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High resolution NMF for modeling mixtures of
non-stationary signals in the time-frequency domain

NMF a haute résolution pour la modélisation de
melanges de sighaux non-stationnaires dans le
domaine temps-fréquence

Roland Badeau
Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI
Email : roland.badeau@telecom-paristech.fr

Abstract

Nonnegative Matrix Factorization (NMF) is a powerful took fdecomposing mixtures of non-stationary signals
in the Time-Frequency (TF) domain. However, unlike the Hidsolution (HR) methods dedicated to mixtures of
complex exponentials, its spectral resolution is limitgdHmat of the underlying TF representation. In this paper, we
present a unified probabilistic model called HR-NMF, thatnpiés to overcome this limit by taking both phases and
local correlations in each frequency band into accounts Tiddel is estimated with a recursive implementation of
the Expectation-Maximization (EM) algorithm. Its capdisl are illustrated in the context of audio source separat
and audio inpainting.

Index Terms

Nonnegative Matrix Factorization, High Resolution methoBxpectation-Maximization algorithm, Source sep-
aration, Audio inpainting.

Résumé

La NMF (Nonnegative Matrix Factorizatignest un outil puissant pour décomposer des mélanges deugigna
non-stationnaires dans le domaine Temps-Fréquence (Eper@ant, contrairement aux méthodes a Haute Réso-
lution (HR) dédiées aux mélanges d'exponentielles congglesa résolution spectrale est limitée par celle de la
représentation TF sous-jacente. Dans cet article, noseipi@ns un modeéle probabiliste unifié appelé HR-NMF, qui
permet de s'affranchir de cette limite en tenant compte @ik des phases et des corrélations locales dans chaque
bande de fréquences. Ce modéle est estimé a l'aide d'unenmepitation récursive de l'algorithme Espérance-
Maximisation (EM). Son potentiel est illustré dans le cattede la séparation de sources audio et de la restauration
de signaux audio.

Mots clés

Nonnegative Matrix FactorizatigriMéthodes a Haute Résolution, Algorithme Espérance-Ma&tion, Sépara-
tion de sources, Restauration de signaux audio.
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I. INTRODUCTION

ONNEGATIVE matrix factorization was originally introduced @ rank-reduction technique, which approx-

imates a non-negative matri¥ ¢ Rf*T as a product of two non-negative matricé < R”*X and
H ¢ REXT with K < min(F,T) []. In audio signal processing, it is often used for decosipg a magnitude or
power TF representation, such as the spectrogram [2]. Thenoslwf matrixW are then interpreted as a dictionary
of spectral templates, whose temporal activations areesepted in the rows of matriél. Several applications
to audio have been addressed, such as multi-pitch estim{8]o [4], [5], automatic music transcription![6].][7],
musical instrument recognition][8], or source separati@n [[LO], [11].

In the literature, many variants of NMF have been proposedyrier to enforce some desired properties in the
factorization, such as the harmonicity of the spectral fatep [2], [5], [7], the smoothness of the spectral envedope
[12], [5], [7], the smoothness of the temporal activatioB$ [13], [7], the sparsity inW or H [12], [4], or for
modeling some spectral non-stationarities| [14], [15]. Theppsed approaches generally consist of parameterizing
W or H, or using a predefined dictiona®/ (either parametric or non-parametric, possibly learnddreband),
or they rely on Bayesian inference, which involves some rpdistributions of the model parameters. Several
probabilistic models, involving latent variables, haveidtbeen designed for introducing some a priori knowledge
in NMF. They also permit to exploit well-known statisticalfénence techniques in order to estimate the model
parameters. Those models include NMF with additive Gauswige [12], Probabilistic Latent Component Analysis
(PLCA) [16], mixtures of Poisson components [2], and mixture§&aussian components [13].

Since phases are generally discarded in these nEbdelsonstructing the phase field requires employing ad-
hoc methods[[19]. To the best of our knowledge, apart the tmmdMF which was designed in a deterministic
framework [20], [21], the only probabilistic model that &skthe phase field into account (but in a non-informative
way) is the Itakura-Saito (IS)-NMF_[13]. Separating the sigoamiponents is then proven equivalent to Wiener
filtering. However, the phase field is still ignored when estintalS-NMF, and the spectral resolution of IS-NMF
is limited by that of the TF representation (sinusoids in thee frequency band cannot be properly separated). In
other respects, IS-NMF assumes that all TF coefficients argamtkent, which is not the case of sinusoidal signals
for instance. In the literature, Markov models have thusb@®posed for taking the local dependencies between
contiguous TF coefficients of a magnitude or power TF repreientato account([22],[[23],[124].

In [25], we introduced a unified model called HR-NMF, whichinely takes both phases and local correlations
in each frequency band into account. This approach avoidg @sphase reconstruction algorithm, and we showed
that it overcomes the spectral resolution of the TF reprasient It can be used with both complex-valued and
real-valued TF representations (like the short-time Four@nsform or the modified discrete cosine transform).
In this paper, we go further into detail in the study of HR-NMHe Expectation-Maximization (EM) algorithm
designed for estimating this model is improved:

« numerical stability issues encountered in the previoudempntation([25] have been solved;

o Kalman filtering/smoothing is now implemented in square rfmyn, in order to guarantee the positive-

definiteness of covariance matrices;

o Mmultiplicative update rules are proposed for initializittgg EM algorithm.

Besides, all mathematical derivations are now providechenAppendix. This paper is organized as follows: HR-
NMF is introduced in sectioflll, and our recursive implenatioin of the EM algorithm for estimating this model
is presented in sectidolll. Sectién]lV is devoted to expentakresults, and conclusions are drawn in sedfion V.

