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Abstract

This paper deals with the discrete-time switched Lur’e problem in finite
domain. The aim is to provide a stabilization inside an estimate of the
origin’s basin of attraction, large as possible, via a suitable switching rule.
The design of this switching rule is based on the min-switching policy and
can be induced by sufficient conditions given by Lyapunov-Metzler inequal-
ities. Nevertheless instead of intuitively considering a switched quadratic
Lyapunov function for this approach, a suitable switched Lyapunov function
including the modal nonlinearities is proposed. The assumptions required to
characterize the nonlinearities are only mode-dependent sector conditions,
without constraints related to the slope of the nonlinearities. An optimiza-
tion problem is provided to allow the maximization of the size of the basin of
attraction estimate – which may be composed of disconnected sets – under
the stabilization conditions. A numerical example illustrate the efficiency of
our approach and emphasize the specificities of our tools.
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1. Introduction

Among the widespread and rich literature of control theory for nonlinear
systems [1, 2, 3], the Lur’e problem, also called the absolute stability, occu-
pies a large place. It consists in studying the global uniform asymptotical
stability of an interconnection between a linear system and a nonlinear out-
put feedback, whatever this nonlinearity, satisfying a cone bounded sector
condition [3]. Classical results for the Lur’e problem are mainly the circle
criterion involving a quadratic Lyapunov function and the Popov criterion
involving a Lur’e type Lyapunov function, which includes additionally an
integral of the nonlinearity. When the nonlinearity satisfies only a local cone
bounded sector condition, we consider the absolute stability in finite domain.

Recently such a problem has drawn renewed attention, in particular due
to the refinement to cope with nonlinearities like the saturation [4, 5]. A new
Lyapunov function depending on the nonlinearity but avoiding its integral
has been proposed by the authors to study the Lur’e problem in discrete-
time [6] and its frequency domain interpretation. This new tool offers the
main advantage of not requiring additional assumption about the slope of the
nonlinearity, instead of the available litterature. Moreover when considering
a Lur’e problem including an input saturation, the approach using this new
tool leads also to the important property that the estimate of the basin of
attraction can be nonconvex and disconnected [7, 6].

Switched systems are a subclass of hybrid systems and consist in the
combination of a finite set of modal dynamic systems and a switching law,
which indicates at each time the active mode among them [8, 9]. The issue
of the stability and stabilization of switched systems, which has been clearly
formalized in [10], has generated many contributions to the control theory
literature (see [11, 12, 13, 14, 15, 16] and references therein). Mainly two
frameworks should be distinguished related to the nature of the switching law.
In the first case, the switching law is considered as a perturbation, that is
arbitrary in the class of admissible switching laws (see [17] for more details by
using a switched quadratic Lyapunov function and [18] by using a switched
Lur’e type Lyapunov function). In the second case, the switching law is
considered as a control input, which can be designed to stabilize the switched
system. One of the most known idea is to apply a state-space partition
based approach [19] or the min-switching strategy introduced in [20, 8] for
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continuous-time. In this framework, sufficient conditions based on Lyapunov-
Metzler inequalities [21, 22] are developed in association with a switched
quadratic Lyapunov function [23, 24]. As suggested in [25], the intuitive use
of a switched quadratic Lyapunov function can be improved by considering a
switched Lur’e type Lyapunov function (see [6, 18] for its introduction). The
induced state-space partition depends on the modal nonlinearities and is not
reduced to a conic one. This should be regarded as an adapted property for
switched nonlinear systems. To the best knowledge of the authors, there is
no such a contribution related to switched Lur’e problem. More precisely,
we investigate the local stabilization problem via switching rule design of a
discrete-time switched system containing cone bounded sector nonlinearities
and a switched (not necessarily stabilizing) feedback control law subject to
the saturation. The strategy to design the switching rule is the min-switching
policy. Sufficient conditions for local stabilization are provided as Lyapunov-
Metzler inequalities, leading to a constrained optimization problem aiming
at maximizing the estimate of the basin of attraction, consisting of the union
of modal Lyapunov functions level sets.

