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Abstract

In addition to deep-water rogue waves which develop from themodulation instability of an optical CW, wave propagation in optical
fibers may also produce shallow water rogue waves. These extreme wave events are generated in the modulationally stable normal
dispersion regime. A suitable phase or frequency modulation of a CW laser leads to chirp-free and flat-top pulses or flaticons which
exhibit a stable self-similar evolution. Upon collision, flaticons at different carrier frequencies, which may also occur in wavelength
division multiplexed transmission systems, merge into a single, high-intensity, temporally and spatially localizedrogue pulse.
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1. Introduction

The dynamics of extreme waves, often known as freak or
rogue waves, is presently a subject of intensive research insev-
eral fields of application [1]-[2]. In oceanography, rogue waves
are mostly known as a sudden deep-water event which is re-
sponsible for ship wreakages. A relatively less explored, but
potentially even more damaging manifestation of rogue waves
also occurs in shallow waters, consider for example the propa-
gation of tsunamis. In such environment, the crossing of waters
propagating in different directions may lead to the formation
of high-elevation and steep humps of water that result in se-
vere coastal damages [3]. A universal model for describing the
formation of deep-water rogue waves is provided by the one-
dimensional Nonlinear Schrödinger Equation (NLSE). In this
framework, rogue waves are linked with the presence of modu-
lation instability (MI) [4], whose nonlinear development is de-
scribed by the so-called Akhmediev breathers [5], and may ul-
timately result in the formation of the Peregrine soliton, awave
of finite extension in both the evolution and the transverse co-
ordinates [6].

An ideal testbed for the experimental study of rogue waves
is provided by optical pulse propagation in nonlinear optical
fibers, which is closely described by the NLSE. Indeed, the
statistics of spectral broadening in optical supercontinuum gen-
eration has been associated with extreme solitary wave emis-
sions [7]. Moreover, the first experimental observation of the
Peregrine solitons in any physical medium has been carried out
exploiting the induced MI occuring in a highly nonlinear fiber
[8].

In this Letter, we show that rogue waves in optical fibers
may also be generated in the normal group-velocity dispersion
(GVD) regime of pulse propagation, where MI is absent. In-
deed, nonlinearity driven pulse shaping in this case may be
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described in terms of the semiclassical approximation to the
NLSE [9], which leads to the so-called nonlinear shallow wa-
ter equation (NSWE) [10], which is also known in hydraulics
as the Saint-Venant equation [11]. Therefore we establish adi-
rect link between the dynamics of extreme wave generation in
shallow waters [12] and their direct counterparts in optical com-
munication systems. Since the CW state of the field is stable,
shallow water optical rogue waves may only be generated as
a result of particular setting of the initial or boundary condi-
tions. Namely, as discussed by Kodama and Biondini [13]-[14],
the initial modulation of the optical frequency, which is analo-
gous to considering the collision between oppositely directed
currents near the beach, or the merging of different avalanches
falling from a mountain valley.

In section 2 we shall describe the dynamics of the genera-
tion of an intense, flat-top, self-similar and chirp-free pulse as
a result of the initial step-wise frequency modulation of a CW
laser. In hydrodynamics, this corresponds to the hump of water
which is generated by two water waves traveling with opposite
velocities. The intriguing property of such pulses, that wename
flaticons, is their stable merging upon mutual collision into ei-
ther a steady or transient high-intensity wave, as discussed in
section 3. The pulse collision dynamics may also lead to the
formation of extreme intensity peaks in optical communication
systems whenever various wavelength channels are transported
on the same fiber. As pointed out in section 4, an interesting ap-
plication of optical shallow water rogue waves is the possibility
of generating, from a frequency or phase modulated CW laser,
high repetition rate pulse trains with low duty ratio. In contrast
with existing linear techniques for pulse train generation[15]-
[16], rogue wavetrains lead to chirp-free, high intensity pulse
trains, which are important advantages for their possible use as
communication signals.
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2. Optical pulse dynamics

The propagation of pulses in optical fibers is described by the
NLSE

i
∂Q
∂z
− β2

2
∂2Q
∂t2
+ γ|Q|2Q = 0. (1)

