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Shallow water rogue wavetrains in nonlinear optical fibers

Stefan Wabnit, Christophe Findt Julien Fatom® Guy Millot”

aDipartimento di Ingegneria dell'Informazione, Univegsitlegli Studi di Brescia, via Branze 38, 25123, BrescidyIta
bLaboratoire Interdisciplinaire Carnot de Bourgogne, UMRG® CNRS, Université de Bourgogne, 9 av. Alain Savary, 2 Tjon, France

Abstract

In addition to deep-water rogue waves which develop frommbdulation instability of an optical CW, wave propagatinmptical
fibers may also produce shallow water rogue waves. Thesenegiwave events are generated in the modulationally stabheat
dispersion regime. A suitable phase or frequency modulati@ CW laser leads to chirp-free and flat-top pulses or tiasavhich
exhibit a stable self-similar evolution. Upon collisiorgtftons at dierent carrier frequencies, which may also occur in waveleng
division multiplexed transmission systems, merge intanglsi high-intensity, temporally and spatially localizedue pulse.

Keywords:
Rogue waves, Nonlinear optics, Optical fibers, Phase mtdnldluid Mechanics

1. Introduction described in terms of the semiclassical approximation & th
. NLSE [9], which leads to the so-called nonlinear shallow wa-

The dynam!cs of extreme waves, qften k_nown as fref’ik Ofer equation (NSWE) [10], which is also known in hydraulics
rogue waves, 1 p_resgntly a .SUbJeCt Of intensive researstan as the Saint-Venant equation [11]. Therefore we establdih a
eral fields of applicatiort [1}[2]. In oceanography, rOQUBS ot link between the dynamics of extreme wave generation in
are m_ostly "”OW.” as a sudden deep-water event which is "Shallow waters [12] and their direct counterparts in optican-
spon3|_ble for ship Wreakages_. A rela_ltlvely_less explored, b munication systems. Since the CW state of the field is stable,
potentially even more damaging ma}mfestanon of rogue YaVeshallow water optical rogue waves may only be generated as
also accurs in shallow waters, consider for example thegrop a result of particular setting of the initial or boundary den

gation of .tsun_amls. In sugh er.1V|ronment, the crossing 0‘5"3?“ tions. Namely, as discussed by Kodama and Biondini [13];[14
propagatlng n dferent directions may lead to the forma_tlon the initial modulation of the optical frequency, which isaéo:

of hlgh-elfvla(;lon an(i\stgeei humps Olf Wa(;e:ftha(; resggjln tsetjous to considering the collision between oppositely déec
vere coasta amages [3]. A universa moaettor descriteg t ¢\ rents near the beach, or the merging dfedent avalanches
formation of deep-water rogue waves is provided by the one

dimensional Nonlinear Schrodinger Equation (NLSE). lis th falling from a mountain valley.
framework, rogue waves are linked with the presence of modu-
lation instability (MI) [4], whose nonlinear developmestde-
scribed by the so-called Akhmediev breathers [5], and may ul In section2 we shall describe the dynamics of the genera-
timately result in the formation of the Peregrine solitomave  tion of an intense, flat-top, self-similar and chirp-fredgauas
of finite extension in both the evolution and the transverse ¢ a result of the initial step-wise frequency modulation of\& C
ordinates|[6]. laser. In hydrodynamics, this corresponds to the hump oémwat
An ideal testbed for the experimental study of rogue wavesvhich is generated by two water waves traveling with opgosit
is provided by optical pulse propagation in nonlinear agtic velocities. The intriguing property of such pulses, thahaee
fibers, which is closely described by the NLSE. Indeed, thdlaticons, is their stable merging upon mutual collisioroiet-
statistics of spectral broadening in optical supercontingen- ther a steady or transient high-intensity wave, as discusse
eration has been associated with extreme solitary wave-emisection 8. The pulse collision dynamics may also lead to the
sions [7]. Moreover, the first experimental observationhef t formation of extreme intensity peaks in optical commuriarat
Peregrine solitons in any physical medium has been cartied o systems whenever various wavelength channels are traadpor
exploiting the induced MI occuring in a highly nonlinear fibe on the same fiber. As pointed out in secfidn 4, an interesping a
[8]. plication of optical shallow water rogue waves is the patgib
In this Letter, we show that rogue waves in optical fibersof generating, from a frequency or phase modulated CW laser,
may also be generated in the normal group-velocity dispersi high repetition rate pulse trains with low duty ratio. In t@st
(GVD) regime of pulse propagation, where Ml is absent. In-with existing linear techniques for pulse train generafibsi-
deed, nonlinearity driven pulse shaping in this case may bfl€], rogue wavetrains lead to chirp-free, high intensityse
trains, which are important advantages for their possibéeas
Email addressstefano.wabnitz@ing.unibs. it (Stefan Wabnitz) communication signals.
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2. Optical pulse dynamics two time alternating, quasi-CW pumps at opposite frequesici
) . o , ) +Ug, respectively (see the power spectrum in panel (d) ofFig.1)
The propagation of pulses in optical fibers is described by th Supposing thatiy > 0, the frequency jump & = O is such
NLSE that, because of normal dispersion, the leading wave compo-
0 52 nents afT < O travel slower than the trailing components at
Q ,32 Q 2A _ 0 1 . . .
'E T2 0 +71QFQ = 0. (1) T > 0. Hence a wave compression (optical pistdieet) at
) . ) T = Oresults, which leads to a dispersive shock or optical wave
Herez andt denote the distance and retarded time (in the fram%reaking. That is, high-frequency oscillations appeahvait