The outline of the paper is as follows. Section 2 settles the switched
Lur’e problem in finite domain and preliminary tools. In Section 3 the min-
switching policy to stabilize the switched nonlinear system is given via a
switched quadratic Lyapunov function (Proposition 1) and via a switched
Lur’e type Lyapunov function (Proposition 2). These propositions intro-
duce suitable Lyapunov-Metzler inequalities, leading to optimization prob-
lems maximizing the size of the estimate of the basin of attraction. The
second approach is shown to be an extension of the first one. Section 4 is
devoted to a numerical and detailed example underlining the possibilities of
the main result, before concluding remarks in Section 5.

Notation: R, N, N
∗ are respectively the sets of real numbers, of natural

integers and of strictly positive integers. Components of vector x ∈ R
n are

denoted x(ℓ), ∀ ℓ = 1, ..., n. Vectors inequalities are component-wise: x ≥ 0
means x(ℓ) ≥ 0 and x ≥ y means x(ℓ) − y(ℓ) ≥ 0. A(ℓ) (resp. Ai,(ℓ))
is the ℓ-th row of matrix A (resp. Ai). For two symmetric matrices, A

and B, A > B means that A − B is positive definite. A′ denotes the
transpose of matrix A and for a square matrix M , He(M) = M + M ′.
In (resp. 0n) and 0m×n are the n-order identity (null) matrix and the
m × n-order null matrix, respectively. The symbol ⋆ stands for symmet-
ric block in matrices. The ellipsoidal set E(M) associated with M > 0
is given by {x ∈ R

n; x′Mx ≤ 1}. The set M ⊂ R
N×N of Metzler matri-
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ces is composed of matrices with nonnegative off-diagonal elements M ={
Π ∈ R

N×N , πji ≥ 0,∀(i, j) ∈ I2
N , i 6= j

}
. Let us define the subclass Md of

M such that Md =
{
Π ∈ M, πii ≥ 0,

∑
ℓ∈IN

πℓi = 1,∀i ∈ IN

}
. The con-

vex combinations of positive definite matrices Pi with weights being elements
of the Metzler matrix Π ∈ Md is denoted (P )p,i =

∑
ℓ∈IN

πℓiPℓ.

2. Problem statement and Preliminaries

Consider the following discrete-time switched system composed of N non-
linear modes (N ∈ N

∗), that is the switched Lur’e system [26]:

xk+1 = Aσ(k)xk + Fσ(k)ϕσ(k)(Cσ(k)xk) + Bσ(t)sat(uk), k ∈ N, (1)

uk = Kσ(k)xk + Γσ(k)ϕσ(k)(Cσ(k)xk), (2)

where xk ∈ R
n is the state, uk ∈ R

m the input of the closed-loop sys-
tem (1)-(2) and the functions ϕi(·) the nonlinearities associated with each
mode i ∈ IN = {1, · · · , N}. The notation Mσ(k) means that, at each time
k, Mσ(k) takes its value in the set {M1, · · · , MN} indexed by σ(k). The ma-
trices {Ai}i∈IN

, {Bi}i∈IN
, {Ci}i∈IN

, {Fi}i∈IN
, {Ki}i∈IN

and {Γi}i∈IN
have

appropriate dimensions: Ai ∈ R
n×n, Bi ∈ R

n×m, Fi ∈ R
n×p, Ci ∈ R

p×n,
Ki ∈ R

m×n, and Γi ∈ R
m×p. The switching rule σ : N 7→ IN indicates which

mode is active at each time. In this paper, the switching rule σ is the vari-
able which should be designed by the controller to stabilize the closed-loop
system (1)-(2). The nonlinearities ϕi(·) verify the following assumption.

Assumption 1. The N nonlinearities ϕi(·) : R
p → R

p associated with each
mode i ∈ IN are assumed to satisfy their own cone bounded sector conditions
and to be decentralized [3].