Notation

The following notation will be used throughout the paper:
o z: scalar (normal letter),

« v: column vector (bold lower case letter),

o v;: i-th entry ofv (indexed lower case letter),

o M: matrix (bold upper case letter),

o M j): (i,7)-th entry of M (indexed upper case letter),

IMore precisely, phases are discarded in the source signal models the case of multichannel mixtures, phase relationships in the
mixture model can be taken into account via the mixing malrix [17], [18].
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[M, N]: horizontal concatenation d¥Z and NV,
[M; N]: vertical concatenation aM and NV,
« 0: vector or matrix whose entries are all equaloto
» 1: vector whose entries are all equal itp
o diag(.): (block)-diagonal matrix,
o I:identity matrix I = diag(1)),
o M™: conjugate of matrix (or vectorM,
« M"™: conjugate transpose of matrix (or vectdvJ,
« MT: Moore-Penrose pseudo-inverse of mathik,
« E[.]/,: conditional expectation of (.) given,
o Nr(u, R): real (if F = R) or circular complex (iff = C) multivariate normal distribution of meap and
covariance matrixR.
« for a given vectoro of dimensionD, and any subvectos of dimensionD < D (whose entries are a subset
of those ofw), J7 denotes théD x D selection matrix such that = J°"' &

[I. TIME-FREQUENCYMIXTURE MODEL

The HR-NMF mixture model of TF data(f,t) € F (whereF = R or C) is defined for all discrete frequencies
1< f < Fandtmesl <t <T as the sum ofK latent components(f,t) € F plus a white noisex(f,t) ~
./\/]1«‘(0,0'2):

K
e(f,t) =n(f,t) + > (1) (1)
k=1
where
P(k,f)
o c(fit) = > alp,k, f)e(f.t —p) + br(f,t) is obtained by autoregressive filtering of a non-stationary

signal by (f, f):é F (wherea(p, k, f) € F and P(k, f) € N is such that(P(k, f), k, f) # 0),
o bi(f,t) ~ Nr(0,vr(f,t)) wherevg(f,t) is defined as

Uk(fa t) = w(kaf) h(kat)’ (2)

with w(k, f) > 0 andh(k,t) > 0,

o processes andb; ...bx are mutually independent.

Moreover,V(k, f) € {1... K} x {1... F}, the random vectorgy(f,0) = [cx(f,0);...;cx(f, — (k f)+ 1)]
are assumed to be independent and distributed according torior distributioney, (f,0) ~ Nz (i (f), Q(f)~1),
where the meap,, (/) and the precision matri@,.(f) are fixed parametefsLastly, we assume thatf € {1... F'},
vt <0, x(f,t) is unobserved. The parameters to be estimated-are(p, k, f), w(k, f), andh(k,t). This time-
frequency model generalizes some very popular models,lyvigeed in various signal processing communities:

e If 02 =0andVk, f, P(k, f) = 0, (@) becomes:(f,t) = Y 4, bi(f.t), thusz(f,t) ~ Ni(0, Vi), whereV is

defined by the NMFV = W H with Wei = w(k, f) andet = h(k,t). The maximum likelihood estimation
of W and H is then equivalent to the minimization of the 1S-divergenednwen the matrix modéV and
the spectrogranV’ (whereVy, = |z(f,t)[?), that is why this model is referred to as IS-NME]13].

« For given values ok and f, if V¢, h(k,t) = 1, thenci(f, ) is an autoregressive process of ord&ik, f).

o For given values oft and f, if P(k, f) 2 1 andVt > P(k,f) + 1, h(k,t) = 0, thenc,(f,t) can be

written in the formey(f,t) = Zf(ﬁ ) ap zh, wherezy ... zp( ) are the roots of the polynomiat”(*:/) —

Do ( (p k, f)zF®=p_This corresponds to the Exponential Sinusoidal Model (%M))nmonly used
in HR spectral analysis of time series [26].

For these reasons, modEl (1) is referred to as HR-NMF.

%In practice we choosg, (f) = [0;...;0]" andQ,(f) ! = €I, where[ is the identity matrix and is small relative to 1, in order to
both enforce the causality of the latent components and avoid singulacesatr
3Actually HR-NMF also encompasses the more general Polynomial Ampli@mmplex Exponentials (PACE) model introduced[in] [26].
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I1l. EXPECTATION-MAXIMIZATION ALGORITHM

The EM algorithm [[27] is an iterative method which aims to estinthe parameters of a probabilistic model
involving both observed and latent random variables, byinseely increasing the log-likelihood of the observed
variables at each iteration. It consists of two steps calleplectation (E-step) and Maximization (M-step).

In order to estimate the HR-NMF model parameters, the EM d#lguaris applied to the observed dataand
the latent components, . ..cx (here the complete data {s:,¢; ...cx}). In order to handle the case of missing
data, we definé(f,t) =1 if z(f,t) is observed, and(f,t) = 0 else.

A. Square root implementation

As some numerical stability issues have been encountertbdivg previous implementation of the EM algorithm
presented in [25], a new implementation is introduced hehere covariance matrices are represented in their square
root form. We call "square root" of a positive definite matikany square matfikv/R such that/R \/RH =R.
This factorization guarantees th#& remains positive definite, even in the presence of roundimgrerdue to
the finite machine precision. In the following mathematicatihtions, R will often be obtained in the form
R = M M", where matrixM has more columns than rows. The square maifi® can then be computed by
means of a functionC7 (to be understood as the acronym of "lower triangular") hsthat/R = £7 (M). For
instance, functionC7 can compute the thin QR factorization " = Q\/EH, whereQ”Q = I and \/RH is
upper triangular, which implies tha&® = M M = VRVR".

B. Maximization Step (M-step)

In the EM algorithm, the M-step aims to maximize the condiiloexpectation (given the observations) of the
log-likelihood of the complete data w.r.t. the model parteree We first note that:

K
pler...cx,x) = pla/er...cx) 11 plek)
k=1
F T K . 2
pafercex) o 1 [Tewp (0(4,0) (~n(o?) + LISk elior))
f=1t=1
FT ce(f,t)— Pyi"f)a ko f) e (f,t—p)|?
i pler) o 1 [T exo (= Intuh, ich )+ =05l

where symbokx denotes equality up to a multiplicative factor. Thus the d¢thmalal expectation of the log-likelihood
of the complete data is
Q= E/az [ln(p(cl - CKs 'r))]
= B/ In(p(@/cr- .. cx))] + >iey Bre n(p(er))]
It can be written in the forfhQ < Qo + 2K, @, where