travelling at the group-velocity) coordinatgss; andy are the  characteristic oscillation frequency equal (81 The opposite
group velocity dispersion and the nonlinear fméent, andQ  sjtyation occurs for the frequency jumpBt= +Ty/2, where

is the field envelope. In dimensionless units, and in the mbrm dispersion leads to wave rarefaction, so that a dark pulseler

dispersion regime (i.e8; > 0), Eq.[1) reads as develops.
i s ——
Ia_Z_Eﬁ-quq:O (2) z i: @
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whereT = t/to, Z = zyPo = z/Lni, B2 = B2/(TiyPo) =
LnL/Lp, whereLy, and Lp are the nonlinear and dispersion
lengths, respectively = Q/ VP , tg andPy are arbitrary time
and power units. Eq.J2) can be expressed in terms of the real
variablesp andu which denote the field dimensionless power
and instantaneous frequency (or chirp)
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By ignoring higher order time derivatives in the resulting
equations (which is justified for small valuesg)f one obtains

from the NLSE the semi-classical or hydrodynamic NSWE [9]- 5
[10] 8
s
0 (p up\od(p)_ a
I R EEA ()RR
whereZ’ = pZ. In hydrodynamics, Eq.14) describes the mo- o 0
tion of a surface wave in shallow water, i.e., a wave whose Time [ps]

wavelength is much larger than the water depth. In this con-. 1: Output (bl id J and input (red dasheves) @
: . igure 1: Output (blue solid curves) and input (red das power (&

text, p and u represent the water. dep_th and It_s velocity, re-and chirp (b) profiles from a 7 km long DCF in the linear case (withy = 0);

spectively. For a temporally localized input optical waw@h  (c) output pulse power after a bandpass filter with 15.5 GHmihadth; (d)

such as a chirp-free square pulse (which is representafive @nput and output spectral intensity (solid blue curve) atdrisity transmission
the nonreturn-to-zero (NRZ) optical modulation format,,i  function of bandpass filter (dashed red curve); (€) conttntrgs power profile

with p(T,Z = 0) = po for [T| < To andp(T,Z = 0) = O vs. length.

otherwise, Eg[:(l4) may be analytically so_lved up to the point |hqeed. as shown in panel (a) of ig.1, high-intensity escil
z - To/ \/p—g in terms of the W(_all—kn_own th_te_r_dam—break SO- |ations also occur in a purely linear dispersive medium,(i.e
lution [€],[17]. Note th_at, at th!s point, the initial squaNRZ whenevery = 0 in Eq.[1)), owing to the beating among the
pulse has broadened into a triangular pulse. In order to-Counyigerent frequency components which are generated by the

teract such pulse deformation, it was proposed.in [18] 10 USgitial condition Eql5), and that travel at firent speeds.
an input step-wise periodic frequency modulation, so thatt |ora we show the output power profile from a 7 km long

