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Abstract

Since the late ‘60s, various genome evolutionary models have been proposed to predict the evo-
lution of a DNA sequence as the generations pass. Essentially, two main categories of such models
can be found in the literature. The first one, based on nucleotides evolution, uses a mutation ma-
trix of size 4 × 4. It encompasses for instance the well-known models of Jukes and Cantor, Kimura,
and Tamura. In the second category, exclusively studied by Bahi and Michel, the evolution of trin-
ucleotides is studied through a matrix of size 64 × 64. By essence, all of these models relate the
evolution of DNA sequences to the computation of the successive powers of a mutation matrix. To
make this computation possible, particular forms for the mutation matrix are assumed, which are not
compatible with mutation rates that have been recently obtained experimentally on gene ura3 of the
Yeast Saccharomyces cerevisiae. Using this experimental study, authors of this paper have deduced
a simple mutation matrice, compute the future evolution of the rate purine/pyrimidine for ura3,
investigate the particular behavior of cytosines and thymines compared to purines, and simulate the
evolution of each nucleotide.

Keywords: genome evolutionary models; stochastic processes; nucleotides mutations.

1 Introduction

Codons are not uniformly distributed into the genome. Over time mutations have introduced some
variations in their frequency of apparition. It can be attractive to study the genetic patterns (blocs
of more than one nucleotide: dinucleotides, trinucleotides...) that appear and disappear depending on
mutation parameters. Mathematical models allow the prediction of such an evolution, in such a way
that statistical values observed into current genomes can be recovered from hypotheses on past DNA
sequences.

A first model for genomes evolution has been proposed in 1969 by Thomas Jukes and Charles Cantor
[1]. This first model is very simple, as it supposes that each nucleotide A,C,G, T has the probability m
to mutate to any other nucleotide, as described in the following mutation matrix,









∗ m m m
m ∗ m m
m m ∗ m
m m m ∗









.
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In that matrix, the coefficient in row 3, column 2 represents the probability that the nucleotide G mutates
in C during the next time interval, i.e., P (G → C). As diagonal elements can be deduced by the fact
that the sum of each row must be equal to 1, they are omitted here.

This first attempt has been followed up by Motoo Kimura [2], who has reasonably considered that
transitions (A←→ G and T ←→ C) should not have the same mutation rate than transversions (A←→ T ,
A←→ C, T ←→ G, and C ←→ G), leading to the following mutation matrix:









∗ b a b
b ∗ b a
a b ∗ b
b a b ∗









.

This model has been refined by Kimura in 1981 (three constant parameters, to make a distinction
between natural A←→ T , C ←→ G and unnatural transversions), leading to:









∗ c a b
c ∗ b a
a b ∗ c
b a c ∗









.

Joseph Felsenstein [3] has then supposed that the nucleotides frequency depends on the kind of
nucleotide A,C,T,G. Such a supposition leads to a mutation matrix of the form:









∗ πC πG πT

πA ∗ πG πT

πA πC ∗ πT

πA πC πG ∗









with 3πA, 3πC , 3πG, and 3πT denoting respectively the frequency of occurrence of each nucleotide. Masami
Hasegawa, Hirohisa Kishino, and Taka-Aki Yano [4] have generalized the models of [2] and [3], introducing
in 1985 the following mutation matrix:









∗ απC βπG απT

απA ∗ απG βπT

βπA απC ∗ απT

απA βπC απG ∗









.

These efforts have been continued by Tamura, who proposed in [5] a simple method to estimate the
number of nucleotide substitutions per site between two DNA sequences, by extending the model of
Kimura (1980). The idea is to consider a two-parameter method, for the case where a GC bias exists.

