
HAL Id: hal-00786152
https://hal.science/hal-00786152

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models of Horn Formulas are Enumerable at Nearly
Linear Delay

Johann Brault-Baron

To cite this version:
Johann Brault-Baron. Models of Horn Formulas are Enumerable at Nearly Linear Delay. 2012. �hal-
00786152�

https://hal.science/hal-00786152
https://hal.archives-ouvertes.fr

Models of Horn Formulas are Enumerable at Nearly

Linear Delay

<Johann.Brault-Baron@unicaen.fr>

Abstract

The Unique satisfiability problem of Horn formulas was proved to be quadratic
by Minoux (1992) [3]. Using ideas based on those of [3], Berman, Franco, and
Schilpf (1995) [1] proved it to be nearly linear. We simplify the presentation
of their algorithm and adapt it slightly in order to perform enumeration of the
solutions at a delay that is their unique solution decision time, i.e. O(α(|F |)|F |)
where |F | is the formula size and α is the inverse Ackermann function, or (at
choice) O(n log n+ |F |) where n is the number of variables of F .

Keywords: propositional Horn formula, enumeration algorithm, nearly linear
time

Introduction

Counting the models of a propositional Horn formula is a #P-Complete [5]
problem, therefore not tractable. Nevertheless, the unique satisfiability problem,
which can be considered as a (very) limited way of counting, i.e. it answers one
of {0, 1, 2 or more}, was proved to be nearly linear by [1]. We can generalize
this “bounded counting” to the problem of counting up to k, for any fixed k,
that returns a value in the set {0, 1, . . . , k − 1, k or more}.

This paper provides an algorithm that extends the unique solution decision
algorithm of [1], and performs exhaustive model enumeration at nearly linear
delay. A straightforward corollary of our result is that counting up to k can be
done in time O(kα(|F |)|F |), with production of the corresponding solutions in
the same time.

Organisation of this Paper

We present the algorithm in three steps. First of all, we give an overview of
the algorithm (algorithm 1), with the logical argument (called Trick1) proving
its correctness, and explaining the main idea. Nevertheless, this algorithm,
if implemented poorly, has a O(n|F |) delay, which is the complexity of the
naive algorithm. In sections 2 and 3, we give a more explicit writing of the
algorithm on its critical part, with more implementation details, that allow to
reach the expected complexity. Each section has its main argument, denoted
respectively by Trick1, Trick2, and Trick3, that are arguments on logic that
are the key points leading to properties of correctness and/or complexity. Note

Preprint submitted to Elsevier May 2, 2012

that algorithms 2 and 3 below only explicitly describe the critical part of the
algorithm and are justified resp. by Trick2 and Trick3.

Preliminaries

We assume the reader is familiar with propositional logic. In the whole
document, F will be a Horn CNF formula on n variables. Since F is assumed
in CNF, we will see it as a set of clauses, which are seen as sets of literals, we
therefore will use set notations accordingly, e.g., ∅ ∈ F means “F contains an
empty clause.” We define F (l) = {C ∈ F | l ∈ C} and F [l] = {Cr{l̄} |C ∈
FrF (l)}. F [l] is the formula obtained by setting l to 1 (true) in the formula
and simplifying it accordingly. We assume no formula contains a tautological
clause.

We use the RAM model (see [2]). In this model, an input of size N is a
sequence of N integers identified to their binary representation, each one in the
interval [0, N [and contained in N registers of size ⌊log(N − 1)⌋+ 1 (the size of
the binary representation of N − 1) or θ(logN).

As suggested by [1], we can see the formula as a bipartite graph where one
of the vertex sets is the set of literals, and the other is the set of clauses; in this
graph there is an edge between a literal and a clause iff the literal belongs to
the clause. With this model, as in [1], the size N = |F | of a formula is the total
number of variable occurrences.

1. A First Approach

1.1. Algorithm Overview

This section starts by stating the adopted search strategy, and shows how
it leads to an algorithm, that is presented in algorithm 1. The main idea is the
following: we want to perform a recursive search, but with no backtracking due
to failure, i.e. the recursive enumeration procedure should always produce at
least one solution before backtracking.

That is why, as a precomputation step, we perform positive unit propagation.
This way, if the formula is satisfiable, then it is zero-valid (i.e. (0, . . . , 0) is a
model); the algorithm terminates at this point otherwise. In algorithm 1, this
is done in the procedure EnumHorn, lines 2–5. In the whole algorithm, models
are considered as sets of literals, where every variable appears once. Lines 7-8
can therefore be read as “for every model of the zero-valid formula obtained
after positive unit propagation, complete it with the positive literals that were
propagated.” Zero-validity is the key property that will be maintained as an
invariant, and that guarantees satisfiability is maintained, which is Trick1.

We will perform enumeration of the models of this zero-valid formula with
the recursive procedure EnH0 in algorithm 1. We need to recursively get rid
of variables in a way that maintains zero-validity. Since the considered Horn
formula is guaranteed to be zero-valid, two different situations occur. In both
situations, checking zero-validity is maintained for each recursive call is easy;
correctness follows.

