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Abstract

Nonnegative Matrix Factorization (NMF) is a powerful tool for decomposing mixtures of non-stationary signals
in the Time-Frequency (TF) domain. However, unlike the HighResolution (HR) methods dedicated to mixtures of
complex exponentials, its spectral resolution is limited by that of the underlying TF representation. In this paper, we
present a unified probabilistic model called HR-NMF, that permits to overcome this limit by taking both phases and
local correlations in each frequency band into account. This model is estimated with a recursive implementation of
the Expectation-Maximization (EM) algorithm. Its capabilities are illustrated in the context of audio source separation
and audio inpainting.

Index Terms

Nonnegative Matrix Factorization, High Resolution methods, Expectation-Maximization algorithm, Source sep-
aration, Audio inpainting.

Résumé

La NMF (Nonnegative Matrix Factorization) est un outil puissant pour décomposer des mélanges de signaux
non-stationnaires dans le domaine Temps-Fréquence (TF). Cependant, contrairement aux méthodes à Haute Réso-
lution (HR) dédiées aux mélanges d’exponentielles complexes, sa résolution spectrale est limitée par celle de la
représentation TF sous-jacente. Dans cet article, nous présentons un modèle probabiliste unifié appelé HR-NMF, qui
permet de s’affranchir de cette limite en tenant compte à la fois des phases et des corrélations locales dans chaque
bande de fréquences. Ce modèle est estimé à l’aide d’une implémentation récursive de l’algorithme Espérance-
Maximisation (EM). Son potentiel est illustré dans le contexte de la séparation de sources audio et de la restauration
de signaux audio.

Mots clés

Nonnegative Matrix Factorization, Méthodes à Haute Résolution, Algorithme Espérance-Maximisation, Sépara-
tion de sources, Restauration de signaux audio.
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I. I NTRODUCTION

NONNEGATIVE matrix factorization was originally introduced as a rank-reduction technique, which approx-
imates a non-negative matrixV ∈ RF×T as a product of two non-negative matricesW ∈ RF×K and

H ∈ RK×T with K < min(F, T ) [1]. In audio signal processing, it is often used for decomposing a magnitude or
power TF representation, such as the spectrogram [2]. The columns of matrixW are then interpreted as a dictionary
of spectral templates, whose temporal activations are represented in the rows of matrixH. Several applications
to audio have been addressed, such as multi-pitch estimation [3], [4], [5], automatic music transcription [6], [7],
musical instrument recognition [8], or source separation [9], [10], [11].

In the literature, many variants of NMF have been proposed, in order to enforce some desired properties in the
factorization, such as the harmonicity of the spectral templates [2], [5], [7], the smoothness of the spectral envelopes
[12], [5], [7], the smoothness of the temporal activations [2], [13], [7], the sparsity inW or H [12], [4], or for
modeling some spectral non-stationarities [14], [15]. The proposed approaches generally consist of parameterizing
W or H, or using a predefined dictionaryW (either parametric or non-parametric, possibly learned beforehand),
or they rely on Bayesian inference, which involves some prior distributions of the model parameters. Several
probabilistic models, involving latent variables, have thus been designed for introducing some a priori knowledge
in NMF. They also permit to exploit well-known statistical inference techniques in order to estimate the model
parameters. Those models include NMF with additive Gaussiannoise [12], Probabilistic Latent Component Analysis
(PLCA) [16], mixtures of Poisson components [2], and mixtures of Gaussian components [13].

Since phases are generally discarded in these models1, reconstructing the phase field requires employing ad-
hoc methods [19]. To the best of our knowledge, apart the complex NMF which was designed in a deterministic
framework [20], [21], the only probabilistic model that takes the phase field into account (but in a non-informative
way) is the Itakura-Saito (IS)-NMF [13]. Separating the signalcomponents is then proven equivalent to Wiener
filtering. However, the phase field is still ignored when estimating IS-NMF, and the spectral resolution of IS-NMF
is limited by that of the TF representation (sinusoids in the same frequency band cannot be properly separated). In
other respects, IS-NMF assumes that all TF coefficients are independent, which is not the case of sinusoidal signals
for instance. In the literature, Markov models have thus been proposed for taking the local dependencies between
contiguous TF coefficients of a magnitude or power TF representation into account [22], [23], [24].

In [25], we introduced a unified model called HR-NMF, which natively takes both phases and local correlations
in each frequency band into account. This approach avoids using a phase reconstruction algorithm, and we showed
that it overcomes the spectral resolution of the TF representation. It can be used with both complex-valued and
real-valued TF representations (like the short-time Fourier transform or the modified discrete cosine transform).
In this paper, we go further into detail in the study of HR-NMF. The Expectation-Maximization (EM) algorithm
designed for estimating this model is improved:

• numerical stability issues encountered in the previous implementation [25] have been solved;
• Kalman filtering/smoothing is now implemented in square rootform, in order to guarantee the positive-

definiteness of covariance matrices;
• multiplicative update rules are proposed for initializingthe EM algorithm.

Besides, all mathematical derivations are now provided in the Appendix. This paper is organized as follows: HR-
NMF is introduced in section II, and our recursive implementation of the EM algorithm for estimating this model
is presented in section III. Section IV is devoted to experimental results, and conclusions are drawn in section V.

Notation

The following notation will be used throughout the paper:

• x: scalar (normal letter),
• v: column vector (bold lower case letter),
• vi: i-th entry ofv (indexed lower case letter),
• M : matrix (bold upper case letter),
• M(i,j): (i, j)-th entry ofM (indexed upper case letter),

1More precisely, phases are discarded in the source signal models, but in the case of multichannel mixtures, phase relationships in the
mixture model can be taken into account via the mixing matrix [17], [18].
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• [M ,N ]: horizontal concatenation ofM andN ,
• [M ;N ]: vertical concatenation ofM andN ,
• 0: vector or matrix whose entries are all equal to0,
• 1: vector whose entries are all equal to1,
• diag(.): (block)-diagonal matrix,
• I: identity matrix (I = diag(1)),
• M∗: conjugate of matrix (or vector)M ,
• MH : conjugate transpose of matrix (or vector)M ,
• M †: Moore-Penrose pseudo-inverse of matrixM ,
• E[.]/x: conditional expectation of (.) givenx,
• NF(µ,R): real (if F = R) or circular complex (ifF = C) multivariate normal distribution of meanµ and

covariance matrixR.
• for a given vectorv of dimensionD, and any subvectorv of dimensionD ≤ D (whose entries are a subset

of those ofv), Jv
v denotes theD ×D selection matrix such thatv = Jv

v
H
v.

II. T IME-FREQUENCY M IXTURE MODEL

The HR-NMF mixture model of TF datax(f, t) ∈ F (whereF = R or C) is defined for all discrete frequencies
1 ≤ f ≤ F and times1 ≤ t ≤ T as the sum ofK latent componentsck(f, t) ∈ F plus a white noisen(f, t) ∼
NF(0, σ

2):

x(f, t) = n(f, t) +

K∑

k=1

ck(f, t) (1)

where

• ck(f, t) =
P (k,f)∑
p=1

a(p, k, f) ck(f, t − p) + bk(f, t) is obtained by autoregressive filtering of a non-stationary

signalbk(f, t) ∈ F (wherea(p, k, f) ∈ F andP (k, f) ∈ N is such thata(P (k, f), k, f) 6= 0),
• bk(f, t) ∼ NF(0, vk(f, t)) wherevk(f, t) is defined as

vk(f, t) = w(k, f)h(k, t), (2)

with w(k, f) ≥ 0 andh(k, t) ≥ 0,
• processesn andb1 . . . bK are mutually independent.