Herezandt denote the distance and retarded time (in the frame
travelling at the group-velocity) coordinates;β2 andγ are the
group velocity dispersion and the nonlinear coefficient, andQ
is the field envelope. In dimensionless units, and in the normal
dispersion regime (i.e.,β2 > 0), Eq.(1) reads as

i
∂q
∂Z
− β

2

2
∂q
∂T2
+ |q|2q = 0. (2)

whereT = t/t0, Z = zγP0 = z/LNL, β2
= β2/(T2

0γP0) ≡
LNL/LD, whereLNL and LD are the nonlinear and dispersion
lengths, respectively,q = Q/

√
P0 , t0 andP0 are arbitrary time

and power units. Eq.(2) can be expressed in terms of the real
variablesρ andu which denote the field dimensionless power
and instantaneous frequency (or chirp)

q(T,Z) =
√

ρ(T,Z) exp

[

− i
β

∫ T

−∞
u(T′,Z)dT′

]

. (3)

By ignoring higher order time derivatives in the resulting
equations (which is justified for small values ofβ), one obtains
from the NLSE the semi-classical or hydrodynamic NSWE [9]-
[10]

∂

∂Z′

(

ρ

u

)

+

(

u ρ

1 u

)

∂

∂T

(

ρ

u

)

= 0, (4)

whereZ′ = βZ. In hydrodynamics, Eq.(4) describes the mo-
tion of a surface wave in shallow water, i.e., a wave whose
wavelength is much larger than the water depth. In this con-
text, ρ and u represent the water depth and its velocity, re-
spectively. For a temporally localized input optical waveform
such as a chirp-free square pulse (which is representative of
the nonreturn-to-zero (NRZ) optical modulation format), i.e.,
with ρ(T,Z = 0) = ρ0 for |T | ≤ T0 and ρ(T,Z = 0) = 0
otherwise, Eq.(4) may be analytically solved up to the point
Z′ = T0/

√
ρ0 in terms of the well-known Ritter dam-break so-

lution [9],[17]. Note that, at this point, the initial square NRZ
pulse has broadened into a triangular pulse. In order to coun-
teract such pulse deformation, it was proposed in [18] to use
an input step-wise periodic frequency modulation, so that the
self-phase modulation-induced chirp can be largely compen-
sated for.

We are interested here in studying the behavior of the solu-
tions of Eq.(4) with a dual quasi-CW pump input, that is we
set ρ(T,Z = 0) = ρ0,∀T , and a periodic (with periodTM)
frequency modulation, namely

u(T,Z = 0) =

{

u0 f or − TM/2 < T < 0
−u0 f or 0 < T < TM/2

, (5)

so that in each modulation period there are two opposite fre-
quency jumps. Indeed Eq.(5) corresponds to the injection of

two time alternating, quasi-CW pumps at opposite frequencies
±u0, respectively (see the power spectrum in panel (d) of Fig.1).
Supposing thatu0 > 0, the frequency jump atT = 0 is such
that, because of normal dispersion, the leading wave compo-
nents atT < 0 travel slower than the trailing components at
T > 0. Hence a wave compression (optical piston effect) at
T = 0 results, which leads to a dispersive shock or optical wave
breaking. That is, high-frequency oscillations appear with a
characteristic oscillation frequency equal to 1/β. The opposite
situation occurs for the frequency jump atT = ±TM/2, where
dispersion leads to wave rarefaction, so that a dark pulse orhole
develops.
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Figure 1: Output (blue solid curves) and input (red dashed curves) power (a)
and chirp (b) profiles from a 7 km long DCF in the linear case (i.e., withγ = 0);
(c) output pulse power after a bandpass filter with 15.5 GHz bandwidth; (d)
input and output spectral intensity (solid blue curve) and intensity transmission
function of bandpass filter (dashed red curve); (e) contour plot of power profile
vs. length.