Let us denote by πGC the frequency of this dinucleotide motif. Tamura supposes that πG = πC =
πGC

2

and πA = πT =
1− πGC

2
, which leads to the following rate matrix:









∗ κ(1− πGC)/2 (1− πGC)/2 (1− πGC)/2
κπGC/2 ∗ πGC/2 πGC/2

(1− πGC)/2 (1 − πGC)/2 ∗ κ(1− πGC)/2
πGC/2 πGC/2 κπGC/2 ∗









.
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In the last model of Tamura [6], the two different types of transition (A ↔ T,C ↔ G) can have a
different rate, whereas transversions are all assumed to occur at the same rate (but that rate is allowed
to be different from both of the rates for transitions):









∗ κ1πC πA πG

κ1πT ∗ πA πG

πT πC ∗ κ2πG

πT πC κ2πA ∗









.

All these models lead to the so-called GTR model [7], in which the mutation matrix has the form
(using obvious notations):









∗ fACπC fAGπG fATπT

fACπA ∗ fCGπG fCTπT

fAGπA fCGπC ∗ πT

fATπA fCTπC πG ∗









.

A second category of models focus on di or trinucleotides evolution. ¿From 1990 to 1994, Didier Arquès
and Christian Michel have proposed models based on the RY purine/pyrimidine alphabet [8, 9, 10, 11,
12, 13]. These models have been abandoned by their own authors in favor of models over the {A,C,G, T }
alphabet. More precisely, Didier Arquès, Jean-Paul Fallot, and Christian Michel have proposed in 1998
a first evolutionary model on the {A,C,G, T } alphabet that is based on trinucleotides [14]. With such
a model, the mutation matrix has now a size 64 × 64 (there are 64 trinucleotides). In this model, the
3 parameters p, q, r correspond, for a given trinucleotide XY Z, to the probability p of mutation of the
first nucleotide X , the mutation probability q of Y , and the probability r that Z mutates. As for the
nucleotides based models, this new approach has taken into account only constants parameters.

In 2004, Jacques M. Bahi and Christian Michel have published a novel research work in which the
model of 1998 has been improved by replacing constants parameters by new time dependent parameters
[15]. By this way, it has been possible to simulate a genes evolution that is non-linear. However, the
following years, these researchers have been returned to models embedding constant parameters, probably
due to the fact that the model of 2004 leads to poor results: only one of the twelve studied cases allows
to recover values that are close to reality. For instance, in 2006, Gabriel Frey and Christian Michel have
proposed a model that uses 6 constant parameters [16], whereas in 2007, Christian Michel has constructed
a model with 9 constants parameters that generalizes those of 1998 and 2006 [17]. Finally, Jacques M.
Bahi and Christian Michel have recently introduced in [18], a last model with 3 constant parameters,
but whose evolution matrix evolves over time. In other words, trinucleotides that have to mutate are not
fixed, but they are randomly picked among a subset of potentially mutable trinucleotides. This model,
called “chaotic model” CM, allows a good recovery of various statistical properties detected into the
genome. Furthermore, this model matches well with the hypothesis of some primitive genes that have
mutated over time. The common point of all the models studied by Michel et al. is that all their mutation
matrices are symmetric. They now concentrate their efforts on trinucleotide models and on circular codes
discovered in coding sequences.

Due to mathematical complexity, matrices investigated to model evolution of DNA sequences are thus
limited either by the hypothesis of symmetry or by the desire to reduce the number of parameters under
consideration. These hypotheses allow their authors to solve theoretically the DNA evolution problem by
computing directly the successive powers of their mutation matrix. However, one can wonder whether such
restrictions on the mutation rates are realistic. Focusing on this question, authors of the present paper
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have used a recent research work in which the per-base-pair mutation rates of the Yeast Saccharomyces
cerevisiae have been experimentally measured [19]. Their results are summarized in Table 1.