Moreover,∀(k, f) ∈ {1 . . .K} × {1 . . . F}, the random vectorsck(f, 0) = [ck(f, 0); . . . ; ck(f,−P (k, f) + 1)]
are assumed to be independent and distributed according to the prior distributionck(f, 0) ∼ NF(µk(f),Qk(f)

−1),
where the meanµk(f) and the precision matrixQk(f) are fixed parameters2. Lastly, we assume that∀f ∈ {1 . . . F},
∀t ≤ 0, x(f, t) is unobserved. The parameters to be estimated areσ2, a(p, k, f), w(k, f), andh(k, t). This time-
frequency model generalizes some very popular models, widely used in various signal processing communities:

• If σ2 = 0 and∀k, f, P (k, f) = 0, (1) becomesx(f, t) =
∑K

k=1 bk(f, t), thusx(f, t) ∼ NF(0, V̂ft), whereV̂ is
defined by the NMFV̂ = W H with Wfk = w(k, f) andHkt = h(k, t). The maximum likelihood estimation
of W andH is then equivalent to the minimization of the IS-divergence between the matrix model̂V and
the spectrogramV (whereVft = |x(f, t)|2), that is why this model is referred to as IS-NMF [13].

• For given values ofk andf , if ∀t, h(k, t) = 1, thenck(f, t) is an autoregressive process of orderP (k, f).
• For given values ofk and f , if P (k, f) ≥ 1 and ∀t ≥ P (k, f) + 1, h(k, t) = 0, then ck(f, t) can be

written in the formck(f, t) =
∑P (k,f)

p=1 αp z
t
p, wherez1 . . . zP (k,f) are the roots of the polynomialzP (k,f) −

∑P (k,f)
p=1 a(p, k, f)zP (k,f)−p. This corresponds to the Exponential Sinusoidal Model (ESM)3 commonly used

in HR spectral analysis of time series [26].

For these reasons, model (1) is referred to as HR-NMF.

2In practice we chooseµk(f) = [0; . . . ; 0]⊤ andQk(f)
−1 = ξI, whereI is the identity matrix andξ is small relative to 1, in order to

both enforce the causality of the latent components and avoid singular matrices.
3Actually HR-NMF also encompasses the more general Polynomial Amplitude Complex Exponentials (PACE) model introduced in [26].
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III. E XPECTATION-MAXIMIZATION ALGORITHM

The EM algorithm [27] is an iterative method which aims to estimate the parameters of a probabilistic model
involving both observed and latent random variables, by recursively increasing the log-likelihood of the observed
variables at each iteration. It consists of two steps calledExpectation (E-step) and Maximization (M-step).

In order to estimate the HR-NMF model parameters, the EM algorithm is applied to the observed datax and
the latent componentsc1 . . . cK (here the complete data is{x, c1 . . . cK}). In order to handle the case of missing
data, we defineδ(f, t) = 1 if x(f, t) is observed, andδ(f, t) = 0 else.

A. Square root implementation

As some numerical stability issues have been encountered with the previous implementation of the EM algorithm
presented in [25], a new implementation is introduced here,where covariance matrices are represented in their square
root form. We call "square root" of a positive definite matrixR any square matrix4

√
R such that

√
R
√
R

H
= R.

This factorization guarantees thatR remains positive definite, even in the presence of rounding errors due to
the finite machine precision. In the following mathematical derivations,R will often be obtained in the form
R = M MH , where matrixM has more columns than rows. The square matrix

√
R can then be computed by

means of a functionLT (to be understood as the acronym of "lower triangular"), such that
√
R = LT (M). For

instance, functionLT can compute the thin QR factorizationMH = Q
√
R

H
, whereQHQ = I and

√
R

H
is

upper triangular, which implies thatR = M MH =
√
R
√
R

H
.

B. Maximization Step (M-step)

In the EM algorithm, the M-step aims to maximize the conditional expectation (given the observations) of the
log-likelihood of the complete data w.r.t. the model parameters. We first note that:

p(c1 . . . cK , x) = p(x/c1 . . . cK)
K∏
k=1

p(ck)

p(x/c1 . . . cK) ∝
F∏

f=1

T∏
t=1

exp
(
δ(f, t)

(
− ln(σ2) +

|x(f,t)−
∑

K

k=1 ck(f,t)|
2

σ2

))

∀k, p(ck) ∝
F∏

f=1

T∏
t=1

exp

(
− ln(w(k, f)h(k, t)) +

|ck(f,t)−
∑P (k,f)

p=1 a(p,k,f) ck(f,t−p)|2

w(k,f)h(k,t)

)
,

where symbol∝ denotes equality up to a multiplicative factor. Thus the conditional expectation of the log-likelihood
of the complete data is

Q = E/x [ln(p(c1 . . . cK , x))]

= E/x [ln(p(x/c1 . . . cK))] +
∑K

k=1 E/x [ln(p(ck))] .

It can be written in the form5 Q
c
= Q0 +

∑K
k=1Qk where

Q0 = −
F∑

f=1

T∑

t=1

δ(f, t) ln(σ2) + e(f, t)/σ2, (3)

Qk = −
F∑

f=1

T∑

t=1

ln(w(k, f)h(k, t)) + a(k,f)HS(k,f,t)a(k,f)
w(k,f)h(k,t) , (4)

e(f, t) = δ(f, t)E/x

[∣∣∣x(f, t)−
K∑

k=1

ck(f, t)
∣∣∣
2]
, (5)

α(k, f) = −[a(1, k, f); . . . ; a(P (k, f), k, f)] (6)

a(k, f) = [1;α(k, f)], (7)

4Note that there is an infinity of such square roots.
5 c
= denotes equality up to additive and multiplicative constants which do not depend on the model parameters to be estimated.
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and∀k, f , for all 0 ≤ p1, p2 ≤ P (k, f),

S(p1,p2)(k, f, t) = E/x[ck(f, t− p1)
∗ ck(f, t− p2)]. (8)

Maximizing Q is thus equivalent to independently maximizingQ0 with respect to (w.r.t.)σ2 and eachQk

w.r.t. h(k, t), w(k, f) and a(k, f). Since the maximization ofQk does not admit a closed form solution,Qk is
recursively maximized w.r.t.(w(k, f),a(k, f)) and w.r.t.h(k, t). Either this recursive maximization is repeated until
convergence inside the M-step, which results in an exact EM algorithm, or only a few iterations are performed,
which leads to a generalized EM (GEM) algorithm [27]6.

The full mathematical derivation of the M-step is provided inAppendix A. The pseudo-code is summarized in
Table I 7. Its complexity isO(FTK(1 + P )3), whereP = max

k,f
P (k, f). Note that parallel computing permits to

process theK components simultaneously, reducing the computational time toO(FT (1 + P )3).

Inputs:δ(f, t), e(f, t),
√
S(k, f, t),h(k, t) Eq.

σ2 =
F
∑

f=1

T
∑

t=1

e(f, t)
/ F
∑

f=1

T
∑

t=1

δ(f, t) (16)

For k = 1 to K, 6

Repeat (as many times as wanted)7:
For f = 1 to F , 6

√
Σ(k, f) = LT

([√
S(k, f, 1)
√

Th(k, 1)
, . . . ,

√
S(k, f, T )
√

Th(k, T )

])

(19)

a(k, f) =

[

1,−
(

Ja
1
H
√
Σ(k, f)

)(

Ja
α

H
√
Σ(k, f)

)†
]H

(20)

w(k, f) = ‖
√
Σ(k, f)Ha(k, f)‖2 (18)

End for f ;
For t = 1 to T , 6

h(k, t) =
F
∑

f=1

(

‖
√
S(k,f,t)Ha(k,f)‖√

Fw(k,f)

)2

(17)

End for t;
Normalization of the NMF:Hk = max

t
(h(k, t)),

w(k, f) = Hk w(k, f), h(k, t) = h(k, t)/Hk

End repeat;
End for k;
Outputs:σ2, a(k, f),w(k, f),h(k, t).