Indeed, as shown in panel (a) of Fig.1, high-intensity oscil-
lations also occur in a purely linear dispersive medium (i.e.,
wheneverγ = 0 in Eq.(1)), owing to the beating among the
different frequency components which are generated by the
initial condition Eq.(5), and that travel at different speeds.
Here we show the output power profile from a 7 km long
dispersion-compensating fiber (DCF) with normal GVDD =
−100ps/(nm · km) (or β2 = 127ps2/km) under purely linear
propagation conditions. In Fig.1 we considered a 1.25 GHz
rate of frequency modulation with±26GHzamplitude, and the
input CW powerP = 500mW (or 27 dBm).

Panel (b) of Fig.1 shows that in the linear case the output
wavetrain develops a strong chirp as it propagates. Clearlyin
the absence of nonlinearity the spectrum of panel (d) in Fig.1
remains unchanged, with most of its energy concentrated at the
two quasi-CW pump frequencies. Therefore if we place a rel-
atively narrow bandpass filter centered at the carrier frequency
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u = 0, we only obtain a weak (i.e., with a peak power which
remains two orders of magnitude lower than the peak of the os-
cillations in panel (a) of Fig.1) periodic pulse train (see panel
(c) of Fig.1). We used here a filter with the supergaussian spec-
tral amplitude transfer function of order 20, with spectralband-
width of 15.5 GHz, calculated at -3dB from the peak transmis-
sion value. The filter transfer function is illustrated by a red
dashed curve in panel (d) of Fig.1, and compared to the con-
stant spectral intensity profile (solid blue curve). Finally, panel
(e) of Fig.1 shows that the width of the region with temporal os-
cillations grows larger with distance owing to linear dispersive
spreading.

In the nonlinear case (e.g., with the nonlinear coefficient
γ = 3.2W−1km−1 in Eq.(1)), wave propagation is dramatically
different. On the one hand, the collision among the two oppo-
sitely traveling (in the reference frame traveling with thegroup
velocity of the carrier component atu = 0) quasi-CW pumps
leads to a dispersive wave-breaking or shock, as it is illustrated
in panel (a) of Fig.2.
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Figure 2: Output (blue solid curves) and input (red dashed curves) power (a)
and chirp (b) profiles from a 7 km long DCF; (c) output pulse after a bandpass
filter with 15.5 GHz bandwidth; (d) output spectral intensity (solid blue curve)
and intensity transmission function of bandpass filter (dashed red curve); (e)
contour plot of flaticon intensity profile vs. DCF length, andanalytical predic-
tion (6) of flaticon edges (dashed blue curves).

On the other hand, panel (a) of Fig.2 also shows that, in spite
of the presence of the temporal shock, whenever the magnitude
of the initial chirpu0 remains below a critical value, say,uc,
i.e., if u0 ≤ uc ≡ 2

√
ρ0, there is a finite time interval across

the frequency jump atT = 0 where a high-power and chirp-
free pulse is generated [13]-[14]. Such a pulse exhibits a flat-
top, nonoscillating behavior, hence we may name it a ”flaticon”.
The flaticon is a stable waveform, as it maintains a self-similar
shape with distance: Kodama and Biondini [14] have analyti-
cally demonstrated that its temporal duration, say,Tp, obeys the

simple linear law

Tp =
(

2
√
ρ0 − u0

)

Z′ ≡ 2VpZ′ (6)

where±Vp is the speed of propagation of the flaticon edges. In
panel (e) of Fig.2 we compare the prediction of Eq.(6) with the
numerical solution of the NLSE (2). As it can be seen, Eq.(6)
correctly captures the self-similar expansion of the flaticon tem-
poral duration with the propagation distance. The flaticon time
duration in Fig.2 is slightly longer than the value of Eq.(6), ow-
ing to the finite width of the initial smooth frequency transition
as opposed to the sudden jump in Eq.(5).

In real units, the critical frequency shiftfc reads as

fc =
uc

2πt0β
=

1
πt0β

√

P
P0
=

1
π

√

γP
β2

(7)

Eq.(7)) shows that the amplitude of the critical frequency mod-
ulation is controlled by varying the ratio of the input powerP to
the fiber GVDβ2. On the other hand, the validity of the condi-
tionβ2 << 1 may be independently ensured by a suitable choice
of the reference timet0.