Mutation ura3
T → C 4
T → A 14
T → G 5
C → T 16
C → A 40
C → G 11
A→ T 8
A→ C 6
A→ G 0
G→ T 28
G→ C 9
G→ A 26

Transitions 46
Transversions 121

Table 1: Summary of sequenced ura3 mutations [19]

The mutation matrix of gene ura3 can be deduced from this table. It is equal to:



















1−m
6m

14
0

8m

14
40m

67
1−m

11m

67

16m

67
26m

63

9m

63
1−m

28m

63
14m

23

4m

23

5m

23
1−m



















,

where m is the mutation rate per generation in ura3 gene, which is equal to 3.80× 10−10/bp/generation,
or to 3.0552×10−7/generation for the whole gene [19]. Obviously, none of the existing genomes evolution
models can fit such a mutation matrix, leading to the fact that hypotheses must be relaxed, even if
this relaxation leads to less ambitious models: current models do not match with what really occurs in
concrete genomes, at least in the case of this yeast.

Having these considerations in mind, authors of the present article propose to use the data obtained
by Lang and Murray, in order to predict the evolution of the rates or purines and pyrimidines in the
two genes studied in [19]. A mathematical proof giving the intended limit for these rates when the
generations pass, is reinforced by numerical simulations. The obtained simulations are thus compared
with the historical model of Jukes and Cantor, which is still used by current prediction software. A model
of size 3× 3 with six independent parameters is then proposed and studied in a case that matches with
data recorded in [19]. Mathematical investigations and numerical simulations focusing on ura3 gene are
both given in the case of the yeast Saccharomyces cerevisiae.

The remainder of this research work is organized as follows. In Sections 2 and 3, we focus on the
evolution of the gene ura3. Section 2 is dedicated to the formulation of a non symmetric discrete model
of size 2× 2. This model translates a genome evolution taking into account purines and pyrimidines mu-
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tations. A simulation is then performed to compare this non symmetric model to the classical symmetric
Cantor model. Section 3 deals with a 6-parameters non symmetric model of size 3×3, focusing on the one
hand on the evolution of purines and on the other hand of cytosines and thymines. This mathematical
model is illustrated throughout simulations of the evolution of the purines, cytosines and thymines of
gene ura3. We finally conclude this work in Section 4.

2 Non-symmetric Model of size 2× 2

In this section, a first general genome evolution model focusing on purines versus pyrimidines is proposed,
to illustrate the method and as a pattern for further investigations. This model is applied to the case of
the yeast Saccharomyces cerevisiae.

2.1 Theoretical Study

Let R and Y denote respectively the occurrence frequency of purines and pyrimidines in a sequence of

nucleotides, and M =

(

a b
c d

)

the associated mutation matrix, with a = P (R → R), b = P (R → Y ),

c = P (Y → R), and d = P (Y → Y ) satisfying
{

a+ b = 1,

c+ d = 1,
(1)

and thus M =

(

a 1− a
c 1− c

)

.

The initial probability is denoted by P0 = (R0 Y0), where R0 and Y0 denote respectively the initial
frequency of purines and pyrimidines. So the occurrence probability at generation n is Pn = P0M

n,
where Pn = (R(n) Y (n)) is a probability vector such that R(n) (resp. Y (n)) is the rate of purines (resp.
pyrimidines) after n generations.

Determination of Mn

A division algorithm leads to the existence of a polynomial of degree n−2, denoted by QM ∈ Rn−2[X ],
and to an, bn ∈ R such that

Xn = QM (X)χM (X) + anX + bn, (2)

when χM is the characteristic polynomial of M . Using both the Cayley-Hamilton theorem and the
equality given above, we thus have

Mn = anM + bnI2.

In order to determine an and bn, we must find the roots of χM . As χM (X) = X2−Tr(M)X+det(M)
and due to (1), we can conclude that 1 is a root of χM , which thus has two real roots: 1 and x2. As the
roots sum is equal to -tr(A), we conclude that x2 = a− c.

If x2 = a − c = 1, then a = 1 and c = 0 (as these parameters are in [0, 1]), so the mutation matrix
is the identity and the frequencies of purines and pyrimidines into the DNA sequence does not evolve. If
not, evaluating (2) in both X = 1 and X = x2, we thus obtain

{

1 = an + bn,

(a− c)n = an(a− c) + bn.
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Figure 1: Prediction of purine/pyrimidine evolution of ura3 gene in symmetric Cantor model.