TABLE I
PSEUDO-CODE OF THEM-STEP

C. Expectation Step (E-step)

The purpose of the E-step is to determine the a posteriori distribution10 of the latent componentsck(f, t) given
the observationsx(f, t). Since these random variables are mutually independent for different values off , the E-step
can process eachf separately. Nevertheless, the computational complexity of a direct implementation of the E-step
would beO(FT 3K2), which is prohibitively expensive whenT becomes high. We thus propose a faster recursive
implementation of the E-step based on a linear state space representation and Kalman filtering theory [28].

Note that similar state space representations have alreadybeen proposed for estimating mixtures of autoregressive
processes in the literature of time series analysis [29], and for addressing the particular problem of blind source
separation (seee.g. [30], [31], [32], [33]). However, those state space representations were designed for modeling
mixtures of (frame-wise) stationary signals in the temporal domain, whereas the proposed HR-NMF model deals
with mixtures of non-stationary signals in the time-frequency domain. We thus present in this section a specific

6The GEM algorithm still guarantees that the log-likelihood of the observed data is non-decreasing.
7According to the notation introduced in section I,Ja

1 = [1; 0; . . . ; 0].
6This loop can be processed in parallel.
7This loop has to be processed sequentially.
10and more precisely,e(f, t) andS(k, f, t) defined in equations (5) and (8).
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linear state space representation and the corresponding Kalman filter/smoother, which have been especially designed
for the HR-NMF model.

Let us first introduce the linear state space representation ofthe HR-NMF model defined in equation (1):

γ(f, t) = A(f)γ(f, t− 1) + b′(f, t), (9)

x(f, t) = u(f)Hγ(f, t) + n′(f, t), (10)

where
• K(f) denotes the set{k ∈ {1 . . .K}/P (k, f) ≥ 1};
• ∀f, t, ∀k ∈ K(f),

c(k, f, t) = [ck(f, t); . . . ; ck(f, t− P (k, f) + 1)] ;

• the state vectorγ(f, t) containsc(k, f, t) ∀k ∈ K(f);
• the state transition matrix is

A(f) = diag({A(k, f)}k∈K(f)),

whereA(k, f) = a(1, k, f) if P (k, f) = 1, otherwiseA(k, f) =
[
a(1, k, f) . . . a(P (k, f)− 1, k, f) a(P (k, f), k, f)

I 0

]

• ∀f, t, vectorc(f, t) containsck(f, t) for all k ∈ K(f),
• the process noise is

b′(f, t) = J
γ(f,t)
c(f,t) b(f, t), (11)

where notationJγ(f,t)
c(f,t) was defined in section I, andb(f, t) containsbk(f, t) ∀k ∈ K(f); thus b(f, t) ∼

NF(0,Rv(f,t)), whereRv(f,t) = diag(v(f, t)) andv(f, t) containsvk(f, t) ∀k ∈ K(f);
• the observation isx(f, t);
• the observation matrix isu(f)H , where

u(f) = J
γ(f,t)
c(f,t) 1; (12)

• the white observation noise isn′(f, t) = n(f, t) +
∑

k/P (k,f)=0 bk(f, t) ∼ NF(0, σ
2(f, t)), where

σ2(f, t) = σ2 +
∑

k/P (k,f)=0

vk(f, t). (13)

The full mathematical derivation of the E-step is provided in Appendix B. The pseudo-code is summarized in
Table II. Its overall computational complexity isO(FTK3(1+P )3). Note that parallel computing permits to process
theF frequencies simultaneously, reducing the computational time toO(TK3(1 + P )3).

In Table II, the following notation has been used:
• ∀f, t, d(f, t) containsck(f, t− P (k, f)) ∀k ∈ K(f),
• ∀f, t, vectorc′(f, t) containsck(f, t) for all k /∈ K(f),
• ∀f, t, vectorv′(f, t) containsvk(f, t) for all k /∈ K(f),
• ∀f, t, ∀k ∈ K(f),

c(k, f, t) = [ck(f, t); . . . ; ck(f, t− P (k, f))] ,

• ∀f, t, γ(f, t) containsc(k, f, t) for all k ∈ K(f),
• ∀f, t, and for any random vectorv, vf,t is the conditional expectation ofv given{x(f, 1) . . . x(f, t)}. Besides,
Rf,t

v is the conditional expectation of(ṽf,t) (ṽf,t)H given{x(f, 1) . . . x(f, t)}, whereṽf,t = v−vf,t. Similarly,
for any vectorsv1 andv2, Rf,t

v1,v2
is the conditional expectation of(ṽf,t

1 ) (ṽf,t
2 )H given {x(f, 1) . . . x(f, t)}.

Other letters in Table II denote temporary variables used inthe computations.

D. Initialization of the EM algorithm

Because the proposed implementation of the EM algorithm remains computationally demanding, we present
in this section a fast initialization method that permits toreduce the number of subsequent EM iterations to be
performed.
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Inputs after the M-step:x(f, t), δ(f, t), σ2, A(f), vk(f, t) Eq.

Initialization: ∀f , L(f, 0) = 0, γf,0(f, 0) = 0,
√
R

f,0

γ(f,0) =
√
ξI

∀f , A(f) = J
γ(f,t)

γ(f,t)A(f) + J
γ(f,t)

d(f,t)J
γ(f,t−1)

d(f,t)

H
(28)

∀f , u(f) = J
γ(f,t)

c(f,t) 1 (12)
∀f, t, σ2(f, t) = σ2 +

∑

k/P (k,f)=0

vk(f, t) (13)

For f = 1 to F , 6

For t = 1 to T (forward pass): 7

Predict phase:√
R

f,t−1

γ(f,t) = LT
([

A(f)
√
R

f,t−1

γ(f,t−1),J
γ(f,t)

c(f,t)

√
Rv(f,t)

])

(29)

Φ
f,t−1 =

(√
R

f,t−1
γ(f,t)

H

J
γ(f,t)

γ(f,t)

)† √
R

f,t−1
γ(f,t)

H

J
γ(f,t)

d(f,t) (30)
√
Ψ

f,t−1
= LT

(

(J
γ(f,t)

d(f,t) − J
γ(f,t)

γ(f,t)Φ
f,t−1)H

√
R

f,t−1

γ(f,t)

)

(32)
√
R

f,t−1

γ(f,t) = LT
(

J
γ(f,t)

γ(f,t)

H√
R

f,t−1

γ(f,t)

)

(31)

df,t−1(f, t) = J
γ(f,t−1)

d(f,t)

H
γf,t−1(f, t− 1) (26)

γf,t−1(f, t) = A(f)γf,t−1(f, t− 1) (24)

φf,t−1 = df,t−1(f, t)−Φ
f,t−1Hγf,t−1(f, t) (23)

Update phase:

µ(f, t) = (
√
R

f,t−1

γ(f,t))
Hu(f) (35)

ε(f, t) = σ2(f, t) + ‖µ(f, t)‖2 (36)

λ(f, t) = δ(f,t)
ε(f,t)