F T
Qo=—>_> 8(f,t)In(c®) +e(f,1)/0”, (3)
f=11t=1
F T .
Qr=—3_ > In(w(k, (k1)) + UELSELIMED, (4)
f=11t=1
K 2
(/) = 3£ 0B [[als,) = Y ea(£ 0] ], ©)
k=1
alk, f) = =[a(Lk, f);- s a(PCk, £k, f)] (6)
a(k, f) = [L;a(k, )], (7

“Note that there is an infinity of such square roots.
5L denotes equality up to additive and multiplicative constants which do nondeme the model parameters to be estimated.
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andVk, f, for all 0 < pq,pe < P(k, f),
S(pl,Pz)(k7f7 t) = E/x[ck(f7t _pl)* Ck(fat _pQ)]' (8)

Maximizing Q is thus equivalent to independently maximizigg, with respect to (w.r.t)o? and eachQ@
w.rt. h(k,t), w(k, f) anda(k, f). Since the maximization of);, does not admit a closed form solutio@y, is
recursively maximized w.r{w(k, f),a(k, f)) and w.r.t.h(k, t). Either this recursive maximization is repeated until
convergence inside the M-step, which results in an exact Edrdghm, or only a few iterations are performed,
which leads to a generalized EM (GEM) aIgorith[ﬁ?]

The full mathematical derivation of the M-step is providedAippendix[A. The pseudo-code is summarized in
Tabled[. Its complexity iSO(FTK (1 + P)3), where P = H]gz}x P(k, f). Note that parallel computing permits to

process the< components simultaneously, reducing the cbmputatiomaé o O(FT(1+ P)3).

Inputs: 5(f, 1), e(f,t), VS(k, f,t), h(k,t) Eq.
02:glt;e(f,t)/f§1;6(f,t) @)

Fork=1to K, ®
Repeat (as many times as wantéd)
Forf=1toF,®

_ VS(k, f,1) VS(k, f,T)
m’“’”‘”( VTR D) TR ) o
H

ak. ) = [1.- (58S ) (s27vEe )] @D

w(k, ) = |[VE(k, )" a(k, £)I? @)
End for f;
Fort=1to T, °©
F 2
_ IVSk.f.) Falk, £
R @
End fort;

Normalization of the NMF:H}, = mtax(h(k,t)),

w(k, ) = Hew(k, f), h(k,t) = h(k, 1)/ Hy
End repeat;
End for k;
Outputs:o?, a(k, f),w(k, f), h(k,1).

TABLE |
PSEUDO-CODE OF THEM-STEP

C. Expectation Step (E-step)

The purpose of the E-step is to determine the a posterioriitnjjﬁmr@ of the latent components;,(f,¢) given
the observations(f,¢). Since these random variables are mutually independenifferent values off, the E-step
can process each separately. Nevertheless, the computational complexitydirect implementation of the E-step
would beO(FT?3K?), which is prohibitively expensive whefll becomes high. We thus propose a faster recursive
implementation of the E-step based on a linear state spaceseyation and Kalman filtering theory [28].

Note that similar state space representations have aliezaty proposed for estimating mixtures of autoregressive
processes in the literature of time series analysi$ [29], fan addressing the particular problem of blind source
separation (see.qg.[30], [31], [32], [33]). However, those state space repnéstons were designed for modeling
mixtures of (frame-wise) stationary signals in the tempd@main, whereas the proposed HR-NMF model deals
with mixtures of non-stationary signals in the time-freqag domain. We thus present in this section a specific

®The GEM algorithm still guarantees that the log-likelihood of the observéal idanon-decreasing.
"According to the notation introduced in sect@@nJi{ = [1;0;...;0].

This loop can be processed in parallel.

"This loop has to be processed sequentially.

%and more precisely(f,t) and S(k, f,t) defined in equation§]5) anfl(8).
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linear state space representation and the correspondingaidilter/smoother, which have been especially designed
for the HR-NMF model.
Let us first introduce the linear state space representatitneoHR-NMF model defined in equation] (1):

Y(f.t) = A(f)v(f.t = 1) +b'(f.1), 9)
2(f,t) = w(f) Ty (f,8) + 0/ (f,1), (10)
where
e KC(f) denotes the seftk € {1... K}/P(k, f) > 1};
o Vf b, Vk e K(f),
C(k},f,t) - [ck(fvt);n-;Ck(f7t_P(k7f) + 1)]7
« the state vectoty(f,t) containsc(k, f,t) Vk € K(f);
« the state transition matrix is

A(f) = diag({A(k, f)}rex(s))s
where A(k, f) = a(1,k, f) if P(k, f) =1, otherwiseA(k, f) =

a(Lk,f)...a(P(k,f) = 1,k, f) a(P(k, )k, f)
I 0

o Vf,t, vectore(f,t) containsc(f,t) for all k € K(f),
« the process noise is

/ _ (D)
b () = Jf,) b b), (11)

where notationJZ((}c’f)) was defined in sectiofl |, anbl(f,¢) containsby(f,t) Vk € K(f); thus b(f,t) ~
Nr(0, Ry(5.4)), where R, s,y = diag(v(f,t)) andwv(f,t) containsvi(f,t) Vk € K(f);
« the observation is:(f,t);

« the observation matrix is(f)”, where

u(f) = I3 1 (12)
« the white observation noise i8(f,t) = n(f,t) + >4 /p(, ry=0 bk (f, 1) ~ Nr (0, a?(f,t)), where
Aft)=ac+ Y u(fi1), (13)
k/P(k,f)=0

The full mathematical derivation of the E-step is provided ippandix[B. The pseudo-code is summarized in
Tablel. Its overall computational complexity é( F'7 K3 (1+ P)?3). Note that parallel computing permits to process
the F' frequencies simultaneously, reducing the computatiang to O(TK3(1 + P)3).

In Table[dl, the following notation has been used:

o Vf,t,d(f,t) containscy(f,t — P(k, f)) Yk € K(f),

o Vf,t, vectorc'(f,t) containsci(f,t) for all k ¢ K(f),

e Vf,t, vectorv'(f,t) containsvy(f,t) for all k ¢ KC(f),

o Vf,t,Vk € K(f),

E(kafvt) = [Ck:(fvt);--';Ck(.ﬂt_P(kvf))]7

o Vf, t,¥(f,t) containse(k, f,t) for all k € K(f),

« Vf,t, and for any random vectar, v/ is the conditional expectation ef given {x(f,1)...z(f,t)}. Besides,
R/ is the conditional expectation ¢5/') (2/)7 given{z(f,1)...z(f,t)}, wherez/! = v—ov/*. Similarly,
for any vectorsv; andwvo, Rjjjfw is the conditional expectation Qﬁ{?t) (%g’t)H given{z(f,1)...z(f,t)}.