Considering that a− c 6= 1, we obtain

an =
(a− c)n − 1

a− c− 1
, bn =

a− c− (a− c)n

a− c− 1
.

Using these last expressions into the equality linking M , an, and bn, we thus deduce the value of Pn =
P0M

n, where

Mn =
1

a− c− 1

(

(a− 1)(a− c)n − c (1 − a)((a− c)n − 1))
c((a− c)n − 1) −c(a− c)n + a− 1

)

. (3)

If a = 0 and c = 1, then M =

(

0 1
1 0

)

, so M2n is the identity I2 whereas M2n+1 is M . Contrarily,

if (a, c) /∈ {(0, 1); (1, 0)}, then the limit of Mn can be easily found using (3), leading to the following
result.

Theorem 1. Consider a DNA sequence under evolution, whose mutation matrix is M =

(

a 1− a
c 1− c

)

with a = P (R→ R) and c = P (Y → R).

• If a = 1, c = 0, then the frequencies of purines and pyrimidines do not change as the generation
pass.

• If a = 0, c = 1, then these frequencies oscillate at each generation between (R0 Y0) (even genera-
tions) and (Y0 R0) (odd generations).
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Figure 2: Prediction of purine/pyrimidine evolution of ura3 gene in non-symmetric Model of size 2× 2.

• Else the value Pn = (R(n) Y (n)) of purines and pyrimidines frequencies at generation n is con-
vergent to the following limit:

lim
n→∞

Pn =
1

c+ 1− a

(

c 1− a
)

.

2.2 Numerical Application

For numerical application, we will consider mutations rates in the ura3 gene of the Yeast Saccharomyces
cerevisiae, as obtained by Gregory I. Lang and Andrew W. Murray [19]. As stated before, they have
measured phenotypic mutation rates, indicating that the per-base pair mutation rate at ura3 is equal
to m = 3.0552× 10−7/generation. For the majority of Yeasts they studied, ura3 is constituted by 804

bp: 133 cytosines, 211 thymines, 246 adenines, and 214 guanines. So R0 =
246 + 214

804
≈ 0.572, and

Y0 =
133 + 211

804
≈ 0.428. Using these values in the historical model of Jukes and Cantor [1], we obtain

the evolution depicted in Figure 1.
Theorem 1 allow us to compute the limit of the rates of purines and pyrimidines:

tation of probability a a = P (R → R) = (1 − m) + P (A → G) + P (G → A). The use of Table 1 implies that a =

(1 − m) + m

(

0 + 26

x

)

, where x is such that 1 − a = P (R → Y ) = m

(

6 + 8 + 28 + 9

x

)

, i.e.,

x = 77, and so a = 1− 51m

77
.

utation of probability c Similarly, c = P (Y → R) = P (C → A) + P (C → G) + P (T → A) + P (T → G) =
70m

y
, whereas
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1− c = 1−m+
20m

y
. So c =

7m

9
.

The purine/pyrimidine mutation matrix that corresponds to the data of [19] is thus equal to:

M =







1− 51m

77

51m

77
7m

9
1− 7m

9






.

Using the value of m for the ura3 gene leads to 1−a = 2.02357× 10−7 and c = 2.37627× 10−7, which
can be used in Theorem 1 to conclude that the rate of pyrimidines is convergent to 45.992% whereas
the rate of purines converge to 54.008%. Numerical simulations using data published in [19] are given in
Figure 2, leading to a similar conclusion.

3 A First Non-Symmetric Genomes Evolution Model of size 3×3
having 6 Parameters

In order to investigate the evolution of the frequencies of cytosines and thymines in the gene ura3, a
model of size 3 × 3 compatible with real mutation rates of the yeast Saccharomyces cerevisiae is now
presented.