√
R

f,t−1

γ(f,t) µ(f, t) (37)
√
R

f,t

γ(f,t) =
√
R

f,t−1

γ(f,t) − λ(f, t) µ(f,t)H

1+

√

σ2(f,t)
ε(f,t)

(34)

ǫf,t(f, t) = x(f, t)− u(f)Hγf,t−1(f, t) (39)
γf,t(f, t) = γf,t−1(f, t) + λ(f, t) ǫf,t(f, t) (38)

L(f, t)
c
= L(f, t− 1)− δ(f, t)

(

ln(ε(f, t)) + |ǫf,t(f,t)|2
ε(f,t)

)

(40)

End for t;
For t = T downto1 (backward pass): 7

Wiener filtering phase:
ǫf,T (f, t) = x(f, t)− u(f)Hγf,T (f, t) (43)
c′f,T (f, t) = δ(f,t)

σ2(f,t)
v′(f, t) ǫf,T (f, t) (42)

µ′(f, t) = (
√
R

f,T

γ(f,t))
Hu(f) (47)

e′(f, t) = δ(f, t)
(

|ǫf,T (f, t)|2 + ‖µ′(f, t)‖2
)

(46)

e(f, t) = δ(f, t) σ2

σ2(f,t)

(

(σ2(f, t)− σ2) + σ2

σ2(f,t)
e′(f, t)

)

(45)

∀k /∈ K(f),
√
S(k, f, t) =

√

vk(f,t)

σ2(f,t)
√

(σ2(f, t)− δ(f, t)vk(f, t)) +
vk(f,t)

σ2(f,t)
e′(f, t) (48)

Smoothing phase:√
R

f,T

γ(f,t) = J
γ(f,t)

d(f,t)Φ
f,t−1H

√
R

f,T

γ(f,t)J
γ(f,t)

γ(f,t)

H

+J
γ(f,t)

γ(f,t)

√
R

f,T

γ(f,t)J
γ(f,t)

γ(f,t)

H
+ J

γ(f,t)

d(f,t)

√
Ψ

f,t−1
J

γ(f,t)

d(f,t)

H
(53)

√
R

f,T
γ(f,t−1) = LT

(

J
γ(f,t)

γ(f,t−1)

H√
R

f,T
γ(f,t)

)

(54)

df,T (f, t) = φf,t−1 +Φ
f,t−1Hγf,T (f, t) (56)

γf,T (f, t) = J
γ(f,t)

γ(f,t)γ
f,T (f, t) + J

γ(f,t)

d(f,t)d
f,T (f, t) (55)

γf,T (f, t− 1) = J
γ(f,t)

γ(f,t−1)

H
γf,T (f, t) (57)

∀k ∈ K(f),
√
S(k, f, t) =

LT
(

J
γ(f,t)

c(k,f,t)

H
[√

R
f,T

γ(f,t),γ
f,T (f, t)

]∗)
(58)

End for t;
End for f ;
Outputs:e(f, t),

√
S(k, f, t), andL(f, T ) andcf,Tk (f, t) if wanted

TABLE II
PSEUDO-CODE OF THEE-STEP



INSTITUT MINES-TÉLÉCOM; TÉLÉCOM PARISTECH; CNRS LTCI, TECHNICAL REPORT 8

1) Multiplicative update rules:When initializing the EM algorithm, allP (k, f) are first assumed to be zero.
In this case, the log-likelihood of the observed mixturex(f, t) defined in equation (1) can be simply written as
follows:

L
c
= −

F∑

f=1

T∑

t=1

δ(f, t)

(
ln
(
σ2(f, t)

)
+
|x(f, t)|2
σ2(f, t)

)
(14)

where

σ2(f, t) = σ2 +

K∑

k=1

w(k, f)h(k, t). (15)

Differentiating this log-likelihood w.r.t any parameterθ ∈ {σ2, w(k, f), h(k, t)} yields

∂L

∂θ
= −

F∑

f=1

T∑

t=1

δ(f, t)

(
1

σ2(f, t)
− |x(f, t)|

2

σ4(f, t)

)
∂σ2(f, t)

∂θ

The standard multiplicative update rule [34] for maximizingL w.r.t. the nonnegative parameterθ can then be written
as:

θ ← θ

∑F
f=1

∑T
t=1 δ(f, t)

|x(f,t)|2

σ4(f,t)
∂σ2(f,t)

∂θ
∑F

f=1

∑T
t=1 δ(f, t)

1
σ2(f,t)

∂σ2(f,t)
∂θ

.

Since ∂σ2(f,t)
∂θ ≥ 0, this rule guarantees thatθ remains nonnegative over the iterations. As proven in Appendix C1,

the multiplicative update rules summarized in Table III make the log-likelihoodL non-decreasing. Their overall
computational complexity isO(FTK).

2) First E-step: After the multiplicative updates, the E-step should be run with the desired values ofP (k, f),
which implies thatα(k, f) are set to zero. However, the E-step as presented in Table II assumes that∀k ∈ K(f),
a(P (k, f), k, f) 6= 0, which guarantees that matrixA(f) is invertible, so that all matrix inverses and divisions in
table II are well-defined. Since this property does not stand atinitialization, a specific implementation of the first
E-step must be used, which is derived in Appendix C2 and summarized in Table III. Its computational complexity
is O(FTK(1 + P )3).

3) Summary of the proposed estimation method:The proposed method for estimating HR-NMF consists of three
steps:

1) Initialize all filters to identity, and all nonnegative parameters to random values;
2) Make all non-negative parameters converge and perform the first E-step as in table III;
3) Make the log-likelihood further increase by estimating the filters along with the other parameters, by means

of the EM algorithm summarized in tables I and II.

IV. A PPLICATIONS

This section aims to provide a basic proof of principle of HR-NMF. We consider two examples of straightforward
applications11: audio source separation (section IV-B) and audio inpainting (section IV-C). Indeed, since the E-step
determines the a posteriori distribution of the latent componentsck(f, t) givenx(f, t), even at time-frequency bins
where the observation is missing, this distribution can be used to reconstruct the latent components1213. The test
signal is a real piano sound, composed of a C4 tone played alone att = 0 ms, and a C3 tone played att = 680 ms
while the C4 tone is maintained. The sampling frequency is 8600 Hz, andx(f, t) is obtained by computing the
STFT of the input signal withF = 400 and T = 60, using 90 ms-long Hann windows with 75% overlap (the
corresponding spectrogram is plotted in Figure 1).

11The Matlab code, as well as the sound files of the various signals computedin these experiments, are available online at
http://perso.telecom-paristech.fr/rbadeau/unrestricted/HR-NMF-simulations.zip.

12As could be expected, our experiments showed that the a posteriori distribution permits to reconstruct the latent components much more
accurately than the a priori distribution.