The statement of Assumption 1 can be rewritten abusively ϕi(·) ∈ [0p, Ωi]
and implies that ϕi(0) = 0 and that there exist N diagonal positive def-
inite matrices Ωi ∈ R

p×p such that independently, ∀y ∈ R
p and ∀ℓ =

1, · · · , p, ϕi,(ℓ)(y) [ϕi(y) − Ωiy](ℓ) ≤ 0. Hence, we have the following inequal-
ity, ∀i ∈ IN , ∀y ∈ R

p:

SC(ϕi(·), y, Λi) = ϕ′

i(y)Λi[ϕi(y) − Ωiy] ≤ 0, (3)

for any Λi ∈ R
p×p diagonal and positive matrices.
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The input uk is subject to actuation limits, and the standard satura-
tion function is considered: sat(uk)(ℓ) = sign((uk)(ℓ)) min

(
ρ(ℓ),

∣∣(uk)(ℓ)

∣∣), ∀ℓ =
1, ...,m. The vector 0m < ρ ∈ R

m is assumed to be given.
The saturation is described as a dead-zone nonlinearity Ψ(uk) = uk −

sat(uk). By replacing uk defined in (2) and using Ψ(uk) into (1), the closed-
loop model is given by

xk+1 = Acl,σ(k)xk + F cl,σ(k)ϕσ(k)(Cσ(k)xk) − Bσ(k)Ψ(uk), (4)

where Acl,i = Ai + BiKi and F cl,i = Fi + BiΓi, ∀i ∈ IN .
Let us now introduce the modal sets Ti, (i ∈ IN) characterizing the dead-

zone Ψ(uk) as belonging to a generalized sector condition. For given matrices
Hi ∈ R

m×(n+p), i ∈ IN , consider Ti(Hi, ρ) = {θ ∈ R
n+p;−ρ ≤ Hiθ ≤ ρ}.

Lemma 1. Let i ∈ IN and m × (n + p)-matrices K̂i = [Ki Γi] and Ĵi =

[J1,i J2,i]. If the vector x̂k = [x′

k ϕ′

σ(k)(Cσ(k)xk)]
′ is an element of Ti(K̂i −

Ĵi, ρ), the nonlinearity Ψ(uk) satisfies the following sector condition

SCuk
= Ψ′(uk)U

−1
i [Ψ(uk) − J1,ixk − J2,iϕi(Cixk)] ≤ 0, (5)

with uk defined in (2), for any diagonal positive definite matrix Ui ∈ R
m×m.�

Proof 1. The proof follows the same lines of [27, Lemma 1].

Remark 2. Notice that the relation (5) is true only for the (active) mode
i ∈ IN on Ti(Hi, ρ) and is not necessarily true for all the modes.

The problem investigated in this paper is formulated as follows.

Problem 3. Consider the system (1)-(2) and Assumption 1, design a state-
dependent switching law

σ(k) = g(xk) (6)

which makes the origin of system (1)-(2) locally asymptotically stable. �

In order to cope with the problem 3, we define the intuitive switched
quadratic function Q and the Lur’e type Lyapunov function V , introduced
in [18]:

Q :

{
IN × R

n −→ R,

(i, x) 7−→ x′P̃ix,
(7)
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V :

{
IN × R

n × R
p −→ R,

(i, x, ϕi(Cix)) 7−→ x′Pix + 2(ϕi(Cix))′∆iΩiCix,
(8)

where P̃i ∈ R
n×n and Pi ∈ R

n×n (i ∈ IN) are symmetric positive definite
matrices and ∆i ∈ R

p×p are diagonal positive semidefinite matrices.

Remark 4. It is noteworthy that the switched quadratic Lyapunov function
Q is a particular case of the function V , which is obtained by fixing ∆i = 0p,
∀i ∈ IN and identifying Pi = P̃i in the definitions (7) and (8).

In view of the min-switching based control, we define the functions

V min :

{
R

n −→ R,

x 7−→ min
i∈IN

V (i; x; ϕi(Cix)) ; Qmin :

{
R

n −→ R,

x 7−→ min
i∈IN

Q(i; x).

(9)
and their level sets related to the unitary level by

LV min
(1) = {x ∈ R

n; V min(x) ≤ 1} ; LQmin
(1) = {x ∈ R

n; Qmin(x) ≤ 1} .

(10)
The level sets LV min

(1) and LQmin
(1) can be reformulated into the follow-

ing unions [23]:

LV min
(1) =

⋃

j∈IN

{x ∈ R
n; V (j; x; ϕj(Cjx)) ≤ 1} ; LQmin

(1) =
⋃

j∈IN

E(P̃j).