Quite strikingly, panel (e) of Fig.2 shows that the flaticon
power remains constant with distance. In fact, its peak power is
equal to the value

ρp = ρ0

(

1+
u0

2
√
ρ0

)2

(8)

which has a maximum value ofρc = 4ρ0 for u = uc. However
in the critical case the flaticon temporal durationTp shrinks to
zero. In Fig.2 we have setu0 = (

√
3 − 1)uc, which leads to

ρp = 3ρ0. Eqs.(6)-(8) mean that the flaticon energy grows larger
linearly with distance, as it continuosly draws energy towards
the zero-frequency region, at the expense of the two input quasi-
CW waves at frequencies±u0.

In order to extract the flaticon from the high-frequency
pumps and from its highly chirped oscillating tails, it is neces-
sary to use a suitably optimized bandpass filter which highlyin-
creases the extinction ratio of the generated optical pulse, with-
out sacrificing its peak power, as it can be seen by comparing
panels (a) and (c) of Fig.2. Here we used the same bandpass
filter as in the case of Fig.1.

3. Rogue wave collisions

As we have seen, the peak power of the chirp-free flaticon
pulse which results from a square-wave frequency modulation
of amplitude 2u0 (see Eq.(5)) has a maximum value ofρc = 4ρ0,
which is obtained for the critical valueu0 = uc = 2

√
ρ0.

However this limit case is not interesting in practice, since the
temporal width of the pulse shrinks to zero. Nevertheless, as
pointed out in [14], it is remarkable that a finite width flaticon
pulse with peak powerρc can still be obtained as a result of
the collision and merging of two flaticons travelling at different
carrier frequencies. Such collision may obtained by imposing at
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least two or more frequency jumps to an input frequency modu-
lation with a total (or collective) amplitude which remainsclose
to 2uc.

Henceforth we will consider frequency modulations which
are symmetric aroundT = 0, composed by a set of equal am-
plitude, decreasing frequency jumps. Consider for examplethe
initial frequency modulation (and associated phase modulation)
profile that is illustrated in Fig.3. In this case, each frequency
step has the amplitudefs = 1.2 fc = 43 GHz, so that a full
jump amplitude (betweent = −400 ps and t = +400 ps) of
f j = 2 fs = 2.4 fc = 86GHzresults. In Fig.3 the time separation
among subsequent frequency jumps is equal to 400 ps.
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Figure 3: Top: input power, phase and frequency modulation vs. time for the
case of two consecutive critical frequency jumps; Panels (a-c): resulting flaticon
collisions: (a) critical jump (f j = 2.4 fc); (b) subcritical jump (f j = 1.6 fc); (c)
supercritical jump (f j = 2.8 fc).

The corresponding contour plot of the total power evolution
with distance in the DCF is illustrated in panel (a) of Fig.3.As
it can be seen, each frequency step has a subcritical amplitude
(i.e., fs < 2 fc), so that two individual flaticon pulses of the type
described by Eqs.(6)-(8) are generated. These pulses travel in
opposite directions because of the shift (with respect to the cen-
tral carrier frequency) of their individual mid-frequency. As the
two flaticons collide, their nonlinear interaction leads totheir
merging into a single, higher amplitude flaticon whose tempo-
ral edges remain virtually unchanged upon further propagation.
Such a situation is described by saying that the total frequency
jump has a critical amplitude.

Note that, by numerically solving the NLSE (2), we obtain
the critical jump amplitudef j = 2.4 fc, which is slightly larger
than the theoretically predicted value 2fc resulting from the an-

alytical solution of Eq. (4). This is likely due to the fact that
we used relatively smooth frequency transitions, and to therel-
atively large value ofβ2

= 0.2.
On the other hand, whenever the total frequency jump am-

plitude is less than the critical value or subcritical, uponcolli-
sion the two flaticons merge into a single flaticon with progres-
sively expanding temporal edges (see panel (b) of Fig.3, where
f j = 1.6 fc). Finally, for a supercritical (or larger than the critical
cumulated value) double frequency jump, the collision leads to
a high amplitude and spatially localized sneaker flaticon, whose
edges shrink with distance until it disappears after about 30 km
(see panel (c) of Fig.3, wheref j = 2.8 fc). Therefore the critical
frequency jump case in panel (a) of Fig.3 represents a separatrix
among the subcritical expanding and the supercritical shrinking
cases: the resulting flaticon has a stable steady-state temporal
duration although its peak power is slowly decreased with dis-
tance.