self-phase modulation-induced chirp can be largely COMPperyjispersion-compensating fiber (DCF) with normal G\ID=
sated for. _ _ _ —100ps/(nm- km) (or B2 = 127ps?/km) under purely linear
~ We are interested here in studying the behavior of the solus.qn4qation conditions. In Fig.1 we considered a 1.25 GHz
tions of Eq{#) with a dual quasi-CW pump input, that is We rate of frequency modulation with26GHzamplitude, and the
setp(T,Z = 0) = po, YT , and a periodic (with periody) input CW powerP = 500mW (or 27 dBm).
frequency modulation, namely Panel (b) of Fidl shows that in the linear case the output
U for —Ty/2<T <0 wavetrain develops a strqng chirp as it propagates. C!é!ar!y
uT,Z2=0)= CUp for0<T <Ty/2 ° ()  the absence of nonlinearity the spectrum of panel (d) irfIFig.
remains unchanged, with most of its energy concentratdeat t
so that in each modulation period there are two opposite fretwo quasi-CW pump frequencies. Therefore if we place a rel-
quency jumps. Indeed EQI(5) corresponds to the injection odtively narrow bandpass filter centered at the carrier feeqy
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u = 0, we only obtain a weak (i.e., with a peak power whichsimple linear law

remains two orders of magnitude lower than the peak of the os-

cillations in panel (a) of Figll) periodic pulse train (sesngpl Tp=2+po—W)Z =2VpZ (6)

(c) of Fig[d). We used here a filter with the supergaussiao-spe

tral amplitude transfer function of order 20, with specrahd- ~ Where+V, is the speed of propagation of the flaticon edges. In
width of 15.5 GHz, calculated at -3dB from the peak transmis{anel (e) of Fig.2 we compare the prediction of Eq.(6) with th
sion value. The filter transfer function is illustrated byemir numerical solution of the NLSEX2). As it can be seen, [Eq.(6)
dashed curve in panel (d) of Hi§.1, and compared to the coreorrectly captures the self-similar expansion of the fatitem-
stant spectral intensity profile (solid blue curve). Fipatlanel ~ poral duration with the propagation distance. The flaticoret
(e) of Figld shows that the width of the region with tempowal o duration in Fid.2 is slightly longer than the value of Eg, @)-
cillations grows larger with distance owing to linear digiee  ing to the finite width of the initial smooth frequency tratican

spreading. as opposed to the sudden jump in EQ.(5).
In the nonlinear case (e.g., with the nonlinear fio&@nt In real units, the critical frequency shif¢ reads as
y = 3.2W-knT?! in Eq.(1)), wave propagation is dramatically
different. On the one hand, the collision among the two oppo- ¢ Uc 1 P 1 [yP ;
sitely traveling (in the reference frame traveling with tireup °T 208 mtoB \ Po 72\ B (7)

velocity of the carrier component at= 0) quasi-CW pumps

leads to a dispersive wave-breaking or shock, as itististl  £q 7)) shows that the amplitude of the critical frequenogm

in panel (a) of Fig.2. ulation is controlled by varying the ratio of the input poviReto

the fiber GVDgB,. On the other hand, the validity of the condi-

tion 32 << 1 may be independently ensured by a suitable choice

00 -300 -200 -100 6 100 200 300 400 Of the reference tlm%

mg;m,‘, m‘uul‘llk.; T ] Quite strikingly, panel (e) of Figl2 shows that the flaticon

“100f ® RALLAA ] power remains constant with distance. In fact, its peak p@ve
equal to the value
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which has a maximum value pf = 4o, for u = u.. However

in the critical case the flaticon temporal duratibnshrinks to

w zero. In Fig2 we have sel = (V3 - 1)uc, which leads to
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_6 L2 pp = 3po. Eqs.[6)4(8) mean that the flaticon energy grows larger
N ! linearly with distance, as it continuosly draws energy tasa
g4 0.8 the zero-frequency region, at the expense of the two inpagigu
23 0.6 CW waves at frequenciedl,.