13In the following experiments,ck(f, t) will be estimated as the posterior meancf,Tk (f, t), but in future work the second moments of the
a posteriori distribution should also be taken into account in order to achieve a more realistic synthesis.

http://perso.telecom-paristech.fr/rbadeau/unrestricted/HR-NMF-simulations.zip
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Inputs:x(f, t), δ(f, t) Eq.
Initialize σ2, w(k, f), h(k, t) to nonnegative random values
Multiplicative update rules:
∀f, t, σ2(f, t) = σ2 +

∑K
k=1 w(k, f)h(k, t) (15)

Repeat (as many times as wanted)7:

σ2 = σ2

∑F
f=1

∑T
t=1

δ(f,t)|x(f,t)|2
σ4(f,t)

∑F
f=1

∑T
t=1

δ(f,t)

σ2(f,t)

(59)

∀k, t, h(k, t) = h(k, t)

∑F
f=1 w(k, f) δ(f,t)|x(f,t)|

2

σ4(f,t)
∑F

f=1 w(k, f) δ(f,t)

σ2(f,t)

(60)

∀f, t, σ2(f, t) = σ2 +
∑K

k=1 w(k, f)h(k, t) (15)

σ2 = σ2

∑F
f=1

∑T
t=1

δ(f,t)|x(f,t)|2
σ4(f,t)

∑F
f=1

∑T
t=1

δ(f,t)

σ2(f,t)

(59)

∀k, f , w(k, f) = w(k, f)

∑T
t=1 h(k, t)

δ(f,t)|x(f,t)|2
σ4(f,t)

∑T
t=1 h(k, t)

δ(f,t)

σ2(f,t)

(61)

∀f, t, σ2(f, t) = σ2 +
∑K

k=1 w(k, f)h(k, t) (15)

L
c
= −∑F

f=1

∑T
t=1 δ(f, t)

(

ln
(

σ2(f, t)
)

+ |x(f,t)|2
σ2(f,t)

)

(14)

Normalization of the NMF:∀k, Hk = max
t

(h(k, t)),

w(k, f) = Hk w(k, f), h(k, t) = h(k, t)/Hk

End repeat;
a(k, f) = Ja

1

First E-step:

∀f, t, e(f, t) = δ(f, t) σ2

σ2(f,t)

(

(σ2(f, t)− σ2) + σ2|x(f,t)|2
σ2(f,t)

)

(62)

∀k, f, t, cf,Tk (f, t) = δ(f, t) vk(f,t)

σ2(f,t)
x(f, t) (63)

∀k, f, t,
√
R

f,T
ck(f,t) =

√

vk(f,t)

σ2(f,t)

√

σ2(f, t)− δ(f, t)vk(f, t) (64)

∀k, f, t,
√
R

f,T

c(k,f,t) = diag
(√

R
f,T
ck(f,t) . . .

√
R

f,T
ck(f,t−P (k,f))

)

(65)

∀k, f, t,
√
S(k, f, t) = LT

([√
R

f,T

c(k,f,t), c
f,T (k, f, t)

]∗)
(66)

Outputs:σ2, a(k, f), w(k, f), h(k, t), e(f, t),
√
S(k, f, t).

TABLE III
PSEUDO-CODE OF THE INITIALIZATION METHOD

A. Monotonicity of the log-likelihood and computation time

Before processing this mixture piano sound, our first experiment consists of learning the spectral parameters
w(k, f) anda(k, f) from the fully observed STFT (δ(f, t) = 1) of the first680 ms of the two isolated tones (in the
case of C4, this corresponds to the first half of the STFT represented in Figure 1). Each piano tone is represented
by a HR-NMF model of orderK = 1, involving autoregressive filters of orderP (k, f) = 2, which permit to model
the beating in the partials of piano strings. The two HR-NMF models are thus estimated by running 30 iterations
of the multiplicative update rules in Table III, and 10 iterations of the EM algorithm in Tables I and II. In order
to make a comparison, the IS-NMF models of the two tones (withK = 1, σ2 = 0 andP (k, f) = 0) are estimated
by running 30 iterations of the standard multiplicative update rules [8] (defined by equations (15), (60) and (61)
in Table III).

Figure 2-(a) represents the log-likelihood of the estimatedC4 models as a function of the iteration number. The
black dash-dotted line corresponds to the IS-NMF model: as expected, the multiplicative update rules make the
log-likelihood (defined in equations (14) and (15) withσ2 = 0) non-decreasing. The red solid line corresponds to
the initialization of the HR-NMF model in Table III: as proven in Appendix C1, the multiplicative update rules
make the log-likelihood non-decreasing again. Finally, theblue dashed line corresponds to the EM estimation of
the HR-NMF model: as explained in section III-D3, the EM algorithm makes the log-likelihood (computed in
equation (40) in Table II) further increase.
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Fig. 1. Spectrogram of the input piano sound

Figure 2-(b) represents the same log-likelihoods as functions of the elapsed time14. It can be observed that one
iteration of the EM algorithm is much more time consuming thanone iteration of the multiplicative update rules.
Thus the initialization with multiplicative updates permits to reduce the overall computational time.

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

x 10
5

Iteration number

Lo
g−

lik
el

ih
oo

d

(a) Log−likelihood of C4 model

 

 

IS−NMF Multiplicative updates
HR−NMF Multiplicative updates
HR−NMF EM algorithm

10
−2

10
−1

10
0

10
1

10
2

−2

0

2

4

6

8

x 10
4

Elapsed time (s)

Lo
g−

lik
el

ih
oo

d

(b) Log−likelihood of C4 model

Fig. 2. Monotonicity of the log-likelihood

B. Source separation

Here the observation is the whole STFTx(f, t) represented in Figure 1 (δ(f, t) = 1), and the objective is to
separateK = 2 componentsck(f, t). The spectral parametersw(k, f) and a(k, f) are learned as explained in
section IV-A, and parametersh(k, t) and σ2 have to be estimated from the mixture. Again, an IS-NMF model
(with P (k, f) = 0 andσ2 = 0) is estimated by running 30 iterations of the multiplicative update rules defined by
equations (15) and (60) in Table III. The HR-NMF model (withP (k, f) = 2) is estimated by running 60 iterations
of the EM algorithm, initialized with the temporal activations h(k, t) of the IS-NMF model.

Figure 3 focuses on the results obtained in the frequency bandf which corresponds to the second harmonic
of C4 and to the fourth harmonic of C3 (around 540 Hz). These twosinusoidal components (whose real parts

14This experiment was performed with Matlab(R) 7.10 64-bit, run in a Windows 7 system with 2.66 GHz Intel(R) Xeon(R) CPU and 6
Go RAM.
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are represented as red solid lines) have very close frequencies, which makes them hardly separable. As expected,
IS-NMF does not properly separate the components when they overlap, fromt = 680 ms to1.36 s: the observed
mixture signal is wrongly fully assigned to the second component (the estimated components are represented as
black dash-dotted lines). As a comparison, the components estimated by HR-NMF (blue dashed lines) better fit the
ground truth.
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(b) Second component (C3)

Fig. 3. Separation of two sinusoidal components. The real parts of the two components are plotted as red solid lines, their IS-NMF estimates
are plotted as black dash-dotted lines, and their HR-NMF estimates are plottedas blue dashed lines.

C. Audio inpainting

In this last experiment, the second part of the STFT (fromt = 680 ms to 1.36 s) is unobserved (δ(f, t) = 0),
and in the first part (fromt = 0 ms tot = 680 ms), only 50% of the TF coefficientsx(f, t) are randomly observed.
Since the second tone is completely unobserved, our purpose is to recoverK = 1 component. Again, the spectral
parametersw(k, f) anda(k, f) are learned as explained in section IV-A, and parametersh(k, t) andσ2 have to
be estimated from the observations. The IS-NMF model (withP (k, f) = 0 andσ2 = 0) is estimated by running
10 iterations of the multiplicative update rules15 defined by equations (15) and (60) in Table III. The HR-NMF
model (withP (k, f) = 2) is estimated by running 10 iterations of the EM algorithm, initialized with the temporal
activationsh(k, t) of the IS-NMF model. Figure 4 shows that the C4 tone is correctlyreconstructed with the HR-
NMF model16. Moreover, the noise in the unobserved part has been removed. As a comparison, IS-NMF is not
appropriate for audio inpainting, because it does not take the correlations between contiguous TF coefficients into
account: the missing coefficients are estimated as their posterior mean, which is zero.