Note that, in stark contrast with the collision of NLSE soli-
tons in the anomalous GVD regime, which emerge unchanged
from the collision except for a temporal and a time shift, in the
normal GVD regime the collisions of subcritical flaticon waves
leads to their full merging into a different, high-amplitude
sneaker wave which entirely captures their energy.

Quite remarkably, the peak power of the collision-induced
sneaker flaticon remains in good agreement with Eq.(8), where
u0 is equal to the semi-amplitude of the total frequency jump.
For the critical case in panel (a) of Fig.3 one predicts a peak
sneaker flaticon power of 2.4W, which is close to the numeri-
cally observed value of 2.3W (see the legend of the power val-
ues in the (a) panel of Fig.3). In the subcritical (supercritical)
case, Eq.(8) predicts a peak sneaker wave power of 1.6W and
2.9W, respectively, again in good agreement with the numerical
values observed in the corresponding legends in panels (b) and
(c) of Fig.3.

A similar situation occurs in the collision of more than two
flaticons: in Fig.4 we illustrate the case of four-pulse collisions,
resulting from four consecutive frequency down steps. Since
the critical multiple frequency jump always corresponds toa
total frequency modulation amplitude close to the criticalvalue
2 fc, in Fig.4 the amplitude of each step has been divided by two
with respect to the case of Fig.3, namelyfs = 0.6 fc = 21.5GHz,
so that a collective jump amplitude off j = 4 fs = 2.4 fc =
86 GHz is maintained. In Fig.4, the frequency jumps occur
at t = ±350psandt = ±150ps, respectively, so that the colli-
sion among the four flaticons occurs at approximately the same
distance as in Fig.3. Note that the initial time separation among
the colliding flaticons does not affect the power of the generated
sneaker flaticon, but only its overall temporal duration.

In the case of four frequency jumps, the collision of the re-
sulting four individual subcritical flaticons always leadsto their
merging and formation of an individual, high power sneaker
flaticon. The critical case of panel (a) in Fig.4 is once again
obtained for a total jump amplitudef j = 2.4 fc. Indeed, the
resulting steady pulse has a larger temporal width than the cor-
responding critical pulse of Fig.3 because of the longer initial
temporal extension of the ensemble of colliding flaticons. Note
that the peak powers of the merged flaticons may once again

4
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Figure 4: Input power, phase and frequency modulation vs. time for the case of
four consecutive critical frequency steps; Panels (a-c): resulting flaticon colli-
sions: (a) Critical total jump (f j = 2.4 fc); (b) subcritical total jump (f j = 1.6 fc);
(c) supercritical total jump (f j = 3.2 fc).

be well predicted by means of Eq.(8): for example, in the su-
percritical case of panel (c) in Fig.4, Eq.(8) predicts the peak
power of 3.4 W, which is in good agreement with the numerical
value of about 3.2 W.

Even larger peak powers may be obtained by further increas-
ing the amplitude of the individual subcritical frequency jumps,
so that a collective supercritical jump results. For example,
in Fig.5 we illustrate the case of a total jump of amplitude
f j = 4 fc. In this case Eq.(8) predicts that the peak power of
the collision-generated flaticon is equal to 4.5 W, that is nine
times higher than the input CW laser power level, in excellent
agreement with the numerical simulation shown in panel (a) of
Fig.5.