3.1 Formalization

Let us consider a line of yeasts where a given gene is sequenced at each generation, in order to clarify
explanations. The n−th generation is obtained at time n, and the rates of purines, cytosines, and tymines
at time n are respectively denoted by PR(n), PC(n), and PT (n).

Let a be the probability that a purine is changed into a cytosine between two generations, that is:
a = P (R → C). Similarly, denote by b, c, d, e, f the respective probabilities: P (R → T ), P (C → R),
P (C → T ), P (T → R), and P (T → C). Contrary to existing approaches, P (R → C) is not supposed
to be equal to P (C → R), and the same statement holds for the other probabilities. For the sake of
simplicity, we will consider in this first research work that a, b, c, d, e, f are not time dependent.

Let

M =





1− a− b a b
c 1− c− d d
e f 1− e− f





be the mutation matrix associated to the probabilities mentioned above, and Pn the vector of occurrence,
at time n, of each of the three kind of nucleotides. In other words, Pn = (PR(n) PC(n) PT (n)). Under
that hypothesis, Pn is a probability vector: ∀n ∈ N,

• PR(n), PC(n), PT (n) ∈ [0, 1],

• PR(n) + PC(n) + PT (n) = 1,

Let P0 = (PR(0) PC(0) PT (0)) ∈ [0, 1]3 be the initial probability vector. We have obviously:

PR(n+ 1) = PR(n)P (R→ R) + PC(n)P (C → R) + PT (n)P (T → R).
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Similarly, PC(n + 1) = PR(n)P (R → C) + PC(n)P (C → C) + PT (n)P (T → C) and PT (n + 1) =
PR(n)P (R→ T ) + PC(n)P (C → T ) + PT (n)P (T → T ). This equality yields the following one,

Pn = Pn−1M = P0M
n. (4)

In all that follows we wonder if, given the parameters a, b, c, d, e, f as in [19], one can determine the
frequency of occurrence of any of the three kind of nucleotides when n is sufficiently large, in other words
if the limit of Pn is accessible by computations.

3.2 Resolution

The characteristic polynomial of M is equal to

χM (x) = x3 + (s− 3)x2 + (p− 2s+ 3)x− 1 + s− p
= (x− 1)

(

x2 + (s− 2)x+ (1 − s+ p)
)

,

where

s = a+ b+ c+ d+ e+ f,

p = ad+ ae+ af + bc+ bd+ bf + ce+ cf + de,

det(M) = 1− s+ p.

The discriminant of the polynomial of degree 2 in the factorization of χM is equal to ∆ = (s− 2)2 −
4(1− s− p) = s2 − 4p. Let x1 and x2 the two roots (potentially complex or equal) of χM , given by

x1 =
−s+ 2−

√

s2 − 4p

2
and x2 =

−s+ 2 +
√

s2 − 4p

2
. (5)

Let n ∈ N, n > 2. As χM is a polynomial of degree 3, a division algorithm of Xn by χM (X) leads to
the existence and uniqueness of two polynomials Qn and Rn, such that

Xn = Qn(X)χ2(X) +Rn(X), (6)

where the degree of Rn is lower than or equal to the degree of χM , i.e., Rn(X) = anX
2 + bnX + cn with

an, bn, cn ∈ R for every n ∈ N. By evaluating (6) in the three roots of χM , we find the system







1 = an + bn + cn
xn
1 = anx

2
1 + bnx1 + cn

xn
2 = anx

2
2 + bnx2 + cn

This system is equivalent to







cn + bn + an = 1
bn(x1 − 1) + an(x

2
1 − 1) = xn

1 − 1
bn(x2 − 1) + an(x

2
2 − 1) = xn

2 − 1
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For the ura3 gene, it is easy to check that x1 6= 1, x2 6= 1, and x1 6= x2 (see numerical applications of
Section 3.4). Then standard algebraic computations give



































an =
1

x2 − x1

[

xn
2 − 1

x2 − 1
− xn

1 − 1

x1 − 1

]

,

bn =
x1 + 1

x1 − x2

xn
2 − 1

x2 − 1
+

x2 + 1

x2 − x1

xn
1 − 1

x1 − 1
,

cn = 1− an − bn.