V. CONCLUSIONS

In this paper, we presented a new method for modeling mixtures of non-stationary signals in the time-frequency
domain. The HR-NMF model was introduced and an expectation-maximization algorithm was designed for estimat-
ing its parameters. This technique was successfully appliedto source separation and audio inpainting. Compared
to standard IS-NMF, the proposed approach natively takes both phases and local correlations in each frequency
band into account. It was shown that it achieves high resolution, which means that two sinusoids of different
frequencies can be properly separated within the same frequency band17. Besides, HR-NMF is also suitable for
modeling stationary and non-stationary noise.

15In the second part of the sound, parametersh(k, t) cannot be estimated since there is no observation; there are thus set to zero.
16A listening test did not permit to perceive any artifact in the signal reconstructed from the estimated TF component by a standard

overlap-add technique.
17Note that contrary to standard high resolution methods, the proposed approach is able to handle mixtures of amplitude-modulated

sinusoids starting at different times; it also performs the clustering of these sinusoids into several components according to their temporal
dynamics.
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Fig. 4. Recovery of the full C4 piano tone

In future work, this approach could be transposed into a Bayesian framework, by applying some prior distributions
to the model parameters, in order to enforce some desirable properties such as harmonicity, sparsity, or smoothness.
Besides, the basic NMF that has been used for modeling the non-stationarities in the distribution ofbk(f, t) could be
replaced by any non-stationary parametric model, such as one of the many variants of NMF. The model could also
be extended in several ways, for instance by taking the correlations across frequencies and/or across components
into account, or by representing multichannel signals. Since the proposed EM algorithm is time consuming when
processing realistic data without using parallel computing, alternative methods with better computational complexity
and convergence properties should be developed for estimating the model, for instance by using conjugate gradient or
modified Newton-Raphson algorithms, or by introducing approximations such as those used in variational Bayesian
inference.

The possible applications of this work are numerous: beyond source separation and audio inpainting, all usual
applications of NMF and PLCA can be considered, such as multi-pitch estimation and automatic music transcription.
Besides, we plan to address new applications, such as the physical analysis of impact sounds involving a mixture of
damped sinusoids and non-stationary noise, or the development of a new hybrid audio coder, in-between transform
coding and parametric coding.

APPENDIX

A. Mathematical derivations of the M-step

1) Maximization ofQ0 w.r.t. σ2: The maximization ofQ0 defined in equation (3) w.r.t.σ2 leads to

σ2 =

F∑

f=1

T∑

t=1

e(f, t)
/ F∑

f=1

T∑

t=1

δ(f, t). (16)

2) Maximization ofQk w.r.t. h(k, t), w(k, f), a(k, f, t): The global maximization ofQk defined in equation (4)
does not admit a closed form solution. Thus an iterative algorithm is proposed below, which recursively maximizes
Qk w.r.t. h(k, t) and w.r.t.(w(k, f),a(k, f, t)).

First, the maximization ofQk w.r.t. h(k, f) leads to

h(k, t) =
1

F

F∑

f=1

a(k, f)HS(k, f, t)a(k, f)

w(k, f)
,

which can be rewritten in the following square root form:

h(k, t) =

F∑

f=1

(
‖
√
S(k, f, t)Ha(k, f)‖√

Fw(k, f)

)2

. (17)
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Then the maximization ofQk w.r.t. w(k, f) leads to

w(k, f) = a(k, f)HΣ(k, f)a(k, f),

whereΣ(k, f) = 1
T

T∑
t=1

S(k,f,t)
h(k,t) , which can be rewritten in the following square root form:

w(k, f) = ‖
√
Σ(k, f)Ha(k, f)‖2, (18)

where
√
Σ(k, f) = LT

([√
S(k, f, 1)√
Th(k, 1)

, . . . ,

√
S(k, f, T )√
Th(k, T )

])
. (19)

Finally, the maximization ofQk w.r.t. a(k, f) is equivalent to the minimization of‖
√
Σ(k, f)Ha(k, f)‖2 under

the constraint that the first coefficient ofa(k, f) be equal to1. The solution to this quadratic programming problem
is

a(k, f) =

[
1,−

(
Ja

1
H
√
Σ(k, f)

)(
Ja

α

H
√
Σ(k, f)

)†]H
. (20)

Like in most NMF algorithms, the NMF factorsw(k, f) and h(k, t) are normalized at the end of the M-step
in table I, in order to prevent any possible numerical instability (this normalization does not affect the resulting
variancesvk(f, t)).

B. Mathematical derivations of the E-step

Note that the E-step in Table II consists of two passes:

• the forward passcomputesγf,t(f, t) and
√
R

f,t
γ(f,t) for t = 1 to T ;

• the backward passcomputesγf,T (f, t) and
√
R

f,T
γ(f,t) for t = T downto1.

1) Forward pass:The forward pass (fort = 1 to T ) consists of two phases:

• the predict phasecomputesγf,t−1(f, t) and
√
R

f,t−1
γ(f,t);

• the update phasecomputesγf,t(f, t) and
√
R

f,t
γ(f,t).

a) Predict phase:As will be explained in section B2b, in order to later performthe backward pass, it is
necessary to compute the following matrices and vector in the forward pass:

Φ
f,t−1 =

(
R

f,t−1
γ(f,t)

)−1
R

f,t−1
γ(f,t),d(f,t), (21)

Ψ
f,t−1 = R

f,t−1
d(f,t) −Φ

f,t−1HR
f,t−1
γ(f,t),d(f,t), (22)

φf,t−1 = df,t−1(f, t)−Φ
f,t−1Hγf,t−1(f, t). (23)

Taking the expectation of (9) givenx(f, 1) . . . x(f, t− 1) yields

γf,t−1(f, t) = A(f)γf,t−1(f, t− 1). (24)

Then subtracting equation (24) to equation (9) yields

γ̃f,t−1(f, t) = A(f) γ̃f,t−1(f, t− 1) + b′(f, t). (25)

Note thatd(f, t) = J
γ(f,t−1)
d(f,t)

H
γ(f, t− 1), thus

df,t−1(f, t) = J
γ(f,t−1)
d(f,t)

H
γf,t−1(f, t− 1), (26)

d̃
f,t−1

(f, t) = J
γ(f,t−1)
d(f,t)

H
γ̃f,t−1(f, t− 1). (27)

Equations (11), (25) and (27) yield

γ̃
f,t−1

(f, t) = A(f)γ̃f,t−1(f, t− 1) + J
γ(f,t)
c(f,t)b(f, t)
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where
A(f) = J

γ(f,t)
γ(f,t)A(f) + J

γ(f,t)
d(f,t)J

γ(f,t−1)
d(f,t)

H
. (28)

Taking the expectation of̃γ
f,t−1

(f, t) γ̃
f,t−1

(f, t)
H

given x(f, 1) . . . x(f, t− 1) finally yields

R
f,t−1
γ(f,t) = A(f)Rf,t−1

γ(f,t−1)A(f)H + J
γ(f,t)
c(f,t)Rv(f,t)J

γ(f,t)
c(f,t)

H
,

which can be rewritten in the following square root form:
√
R

f,t−1

γ(f,t) = LT
([

A(f)
√
R

f,t−1

γ(f,t−1),J
γ(f,t)
c(f,t)

√
Rv(f,t)

])
. (29)

Besides, note thatΦf,t−1 as defined in equation (21) is the solution to the following quadratic programming
problem:

Φ
f,t−1 = argmin

Φ

∥∥∥∥
√
R

f,t−1

γ(f,t)

H (
J

γ(f,t)
d(f,t) − J

γ(f,t)
γ(f,t)Φ

)∥∥∥∥
2

.