The price to be paid for obtaining peak powers larger than
the critical valueρc is that both the temporal duration and spa-
tial extension of the collision-induced flaticon is progressively
reduced as the peak power grows larger. The finite lifetime
or flash-like nature of the supercritical flaticons further justi-
fies their classification among the class of deterministic rogue
waves. In fact, by increasing the number N of individual
subcritical colliding flaticons that are generated by frequency
jumps with half amplitude, say,us, it is possible obtain a col-
lective flaticon of arbitrarily high peak power, equal to [14]

ρmax= ρ0

(

1+
Nus

2
√
ρ0

)2

(9)

The spatio-temporal localization of the high amplitude pulse

Time [ps]

D
is

ta
nc

e 
[k

m
]

 

 

−500 0 500
0

5

10

15

20

25

30

1

2

3

4 W

(a)

Time [ps]

D
is

ta
nc

e 
[k

m
]

 

 

−500 0 500
0

5

10

15

20

25

30

0.5

1

1.5

2

2.5

3

3.5

(b)
W

Figure 5: (a) Contout plot of the optical power from the collision of four flati-
cons with a supercritical total frequency jumpf j = 4 fc; (b) same as in the left
panel, after bandpass filtering; (c) surface plot corresponding to panel (b)

resulting from the collision of the four flaticons is more clearly
visualized in panels (b) and (c) of Fig.5, where we display the
contour plot and the surface plot of the evolution with distance
of the optical power, after passing the total field through the
same bandpass filter as in Fig.2. Note that the bandpass filter
is merely used here to more clearly visualize the flash-like na-
ture of the collision-induced supercritical flaticon by removing
the high-frequency wave-breaking oscillations, but it does not
affect its localization in both space and time, nor its peak power
value, as can be seen by comparing panels (a) and (b) of Fig.5.

The flaticon collision-induced generation of a collectively su-
percritical rogue wave may also be observed in optical commu-
nication systems using the wavelength-division-multiplexing
(WDM) technique, associated with an intensity modulation
format (such as NRZ). Consider for example a dispersion-
managed, long distance, periodically amplified transmission
link with a net or average normal GVD: in this case the NLSE
(2) represents the path-averaged propagation. In such situation,
the dynamics which is observed in Figs.4-5 corresponds to col-
lisions among sequences of equal power and initially in-phase
and non-overlapping pulses in five different channels, with the
relative frequency spacing of 2us. Namely, the input condition
shown in Figs.4 would correspond to the sequence (0100000) in
the channel at relative frequency+4us, the sequence (0010000)
at frequency+2us, the sequence (1001001) at the central fre-
quency, the sequence (0000100) at frequency−2us, and the
sequence (0000010) at−4us, respectively. The formation of
a rogue peak with power up to (1+ N)2 times the power of
the individual channel pulses in a WDM system comprisingN
channels (whereN may be as large asN = 100) may lead to
damages in peak power-sensitive devices, and result in signifi-
cant error bursts, for example whenever the peak is producedat
the receiver position. In actual WDM communication systems,
the statistics of such collision-induced rogue peaks will directly
reflect the statistical distribution of pulse sequences in the vari-
ous channels [19]. In order to avoid such extreme wave events,
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it should be convenient to use phase-modulated as opposed to
intensity modulated formats.

4. Periodic rogue wavetrains

In previous sections we have studied the dynamics of indi-
vidual flaticons, induced by a single or multiple input frequency
jumps. Let us consider now the possible application of optical
flaticons to the generation of periodic high intensity pulsetrains
in nonlinear optical fibers. For example, in Fig.6 we show the
case of an input frequency modulation with a period of 400 ps
(i.e., 2.5 GHz). The resulting evolution along the fiber of the
optical power of the full field is shown in panel (a) of Fig.6.
As it can be seen, a periodic train of flaticon pulses is gener-
ated, whose temporal widthTp grows larger with distance ac-
cording to the law of Eq.(6). The corresponding power profile
after bandpass filtering (we used here again the same filter as
in Fig.2) is shown in panel (b) of Fig.6: the maximum peak
power of about 1.7 W for the generated 2.5 GHz pulse train is
obtained after 5.5 km of DCF (see panels (c) and (d), before and
after filtering, respectively) and is characterized by a full width
at half maximum after filtering of 51 ps (which corresponds to
the duty cycle of 12.75%) .
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Figure 6: Top: Input temporal phase and chirp evolution of 2.5 GHz frequency
modulated CW laser and (c) unfiltered or (d) filtered output pulse train profile
at 5.5 km of DCF; Bottom: Power vs. DCF length (D = −100 ps/nm· km) for
P = 500mW: a) total power; (b) power after bandpass filtering.