°2 04 In order to extract the flaticon from the high-frequency

pumps and from its highly chirped oscillating tails, it isces-
sary to use a suitably optimized bandpass filter which highly
Timd[ps] 200 400 creases the extinction ratio of the generated optical pulile-

out sacrificing its peak power, as it can be seen by comparing
Figure 2: Output (blue solid curves) and input (red dashedes) power (a) pane's (a) and (C) of F2 Here we used the same bandpass
and chirp (b) profiles from a 7 km long DCF; (c) output pulsera#t bandpass filter as in the case of F 1
filter with 15.5 GHz bandwidth; (d) output spectral intepgisolid blue curve) o
and intensity transmission function of bandpass filter lfddsred curve); (e)
contour plot of flaticon intensity profile vs. DCF length, aamhlytical predic- .
tion (@) of flaticon edges (dashed blue curves). 3. Rogue wave collisions

=

0.2

—Z?OO —-200

On the other hand, panel (a) of Fiy.2 also shows that, in spite As we have seen, the peak power of the chirp-free flaticon
of the presence of the temporal shock, whenever the magnitugulse which results from a square-wave frequency modulatio
of the initial chirpug remains below a critical value, says, of amplitude 21, (see EqL{b)) has a maximum valugwgf= 4p,,

i.e., if ug < Uc = 24Jpo, there is a finite time interval across which is obtained for the critical valugy = uc = 2+/po.
the frequency jump af = 0 where a high-power and chirp- However this limit case is not interesting in practice, sitice
free pulse is generated [13]-[14]. Such a pulse exhibitsta fla temporal width of the pulse shrinks to zero. Nevertheless, a
top, nonoscillating behavior, hence we may name it a "flatico  pointed out in|[14], it is remarkable that a finite width flatic
The flaticon is a stable waveform, as it maintains a selflaimi pulse with peak powep; can still be obtained as a result of
shape with distance: Kodama and Biondinil [14] have analytithe collision and merging of two flaticons travelling affdrent
cally demonstrated that its temporal duration, Sgyobeysthe carrier frequencies. Such collision may obtained by impgat
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least two or more frequency jumps to an input frequency modualytical solution of Eq. [(4). This is likely due to the factath

lation with a total (or collective) amplitude which rematiese
to 2uc.

we used relatively smooth frequency transitions, and ta¢he
atively large value of? = 0.2.

Henceforth we will consider frequency modulations which  On the other hand, whenever the total frequency jump am-

are symmetric around = 0, composed by a set of equal am-

plitude, decreasing frequency jumps. Consider for exaitige
initial frequency modulation (and associated phase madidala
profile that is illustrated in Figl3. In this case, each frexey
step has the amplitudg = 1.2f. = 43GHz so that a full
jump amplitude (betweeh = —400 psandt = +400 p9 of

fj = 2fs = 2.4, = 86 GHzresults. In Fid.B the time separation
among subsequent frequency jumps is equal to 400 ps.
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Figure 3: Top: input power, phase and frequency modulatgntime for the
case of two consecutive critical frequency jumps; Panety:(eesulting flaticon
collisions: (a) critical jump {j = 2.4f); (b) subcritical jump {j = 1.61;); (c)
supercritical jump {j = 2.8f).

The corresponding contour plot of the total power evolution86 GHz is maintained.

with distance in the DCF is illustrated in panel (a) of Eigh&

plitude is less than the critical value or subcritical, upoti-
sion the two flaticons merge into a single flaticon with pregre
sively expanding temporal edges (see panel (b) ofFig.3revhe
f; = 1.6f¢). Finally, for a supercritical (or larger than the critical
cumulated value) double frequency jump, the collision $etad
a high amplitude and spatially localized sneaker flaticdm se
edges shrink with distance until it disappears after abOWra
(see panel (c) of Figl3, wheffg = 2.8f;). Therefore the critical
frequency jump case in panel (a) of [Fig.3 represents a separa
among the subcritical expanding and the supercriticah&hrg
cases: the resulting flaticon has a stable steady-stateotamp
duration although its peak power is slowly decreased with di
tance.

Note that, in stark contrast with the collision of NLSE soli-
tons in the anomalous GVD regime, which emerge unchanged
from the collision except for a temporal and a time shift,Ha t
normal GVD regime the collisions of subcritical flaticon veav
leads to their full merging into a fierent, high-amplitude
sneaker wave which entirely captures their energy.

Quite remarkably, the peak power of the collision-induced
sneaker flaticon remains in good agreement with[Eq.(8), &her
Up is equal to the semi-amplitude of the total frequency jump.
For the critical case in panel (a) of Fi@j.3 one predicts a peak
sneaker flaticon power of W, which is close to the numeri-
cally observed value of.3W (see the legend of the power val-
ues in the (a) panel of FIg.3). In the subcritical (supeicaly
case, Eq{8) predicts a peak sneaker wave powergdf/ And
2.9W, respectively, again in good agreement with the numerical
values observed in the corresponding legends in panelsi(b) a
(c) of Fig[3.