2

EnumHorn(F,V):1

S ← ∅2

while ∃x ∈ V {x}∈F do3

F ← F [x]4

S ← S ⊎ {x}5

if ∅ /∈ F then6

for M ∈ EnH0(F,V r S) do7

yield M ⊎ S8

end9

EnH0(F,V):1

if V = ∅ then2

yield ∅3

else if ∃x ∈ V ∀y ∈ V {¬x, y} /∈F then4

for M ∈ EnH0(F [¬x],V r {x}) do5

yield M ⊎ {¬x}6

if {¬x} /∈ F then7

for M ∈ EnH0(F [x],V r {x}) do8

yield M ⊎ {x}9

else10

Let S = {x1, . . . , xk} a circuit of G(F)11

foreach xi ∈ S do12

Replace xi by x1 in F13

Replace ¬xi by ¬x1 in F14

S ← S r {x1}15

for M ∈EnH0 (F,V r S) do16

if x1 ∈M then17

yield M ⊎ S18

else19

yield M ⊎ {¬x |x ∈ S}20

Undo the replacements in F21

end22

Algorithm 1: Basic algorithm.

The first situation is the case where affecting a given variable x to 1 does
not make a positive unit clause appear, i.e. there is no y such that {¬x, y} ∈ F .
This case splits into two sub-cases. If {¬x} ∈ F , then the case is easy to deal
with. In the other case, x can be set indifferently to 0 or to 1 without affecting
the zero-validity property of F , we can therefore make one recursive call on
F [¬x] and one on F [x].

The second situation is the case where, for every variable x, we can find
y such that {¬x, y} ∈ F . As a consequence, the implication digraph G(F)
of the formula F , essentially introduced by [3] and defined as G(F) = {x →
y | {¬x, y} ∈ F}, has a circuit (of length at least two): we can therefore replace,
in the formula, any variable appearing in the circuit, by a given variable of the
circuit; in every model, they have the same value.

3

1.2. First Complexity Considerations

Consider algorithm 1. The precomputation is linear, we do not need to ac-
tually consider it. What is the cost of the instruction “Undo” on line 21? We
can imagine that, every time a value is changed in memory, a backup save is
made and pushed on some stack without affecting the complexity up to a con-
stant factor; therefore undoing the changes costs at most as much as performing
them, consequently we do not need to take it into account. This is the case of
line 21, but not only: in particular, in the recursive calls of lines 5 and 8, F [l]
(where l is either ¬x or x) is computed in time proportional to the “difference”
between F and F [l], i.e. the part of F that is removed, provided F [l] is com-
puted in-place. We therefore compute it in-place, but need to restore F after
the recursive call. We can do it in the same time for the reason mentioned in
previous paragraph. As a consequence, the first part (lines 2–9) is responsible
for a linear delay O(|F |), i.e. the delay is linear if we exclude the time cost of
everything else, that is to say the time needed for computing a circuit, and the
variables replacements (lines 11-14).

EnH0(F,V, visitList = ∅):1

. . .2

else10

if visitList = ∅ then11

Take x ∈ V12

else13

x← Peak(visitList)14

Take x ∈ {y ∈ V | {¬x, y} ∈ F}15

while x /∈ visitList do16

Push(visitList, x)17

Take x ∈ {y ∈ V|{¬x, y} ∈ F}18

S ← ∅19

while Peak(visitList) 6= x do20

y ← Pop(visitList)21

S ← S ⊎ {y}22

Replace y by x in F23

for M ∈EnH0 (F,V r S, visitList) do . . .24

Undo the changes of F29

end30

Algorithm 2: Incremental Circuit Building, where lines 11–15 of algorithm 1 have
been substituted by lines 11–23, and lines 25–29 are just the same as the lines 17–21
in algorithm 1.

2. Incremental Circuit Building

We are now concerned with building a circuit of G(F) (circuit, for short)
incrementally, i.e. continuing each time what was begun before. In order to do
so, we need to detail. To find a circuit, we only need to take any variable, and

4

then to follow a path until we find a variable that was already considered. Then
this variable and all the variables that were considered after this first variable
form a circuit. Building this circuit is done in algorithm 2, with the use of
instructions on stacks, where ∅ denotes the empty stack:

Push(stk, val) adds a value on the top of the stack and returns the modified
stack,

Pop(stk) removes the value on the top of the stack and returns this value, and

Peak(stk) returns the values on the top of the stack.

Trick2 is the following invariant of this algorithm: the set of visited variables
and edges form a path of G(F), maintained as a stack in the algorithm. This
is the case since after a circuit contraction, the whole circuit becomes a single
variable, which is on the top of the stack. It is not hard to see the first part
of the algorithm (corresponding to lines 2–9 of algorithm 1) can only remove a
variable that is on the top of the stack or unvisited, therefore maintaining the
key property that the stack is a set of variables forming a path.