Using for i = 1, 2 and n ∈ N the following notation,

Xi(n) =
xn
i
− 1

xi − 1
, (7)

and since x2 − x1 =
√
∆, the system above can be rewritten as











































an =
X2(n)−X1(n)√

∆
,

bn =
(x2 + 1)X1(n)− (x1 + 1)X2(n)√

∆
,

cn = 1 +
x1X2(n)− x2X1(n)√

∆
.

(8)

By evaluating (6) in M and due to the theorem of Cayley-Hamilton, we finally have for every integer
n > 1,

Mn = anM
2 + bnM + cnI3, (9)

where I3 is the identity matrix of size 3, an, bn, and cn are given by (8), and M2 is given by

M2 =

















a2 + 2ab+ ac− 2a −a2 − ab− ac −ab+ ad− b2

+b2 + be− 2b+ 1 −ad+ 2a+ bf −be− bf + 2b
−ac− bc− c2 ac+ c2 + 2cd− 2c bc− cd− d2

−cd+ 2c+ de +d2 + df − 2d+ 1 −de− df + 2d
−ae− be+ cf ae− cf − df be+ df + e2 + 2ef
−e2 − ef + 2e −ef − f2 + 2f −2e+ f2 − 2f + 1

















.

3.3 Convergence study

In the case of ura3, |x1| < 1 and |x2| < 1 (see the next section). Then Xi(n) −→
1

1− xi

for i = 1, 2 and

so

an −→
1√
∆

(

1

1− x2

− 1

1− x1

)

.

Denote by a∞ this limit. We have

a∞ =
x2 − x1√

∆(1− x2)(1 − x1)
=

1

(1− x2)(1 − x1)
=

1

s+
√
∆

2

s−
√
∆

2

,
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and finally

a∞ =
4

s2 −∆
=

1

p
.

Similarly, bn = X1(n)− an(x1 + 1) satisfies

bn −→
1

1− x1

− x1 + 1

p
.

The following computations

1

1− x1

=
2

s+
√
∆

=
2(s−

√
∆)

s2 −∆
=

s−
√
∆

2p
,

x1 + 1

p
=
−s+ 4−

√
∆

2p
,

finally yield

b∞ =
s− 2

p
.

So

cn −→ 1− a∞ − b∞ =
p− s+ 1

p
,

and to sum up, the distribution limit is given by











































a∞ =
1

p

b∞ =
s− 2

p

c∞ =
p− s+ 1

p

(10)

Using the latter values in (9), we can determine the limit of Mn, which is a∞M2 + b∞M + c∞I3. All
computations done, we find the following limit for Mn,

1

p− bf + df





ce+ cf + de− bf + df ae+ af + bf ad+ bc+ bd
ce+ cf + de ae+ af + df ad+ bc+ bd
ce+ cf + de ae+ af + bf ad+ bc+ bd− bf + df



 .

Using (4), we can thus finally determine the limit of Pn = P0M
n

= (PR(0) PC(0) PT (0))M
n, which leads to the following result.

Theorem 2. The frequencies PR(n), PC(n), and PT (n) of occurrence at time n of purines, cytosines,
and thymines in the considered gene ura3 of the yeast Saccharomyces cerevisiae converge to the following
values:

• PR(n) −→
ce+ cf + de+ (df − bf)PR(0)

p− bf + df
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• PC(n) −→
ae+ af + df + (df − bf)PC(0)

p− bf + df

• PT (n) −→
ad+ bc+ bd+ (df − bf)PT (0)

