], mass action laws [8, 9], 
state to state methods [10]. It seems interesting to 
start both for the composition and for transport 
coefficients from the same formulation, 
respectively the Boltzmann equation and the 
Boltzmann’s H-theorem. As a matter of fact, taking 
account that the methods classically used to 
determine the transport coefficients that is to say 
Chapman Enskog or Grad methods [11], begin the 
calculation with the Boltzmann equation [11]:  
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where ( )tvrf ii ,,
rr  is the distribution function iX

r
 is 

an external force applied on the particle of the ith 
species, b is the impact parameter, jig  is the initial 
relative velocity, and ε  is the angle over which 
integration takes place. The resolution of 
Boltzmann equation by Chapman Enskog, 
introduce a perturbation function iφ  as 

( )iii ff φ+= 10 . This latter assume that the external 
forces is low enough to consider only a small 
perturbation of the distribution function. Following 
the Chapman Enskog resolution and taking Sonine 
polynomials one can obtain integral series 
depending of integral cross sections [4].  
The H-theorem, or Boltzmann’s H-theorem, is a 
demonstration of the tendency of the particles of an 
isolated system to approach their equilibrium 
distribution. The H-function for a mixture of 
species i with distribution functions ( )tvrf ii ,,

rr , 
where r

r
 is the position, iv

r  is the velocity of 
species i, and t is the time, is defined as: 

( )
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It can be shown that kSH v−= , where vS  is the 
entropy per unit volume, and k  is Boltzmann’s 
constant. The H-function can be viewed as 
generalization of the entropy, since, unlike entropy 
defined on a strictly thermodynamic basis, it is 
defined in non-equilibrium situations. The H-
theorem states that 0≤dtdH  for an isolated 
system, and is hence a statement of the second law 
of thermodynamics it can be deduced that ji TT = , 
i.e., that the temperatures of all species are 
identical. We conclude that, in the absence of 
external forces, a uniform plasma has only a unique 
temperature. But by introducing external forces we 
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can show that the H-function is stable in 

time
( ) 0=

dt

tdH
. Since the entropy is directly related 

to the H-function, we can write: 
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where S  is the entropy of the whole system, int
iS  is 

the entropy related to the distribution function and 
exchanges between the different species during 
collisions, and ext

iS is the entropy related to the 
external forces and gradients. In equilibrium, the 
entropy of the total system, taking into account 
external forces and gradients, is stable in time. 
However, it is not possible to draw any conclusions 
about the evolution of int

iS  or ∑
i

iS int . The 

calculation shows that minimization of free energy 
or internal energy is an appropriate method for 
calculating the composition of a multi-temperature 
plasma that is stable in time. This result is in 
accordance with that of Giordano and Capitelli [6].   
To use the Chapman Enskog method, we have to 
assume that the external force is sufficiently low to 
be considered as a perturbation function and high 
enough to create a thermal non equilibrium between 
electrons and heavy species temperature. We have 
to notice that the latter remarks imply that the 
plasma is at chemical equilibrium. 
So we decided to calculate the composition with the 
Gibbs free energy method. The first limitation is 
how to calculate the partition function for diatomic 
species as a matter of fact the partition function is 
written as 
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where h is Planck constant, c speed of light, eT  the 
electronic energy of state e, )(vGe  the vibrational 
energy of the v vibrational level of the electronic 
state e, )( jFv  the rotational energy of the j 

rotational level of the vibrational level v. exT , vibT  
and rotT  are respectively the excitational, 
vibrational and rotational temperatures. A 
summation is made on all quantum levels 
excitational, vibrational and rotational. To 
determine the chemical potential that is the 
summation of translational, excitational, vibrational 
and rotational chemical potential with the 
foramation enthalpy 0e : 
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we separate artificially the internal partition 
function of diatomic species: 
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We have to notice that some authors propose series 
development to calculate the internal partition see 
for example [12] and literature inside.  
In the case of plasma out of chemical equilibrium 
and out of thermal equilibrium the plasma reach a 
composition at chemical equilibrium but can be out 
of thermal equilibrium. So we have to consider the 
external constraints [6] and the hypothesis on the 
internal temperatures [13]. In figure 1 we show the 
composition versus time with a model with 34 
reactions [14] that reach an air plasma out of 