Other letters in TablE]ll denote temporary variables usetthéncomputations.

D. Initialization of the EM algorithm

Because the proposed implementation of the EM algorithm irsneomputationally demanding, we present
in this section a fast initialization method that permitsréaluce the number of subsequent EM iterations to be
performed.
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Inputs after the M-stepz(f,t), 6(f,t), o2, A(f), vk(f,t) Eq.
Initialization: Vf, L(f,0) =0, v/°(f,0) =0, VR (}.o) = V&I
A = TG+ T @
VE ulf) =T f; 1 @)
Vf,t,(f(f, )_U + Z 'Uk(f,t) m)
k/P(k,f)=0

Forf=1toF,®
Fort =1 to T (forward pass): ’
Predict phase:

Rhi1 fit—1 =},
VRS0 = LT ([4 (f)\/ﬁwft 0 I VR |) @

e = (VRED ) VRIS g e
V" I:cT(u“;:; Tgoe IVRY) (@D
t nH t—1
fﬁ(f;)—ﬁT(Jlgti fi(ft)) @D
(g0 = T A (=) @8)
YY) = AN A 1(f7t*1) @3
¢t = d N (f ) - @ I () @
Update phase:
ulf.1) = (VRYG0) " u()) @)
e(f,t) = o*(f,1) + st 8 @9
A(ﬁt)—iéf;f o Bt @
VR (1) = VR (1) = A/, t)%?(m (62)
(f.t)
1 (f 1) = x(f,) —ul(f)) AT 0) @9)
¥, t) AL )+ A D) €N (f ) e @3
L(f,t) < L(f,t—l)— (10 (e, 0) + <5405 @)
End for¢;
Fort =T downto1 (backward pasy: ’
Wiener filtering phase:
HT(f,8) = a(f, t) —u())T¥T(f, 1) @3
T (f,t) = 2L (,4) 87 (£,1) @
WD = (VR0 Tu(f) @)
e(f.t) =4(f, )(\ (f, )|2+Hu(f, 1) . @)
e, ) = 8(f,) s ((2(f:8) = 0*) + e (1,1)) | @D)

)
vk ¢ K(f), V8 (k, 1,1) zzm
V@2(F.8) = 8(F, e (f,0) + B (£, 1) @)

Smoothing phase:
f,T F(fot) g frt—1H (s, H
\Fw ) = JZ(f @ VR 0I5 o
F(f,t) f F(£ 0 H F(f,t) fvt L 5(f.1) )
jv(ft VR (105 s T, o VT (B%)

\/Rf\/(j,t—l) =LT (J'Y(ﬁ i) 1 \/;y(f t)) ©4)
d"T(ft) = ¢+ @Iy (1) &)
T = TG0 + T (1) is3)
A1) S &
Vk € K(f),VS(k, f,t) =
H f,T o * -
LT (JZ((If ;)t) [\/E¥(f7t)7 PYf’T(.ﬁ t)i| ) )
End for¢;
End for f;
Outputs:e(f,t), V'S(k, f,t), and L(f,T) and¢l"" (f,t) if wanted
TABLE 1l

PSEUDO-CODE OF THEE-STEP
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1) Multiplicative update rules:When initializing the EM algorithm, allP(k, f) are first assumed to be zero.
In this case, the log-likelihood of the observed mixturef,¢) defined in equation{1) can be simply written as

follows: h ,
c lz(f,t)
L= ;;a(f,t) (m (d2(f. 1) +W> (14)
where «
o*(f,t) = o>+ > _w(k, f)h(k,1). (15)
k=1

Differentiating this log-likelihood w.r.t any parametérc {02, w(k, f), h(k,t)} yields

oL Fr 1 lz(f. ) 00*(f,1)
56 =~ 225 (02(f,t) B a4<f,t>> o0

f=1t=1

The standard multiplicative update rule [34] for maximizibgv.r.t. the nonnegative parametecan then be written

as:
F T x(f,t)|* o> (ft

o > =1 2= 0(f51) |o‘(1(f,)t|) A
Oo2(f,t) *

SE S 6(F.) s )

Since% > 0, this rule guarantees thétremains nonnegative over the iterations. As proven in Agpe@1,
the multiplicative update rules summarized in Tablé Il mdke log-likelihoodL non-decreasing. Their overall
computational complexity i€ (FTK).

2) First E-step: After the multiplicative updates, the E-step should be ruthwhe desired values aP(k, f),
which implies thata(k, f) are set to zero. However, the E-step as presented in Tablsuhees that'k € IC(f),
a(P(k, f),k, f) # 0, which guarantees that matrig(f) is invertible, so that all matrix inverses and divisions in
table[Tl are well-defined. Since this property does not standitlization, a specific implementation of the first
E-step must be used, which is derived in Apperidix C2 and suimethin TableTll. Its computational complexity
is O(FTK(1+ P)3).

3) Summary of the proposed estimation meth®lde proposed method for estimating HR-NMF consists of three
steps:

1) Initialize all filters to identity, and all nonnegative pameters to random values;

2) Make all non-negative parameters converge and perfoetitst E-step as in table]ll;

3) Make the log-likelihood further increase by estimatihg filters along with the other parameters, by means

of the EM algorithm summarized in tablBs | andl 11.

0

IV. APPLICATIONS

This section aims to provide a basic proof of principle of HRHN We consider two examples of straightforward
application@: audio source separation (sectlon 1V-B) and audio inpagn{sectior [V-C). Indeed, since the E-step
determines the a posteriori distribution of the latent comgntscy(f,t) givenz(f,t), even at time-frequency bins
where the observation is missing, this distribution can beduto reconstruct the latent compor% The test
signal is a real piano sound, composed of a C4 tone playe@ a@tn= 0 ms, and a C3 tone played at 680 ms
while the C4 tone is maintained. The sampling frequency 0880, andx(f,t) is obtained by computing the
STFT of the input signal with?” = 400 and T = 60, using 90 ms-long Hann windows with 75% overlap (the
corresponding spectrogram is plotted in Figure 1).