A similar situation occurs in the collision of more than two
flaticons: in Fid.# we illustrate the case of four-pulseisahs,
resulting from four consecutive frequency down steps. &inc
the critical multiple frequency jump always correspondsito
total frequency modulation amplitude close to the criticdle
2f¢, in Fig[4 the amplitude of each step has been divided by two
with respect to the case of Hig).3, namély= 0.6, = 21.5GHz
so that a collective jump amplitude df = 4fs = 2.4f; =
In Figl4, the frequency jumps occur
att = +350psandt = +150ps respectively, so that the colli-

it can be seen, each frequency step has a subcritical ahlitu sion among the four flaticons occurs at approximately theesam
(i.e., fs < 2f.), so that two individual flaticon pulses of the type distance as in Figl3. Note that the initial time separatinoag
described by Eq$.J6)4(8) are generated. These pulsed tnave the colliding flaticons does noffact the power of the generated

opposite directions because of the shift (with respectéatn-
tral carrier frequency) of their individual mid-frequenés the
two flaticons collide, their nonlinear interaction leadstheir

sneaker flaticon, but only its overall temporal duration.
In the case of four frequency jumps, the collision of the re-
sulting four individual subcritical flaticons always leadgheir

merging into a single, higher amplitude flaticon whose tempomerging and formation of an individual, high power sneaker

ral edges remain virtually unchanged upon further propagat
Such a situation is described by saying that the total freque
jump has a critical amplitude.

flaticon. The critical case of panel (a) in Fig.4 is once again
obtained for a total jump amplitudg = 2.4f.. Indeed, the
resulting steady pulse has a larger temporal width thandhe ¢

Note that, by numerically solving the NLSEI (2), we obtain responding critical pulse of FIg.3 because of the longeéiaihi

the critical jump amplitudd; = 2.4f, which is slightly larger
than the theoretically predicted valué& 2esulting from the an-

4

temporal extension of the ensemble of colliding flaticonsteN
that the peak powers of the merged flaticons may once again
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Figure 5: (a) Contout plot of the optical power from the aitin of four flati-
cons with a supercritical total frequency junfip= 4f;; (b) same as in the left

®w panel, after bandpass filtering; (c) surface plot corredpmnto panel (b)
15
g " resulting from the collision of the four flaticons is moreanlly
o5 visualized in panels (b) and (c) of Hi¢).5, where we display th
il contour plot and the surface plot of the evolution with dis&

of the optical power, after passing the total field througé th
Figure 4: Input power, phase and frequency modulation e for the case of  same bandpass filter as in [Fig.2. Note that the bandpass filter
four consecutive critical frequency steps; Panels (aejulting flaticon colli-  js merely used here to more clearly visualize the flash-like n
sions: (a) Q.'t'cl""t' tftf‘.”“mpfq =32;f°); (b) suberitical total jump{; = 16%c): ;e of the collision-induced supercritical flaticon by r@ring
(€) supercritical total jumpfy = 3.21c). the high-frequency wave-breaking oscillations, but itsloet
affect its localization in both space and time, nor its peak powe

be well predicted by means of Eq.(8): for example, in the suvalue, as can be seen by comparing panels (a) and (b) bf Fig.5.
percritical case of panel (c) in Fig.4, Ed.(8) predicts te@p  The flaticon collision-induced generation of a collectjvali-
power of 3.4 W, which is in good agreement with the numerical,e critical rogue wave may also be observed in optical commu
value of about 3.2 W. _ _ nication systems using the wavelength-division-multipig

Even larger peak powers may be obtained by further increagywpm) technique, associated with an intensity modulation
ing the amplitude of the individual subcritical frequenayips,  format (such as NRZ). Consider for example a dispersion-
so that a collective supercritical jump results. For examnpl managed, long distance, periodically amplified transroissi
in Figl3 we illustrate the case of a total jump of amplitude|ink with a net or average normal GVD: in this case the NLSE
fj = 4fc. In this case Ed.{8) predicts that the peak power of@) represents the path-averaged propagation. In suditisity
the collision-generated flaticon is equal to 4.5 W, that i®eni  {he dynamics which is observed in FIg§l4-5 correspondsiio co
times higher than the input CW laser power level, in excellenigions among sequences of equal power and initially inspha
agreement with the numerical simulation shown in panel{a) 05,4 non-overlapping pulses in fivefidirent channels, with the
Fig[5. ] ] o relative frequency spacing ofiz Namely, the input condition