thermal equilibrium ( 2==
H

e

T

Tθ ) at TH = 3000 K 

and at atmospheric pressure for air. The 
temperatures Te, TH are frozen during the time 
evolution. We have to note that usually the 
coefficients rates are not known precisely a factor 
of one thousand can exist between authors so the 
inverse reaction coefficients rate are estimated with 
the chemical equilibrium coefficients.  
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Figure 1: Air Composition versus time 

The chemical equilibrium is reach around a time of 
10 ms for the main neutral chemical species. 
However the densities of charged particles continue 
to increase but with very low concentrations. In the 
two figures 2 and 3, we represent the composition 
at chemical equilibrium successively at thermal 
equilibrium and out of thermal equilibrium obtained 
by the Gibbs free energy method. Since the energy 
inside the plasma is higher for a given heavy 
species temperature the ionization is made at lower 
temperature. The dissociation is made at lower 
temperature since the hypothesis on internal 
temperature is −== etrvibex TTT  and Hrot TT = the 
upper quantum energy level of molecules are 
statistically more populated so the ionization is 
made at lower heavy species temperature. 
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Figure 2. Air Composition at thermal equilibrium 
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Figure 3. Air composition out of thermal equilibrium 

As classic result, the species with a double charge 
will appear at a greater energy. 
 

3. TRANSPORT COEFFICIENTS. 

In a previous work [4] new transport coefficients in 
plasma out of thermal equilibrium have been 
developed. In a recent work [15] Colombo and al 
claim that the results of viscosity are similar 
between this method and those developed at 
thermal equilibrium. Taking into account the fact 
that in plasma modeling it is useful to use fast and 
quite accurate formulations as those from Wilke 
[1], Sutherland [3], Gupta and al [2]. It would be 
interesting to test the formulation used for 
numerical purpose in the case of plasma out of 
thermal equilibrium.  
The viscosity equation of gas has been given by 
Wilke in 1950 [1] for a mixture in thermal 
equilibrium. He proposed a simple and convenient 
formulation in numerical used. It is used until now: 
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where ix  is the molar fraction of i chemical 

species, N the number of chemical species taken 

into account, iµ  is the viscosity of chemical species 

i given by : ( )[ ]CBTAi ++= )(lnexp1.0µ   
The coefficients A, B and C are Blottner 
coefficients and be find in several work, we used 
those given in [16] and report in table 1. The 
coefficient ijφ  is given by: 
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where iM  is the molar weight of i chemical 
species. 
 
Species A B C 
N2 2.68E-02 3.18E-01 -1.13E+01 
O2 4.49E-02 -8.26E-02 -9.20E+00 
NO 4.36E-02 -3.36E-02 -9.58E+00 
N 1.16E-02 6.03E-01 -1.24E+01 
O 2.03E-02 4.29E-01 -1.16E+01 
NO+ 3.02E-01 -3.5039791 -3.74E+00 
N2

+ 2.68E-02 3.18E-01 -1.13E+01 
O2

+ 4.49E-02 -8.26E-02 -9.20E+00 
N+ 1.16E-02 6.03E-01 -1.24E+01 
O+ 2.03E-02 4.29E-01 -1.16E+01 
e- 0 0 -1.20E+01 
Table 1: Blottner coefficients used is this work [16] 

 
The Gupta, Yos, Thompson and Lee approach [2] 
used the formulation given in [11] for individual 
viscosity of each chemical species iµ : 

( )[ ] [ ]
ii

i

BTA

i TC µµ

µµ += )ln(exp   (5) 

where 
i

Aµ , 
i

Bµ  and 
i

Cµ are fitting coefficients given 

in [2]. And finally the total viscosity of the plasma 
is: 
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At thermal equilibrium, with Chapman Enskog 
method one can reach more accurate transport 
coefficients. The interaction potential of each 
collision has to be known precisely: neutral neutral, 
charged-charged, charged-neutral, electron-neutral 
[17, 18]. We have to note that usually a 
Coulombian shielded potential depending on the 
Debye length is used for the charged-charged 
interaction. So, all the interactions between charged 
particles are identical consequently, we have to find 
the same viscosity for charged particle. This is not 
observed in table 1. So we compare the individual 
viscosity between authors in figure 4 and 5. 
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Figure 4. Individual viscosity of diatomic nitrogen N2. 
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Figure 5. Individual viscosity of nitrogen ions N+. 