"The Matlab code, as well as the sound files of the various signals comjputédese experiments, are available online at
http://perso.telecom-paristech.fr/rbadeau/unrestricted/HR-NMF- stionsazip.

2As could be expected, our experiments showed that the a posterioifbtistn permits to reconstruct the latent components much more
accurately than the a priori distribution.

¥ the following experimentsgy (f, ) will be estimated as the posterior megh” (£, ¢), but in future work the second moments of the
a posteriori distribution should also be taken into account in order to azlaieviore realistic synthesis.


http://perso.telecom-paristech.fr/rbadeau/unrestricted/HR-NMF-simulations.zip
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Inputs: z(f,t), o(f,t) Eq.
Initialize o2, w(k, f), h(k,t) to nonnegative random values
Multiplicative update rules:
Vit o®(ft) = 0 + 3, wik, Ak, 1) @
Repeat (as many times as wanted)
Z Z S(f:0)|x(f,0)]?
o? = 2= El Y (B9)
Zf 1Zt 1 :’-’(fftg) ,
Zf Lw(k, f)5(f t)\(zf({)t)l

Vk,t, h(k,t) = h(k,t) (60)
Zf:l ’LU(k‘, f) ggé{ff,z)
Wt o?(f,1) = 0%+ 3 wik, Nh(k,?) @s)
S(f.0)]x(f,t)]

o2 = Zf 1 Zt 1 as‘l((ffg) )
Zf IZt 1 02(},0 )
ST h(k, t)6<f,ty(m;{3t)|

Vk, f, w(k, f) = w(k, f) == i ()

Sy bk, ) 55

Vit o?(f,t) = o® + 32, w(k, f)h(k,t) @)
C = 2

E vt Y0 (n(02) + 2002 @
Normalization of the NMF¥k, H), = m?x(h(k,t ),

w(k, f) = Hyw(k, f), h(k,t) = h(k,t)/Hg
End repeat;
a(ka f) = Jl
First E-step:
2 2

V1.t e(f, B) = 6(f.1) 55 gaZ(f, t)— 0%+ 25400 @)

VE, f,t, (f, t) = 8(f, 1) ekda(f, 1) ©3)

Yk, £ t, Rcw b =/ B2 (F ) = 5(Fu(F, D) |@EE)

vk, f,t, \/Rc(kft) = diag (fck(ft) \/Eck(ft Pk, f))) ()
vk, £t VS £,0) = £T (VR 10,6k, £,0)] ) |@8)
Outputs:o?, a(k, f), w(k, f), h(k,t), e(f, ), \/§(k7f, t).

TABLE 11l
PSEUDO-CODE OF THE INITIALIZATION METHOD

A. Monotonicity of the log-likelihood and computation time

Before processing this mixture piano sound, our first expeminconsists of learning the spectral parameters
w(k, f) anda(k, f) from the fully observed STFTS(f,t) = 1) of the first680 ms of the two isolated tones (in the
case of C4, this corresponds to the first half of the STFT repredentFigure ]l). Each piano tone is represented
by a HR-NMF model of orde# = 1, involving autoregressive filters of ordét(k, /) = 2, which permit to model
the beating in the partials of piano strings. The two HR-NMFdele are thus estimated by running 30 iterations
of the multiplicative update rules in Tab[ellll, and 10 itéoas of the EM algorithm in Tables | arid II. In order
to make a comparison, the IS-NMF models of the two tones (itk 1, o2 = 0 and P(k, f) = 0) are estimated
by running 30 iterations of the standard multiplicative afedrules([8] (defined by equatioris{15),1(60) and (61)
in Table[T).

Figure[2-(a) represents the log-likelihood of the estima@ddmodels as a function of the iteration number. The
black dash-dotted line corresponds to the IS-NMF model: a&ard, the multiplicative update rules make the
log-likelihood (defined in equationg(114) arld15) with = 0) non-decreasing. The red solid line corresponds to
the initialization of the HR-NMF model in Tabledll: as praven Appendix[C1, the multiplicative update rules
make the log-likelihood non-decreasing again. Finally, thee dashed line corresponds to the EM estimation of
the HR-NMF model: as explained in sectibn 1AD3, the EM algon makes the log-likelihood (computed in
equation [(4D) in Tablglll) further increase.
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Spectrogram of the original mixture signal
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Fig. 1. Spectrogram of the input piano sound

Figure[2-(b) represents the same log-likelihoods as funstaf the elapsed tifié 1t can be observed that one
iteration of the EM algorithm is much more time consuming tloawe iteration of the multiplicative update rules.
Thus the initialization with multiplicative updates permib reduce the overall computational time.

x 10° (a) Log-likelihood of C4 model

—-— IS-NMF Multiplicative updates
—— HR-NMF Multiplicative updates
— — — HR-NMF EM algorithm

-2t

-4

Log-likelihood

-6

0 5 10 15 20 25 30 35 40
Iteration number
x10° (b) Log-likelihood of C4 model

Log-likelihood
o N A O 0

—2F

. .
10 10 10° 10 10
Elapsed time (s)

Fig. 2. Monotonicity of the log-likelihood

B. Source separation

Here the observation is the whole STETf,t) represented in Figulg ¥(f,¢) = 1), and the objective is to
separateK = 2 componentsc(f,t). The spectral parameteis(k, f) and a(k, f) are learned as explained in
section[1V-4, and parameters(k,t) and 0% have to be estimated from the mixture. Again, an IS-NMF model
(with P(k, f) = 0 ando? = 0) is estimated by running 30 iterations of the multiplicatwpdate rules defined by
equations[(I5) and(60) in Tallellll. The HR-NMF model (wittik, /) = 2) is estimated by running 60 iterations
of the EM algorithm, initialized with the temporal activat®h(k,t) of the IS-NMF model.

