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We have developed a three-dimensional version for the modulated spin liquid in a body-centered tetragonal
lattice structure to describe the hidden order observed in URu2Si2 at T0 ≈ 17.5 K. This second-order transition is
well described by our model and confirms our earlier hypothesis. The symmetry of the modulation is minimized
for Q ≡ (1,1,1). We assume a linear variation of the interaction parameters with the lattice spacing and our
results show good agreement with uniaxial and pressure experiments.
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The fascinating hidden-order phase observed in the heavy
fermion URu2Si2 below T0 = 17.5 K is the center of great
discussion concerning the origin of the mechanism for this
second-order transition.1,2 From thermodynamics properties,
a huge entropy quench is observed and this cannot be explained
by a conventional antiferromagnetic transition due to the small
value of the magnetic moment in this phase.3,4

The phase diagram obtained for the URu2Si2 is very
interesting.5–8 In ambient pressure, the system undergoes a
second-order transition at T0 = 17.5 K to a phase known
as hidden order (HO) with a small magnetic moment μ ≈
0.02 μB . At very small temperature, a superconducting phase
is found below T ≈ 1.5 K. Applying hydrostatic pressure or
uniaxial stress (σa

x ), the system turns into an antiferromagnetic
(AF) phase with a magnetic moment μ ≈ 0.4 μB for Px ≈
0.5 GPa or σa

x ≈ 0.33 GPa, respectively. Bakker et al.9 showed
that T0 increases linearly with the uniaxial stress applied along
the a axis and decreases when the uniaxial stress is applied
along the c axis. Elastic neutron-scattering measurements
with uniaxial stress applied along [1,0,0], [1,1,0], and [0,0,1]
directions show a very sensitive variation of the ordered
moment.10 In-plane stress increases μ, while a perpendicular
stress does not change the ordered moment at all. The tuning
parameter to the HO-AF transition seems to be the in-plane
lattice constant a, as shown by Bourdarot et al.8 Inelastic
neutron scattering (INS) measurements show the formation of
a two gap structure in URu2Si2: one at the incommensurate
wave vector (1.4,0,0) and another at the commensurate wave
vector (1,0,0). The second gap is a good candidate for a
signature of the HO, since the commensurate peak disappears
in the AF phase.4,7,11,12

The various theories that have been presented so far to
explain the HO paradigm can be separated into sets of
itinerant and localized models. Among the localized models,
we can cite the multipolar models,13–17 and among the itinerant
models, there are different conjectures, indicating that the
HO-AF transition is either driven by spin-density wave,18–20

hybridization,21,22 orbital AF,23 or spin nematic order effects.24

The great advantage of our model is the ability to integrate in
a natural way the HO and AF effects already in a realistic
localized treatment. Strong arguments in favor of our proposal
can be taken from the following experimental observations:

the Kondo-like hybridization of the 5f electrons revealed
at TK ≈ 60 K does not discriminate between HO and AF
phases.25–29 The INS measurements,7,12 which are insensitive
to charge fluctuations, show a clear signature of the HO. From
this perspective, we believe that the hybridization effect is
not crucial for the HO-AF transition observed in URu2Si2.
Therefore, we neglect the charge fluctuations to begin with and
we concentrate solely on the magnetic degrees of freedom.

The modulated spin liquid (MSL) in a two-dimensional
(2D) square lattice was developed in our previous work30 in
order to explain the hidden-order phase in URu2Si2. The 2D
version of the MSL model provides a simple scenario for
the URu2Si2, with the HO phase resulting from a quantum
phase transition where the local magnetic moments of the
AF phase melt, restoring the time-reversal symmetry and pre-
serving the lattice-breaking symmetry.31 One general concept
introduced by the MSL model is that the modulation of the
SL reflects the structure of the magnetically ordered phase,
as shown in Fig. 1(c). The transport measurements indicate a
continuous transition from the HO to AF phase. The MSL is in
this way the resonant-valence-bond relative of the AF phase.

In the present work, we develop a 3D MSL model in a
realistic body-centered tetragonal lattice (BCT lattice). Our
spin liquid (SL) framework in this 3D system is shown to
be both realistic and experimentally motivated to explain the
onset of the HO phase in URu2Si2. We propose a microscopic
model to explain the HO-AF transition, where the magnetic
interaction varies linearly with the lattice spacing.