(11)
Sufficient conditions ensuring that V min (or Qmin) is decreasing along the

trajectory will be provided in the following section.

3. Min-switching based stabilization

The following propositions are related to the solution of the problem 3,
respectively with Lyapunov functions V min and Qmin.

Proposition 1. Consider the closed-loop switched system (4). Assume there
exists a matrix Π ∈ Md; symmetric positive definite matrices P̃i ∈ R

n×n,
diagonal positive definite matrices Z̃i, T̃i ∈ R

p×p, diagonal positive definite
matrices Ũi ∈ R

m×m, matrices J̃1,i ∈ R
m×n, J̃2,i ∈ R

m×p (i ∈ IN), such that
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the Lyapunov-Metzler inequalities are satisfied ∀i ∈ IN :




A′

cl,i

F ′
cl,i

−B′
i



 (P̃ )p,i




A′

cl,i

F ′
cl,i

−B′
i




′

−




P̃i ⋆ ⋆

−T̃iΩiCi 2T̃i ⋆

−Ũ−1
i J̃1,i −Ũ−1

i J̃2,i 2Ũ−1
i



 < 0n+m+p

(12)

and LMIs ∀(i, ℓ) ∈ IN × {1, · · · , m}




P̃i ⋆ ⋆

−Z̃iΩiCi 2Z̃i ⋆

(Ki − J̃1,i)(ℓ) (Γi − J̃2,i)(ℓ) ρ2
(ℓ)



 > 0n+p+1, (13)

then the switching law

σ(k) ∈ arg min
i∈IN

Q(i, xk) (14)

locally asymptotically stabilizes the system (4) on LQmin
(1).

Proposition 2. Consider the closed-loop switched system (4). Assume there
exists a matrix Π ∈ Md; symmetric positive definite matrices Pi ∈ R

n×n, di-
agonal positive definite matrices Zi, Ti ∈ R

p×p, diagonal positive semidefinite
matrices ∆i, Wi ∈ R

p×p, diagonal positive definite matrices Ui ∈ R
m×m, ma-

trices J1,i ∈ R
m×n, J2,i ∈ R

m×p (i ∈ IN), such that the Lyapunov-Metzler
inequalities are satisfied ∀i ∈ IN :

A
′

i(P )p,iAi + He(A′

i(C
′Ω∆E)p,i) −

∑

q∈IN

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
)

−





Pi ⋆ ⋆ ⋆

(∆i − Ti)ΩiCi 2Ti ⋆ ⋆

−U−1
i J1,i −U−1

i J2,i 2U−1
i ⋆

0Np×n 0Np×p 0Np×m 0Np



 < 0n̂ (15)

and LMIs ∀(i, ℓ) ∈ IN × {1, · · · , m}




Pi ⋆ ⋆

(∆i − Zi)ΩiCi 2Zi ⋆

(Ki − J1,i)(ℓ) (Γi − J2,i)(ℓ) ρ2
(ℓ)



 > 0n+p+1 (16)
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where ∀i ∈ IN ,
Ai =

[
Acl,i F cl,i −Bi 0n×Np

]
, (17)

Ei =
[

0p×(n+p+m+ip) Ip 0p×(N−i−1)p

]
, (18)

and with n̂ = n + m + (N + 1)p, then the switching law

σ(k) ∈ arg min
i∈IN

V (i, xk, ϕi(Cixk)) (19)

locally asymptotically stabilizes the system (4) on LV min
(1).

Proof 5. The proofs of propositions 1 and 2 are similar and are based on
the different extended state vectors z̃k and zk, which contains z̃k and all the
nonlinearities at time k + 1. They are defined by

z̃k =
(

x′

k ϕ′
i(Cixk) Ψ′(uk)

)′
∈ R

n+p+m; (20)

zk =
(

x′

k ϕ′
i(Cixk) Ψ′(uk) ϕ′

1(C1xk+1) · · · ϕ′
N(CNxk+1)

)′
∈ R

n̂. (21)

For the sake of clarity, only proposition 2 will be proven. The proof con-
sists in ensuring that under the assumptions of proposition 2, the candidate
Lyapunov function V min is decreasing along the trajectory on LV min