Figure[3 focuses on the results obtained in the frequency awnthich corresponds to the second harmonic
of C4 and to the fourth harmonic of C3 (around 540 Hz). These simoisoidal components (whose real parts

This experiment was performed with Matlab(R) 7.10 64-bit, run in a Wirel@ system with 2.66 GHz Intel(R) Xeon(R) CPU and 6
Go RAM.
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are represented as red solid lines) have very close freggsenghich makes them hardly separable. As expected,
IS-NMF does not properly separate the components when thegfapy from¢ = 680 ms t01.36 s: the observed
mixture signal is wrongly fully assigned to the second congyu (the estimated components are represented as
black dash-dotted lines). As a comparison, the componeatiteaed by HR-NMF (blue dashed lines) better fit the
ground truth.

— (a) First component (C4)

N

T : . .

o

<t

©v

L

c

o

13

<

ey

T -0 L L L L L L

N 0 0.2 0.4 0.6 0.8 1 1.2
Time (s)

R (b) Second component (C3)

N soF . . " :

S 20

v
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15
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8 -40

£ 60 . . . . . .

< 0 0.2 0.4 0.6 0.8 1 12
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Fig. 3. Separation of two sinusoidal components. The real parts of thedmponents are plotted as red solid lines, their IS-NMF estimates
are plotted as black dash-dotted lines, and their HR-NMF estimates are psttadde dashed lines.

C. Audio inpainting

In this last experiment, the second part of the STFT (friom 680 ms to 1.36 S) is unobservedi(f,t) = 0),
and in the first part (from = 0 ms tot = 680 ms), only 50% of the TF coefficients( f, ¢) are randomly observed.
Since the second tone is completely unobserved, our purgadserecoverk = 1 component. Again, the spectral
parametersuv(k, f) anda(k, f) are learned as explained in sectlon 1V-A, and parameététst) and o2 have to
be estimated from the observations. The IS-NMF model (#itlk, f) = 0 ando? = 0) is estimated by running
10 iterations of the multiplicative update ri8sefined by equationg (]15) and {60) in Tablg Ill. The HR-NMF
model (with P(k, f) = 2) is estimated by running 10 iterations of the EM algorithnitidtized with the temporal
activationsh(k, t) of the IS-NMF model. Figurél4 shows that the C4 tone is correfpnstructed with the HR-
NMF modeld. Moreover, the noise in the unobserved part has been reméged comparison, IS-NMF is not
appropriate for audio inpainting, because it does not takecbrrelations between contiguous TF coefficients into
account: the missing coefficients are estimated as theieposimean, which is zero.

V. CONCLUSIONS

In this paper, we presented a hew method for modeling migtafenon-stationary signals in the time-frequency
domain. The HR-NMF model was introduced and an expectatiarimzation algorithm was designed for estimat-
ing its parameters. This technique was successfully appliesburce separation and audio inpainting. Compared
to standard IS-NMF, the proposed approach natively takels pbases and local correlations in each frequency
band into account. It was shown that it achieves high reolutwhich means that two sinusoids of different
frequencies can be properly separated within the same dreguban@. Besides, HR-NMF is also suitable for
modeling stationary and non-stationary noise.

BIn the second part of the sound, paramefe(k, t) cannot be estimated since there is no observation; there are thus set.to ze

1A listening test did not permit to perceive any artifact in the signal recoci®d from the estimated TF component by a standard
overlap-add technique.

Note that contrary to standard high resolution methods, the proposedaappis able to handle mixtures of amplitude-modulated
sinusoids starting at different times; it also performs the clustering afetlsénusoids into several components according to their temporal
dynamics.
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Spectrogram recovered with HR-NMF
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Fig. 4. Recovery of the full C4 piano tone

In future work, this approach could be transposed into a Biayeframework, by applying some prior distributions
to the model parameters, in order to enforce some desirabpegies such as harmonicity, sparsity, or smoothness.
Besides, the basic NMF that has been used for modeling thetationarities in the distribution @, ( f,¢) could be
replaced by any non-stationary parametric model, such abthe many variants of NMF. The model could also
be extended in several ways, for instance by taking the lediwas across frequencies and/or across components
into account, or by representing multichannel signals. &ihe proposed EM algorithm is time consuming when
processing realistic data without using parallel commytadternative methods with better computational compjexi
and convergence properties should be developed for estgrtae model, for instance by using conjugate gradient or
modified Newton-Raphson algorithms, or by introducing appnations such as those used in variational Bayesian
inference.

The possible applications of this work are numerous: beyanuice separation and audio inpainting, all usual
applications of NMF and PLCA can be considered, such as mitittirgstimation and automatic music transcription.
Besides, we plan to address new applications, such as tlscphgnalysis of impact sounds involving a mixture of
damped sinusoids and non-stationary noise, or the developaf a new hybrid audio coder, in-between transform
coding and parametric coding.

APPENDIX
A. Mathematical derivations of the M-step
1) Maximization ofQ w.rt. ¢2: The maximization ofQ, defined in equatior{3) w.r.tz? leads to

F T F T
02:ZZe(f,t)/Zz5(f,t). (16)

f=1t=1 f=1t=1
2) Maximization ofQy w.r.t. h(k,t), w(k, f), a(k, f,t): The global maximization of); defined in equatiori{4)
does not admit a closed form solution. Thus an iterative &lyoris proposed below, which recursively maximizes
Qi W.rt. h(k,t) and w.rt.(w(k, f),a(k, f,t)).
First, the maximization of); w.r.t. h(k, f) leads to
F

1 o~ a(k, ))"S(k, f.t)a(k, f)
h(k,t) = =
A D
which can be rewritten in the following square root form:
F 2
e t) = 3 (II\@(k,f,t)Ha(k,f)\> | an
f=1 FU)(]C, f)



INSTITUT MINES-TELECOM; TELECOM PARISTECH; CNRS LTCI, TEENICAL REPORT 13

Then the maximization of);, w.r.t. w(k, f) leads to

w(k, f) = a(k, ) S(k, ) a(k, f),

T
whereX(k, f) = & T2 S(k’];’t), which can be rewritten in the following square root form:

w(k, ) = |VE(k, )" alk, )], (18)
where N vE
_ S(kval) S(kv.ﬂT)
VI(k, f) = LT ( D JTRGT ) . (19)

Finally, the maximization of);, w.r.t. a(k, f) is equivalent to the minimization dfv'S(k, f)?a(k, f)||?> under
the constraint that the first coefficient @fk, f) be equal tol. The solution to this quadratic programming problem
is

alk, f) = [1, — (147 VE(R. 1) (J%.H@w,f)fr. (20)

Like in most NMF algorithms, the NMF factore(k, f) and h(k,t) are normalized at the end of the M-step
in table[, in order to prevent any possible numerical inditgh(this normalization does not affect the resulting
variancesvg(f,t)).