From the practical point of view, it would be useful to re-
place the initial triangular phase modulation of the CW laser
by a simple sinusoidal modulation. Indeed, our study of flati-
con collisions in section (3) shows that, whenever the number
N of frequency jumps grows larger, and correspondingly their
individual amplitudefs is reduced (so that the total frequency
jump remains equal to the critical valuef j = N fs = 2.4 fc), the
corresponding phase and frequency modulation (see Fig.4) may
approach in the continuous limit a sinusoidal waveform.

Therefore we have numerically studied the generation of a
pulse train where the triangular phase modulation of Fig.6 is re-
placed by a pure sinusoidal phase modulation, where the peak
value of the phase modulation is kept the same in both cases.
The contour plot of the (a) panel in Fig. 7 indeed shows that a
flaticon pulse train is generated with sinusoidal phase modula-
tion as well, albeit with a gradually decreasing peak power after
the first 3 km of DCF.
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Figure 7: As in Fig. 6, with input sinusoidal phase modulation. (a) total power;
(b) power after bandpass filtering; (c) unfiltered or (d) filtered output pulse train
profile at 3 km of DCF;

On the other hand, the contour plot of the (b) panel of Fig.7
which is obtained after bandpass filtering (using the same band-
pass filter as in Fig.6) shows quite strikingly that the generation
of a low duty ratio train of pulses is even enhanced whenever the
periodic sinusoidal phase modulation replaces triangularphase
modulation. Indeed, the high-intensity and high-extinction ra-
tio train of pulses is obtained after the first 3 km of DCF already
with sinusoidal modulation, as opposed to 5.5 km with triangu-
lar phase modulation (see panels (c) (before filtering) and (d)
(after filtering) of Fig.7): here the full width at half maximum
is equal to 56 ps after filtering. Moreover, panel (b) of Fig.7
also shows that with sinusoidal phase (and frequency) modula-
tion, the power of the generated pulse train remains relatively
stable with distance, as opposed to the case of Fig.6 where the
optimal fiber length should be carefully adjusted.

Although in our analysis we neglected the presence of lin-
ear fiber loss in order to better highlight the essentials of the
pulse dynamics, we verified that the dynamics of flaticon and
rogue wave generation remains qualitatively unaffected when
fiber loss is included. In practice, in short fiber spans it is possi-
ble to fully compensate linear loss by means of distributed Ra-
man amplification. Whereas in long distance transmission links
loss is periodically compensated by means of optical amplifiers:
in such a case, the NLSE (2) has the meaning of a guiding cen-
ter or path-averaged propagation equation, which also applies
to dispersion-managed systems [9].
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5. Conclusions

We have described the conditions for the practical obser-
vation of extreme wave events in the MI-free regime of nor-
mal GVD of optical fibers. Such rogue waves are obtained
through the collision of self-similar waveforms or flaticons re-
sulting from the initial phase or frequency modulation of a
CW laser, or from the nonlinear superposition of pulse patterns
in dispersion-managed wavelength division transmission links.
In analogy with shallow water sneaker waves induced by the
merging of currents moving in opposite directions along the
coastline, optical shallow water rogue waves appear as flashes
of high-intensity, flat-top and chirp-free humps of light. These
waves have, on the one hand, beneficial potential application to
time-compressed and high intensity optical pulse train genera-
tion. On the other hand, they may lead to information loss and
catastrophic damages in intensity-modulated, dispersionman-
aged WDM transmission links. In any case, optical fibers may
provide the ideal testbed for exploring the dynamics of these
extreme waves which may occur in diverse fields of applica-
tion such as oceanography, geophysics, ferromagnetics, plas-
mas, etc. An interesting perspective for further studies isthe ex-
tension of these collision-induced rogue waves to the spatial do-
main, that is replacing dispersion by diffraction, where the two-
dimensional degrees of freedom may be exploited for simplify-
ing the generation and control of the initial spatial phase pro-
file [20]. Finally, analogous phenomena may appear in Bose-
Einstein condensation where the NLSE reduces to the NSWE in
the semiclassical limit, i.e., whenever the Planck’s constant~ is
a small parameter with respect to the quantities to be measured.
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