(1). Due
to the structure of the extended state zk, xk = 0 is equivalent to zk = 0.
The notations (17)-(18) yield that xk+1 = Aσ(k)zk and ϕj(Cjxk+1) = Ejzk.
The sector conditions at time k + 1, related to the mode q ∈ IN , with Wq

diagonal positive semidefinite matrices write −2ϕ′
q(Cqxk+1)Wq

[
ϕq(Cqxk+1)−

ΩqCqxk+1

]
≥ 0, which is equivalent to

−z′k

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
)
zk ≥ 0. (22)

By evaluating V min(xk+1) as

V min(xk+1) = min
j∈IN

V (j, xk+1, ϕj(Cjxk+1)),

= min
j∈IN

z′k

(
A

′

iPjAi + He(A′

iC
′

jΩj∆jEj)
)
zk, (23)

let us upper bound V min(xk+1) by adding the sector conditions (22) for all
q ∈ IN :

V min(xk+1) ≤ min
j∈IN

z′k

(
A

′

iPjAi + He(A′

iC
′

jΩj∆jEj)

−
∑

q∈IN

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
) )

zk. (24)
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The upper bound (24) involves a minimum of a finite number of scalars.
It yields, with ΘN the unit simplex of dimension N ,

V min(xk+1) ≤ min
γ∈ΘN

∑

j∈IN

γ(j)z
′

k

(
A

′

iPjAi + He(A′

iC
′

jΩj∆jEj)

−
∑

q∈IN

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
) )

zk. (25)

Each column of the matrix Π ∈ Md belonging to ΘN by definition, we
obtain

V min(xk+1) ≤
∑

j∈IN

πjiz
′

k

(
A

′

iPjAi + He(A′

iC
′

jΩj∆jEj)

−
∑

q∈IN

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
) )

zk, (26)

that is

V min(xk+1) ≤ z′k

(
A

′

i(P )p,iAi + He(A′

i(C
′Ω∆E)p,i)

−
∑

q∈IN

(
2E

′

qWqEq − He(E′

qWqΩqCqAi)
) )

zk. (27)

Thanks to inequality (16), we have

V min(xk+1) ≤ z′k





Pi ⋆ ⋆ ⋆

(∆i − Ti)ΩiCi 2Ti ⋆ ⋆

−U−1
i J1,i −U−1

i J2,i 2U−1
i ⋆

0Np×n 0Np×p 0Np×m 0Np



 zk. (28)

Identifying i = σ(k) ∈ argminj∈IN
V (j; xk; ϕj(Cjxk)), one gets

V min(xk+1) ≤ V min(xk) + 2ϕ′

i(Cixk)Ti[ϕi(Cixk) − ΩiCixk]

+ 2Ψ′(uk)U
−1
i [Ψ(uk) − J1,ixk − J2,iϕi(Cixk)] , (29)

which implies

V min(xk+1) − V min(xk) ≤ 2Ψ′(uk)U
−1
i [Ψ(uk) − J1,ixk − J2,iϕi(Cixk)] . (30)
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Due to Inequality (16), we have by applying a Schur Complement,

[
Pi ⋆

(∆i − Zi)ΩiCi 2Zi

]
>

1

ρ2
(ℓ)

([Ki Γi] − [J1,i J2,i])
′

(ℓ)([Ki Γi] − [J1,i J2,i])(ℓ).

(31)
By multiplying Inequality (31) on the right by x̂k = [ x′

k ϕ′
i(Cixk) ]′ and

on the left by its transpose, one has the following inequality

V (i, xk, ϕi(Cixk)) ≥ V (i, xk, ϕi(Cixk)) + 2ϕ′

i(Cixk)Zi[ϕi(Cixk) − ΩiCixk],

≥
1

ρ2
(ℓ)

‖([Ki Γi] − [J1,i J2,i])(ℓ)x̂k‖
2. (32)

For xk ∈ LV min
(1), the mode which will be activated by the switching law

σ(k) = g(xk) given by (19) verifies V (σ(k), xk, ϕσ(k)(Cσ(k)xk)) ≤ 1. Notice
that this relation is ensured for the modes belonging to argminj∈IN

V (j, xk, ϕj(Cjxk))
and not necessarily for the other ones. Due to inequality (32), it induces that
the sector condition for the deadzone Ψ(uk) is verified for the active mode
σ(k). The inequality (30) can be simplified as

V min(xk+1) − V min(xk) < 0, ∀xk 6= 0, (33)

which concludes the proof.