If we except the “Replace” instruction (line 23 of algorithm 2), this part
is responsible for a linear delay. From now the goal is finding a way to avoid
actually replacing the variables.

3. The Final Algorithm

3.1. Using an Union-Find Algorithm

We are concerned with having replacements made more easily. To do so,
instead of replacing actually variables in the formula, we define equivalence
classes, and search for equivalence class while considering a literal in a clause.
This allows to make explicit use of the classical union-find algorithm.

Take a data structure representing a partition. The union-find procedures
are the following operations:

Find(x) determines which set, given by its representative, x is in;

Union(x, y) merges the two sets represented respectively by x and y into a single
set, returns the representative of this new set; and

MakeSet(x) makes a new set {x}, represented by x.

We are concerned by the time cost of n calls to Union and m calls to Find,
where m ≥ n. By a result of [4], this cost, depending on the union-find variant
used, takes either O(n log n+m) or O(α(m).m) (see also [1] for details).

5

. . .1

while x /∈ visitList do16

Push(visitList, x)17

for C ∈ longCl(x) do18

if firstVisit(C) 6= ⊥ then19

len(C)← len(C)− 120

longCl(x)← longCl(x)r {C}21

if len(C) = 1 then22

y ← Find(firstVisit(C))23

longCl(y)← longCl(y)r {C}24

shortCl(y)← shortCl(y) ⊎ {C}25

else firstVisit(C)← x26

Choose x∈{Find(y)∈V | {¬x, y}∈shortCl(x)}27

last ← x; S ← ∅28

while Peak(visitList) 6= last do29

y ← Pop(visitList)30

S ← S ⊎ {y}31

z ← Union(x, y)32

longCl(z)← longCl(x) ⊎ longCl(y)33

shortCl(z)← shortCl(x) ⊎ shortCl(y)34

x← z35

. . .36

Algorithm 3: The Final Algorithm, where lines 16–23 of algorithm 2 have been
substituted by lines 16–35.

3.2. The Final Algorithm

We present here the implementation details needed for getting the presented
complexity; we have kept almost the same notations as those of [1]. The main
point of this part is a logical argument (Trick3) of importance, based on Davis-
Putnam resolution and on clause subsumption, that allows to guarantee two
given sets of clauses are disjoint, which permits to compute their union in con-
stant time (line 33).

Clauses are considered differently according to the number of negative literals
they contain, called their length : len(C) = Card ({x ∈ V |¬x ∈ C}). When
their length is 1, they are short clauses else they are long clauses. Since the
formula can be seen as a bipartite graph, and contains no positive unit clause,
clauses are accessed through the negative literals they hold. We define shortCl(x)

as the set of short clauses holding ¬x and longCl(x) as the set of long clauses
holding ¬x. To each clause C we associate a variable firstVisit(C) that is the first
visited variable x such that C holds ¬x, and is initialized to ⊥. Notice both sets
shortCl(x) and longCl(x) can be implemented as doubly-linked lists of pointers
on clauses, this way removing an element from such a list or concatenating two
disjoint lists — reflecting the union of the disjoint sets they represent — can be
done in constant time.

Algorithm 3 describes how to use and maintain this representation on the
critical part of the algorithm; it is easy to see how to adapt the rest of the

6

algorithm with this notation. We assumeMakeSet(x) was already called for every
x∈V during the initialisation, i.e. in the function EnumHorn (see algorithm 1).

Now we want to show how we can manage to proceed to union (line 33)
of the clauses holding some ¬x and the clauses holding some ¬y in constant
time when collapsing a circuit. Trick3 consists, for every considered variable x,
in considering every clause holding ¬x, and, if not already visited, in marking
it as “first visited by x”. If it was already visited, then it was by some y,
previously visited, that means with a path from x to y in G(F) and therefore
such that the implication y → x holds by transitivity. The clause C is in the
form ¬x∨¬y∨C ′. We can perform unit resolution of the “clauses” C and ¬y∨x,
and deduce ¬y∨C ′, which subsumes C. We can therefore replace C by ¬y∨C ′

without affecting the set of models of the formula. This last clause does not hold
¬x, and has one negative literal less than C. There only remains to manage the
case this clause has become a short clause, which is done in lines 22–25.

References

[1] Kenneth A. Berman, John V. Franco, and John S. Schlipf. Unique satis-
fiability of horn sets can be solved in nearly linear time. Discrete Applied

Mathematics, 60(1-3):77–91, 1995.

[2] Etienne Grandjean. Sorting, Linear Time and the Satisfiability Problem.
Annals of Mathematics and Artificial Intelligence, 16:183–236, 1996.

[3] Michel Minoux. The unique horn-satisfiability problem and quadratic
boolean equations. Annals of Mathematics and Artificial Intelligence, 6:253–
266, 1992. 10.1007/BF01531031.

[4] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.

[5] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):410–421, 1979.

7