B. Mathematical derivations of the E-step
Note that the E-step in Tablg Il consists of two passes:
« the forward passcomputesy/*(f,t) and \/ﬁi’(tﬂt) fort=11t0T;
« the backward passomputesy/”(f,¢) and \/Tli’(?t) for t = T downto1.
1) Forward pass:The forward pass (fot = 1 to T') consists of two phases:
« the predict phasecomputesy/*~1(f,¢) and \F];(tf tl

« the update phaseomputesy’(f,t) and \fv i)
a) Predict phase:As will be explained in section B2b, in order to later perfothe backward pass, it is
necessary to compute the following matrices and vector enfoiward pass:

o/t = (Rf<tft1)> R sy @)
W= RIS @RI (22)
ST = @t f ) — @T A g g, (23)
Taking the expectation of9) given(f,1)...z(f,t — 1) yields
A (f8) = AN AT St 1), (24)
Then subtracting equatiof (24) to equatibh (9) yields
FHLD = ANFTN (L= D)+ V(). (23)
Note thatd(f,t) = 85; it ~(f,t —1), thus
e (f ) = J”(‘f’t)‘”va’t‘l(f,t —1), (26)
7N = DISfee1 gy ), 27)

Equations[(I1),[(25) and(R7) yield
T = ADFN S = D) + T ()
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where

570 T(00) (- H
Alf) = Jz(f,)A(f)+Jg(ft)Jg(ft) : (28)

(f, t) givenz(f,1)...z(f,t — 1) finally yields
Ri:t_l — Z(f)th 1 Z(f) J’Y(.ﬁt)R ( )J’Y(.ﬁ ) ,

Taking the expectation of "~ (f, )5 "

Y(f:1) v(ft=1) c(f:t) c(f:t)
which can be rewritten in the following square root form:
fit=1 fit— (f,t)
VR = LT ([ANVR o0y TV Ry 1)) - (29)

Besides, note tha®/'~! as defined in equatiofi_(21) is the solution to the following dfatic programming
problem:

Ft=1H s e
VR (I - 90

e/ = argmin
L

Therefore®/'~! can be rewritten in square root form:

v = (Vi) (VR ) &

Finally, note that\/ﬁi’(t;tl) and ¥/~ as defined in equatiofi {R2) can also be rewritten in squarefooot:
VR = £T <J” 1 VRL, ) : (31)
N 1_£T<<J”(ft)> Tigner ) ffft)> (32)

b) Update phaseWhetherz(f,t) be observed or not,

I fo(.1).(£,0)
= WO, 0/2(f,1)...a(f,t = 1)) -
+O(F ) (p(a(F.0)/(£.1))

—5(7.0 W(pla(f.)/a(£,1) . .a(f.t = ).

Identifying the quadratic terms iry(f,t) in equation [(3B) and substituting equatién](10) leads toptexision
matrix Qﬁ;’ (defined as the inverse of the covariance mam%c t))

u(f) u(H)"

Qly = Qe + U=

Then the matrix inversion lemma[35, pp. 18-19] yields
fit—1 fit—1
Ry w(DuD R

Rfat — th 1 , (
0 = ot O G R Hulf)
which can be rewritten in the following square root form:
fit fii-1 J)H
VR = VR - 2( D (34)
1+ g\t
e(f.1)
where
ft 1
p(f,t) = (\Fwt) u(f) (35)
E(fa t) = ( ) )+ H/‘l’(fa )H2 (36)
O(f,t fii—1
At = MO VRE . (37)

e(f,t)
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Then identifying the linear terms i(f,¢) in (33) yields
YIS ) = AP + A ) (fo 1) (38)

where
PU(f, 1) = a(f,0) — u(H) YL o1). (39)
Finally, identifying the terms which do not depend §tf, ) in equation [(3B) shows that if( f, ¢) is observed,
2(f, /(1) (£t = 1) ~ N (wl) A1 (L)1)
This permits to recursively evaluate the log-likelihoddf, ) = In(p(xz(f,1)...x(f,t))) of the observed data:

Ef’t 2
MﬂﬂELUJ—U—MﬁQCMdﬂm+’E&gﬂ>- (40)

2) Backward passThe backward pass (fdar= T downto 1) consists of two phases:
« the Wiener filtering phasealculatese” ' (f,t) and mg}it) (wheree(f,t) = [c(f,t);c(f,1)]);
« the smoothing phaseomputesy/”(f,¢ — 1) and \/R];’(?t,l).

a) Wiener filtering phaseNote that, whether:(f,t) be observed or not,

In(p(e(f, ),C’(ﬁ )/l’(ﬁ 1)...a(f,T)))

- S
+ n c(f.t),x

= In(p(e(f, )/w(f 1)...x(f, (41)
+6(f, ) In(p(z(f, 1)/ (f
—6(f, ) In(p(z(f,t)/c(f, 1) )

Identifying the quadratic terms ia(f,¢) in equation[(4]l) leads to the precision mat@géft):

‘—‘\.