Remark 6. It is noteworthy that if the inequalities (12) and (13) are fea-
sible, this is also the case of inequalities (15) and (16), by setting Pi = P̃i,
Ti = T̃i, Ui = Ũi, Zi = Z̃i, J1,i = J̃1,i, J2,i = J̃2,i, ∆i = 0p and Wi = 0p.

The basin of attraction of the origin may be estimated by LV min
(1), thanks

to the proposition 2. The solution of the problem 3 is given by the following
optimization problems related to the both considered Lyapunov functions.
Ri ∈ R

p×p are diagonal positive definite matrices and µi, µ̃i are positive
definite scalars (i ∈ IN).

Optimization problem 1.

min
Π,P̃i,Ũi,Z̃i,T̃i,J̃1,i,J̃2,i,µ̃i

∑
j∈IN

µ̃j

under the constraints (12)-(13) and µ̃iIn > P̃i. �
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Optimization problem 2.

min
Π,Pi,Ui,Qi,Ti,Wi,Ri,∆i,J1,i,J2,i,µi

∑
j∈IN

µj

under the constraints (15)-(16) and

[
µiIn − Pi ⋆

−(∆i + Ri)ΩiCi 2Ri

]
> 0n+p. (34)

�

Pre- and post-multiplying the inequality (34) by [x′
0 ϕ′

i(Cix0)]
′ and its

transpose leads to

µix
′

0x0 ≥ V (i, x0, ϕi(Cix0)) − 2ϕ′

i(Cix0)Ri[ϕi(Cix0) − RiΩiCix0],

≥ V (i, x0, ϕi(Cix0)), (35)

which can be interpreted as the inclusion

E(µiIn) ⊂ {x ∈ R
n; V (i; x; ϕi(Cix)) ≤ 1} ⊂ LV min

(1). (36)

Minimizing the cost function
∑

j∈IN
µj in the optimization problem 2,

leads to increase the size of the balls E(µiIn) and thus to increase the size of
the estimate of the basin of attraction of the origin LV min

(1).

Remark 7. The level set LV min
(1), the estimate of the basin of attraction of

the origin, being a function of the modal nonlinearities may be the union of
non-convex and disconnected sets. The notion of the size of such a set is diffi-
cult to define. Several definitions may occur. We made the choice to consider
as a definition, the size of the biggest ball inside LV min

(1). Other choices may
be possible leading to a modification of the criterion to be minimized in the
optimization problem.

Remark 8. It should be emphasized that necessary conditions of the feasibil-

ity of inequalities (12) and (15) are that π
1

2

iiAcl,i and π
1

2

ii(Acl,i +F cl,iΩiCi) are
Schur, ∀i ∈ IN . This can be shown similarly as in [28, 25], by considering
the particular cases ϕi(Cix) = ΩiCix and ϕi(Cix) = 0. Nevertheless, Acl,i

and (Acl,i + F cl,iΩiCi) are not required to be Schur.
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The inequalities (12) and (15) are Bilinear Matrix Inequalities (BMIs), if
the matrix Π ∈ Md (and Ui) is a variable, but a LMIs if Π and Ui are fixed.
The other inequalities in proposition 2 are LMIs. Sufficient conditions are
proposed in [28, 29] by considering a subclass of Metzler matrices depending
only on a single scalar parameter and a line search procedure. In order to
emphasize our main result about the improvement of the class of switched
Lyapunov functions, we made the choice to impose in the example Π =[

α 1 − α

1 − α α

]
, with a fixed α.