The price to be paid for obtaining peak powers larger thanyhown in Fig&l4 would correspond to the sequence (0100600)
the critical valuep. is that both the temporal duration and spa-he channel at relative frequeneyius, the sequence (0010000)
tial extension of the collision-induced flaticon is progriesly ¢ frequencys2us, the sequence (1001001) at the central fre-
reduced as the peak power grows larger. The finite "fetim‘?quency, the sequence (0000100) at frequen2ys, and the
or flash-like nature of the supercritical flaticons furthestj- sequence (0000010) a#us, respectively. The formation of
fies their classificatior_1 among the class of determiqistgn_a) a rogue peak with power up to (@ N)? times the power of
waves. In fact, by increasing the number N of individual ihe jndividual channel pulses in a WDM system compriding
subcritical colliding flaticons that are generated by f@wy  -hannels (wher&l may be as large a¥ = 100) may lead to
jumps with half amplitude, sayjs, it is possible obtain a col- - gamages in peak power-sensitive devices, and result iifisign
lective flaticon of arbitrarily high peak power, equalitolJ14 cant error bursts, for example whenever the peak is prodaiced

Nu< \2 the receiver position. In actual WDM communication systems
Pmax = 0 (1 5 \/p_) (9)  the statistics of such collision-induced rogue peaks viiéatly
0

reflect the statistical distribution of pulse sequencebénari-
The spatio-temporal localization of the high amplitudespul ous channels [19]. In order to avoid such extreme wave eyvents

5



it should be convenient to use phase-modulated as opposed toTherefore we have numerically studied the generation of a

intensity modulated formats. pulse train where the triangular phase modulation of Figré-
placed by a pure sinusoidal phase modulation, where the peak
value of the phase modulation is kept the same in both cases.

4. Periodic rogue wavetrains The contour plot of the (a) panel in Figl 7 indeed shows that a
flaticon pulse train is generated with sinusoidal phase nasdu

In previous sections we have studied the dynamics of indition @s well, albeit with a gradually decreasing peak poviter a
vidual flaticons, induced by a single or multiple input freqay T first 3 km of DCF.
jumps. Let us consider now the possible application of aptic
flaticons to the generation of periodic high intensity putags
in nonlinear optical fibers. For example, in Eig.6 we show the
case of an input frequency modulation with a period of 400 ps
(i.e., 2.5 GHz). The resulting evolution along the fiber d# th
optical power of the full field is shown in panel (a) of IFigy.6. ,
As it can be seen, a periodic train of flaticon pulses is gener- 1 | R | T |
ated, whose temporal widfh, grows larger with distance ac- oo 600 -460 200 a 200 450 50 800
cording to the law of Ed.{6). The corresponding power profile i @
after bandpass filtering (we used here again the same filter as 0 /\ /\ /\ .y /
in Fig[2) is shown in panel (b) of F[g.6: the maximum peak oo 0T g 0o
power of about 1.7 W for the generated 2.5 GHz pulse train is
obtained after 5.5 km of DCF (see panels (c) and (d), befatte an
after filtering, respectively) and is characterized by &viidith
at half maximum after filtering of 51 ps (which corresponds to
the duty cycle of 175%) .
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2 el Wl Wi o On the other hand, the contour plot of the (b) panel of Frig.7
& Winasa WV pasatY A'n“ ) | | . . . . . .
~foo -eoo ~a00 -zoo 0 400 800 which is obtained after bandpass filtering (using the samd-ba
2 1\ /\ /\ /\ / pass filter as in Fif]6) shows quite strikingly that the gatien
H 8 of a low duty ratio train of pulses is even enhanced whenéweer t
-800 -600 -400 -200 0 200 400 600 800 . . . . . .
Time [ps] periodic sinusoidal phase modulation replaces trianqaiase