The BCT lattice structure of URu2Si2 is depicted in Fig. 1.
For convenience, we use here the tetragonal basis (a,b,c),
which contains two U atoms per unit cell of the tetragonal
lattice (T lattice). Experimentally, the lattice parameters are
|a| = |b| = 4.124 Å and |c| = 9.5817 Å in the HO phase,
with less than 1% variation when the system is warmed up to
room temperature.1

We start with a Heisenberg model Hamiltonian using the
standard fermionic representation of quantum spins 1/2,

H0 =
∑

〈R,R′〉,σσ ′
JRR′χ

†
RσχRσ ′χ

†
R′σ ′χR′σ , (1)

where the fermion annihilation (creation) operators χ
(†)
Rσ satisfy

the local constraints
∑

σ=↑,↓ χ
†
Rσ χRσ = 1. For simplicity,
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FIG. 1. (Color online) (a) The crystal structure of URu2Si2. The
magnetism emerges from the 5f electrons of U atoms. (b) The
BCT-lattice Bravais structure of the uranium atoms. The intralayer
magnetic coupling is ferromagnetic, Jintra < 0. The interlayer cou-
pling is antiferromagnetic, Jinter > 0. (c) The structure of the magnetic
long-range order characterizing URu2Si2.

we consider only the magnetic interaction between nearest-
neighbor sites R and R′, as depicted in Fig. 1(b). We
assume this nearest-neighbor interaction to be ferromagnetic
(JRR′ = Jintra < 0) inside each layer and antiferromagnetic
(JRR′ = Jinter > 0) in between adjacent layers. This is the
simplest and most natural interaction which can reproduce
the magnetically ordered phase obtained experimentally at
high pressure:5 an intralayer ferromagnetism together with
interlayer antiferromagnetism [see Fig. 1(c)].

Generalizing the procedure of Ref. 30, the Heisenberg
Hamiltonian (1) is decoupled for each bond RR′ using
appropriated Hubbard-Stratonovich transformations. We find
the following Lagrangian:

L0 =
∑
Rσ

χ
†
Rσ

(
∂τ + λR + σ

∑
z

mR+z

)
χRσ

−
∑

R

λR +
∑
nσ

∑
〈R∈Ln,R′∈Ln±1〉

[ϕRR′χ
†
RσχR′σ + c.c.]

+
∑

n

⎛
⎝ ∑

〈R∈Ln,R′∈Ln±1〉

2|ϕRR′ |2
Jinter

−
∑

〈R,R′〉∈Ln

mRmR′

2Jintra

⎞
⎠ ,

(2)

where λR represents the Lagrange multiplier introduced to sat-
isfy the constraint of one particle per site, Ln denotes the layer
n, and the sum over z refers to the nearest neighbors within
the same layer. In the following, the Hubbard-Stratonovich
fields will be replaced by their constant, self-consistent, mean-
field expressions, ϕRR′ = −Jinter

∑
σ 〈χ †

RσχR′σ 〉 and mR =
Jintra

∑
σ σ 〈χ †

Rσ χRσ 〉.
Note that this magnetic, intralayer-only, decoupling channel

leads to a degenerate mean-field system, with each layer
becoming effectively ferromagnetic, but with an easy axis
completely decoupled from the other layers. This degeneracy
does not distinguish an artificially fully ferromagnetic order
from the expected AF order depicted by Fig. 1(c). A more
general decoupling scheme would consist of splitting arbi-
trarily the interlayer interaction, Jinter ≡ JSL + JAF, following
closely the procedure used in Ref. 30: the terms with JAF

and JSL are decoupled in the magnetic and SL channels,

respectively. At the mean-field level, the degeneracy is lifted
by the contribution from the interlayer part of the local Weiss
fields, i.e., the contribution originating from JAF terms. Despite
an apparent higher complexity, this generalized mean-field
problem is formally identical to the one described originally
by the Lagrangian (2). Indeed, considering the BCT lattice
coordination numbers, this general decoupling scheme can
be derived at the mean-field level from the one used here
by simply mapping Jintra 
→ Jintra + 2JAF and Jinter 
→ JSL =
Jinter − JAF. As we will see next, what is remarkable here,
with the BCT lattice, is that the competition between the
magnetic and MSL orders is simply tunable by changing
the ratio (Jintra + 2JAF)/(Jinter − JAF), which is qualitatively
independent of the arbitrary splitting if we take Jinter =
JSL + JAF. Therefore, in this work, we just assume JAF = 0
and we consider Jintra/Jinter as the new tuning parameter which
is phenomenologically associated with pressure variations.