p− bf + df

3.4 Numerical Application and Simulations

We consider another time the numerical values for mutations published in [19]. Gene ura3 of the Yeast
Saccharomyces cerevisiae has a mutation rate of 3.80 × 10−10/bp/generation [19]. As this gene is con-
stituted by 804 nucleotides, we can deduce that its global mutation rate per generation is equal to
m = 3.80× 10−10 × 804 = 3.0552× 10−7. Let us compute the values of a, b, c, d, e, and f . The first line
of the mutation matrix is constituted by 1 − a − b = P (R → R), a = P (R → T ), and b = P (R → C).
P (R → R) takes into account the fact that a purine can either be preserved (no mutation, probability
1 −m), or mutate into another purine (A → G, G → A). As the generations pass, authors of [19] have
counted 0 mutations of kind A→ G, and 26 mutations of kind G→ A. Similarly, there were 28 mutations
G→ T and 8: A→ T , so 36: R → T . Finally, 6: A→ C and 9: G→ C lead to 15: R → C mutations.
The total of mutations to consider when evaluating the first line is so equal to 77. All these considerations

lead to the fact that 1 − a− b = (1 −m) +m
26

77
, a =

36m

77
, and b =

15m

77
. A similar reasoning leads to

c =
19m

23
, d =

4m

23
, e =

51m

67
, and f =

16m

67
.

In that situation, s = a+b+c+d+e+f =
205m

77
≈ 8.134×10−7, and p =

207488m2

118657
≈ 1.632×10−13. So

∆ = s2 − 4p =
854221m2

9136589
> 0, x1 = 1− m

2

(

205

77
+

√

854221

9136589

)

, and x2 = 1− m

2

(

205

77
−
√

854221

9136589

)

.

As x1 ≈ 0.9999685 ∈ [0, 1] and x2 ≈ 0.9999686 ∈ [0, 1], we have, due to Theorem 2:

• PR(n) −→
ce+ cf + de+ (df − bf)PR(0)

p− bf + df

• PC(n) −→
ae+ af + df + (df − bf)PC(0)

p− bf + df

• PT (n) −→
ad+ bc+ bd+ (df − bf)PT (0)

p− bf + df

Using the data of [19], we find that PR(0) =
460

804
≈ 0.572, PC(0) =

133

804
≈ 0.165, and PT (0) =

211

804
≈

0.263. So PR(n) −→ 0.549, PC(n) −→ 0.292, and PT (n) −→ 0.159. Simulations corresponding to this
example are given in Fig. 3.

4 Conclusion

In this document, the possible evolution of gene ura3 of the yeast Saccharomyces cerevisiae has been
studied. As current models of nucleotides cannot fit the mutations obtained experimentally by Lang and
Murray [19], authors of this paper have introduced two new simple models to predict the evolution of
this gene. On the one hand, a formulation of a non symmetric discrete model of size 2 × 2 has been
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Figure 3: Prediction of evolution concerning the purine, thymine, and cytosine rates in ura3. Non-
symmetric Model of size 3× 3.

proposed, which studies a DNA evolution taking into account purines and pyrimidines mutation rates.
A simulation has been performed, to compare the proposal to the well known Jukes and Cantor model.
On the other hand, a 6-parameters non symmetric model of size 3 × 3 has been introduced and tested
with numerical simulations, to make a distinction between cytosines and thymines in the former proposal.
These two models still remain generic, and can be adapted to a large panel of applications, replacing
either the couple (purines, pyrimidines) or the tuple (purines, cytosines, thymines) by any categories of
interest.

The ura3 gene is not the unique example of a DNA sequence of interest such that none of the existing
nucleotides evolution models cannot be applied due to a complex mutation matrix. For instance, a second
gene called can1 has been studied too by the authors of [19]. Similarly to gene ura3, usual models cannot
be used to predict the evolution of can1, whereas a study following a same canvas than what has been
proposed in this research work can be realized. In future work, the authors’ intention is to make a
complete mathematical study of the 6-parameters non symmetric model of size 3 × 3 proposed in this
document, and to apply it to various case studies. Biological consequences of the results produces by this
model will be systematically investigated. Then, the most general non symmetric model of size 4 will be
regarded in some particular cases taken from biological case studies, and the possibility of mutations non
uniformly distributed will then be investigated.
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