(@) w

=

M s modulation. Indeed, the high-intensity and high-extioctia-
12 tio train of pulses is obtained after the first 3 km of DCF adiga
;8 with sinusoidal modulation, as opposed to 5.5 km with triang
\ 06 lar phase modulation (see panels (c) (before filtering) ahd (
0.4 (after filtering) of Fid.Y): here the full width at half maxium
o is equal to 56 ps after filtering. Moreover, panel (b) of Big.7
Time {ps) also shows that with sinusoidal phase (and frequency) naedul
_ , _ tion, the power of the generated pulse train remains religtiv
Figure 6: Top: Input temporal phase and chirp evolution 6f@Hz frequency . . .
modulated CW laser and (c) unfiltered or (d) filtered outpus@urain profile Staple Wl_th distance, as opposed to the Ca_‘se dﬂFlg'6 where th
at 5.5 km of DCF; Bottom: Power vs. DCF length & -100 ps/nm-km) for ~ Optimal fiber length should be carefully adjusted.
P = 500mW: a) total power; (b) power after bandpass filtering. Although in our analysis we neglected the presence of lin-
ear fiber loss in order to better highlight the essentialshef t
From the practical point of view, it would be useful to re- pulse dynamics, we verified that the dynamics of flaticon and
place the initial triangular phase modulation of the CW fase rogue wave generation remains qualitatively flieeted when
by a simple sinusoidal modulation. Indeed, our study of-flati fiber loss is included. In practice, in short fiber spans itisg-
con collisions in sectiorf{3) shows that, whenever the numbeble to fully compensate linear loss by means of distributae R
N of frequency jumps grows larger, and correspondinglyrthei man amplification. Whereas in long distance transmissiddsli
individual amplitudefs is reduced (so that the total frequency loss is periodically compensated by means of optical arepdifi
jump remains equal to the critical valdg= Nfs = 2.4f;), the  in such a case, the NLSEI(2) has the meaning of a guiding cen-
corresponding phase and frequency modulation (selel Figig) m ter or path-averaged propagation equation, which alsoeppl
approach in the continuous limit a sinusoidal waveform. to dispersion-managed systems [9].
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5. Conclusions [15] T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morirptand T.
Sueta, IEEE J. Quantum Electron. QE-24 (1988) 382.

We have described the conditions for the practical obseré! tT'n?téfji't?g'nYegtaSgGN)%%‘igsuma* and E. Sano, IEEE 1. Bipics Quan-
vation of extreme wave events in the Mi-free regime of nor-;;7 :. Rmeef Z. Verein. Deutsch. Ing. 36 (1892) 947.
mal GVD of optical fibers. Such rogue waves are obtainedis] Y. Kodama and S. Wabnitz, Electron. Lett. 31 (1995) 1761
through the collision of self-similar waveforms or flaticore- ~ [19] S.Vergeles and S.K. Turitsyn, Phys. Rev. A 83 (2011)8TH1R).
sulting from the initial phase or frequency modulation of al?0 W-Wan.S.Ja, J.W. Fleischer, Nature Phys. 3 (2007) 46.
CW laser, or from the nonlinear superposition of pulse paste
in dispersion-managed wavelength division transmissitks!
In analogy with shallow water sneaker waves induced by the
merging of currents moving in opposite directions along the
coastline, optical shallow water rogue waves appear asefash
of high-intensity, flat-top and chirp-free humps of lighth&se
waves have, on the one hand, beneficial potential applictdio
time-compressed and high intensity optical pulse trairegen
tion. On the other hand, they may lead to information loss and
catastrophic damages in intensity-modulated, dispensian-
aged WDM transmission links. In any case, optical fibers may
provide the ideal testbed for exploring the dynamics of ¢hes
extreme waves which may occur in diverse fields of applica-
tion such as oceanography, geophysics, ferromagnetias; pl
mas, etc. Aninteresting perspective for further studiésaex-
tension of these collision-induced rogue waves to the ajxxti
main, that is replacing dispersion byffdaction, where the two-
dimensional degrees of freedom may be exploited for simpplif
ing the generation and control of the initial spatial phase p
file [20]. Finally, analogous phenomena may appear in Bose-
Einstein condensation where the NLSE reduces to the NSWE in
the semiclassical limit, i.e., whenever the Planck’s camist is
a small parameter with respect to the quantities to be medsur
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