Experimentally, pressure has a direct effect on the ratio be-
tween the interlayer magnetic coupling Jinter and the intralayer
one Jintra. This is not standard for heavy-fermion systems,
where pressure variations may often change the local-energy
level of the f electrons. This different phenomenological
approach is supported here by strong experimental evidence:
in URu2Si2, pressure favors a magnetic phase. Here, of course,
the mechanism is not Doniach-like.

We introduce the Fourier transform of the fields,

χkσ ≡ 1√
N

∑
R

e−ik·RχRσ , mk ≡ 1√
N

∑
R

e−ik·RmR,

ϕq ≡ eiθq

2
√

N

∑
n

∑
〈R∈Ln,R′∈Ln+1〉

e
−iq·

(
R+R′

2

)
ϕRR′ ,

where N is the number of lattice sites. The phase factor θq ≡
q · R0 is introduced in order to fix the origin of the bond lattice
at real-space position R0 ≡ (a + b + c)/4.

Hereafter, we will concentrate our analysis on the following
mean-field parameters: the uniform SL 	0 ≡ ϕ(0,0,0)/

√
N ,

the modulated SL 	Q ≡ ϕQ/
√

N , and the Néel staggered
magnetization AF SQAF ≡ mQAF/

√
N . There is an important

difference from the square-lattice MSL.30 Here, the equiva-
lences between wave vectors Q for the ϕ fields do not refer
to the same Brillouin zones as the ones between QAF for the
m fields. This is due to the fact that the magnetization fields
are defined on the sites, while the SL fields are defined on
the bonds. The symmetry group of the AF phase corresponds
to a T lattice, and QAF is thus defined modulo the first
Brillouin zone of the T lattice. We consider that the MSL
states, similarly to what happens in the AF phase, satisfy
the T lattice translational symmetries, although different Q
modulation vectors are defined modulo a larger Brillouin zone,
characterizing the long-range order with T lattice periodicity
but with different intrashell symmetry breaking (see Fig. 2).

For simplicity, we consider at most the case of one kind
of modulation at a time in the presence of an homogeneous
solution. If Q is the wave vector associated with the MSL,
then QAF is the wave vector associated with the AF. We
get mR = SQAF

eiQAF·R, ϕq = 	0

√
Nδq + 	Q

√
Nδq+Q, where

δ denotes the Kronecker δ. Note that a completely equivalent
ansatz can also be made in the direct bond lattice, similarly to
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(0, 0, 0) (1, 1, 0) mixed

(a)

(b)

(1, 0, 0) (0, 0, 1) (1, 1, 1)

FIG. 2. Possible SL long-range ordered modulations represented
on the unit cell of the T lattice. When it is well defined, the associated
wave vector is indicated in reduced coordinates (h,k,l). Dotted lines
represent ϕRR′ = ϕ0 + ϕQ and solid lines represent ϕRR′ = ϕ0 − ϕQ

bond modulation. (a) The three different relevant odd MSL wave
vectors considered. (b) Respectively, the homogeneous SL, an even
wave vector that we exclude (see text), and a mixed modulation which
may invoke more than one wave vector (not considered in this work).

what was done earlier in Ref. 30, namely, ϕRR′ = δR,R′+z(ϕ0 +
ϕQe−iQ·(R+R′)/2−iθQ ).

We introduce the following reduced notation for the SL
modulation wave vectors: Q ≡ (h,k,l). The parity of the
modulation can be obtained from the phase factor eiπ(h,k,l) =
±1. The sign + (−) characterizes wave vectors with even
(odd) parity. The only possible MSLs characterized by a single
modulation wave vector have odd parity. The definition of
parity can be extended to the AF wave vector. We find here
that the parity of QAF is odd [see Fig. 1(c)]. For simplification,
we consider here MSL wave vectors with either one or three
modulations. Due to the a → b symmetry, we finally need
to compare only three types of modulations (see Fig. 2). All
of these wave vectors break BCT lattice symmetry and have
the periodicity of a T lattice: Q1 ≡ (1,0,0) breaks the C4

rotational symmetry, characterizing an orthorhombic lattice,
and is compatible with the state discussed in Refs. 24 and 29,
Q2 ≡ (0,0,1) may break a mirror symmetry, and Q3 ≡ (1,1,1)
clearly belongs to the T lattice group.