 
 In figure 4, we show the viscosity for N2 versus 
temperature and in figure 5 the viscosity for N+ 
versus temperature. For the ions, one can note the 
large difference of values from Wilke, Gupta and 
our calculation. Generally, the viscosities of the 
neutral species are within the same order of 
magnitude between authors unlike for the ions and 
electrons. So we propose new Blottner coefficients 
for charged particles A=-0.769; B=17.4 and C=-
106 giving a convenient approximation of the 
results obtained by the Chapman-Enskog method 
and able to be easily used in numerical codes. The 
curves with this set of values are indicated as 
“Wilke (new)”. 
In figure 6, we have plotted the viscosity at 
atmospheric pressure and at thermal equilibrium 
using the various data. In the considered 
temperature range at thermal equilibrium the results 
are quiet similar unlike in plasma out of thermal 
equilibrium represented in figure 7. 
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Figure 6. Viscosity at thermal equilibrium 
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Figure 7. Viscosity out of thermal equilibrium 

 
At high temperature the behavior of the viscosity is 
strongly depending of the model (figure 7). The 
viscosity is continually increasing with the models 
of Wilke (table 1) and Sutherland when its is 
decreasing after 6000K for the models of Gupta and 
Chapman Enskog. By comparing the figure 6 and 7 
with figures 4 and 5, we observe that the 
differences are mainly observed when the 
ionization is made. Consequently, the errors in 
viscosities are due to the interaction between 
ionized particles. As a matter of fact classically the 
Coulombian interaction depends on the Debye that 
depends on composition. 
 
The FIRE II mission has been done in May 1965 to 
analyze the radiation heating during an Earth 
reentry. In figure 8, we have plotted the 
composition on the stagnation lines in FIRE II 
reentry [19]. The viscosity obtained through the 
stagnation is reported in figure 9. We show large 
discrepancies between the Wilke formulations 
using the two set of Blottner coefficients.  
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Figure 8. Composition on stagnation line. The stagnation points 
located at 0.  
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Figure 9. Viscosity on stagnation line at 1634 s (Fire II) 

 
This result suggests that the hydrodynamic models 
of the plasma flow around the probe could be re-
examined with the use of transport coefficients 
from Chapman-Enskog-Wilke model. 
 
4. CONCLUSION 
 
Through this paper several questions arise: how can 
we calculate accurately the diatomic partition 
function in plasma out of equilibrium? What are the 
influences of non Bolzmann distribution on the 
transport coefficients? The applied forces have to 
be high enough to get plasma out of thermal 
equilibrium but low enough to use the Chapman 
Enskog method. How can we check the validity of 
Chapman Enskog approach?  
We have shown that the chemical models using 
chemical rates as in collisional radiative models 
have to take good equilibrium constant. That is to 
say these equilibrium constants have to be 
calculated taking external constraints and 
hypotheses on internal temperatures. This is usually 
not the case. 

Furthermore, we have tested several approaches to 
determine the viscosity. If the plasma is out of 
thermal equilibrium, we have shown that if the 
plasma is highly ionized at low heavy species 
temperature Wilke formulation using Blottner 
coefficients cannot be used. Surprisingly, it is used 
in several calculation code of fluid dynamic without 
any comments. Comparing with Chapman Enskog 
methods, Gupta and al approach seems to give 
better results. So in a future work, we have to test 
the sensitivity of a fluid calculation code to 
transport coefficients. We have also to pursue the 
work by including a state to state model to 
determine the transport coefficients taking each 
quantum level into account.  
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