Qc(ft = diag <Q£&?t> diag(v'(f, t))*1>

H
1 . 11
+5(f7t) |: 1 O :| dla‘g (0—27 a-z(ft)) |: 1 O :|
Applying the matrix inversion lemma [35, pp. 18-19] yields
5T S(fit
RIT, = diag (RC( - diag(v/(/, ;)) LEZRS
0 (R(];c(ft) )’U f7 t)H
Jv'(f,t)

17R:T 1

VLR DT (1= o (f (£
Identifying the linear terms i(f,t) in equation [(41l) yields

iy DD
SN = )

o' (f,1) el (f.1), (42)
where

S T(f.8) = a(f,t) — u(H)TAT(f,1). (43)
Thene(f,t) introduced in equatior]5) is obtained as

e(fat) = 5(f7t E/m U.%' fv t) - 1Hc(f7 t) - 1Hcl(f7 t)‘Q} (44)

2 5 2
U,)(ﬁ)<W(ﬁ0— 2) ¢ (ﬁ)(ﬁ)) (45)

where

¢(£,6) =604 (I T DR+ 1/ (£ DIF) (46)
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WL 1) = (VR ) u(h), (47)
andVk ¢ K, vS(k, f,t) in (8) is obtained as

VB(k 1.0) = /B [ln(.)7]

(48)
= /BELJ@2(£.8) = 3(f (1) + el (1, 1).
b) Smoothing phaseNote that
In(p(¥(/, )/x( 1)...a(f,T)))
= ln p(d(f, O/, 1), x(f,1) . x(f,t = 1))
In (p(7(/,6)/(1, 1) . (/. 7)) 49)
= (f ft)/x(f, ) (ft—1>))
+1n (p(y(f, ) /=(f, 1) (f,T)))-
Identifying the quadratic terms iff(f,¢) in equation [(4P) leads to the precision mat@%: b
_ f,t S ft £.T fi-1\ A H
Qi = Qs + I <Q () Qw(ﬁt)) Tt
f7T f7 i
Then Rﬁ(f’t) can be updated froni, () according to
£.T ) pf T UDH A0 pt T A H
R(f(t)) Ty B )(Jv(ﬁ) +Jd)( ,>Rd<ft>']d<f,(> , (50)
([t pf,T () (£t (S
TR G nagnTusy *Tarn BilnagoT
where
£, T f,T fit— 1
R roaisn = Bign ® (51)
f,r fit—1 fT fit—1
Rirey =¥+ Rigaya0®" (52)

and matrices®’~! and ¥~ were defined in equation§ (21) arld](22). Equatiod (50) can beittew in the
following square root form:

T t) H T
\/> () = JV(f ‘I’f’t 1 \/> ft)']’y )

(53)
F(f:t) (£t F(f:t) ft Ly (.
F T OVRL G T+ T v )
£T
Then R, V(1) is extracted fromRh(f,)
rT o Horm 5500
Bty = Tty BTty
which can be rewritten in the following square root form:
T T
VR 1 =LT <J” e " \/Ew’t)> : (54)
Similarly, identifying the linear terms ify(f,t) in @39), 57 (f,t) can be updated fromy/T(f,t) according to
T (fot) = T (o) + T dr T (£,1) (55)
where .
dll(f,1) = @M1+ @A (111, (56)

and vectorg/ ! was defined in equatiof (23).
Then~/T(f,t — 1) is extracted froniy/ 7 (f,t) as

V(b= 1) = T8 5T (), (57)
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Finally, Vk € K, S(k, f,t) in (8) is obtained as

() s F(£.0)
(k f7 ) JZ(k;ft) (f7 ) kft)

where S(f,t) = (R%: " + 5T (f, ) 55T (f,t)7)*, which can be rewritten in the following square root form:
%ww>zﬁ@%%[fﬂﬂfﬂmﬂ) (58)

C. Mathematical derivations of the initialization method
1) Analysis of the multiplicative update rules:

Proposition 1. The log-likelihoodL in equation(14) is non-decreasing under the following updates:
)z (f,t)]?
52— Zf IZt 1 fg4‘f{) A
Zf 1Zt 1 o'2ft)
t)|x(f,t
Sy w(k, ) ILOELOE
fit)
Zf:l ( ) )02((f,t)

(59)

Vk,t, h(k,t) = h(k,t) (60)

Proof of Propositior1L:

L(6%, h(k,t), w(k, f))
F T
= =2 2 a0 (630 + (62— 0?)
f=1t=1
K ~
+ 22 wlk )(h(k, ) = hik, 1))
} jz(f, t)?
+ o2 &202 K w(k,f)h(k,t) h(k t)UQ(f,t)>
a2 (f0) Z:: o2(f1) h(k,t)
F T
> =Y 5o ( (0*(£:1)
f=1t=1

K

+rty (67 = o) L wlk, (k1) = bk, 1)
2 2 K_w , 2
o2 lz(f,t)] s (k,f();lg,t) h\a:(f )] )

a2 (ft) 6202(f,t) ) hkt)o2(f.0)
o? " h(kt)

k=
= L(o% h(k,t),w(k, f))

The first equality is a rewriting of.(62, h(k, t), w(k, f)); the inequality is due to the concavity of functiom(.)
(which is upper bounded by its first order Taylor expansiord & the convexity of functionl/(.) (which is
upper bounded by Jensen’s inequality); the last equaliybtained by substituting the updatés](59) dnd (60) and
identifying the resulting expression with(c?, h(k,t), w(k, f)). [ |

Proposition 2. The log-likelihoodL in equation(14) is non-decreasing under the updai&s) and

T S(f )|z (f0)1?

EMMM@

VEk, f, w(k, ) = w(k, f)

The proof of Propositiofi]2 is the same as that of Proposiilon 1.



INSTITUT MINES-TELECOM; TELECOM PARISTECH; CNRS LTCI, TEENICAL REPORT 18

2) First E-step: Given z, all time-frequency samples(f,t) are independent and

o’ o?(o? Y o2
M N <6(f7 2 U2gc((ff7t§)’ ( (f:y];)(f t)<f’ : ))
thuse(f,t) defined in equatior(15) is obtained as

o?(f,t a?(f.1)

In the same way, giver, Vk all time-frequency samples;(f,t) are independent and

en(£.6) ~ Ne (" (1.0, BLT, )

(1) = (F.1)— 2)<w%ﬁw—a%+””“fwﬁ). 62)

where
IT(f0) = <ﬁ>W“” (.1). (63)
ﬂ),/ V (f,t) = 0(f, t)or (£ 1) (64)
ThusVk, f,t, T f f
VR, Ry (. .0 = diag (fck ) - \/i:k (ft—P(k f))) (65)

Finally, Vk € K, S(k, f,t) in (B) is obtained as

Sk, £.6) = (RLL )+ (ks £, (0, £.0)7)

which can be rewritten in the following square root form:
\/g(kafat) - ([fc(k ft)> (kafat)} > : (66)
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