The selection between different modulation vectors Q is
obtained by comparing the corresponding minimized free
energies per site, which is given by

F (λ0,	0,	Q,SQAF ) = −kBT

N

∑
k

∑
α=±

ln [1 + e−β�α
k ]

− λ0 + 4

Jinter
[|	0|2 + |	Q|2]

− 2

Jintra
|SQAF |2, (3)
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FIG. 3. (Color online) Free energy of three modulating vectors
Q1 = (1,0,0), Q2 = (0,0,1), and Q3 = (1,1,1) as a function of (a) T

for t ′′ = 0 K and a = a0, (b) hopping for T = 2 K and a = a0, and
(c) 1 − a/a0 for T = 2 K and t ′′ = 0 K. The parameters used were
Jintra(a0) = −6.5 K, Jinter(a0) = 37 K, and B = 800 K, as described
in the text.

where the sum over k is taken over the full Brillouin zone and
the eigenenergies are given by

�±
k = λ0 ± 4

√
S2

QAF
+ 4	2

0γ
2
1,k + 4|	Q|2γ 2

2,k,Q, (4)

with γ1,k = cos ( ka

2 ) cos ( kb

2 ) cos ( kc

2 ) and γ2,k,Q =
cos ( ka

2 + Qa

4 ) cos ( kb

2 + Qb

4 ) cos ( kc

2 + Qc

4 ). For a given
modulating wave vector Q, the staggered magnetization SQAF

and the homogeneous and modulated SL parameters 	0

and 	Q are obtained directly from the minimization of the
free-energy function. The free energy is calculated minimizing
Eq. (3), using Powell’s method,32 with the auxiliary equation
to fix the number of nf , 1 = 1

N

∑
k

∑
α=±

1
1+e

β�α
k

.
Figure 3 depicts the behavior of the free energy for the three

different wave vectors Q1, Q2 and Q3. We find, by varying the
different physical parameters of the model, that the minimum
is always obtained for the wave vector Q3 = (1,1,1). These
states, which correspond to the space group 134 P 42/nnm

also appear to be compatible with the crystallographic analysis
of URu2Si2 made by Harima et al.15

A next-nearest-neighbor hopping t ′′ may be included in
order to phenomenologically take into account some frus-
tration and intraplane spin liquid contribution. In this case,
the intralayer term is the same for momenta k and k + Q, and
the extension of our model is directly obtained if we perform
the change �±

k 
→ �±
k + t ′′	0 cos (ka) cos (kb).

Motivated by the pressure experiments which are specially
dedicated to the anisotropy and the uniaxial effects,8–10 we
relate our microscopic interaction with pressure. Bourdarot
et al.8 showed that the uniaxial stress is the relevant varia-
tional parameter to change the behavior of the system. They
considered that the deformation is in the linear elastic regime.
In this work, we propose that our parameters Jintra and Jinter

also vary linearly with the lattice parameter a. The variation
can be simply written as Jinter(a) = Jinter(a0) + B1(1 − a/a0)
and Jintra(a) = Jintra(a0) − B2(1 − a/a0), where a0 is the value
of the lattice parameter in ambient pressure.
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FIG. 4. (Color online) The phase diagram for the modulation Q3

as a function of deformation (1 − a/a0) and T . Inside the surfaces,
the mean-field amplitudes are different from zero. There is a region
where the three order parameters coexist. The circle (blue), square
(red), and triangle (yellow) lines represent the critical temperatures for
the parameters 	Q, 	0, and SQAF , respectively. The parameters used
are t ′′ = 2.5 K, Jintra(a0) = −6.5 K, Jinter(a0) = 37 K, andB = 800 K.