ThereforeΦf,t−1 can be rewritten in square root form:

Φ
f,t−1 =

(√
R

f,t−1

γ(f,t)

H
J

γ(f,t)
γ(f,t)

)†(√
R

f,t−1

γ(f,t)

H
J

γ(f,t)
d(f,t)

)
. (30)

Finally, note that
√
R

f,t−1
γ(f,t) andΨf,t−1 as defined in equation (22) can also be rewritten in square rootform:

√
R

f,t−1

γ(f,t) = LT
(
J

γ(f,t)
γ(f,t)

H√
R

f,t−1

γ(f,t)

)
, (31)

√
Ψ

f,t−1
= LT

((
J

γ(f,t)
d(f,t) − J

γ(f,t)
γ(f,t)Φ

f,t−1
)H √

R
f,t−1

γ(f,t)

)
. (32)

b) Update phase:Whetherx(f, t) be observed or not,

ln(p(γ(f, t)/x(f, 1) . . . x(f, t)))
= ln(p(γ(f, t)/x(f, 1) . . . x(f, t− 1)))

+δ(f, t) ln(p(x(f, t)/γ(f, t)))
−δ(f, t) ln(p(x(f, t)/x(f, 1) . . . x(f, t− 1))).

(33)

Identifying the quadratic terms inγ(f, t) in equation (33) and substituting equation (10) leads to theprecision
matrix Q

f,t
γ(f,t) (defined as the inverse of the covariance matrixR

f,t
γ(f,t)):

Q
f,t
γ(f,t) = Q

f,t−1
γ(f,t) + δ(f, t)

u(f)u(f)H

σ2(f, t)
.

Then the matrix inversion lemma [35, pp. 18-19] yields

R
f,t
γ(f,t) = R

f,t−1
γ(f,t) − δ(f, t)

R
f,t−1
γ(f,t) u(f)u(f)

HR
f,t−1
γ(f,t)

σ2(f, t) + u(f)HR
f,t−1
γ(f,t) u(f)

which can be rewritten in the following square root form:

√
R

f,t

γ(f,t) =
√
R

f,t−1

γ(f,t) − λ(f, t)
µ(f, t)H

1 +
√

σ2(f,t)
ε(f,t)

(34)

where

µ(f, t) = (
√
R

f,t−1

γ(f,t))
Hu(f) (35)

ε(f, t) = σ2(f, t) + ‖µ(f, t)‖2 (36)

λ(f, t) =
δ(f, t)

ε(f, t)

√
R

f,t−1

γ(f,t)µ(f, t). (37)
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Then identifying the linear terms inγ(f, t) in (33) yields

γf,t(f, t) = γf,t−1(f, t) + λ(f, t)ǫf,t(f, t) (38)

where
ǫf,t(f, t) = x(f, t)− u(f)Hγf,t−1(f, t). (39)

Finally, identifying the terms which do not depend onγ(f, t) in equation (33) shows that ifx(f, t) is observed,

x(f, t)/x(f, 1) . . . x(f, t− 1) ∼ NF

(
u(f)Hγf,t−1(f, t), ε(f, t)

)
.

This permits to recursively evaluate the log-likelihoodL(f, t) = ln(p(x(f, 1) . . . x(f, t))) of the observed data:

L(f, t)
c
= L(f, t− 1)− δ(f, t)

(
ln(ε(f, t)) +

|ǫf,t(f, t)|2
ε(f, t)

)
. (40)

2) Backward pass:The backward pass (fort = T downto1) consists of two phases:

• the Wiener filtering phasecalculatescf,T (f, t) and
√
R

f,T
c(f,t) (wherec(f, t) = [c(f, t); c′(f, t)]);

• the smoothing phasecomputesγf,T (f, t− 1) and
√
R

f,T
γ(f,t−1).

a) Wiener filtering phase:Note that, whetherx(f, t) be observed or not,

ln(p(c(f, t), c′(f, t)/x(f, 1) . . . x(f, T )))
= ln(p(c(f, t)/x(f, 1) . . . x(f, T )))

+ ln(p(c′(f, t)/c(f, t), x(f, t)))
= ln(p(c(f, t)/x(f, 1) . . . x(f, T ))) + ln(p(c′(f, t)))

+δ(f, t) ln(p(x(f, t)/c′(f, t), c(f, t)))
−δ(f, t) ln(p(x(f, t)/c(f, t))).

(41)

Identifying the quadratic terms inc(f, t) in equation (41) leads to the precision matrixQf,T
c(f,t):

Q
f,T
c(f,t) = diag

(
Q

f,T
c(f,t), diag(v

′(f, t))−1
)

+δ(f, t)

[
1 1

1 0

]
diag

(
1
σ2 ,

1
σ2(f,t)

)[
1 1

1 0

]H
.

Applying the matrix inversion lemma [35, pp. 18-19] yields

R
f,T
c(f,t) = diag

(
R

f,T
c(f,t), diag(v

′(f, t))
)
− δ(f,t)

σ2(f,t)×


0 (Rf,T
c(f,t)1)v

′(f, t)H

v′(f, t)(Rf,T
c(f,t)1)

H
(
1− 1

HR
f,T

c(f,t)1

σ2(f,t)

)
v′(f, t)v′(f, t)H




Identifying the linear terms inc(f, t) in equation (41) yields

c′f,T (f, t) =
δ(f, t)

σ2(f, t)
v′(f, t) ǫf,T (f, t), (42)

where

ǫf,T (f, t) = x(f, t)− u(f)Hγf,T (f, t). (43)

Thene(f, t) introduced in equation (5) is obtained as

e(f, t) = δ(f, t)E/x

[∣∣x(f, t)− 1
Hc(f, t)− 1

Hc′(f, t)
∣∣2
]

(44)

= δ(f, t)
σ2

σ2(f, t)

(
(σ2(f, t)− σ2) +

σ2

σ2(f, t)
e′(f, t)

)
(45)

where
e′(f, t) = δ(f, t)

(
|ǫf,T (f, t)|2 + ‖µ′(f, t)‖2

)
, (46)
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µ′(f, t) = (
√
R

f,T

γ(f,t))
Hu(f), (47)

and∀k /∈ K,
√
S(k, f, t) in (8) is obtained as

√
S(k, f, t) =

√
E/x

[
|ck(f, t)|2

]

=
√

vk(f,t)
σ2(f,t)

√
(σ2(f, t)− δ(f, t)vk(f, t)) +

vk(f,t)
σ2(f,t)e

′(f, t).

(48)

b) Smoothing phase:Note that

ln(p(γ(f, t)/x(f, 1) . . . x(f, T )))
= ln (p(d(f, t)/γ(f, t), x(f, 1) . . . x(f, t− 1)))

+ ln (p(γ(f, t)/x(f, 1) . . . x(f, T )))
= ln (p(γ(f, t)/x(f, 1) . . . x(f, t− 1)))
− ln (p(γ(f, t)/x(f, 1) . . . x(f, t− 1)))
+ ln (p(γ(f, t)/x(f, 1) . . . x(f, T ))) .

(49)

Identifying the quadratic terms inγ(f, t) in equation (49) leads to the precision matrixQf,T
γ(f,t):

Q
f,T
γ(f,t) = Q

f,t−1
γ(f,t) + J

γ(f,t)
γ(f,t)

(
Q

f,T
γ(f,t) −Q

f,t−1
γ(f,t)

)
J

γ(f,t)
γ(f,t)

H
.