4. Illustration

Let us consider the following example to illustrate our results. The sys-
tem (4) is defined by N = 2, n = 2, m = p = 1, ρ = 5 and

A1 =

[
1.4 0.4
0.2 1

]
; A2 =

[
1.1 0.6
0.3 1.5

]
; B1 =

[
0.5
0.5

]
; B2 =

[
0.7
0.5

]
;

F1 =

[
1

1.2

]
; F2 =

[
1.2
1

]
; C1 =

[
0.9 0.5

]
; C2 =

[
1 0.7

]
;

K1 =
[
−0.7168 −1.0136

]
; K2 =

[
−1.2581 −0.7326

]
;

Γ1 =
[
−1.2923

]
; Γ2 =

[
−1.4650

]
; Ω1 = 0.7; Ω2 = 0.5;

and the nonlinearities

ϕ1(y) = 0.5Ω1y(1 + cos(20y)); ϕ2(y) = 0.5Ω2y(1 − sin(25y)).

In addition, we impose U1 = U2 = 0.1 and α = 0.5. The matrices
Acl,i and Acl,i + F cl,iΩiCi are not Schur, (∀i ∈ IN), instead of α

1

2 Acl,i and

α
1

2 (Acl,i + F cl,iΩiCi). The optimization problems given in Section 3 lead to
solutions described as follows.

The estimate LV min
(1) and LQmin

(1) of the basin of attraction of the origin
are respectively plotted in Figure 1 and 2. For this example, LV min

(1), instead
of LQmin

(1), is the union of distinct and disconnected sets, due to the presence
of the nonlinearities in the Lyapunov function V min. Moreover, LQmin

(1) is
included in the subset of LV min

(1) containing the origin. The switched Lur’e
type Lyapunov function leads to better results than the switched quadratic
one. Inside the set LV min

(1), a state-space partition is emphasized in Figure 1,

12



by the sets Si, defined by Si = {x ∈ R
n, V min(x) = V (i, x, ϕi(Cix))} and

related to the possible activation of mode i ∈ IN , in order to design the
switching rule σ(k) = g(xk) given by (19). It is noteworthy that the bounds
of the activation areas, that is {x ∈ R

n, V (1, x, ϕ1(C1x)) = V (2, x, ϕ2(C2x))},
are not composed of straight lines, but curves which are characteristic of the
presence of the nonlinearities in the function V given by (8). The partition
associated with the switched quadratic Lyapunov function consists of straight
lines, solutions of {x ∈ R

n, Q(1, x) = Q(2, x)} inside LQmin
(1) in Figure 2.
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(#

("&'
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%&'
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"&'

#
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Figure 1: LV min
(1) and the related partition (S1;S2).

In Figure 3, a state-trajectory is emphasized in the state-space. The
trajectory starts from the initial condition x0 = (2.0920 1.4083)′ belonging
to a subset of LV min

(1) which does not contain the origin.
Because the main proposition provides sufficient stability conditions, a

question about the gap between the basin of attraction B0 and the discon-
nected estimate set LV min

(1) may arise. Hence, we have analyzed the tra-
jectories for initial conditions located on a grid in the phase portrait. If the
trajectory is unstable by applying the switching law given by (19), the initial
state is marked in Figure 4. It is emphasized in Figure 4, that the estimate
LV min

(1) is close to initial states of unstable trajectories. Moreover, the shape
of the set LV min

(1) are emphasized to be suitable to the repartition of initial
conditions of unstable trajectories.
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Figure 2: LQmin
(1) and the related partition.
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Figure 3: The set LV min
(1) and the switching law state-space partition are depicted in

black lines, in addition of the trajectory starting from x0 = (2.0920 1.4083)′. At each state
xk, a red circle (resp. a black star) denotes that the mode 1 (resp. 2) is selected.

5. Conclusion

Local stabilization of a discrete-time switched system including modal
nonlinearities and saturated feedbacks via the design of the switching law has
been investigated in this note. The synthesis of the switching law is based on
a min-switching policy related to switched Lyapunov functions taking into
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Figure 4: LV min
(1) and initial conditions leading to unstable trajectories by applying the

switching law σ(k) defined by (19).

account the modal nonlinearities and leads to a state-space partition of the
basin of attraction estimate. Optimization problems, involving Lyapunov-
Metzler inequalites have been provided to look for the maximal size of this
estimate under local stabilizing conditions. A numerical example allows the
interpretation of our results and to emphasize the suitability of the switched
Lur’e type Lyapunov functions with respect to the quadratic ones.
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