Here, the fitting parameters chosen to produce a phase
diagram in qualitatively good agreement with experiment are
as follows: Jinter(a0) = 37 K is chosen to obtain T0 = 17.5 K
and Jintra(a0) = −6.5 K is chosen to obtain the best approx-
imated value for the critical stress 1 − a/a0 ≈ 1.45 × 10−3.8

To have good agreement with experiment, we also choose the
linear coefficient of Jinter(a), B1 to have the same slope of T0,
as observed experimentally, and we define B2 = B1 ≡ B for
simplicity. Both Jinter(a) and Jintra(a) increase their absolute
values when 1 − a/a0 increases. Our choice of the interaction
parameters’ variation is, of course, a simplified view of the
experiment: if we apply an uniaxial stress, then the in-plane
lattice parameters become different. In our case, both in-plane
parameters decrease in the same way.

The resulting phase diagram is shown in Fig. 4. The
variation on 1 − a/a0 shows very good agreement with
the experimental results. We define T	Q , T	0 , and TSQAF

as
the critical temperatures for the parameters 	Q, 	0, and
SQAF , respectively. Increasing 1 − a/a0, the MSL critical
temperature T	Q increases linearly until it reaches the AF
ordering temperature TSQAF

and then it goes to zero, showing
a reentrance behavior due to the presence of the hopping t ′′.
The homogeneous component T	0 shows a similar variation,
although with a bigger amplitude for t ′′ different from zero.
In our model, 	0 persists for big values of T or 1 − a/a0, but
with a small intensity. For the sake of simplicity, we define T	0

when 	0 = 0.6 K. The TSQAF
also increases with 1 − a/a0, but

it shows two different behaviors: at first, a fast increase when
it is inside the SL phase and a linear increase outside the
SL. Here the effect of hopping is visible: without this effect,
TSQAF

will present just linear slopes. A first-order transition can
also be obtained for TSQAF

inside the MSL phase when t ′′ is
present.

The entropy per site S ≡ −∂F/∂T and the specific-heat
coefficient C/T ≡ ∂S/∂T as a function of temperature are
plotted in Fig. 5. Here, we select two values of the relative
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FIG. 5. (Color online) The (a) entropy per site and (b) specific-
heat coefficient as a function of temperature for a = a0, i.e., the MSL
phase, and for (1 − a/a0) = 0.006, i.e., the AF phase. The values
of the physical parameters and the interactions are taken from the
self-consistent results for Q = Q3 (see Fig. 4).

lattice parameter a/a0 to describe the thermodynamics in the
two different phases: the MSL phase is analyzed for a = a0

and the AF phase is analyzed for 1 − a/a0 = 0.006. Similar
behaviors are observed in both phases, in agreement with
experimental observations. The specific heat shows a peaklike
discontinuity at the transition temperatures and the entropy
freezing is of the same order, kB ln 2. Secondary features
observed for C/T at higher T are due to the presence of a
finite homogeneous spin liquid phase, 	0.

In conclusion, we have developed a modulated spin liquid
model in the realistic three-dimensional BCT lattice. This
provides a simple scenario for URu2Si2, where the hidden
order results from a quantum phase transition with a very
unusual behavior: the magnetic moments of the AF phase
melt at low pressure, restoring the time-reversal symmetry,
but the lattice symmetry breaking is still present. We analyzed
how this SL melting in a BCT lattice can lead to different
modulation wave vectors, among which Q3 = (1,1,1) is found
to be the most stable energetically. The theoretical phase
diagram reproduces qualitatively well what is observed experi-
mentally for URu2Si2. We identify a second-order transition at
T0 ≈ 17.5 K and a first-order transition from the MSL phase to
the AF phase at low temperature. A strong point of our model
is that it naturally provides a stabilization of the AF phase with
pressure. In this way, the scenario for the AF to HO melting
is non-Doniach-like and does not require a Kondo effect, even
if it is also present in the system. In addition, our assumption
that both magnetic coupling Jintra and Jinter increase linearly
with the deformation of lattice spacing describes very well the
experimental phase diagram.8

Our results clearly show that the choice of an appropriate
modulation vector is crucial for the stability of the MSL phase.
This could be directly checked experimentally by INS mea-
surements. By comparing all crystallographic directions, one
could find clear evidence for what this preferable modulation
might be. Raman-scattering and nuclear magnetic resonance
(NMR) experiments could also provide other independent
checks of our results since the orientation dependence of
the Raman or NMR spectrum could establish whether or not
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the modulation is indeed characterized by our Q3 vector. We
believe that our study is a very good test for a MSL paradigm.
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