ThenRf,T
γ(f,t) can be updated fromRf,T

γ(f,t), according to

R
f,T
γ(f,t) = J

γ(f,t)
γ(f,t)R

f,T
γ(f,t)J

γ(f,t)
γ(f,t)

H
+ J

γ(f,t)
d(f,t)R

f,T
d(f,t)J

γ(f,t)
d(f,t)

H

+J
γ(f,t)
γ(f,t)R

f,T
γ(f,t),d(f,t)J

γ(f,t)
d(f,t)

H
+ J

γ(f,t)
d(f,t)R

f,T
d(f,t),γ(f,t)J

γ(f,t)
γ(f,t)

H (50)

where

R
f,T
γ(f,t),d(f,t) = R

f,T
γ(f,t)Φ

f,t−1, (51)

R
f,T
d(f,t) = Ψ

f,t−1 +R
f,T
d(f,t),γ(f,t)Φ

f,t−1, (52)

and matricesΦt−1 and Ψ
t−1 were defined in equations (21) and (22). Equation (50) can be rewritten in the

following square root form:
√
R

f,T
γ(f,t) = J

γ(f,t)
d(f,t)Φ

f,t−1H
√
R

f,T
γ(f,t)J

γ(f,t)
γ(f,t)

H

+J
γ(f,t)
γ(f,t)

√
R

f,T
γ(f,t)J

γ(f,t)
γ(f,t)

H
+ J

γ(f,t)
d(f,t)

√
Ψ

f,t−1
J

γ(f,t)
d(f,t)

H
.

(53)

ThenRf,T
γ(f,t−1) is extracted fromRf,T

γ(f,t) as

R
f,T
γ(f,t−1) = J

γ(f,t)
γ(f,t−1)

H
R

f,T
γ(f,t)J

γ(f,t)
γ(f,t−1),

which can be rewritten in the following square root form:

√
R

f,T

γ(f,t−1) = LT
(
J

γ(f,t)
γ(f,t−1)

H√
R

f,T

γ(f,t)

)
. (54)

Similarly, identifying the linear terms inγ(f, t) in (49), γf,T (f, t) can be updated fromγf,T (f, t) according to

γf,T (f, t) = J
γ(f,t)
γ(f,t)γ

f,T (f, t) + J
γ(f,t)
d(f,t)d

f,T (f, t) (55)

where
df,T (f, t) = φf,t−1 +Φ

f,t−1Hγf,T (f, t), (56)

and vectorφf,t−1 was defined in equation (23).
Thenγf,T (f, t− 1) is extracted fromγf,T (f, t) as

γf,T (f, t− 1) = J
γ(f,t)
γ(f,t−1)

H
γf,T (f, t). (57)
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Finally, ∀k ∈ K, S(k, f, t) in (8) is obtained as

S(k, f, t) = J
γ(f,t)
c(k,f,t)

H
S(f, t)J

γ(f,t)
c(k,f,t),

whereS(f, t) = (Rf,T
γ(f,t) + γf,T (f, t)γf,T (f, t)H)∗, which can be rewritten in the following square root form:

√
S(k, f, t) = LT

(
J

γ(f,t)
c(k,f,t)

H [√
R

f,T

γ(f,t),γ
f,T (f, t)

]∗)
. (58)

C. Mathematical derivations of the initialization method

1) Analysis of the multiplicative update rules:

Proposition 1. The log-likelihoodL in equation(14) is non-decreasing under the following updates:

σ̂2 = σ2

∑F
f=1

∑T
t=1

δ(f,t)|x(f,t)|2

σ4(f,t)
∑F

f=1

∑T
t=1

δ(f,t)
σ2(f,t)

(59)

∀k, t, ĥ(k, t) = h(k, t)

∑F
f=1w(k, f)

δ(f,t)|x(f,t)|2

σ4(f,t)
∑F

f=1w(k, f)
δ(f,t)
σ2(f,t)

(60)

Proof of Proposition 1:

L(σ̂2, ĥ(k, t), w(k, f))

= −
F∑

f=1

T∑
t=1

δ(f, t)
(
ln
(
σ2(f, t) + (σ̂2 − σ2)

+
K∑
k=1

w(k, f)(ĥ(k, t)− h(k, t))
)

+
|x(f, t)|2

σ2

σ2(f,t)
σ̂2σ2(f,t)

σ2 +
K∑
k=1

w(k,f)h(k,t)
σ2(f,t)

ĥ(k,t)σ2(f,t)
h(k,t)

)

≥ −
F∑

f=1

T∑
t=1

δ(f, t)
(
ln
(
σ2(f, t)

)

+ 1
σ2(f,t)

(
(σ̂2 − σ2) +

K∑
k=1

w(k, f)(ĥ(k, t)− h(k, t))
)

+ σ2

σ2(f,t)

|x(f, t)|2
σ̂2σ2(f,t)

σ2

+
K∑
k=1

w(k,f)h(k,t)
σ2(f,t)

|x(f, t)|2
ĥ(k,t)σ2(f,t)

h(k,t)

)

= L(σ2, h(k, t), w(k, f))

The first equality is a rewriting ofL(σ̂2, ĥ(k, t), w(k, f)); the inequality is due to the concavity of functionln(.)
(which is upper bounded by its first order Taylor expansion) and to the convexity of function1/(.) (which is
upper bounded by Jensen’s inequality); the last equality isobtained by substituting the updates (59) and (60) and
identifying the resulting expression withL(σ2, h(k, t), w(k, f)).

Proposition 2. The log-likelihoodL in equation(14) is non-decreasing under the updates(59) and

∀k, f, ŵ(k, f) = w(k, f)

∑T
t=1 h(k, t)

δ(f,t)|x(f,t)|2

σ4(f,t)
∑T

t=1 h(k, t)
δ(f,t)
σ2(f,t)

(61)

The proof of Proposition 2 is the same as that of Proposition 1.
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2) First E-step: Given x, all time-frequency samplesn(f, t) are independent and

n(f, t) ∼ NF

(
δ(f, t)

σ2x(f, t)

σ2(f, t)
,
σ2(σ2(f, t)− δ(f, t)σ2)

σ2(f, t)

)

thuse(f, t) defined in equation (5) is obtained as

e(f, t) = δ(f, t)
σ2

σ2(f, t)

(
(σ2(f, t)− σ2) +

σ2 |x(f, t)|2
σ2(f, t)

)
. (62)

In the same way, givenx, ∀k all time-frequency samplesck(f, t) are independent and

ck(f, t) ∼ NF

(
cf,Tk (f, t), Rf,T

ck(f,t)

)

where

cf,Tk (f, t) = δ(f, t)
vk(f, t)

σ2(f, t)
x(f, t), (63)

√
R

f,T

ck(f,t) =

√
vk(f, t)

σ2(f, t)

√
σ2(f, t)− δ(f, t)vk(f, t). (64)

Thus∀k, f, t, √
R

f,T

c(k,f,t) = diag
(√

R
f,T

ck(f,t) . . .
√
R

f,T

ck(f,t−P (k,f))

)
. (65)

Finally, ∀k ∈ K, S(k, f, t) in (8) is obtained as

S(k, f, t) =
(
R

f,T
c(k,f,t) + cf,T (k, f, t) cf,T (k, f, t)H

)∗
,

which can be rewritten in the following square root form:
√
S(k, f, t) = LT

([√
R

f,T

c(k,f,t), c
f,T (k, f, t)

]∗)
. (66)
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