
HAL Id: hal-00786128
https://hal.science/hal-00786128v3

Preprint submitted on 30 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some A priori estimates for the homogeneous Landau
equation with soft potentials

Radjesvarane Alexandre, Jie Liao, Chunjin Lin

To cite this version:
Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some A priori estimates for the homogeneous Landau
equation with soft potentials. 2012. �hal-00786128v3�

https://hal.science/hal-00786128v3
https://hal.archives-ouvertes.fr


SOME A PRIORI ESTIMATES FOR THE HOMOGENEOUS LANDAU EQUATION

WITH SOFT POTENTIALS

R. ALEXANDRE, J. LIAO, AND C. LIN

Abstract. This paper deals with the derivation of some à priori estimates for the homogeneous Landau

equation with soft potentials. Using the coercivity of the Landau operator for soft potentials, we prove

a global estimate of weak solutions in L2 space without any smallness assumption on the initial data

for −2 < γ < 0. For the stronger case −3 ≤ γ ≤ −2, which covers in particular the Coulomb case, we

get such a global estimate, but in some weighted L2 space and under a smallness assumption on initial

data.
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1. Introduction

The classical homogenous Landau equation (also called Fokker-Planck-Landau equation) is a com-

mon model in kinetic theory, see Chapman-Cowling [8] and Lifschitz-Pitaevskii [17]. This equation

is obtained as a continuous approximation of the Boltzmann equation when grazing collisions prevail,

see for instance [1, 2, 9, 15, 23] for a detailed study of the limiting process, and references therein

on this subject. It describes the evolution of the (homogeneous) density function f (t, v) of particles

having the velocity v ∈ R3 at time t > 0:

(1.1) ∂t f = ∂vi

{

∫

v∗

ai j( f∗∂v j
f − f∂v∗ j

f∗)

}

,

where

(1.2) ai j(z) = |z|γ+2
Πi j(z), Πi j(z) = δi j −

ziz j

|z|2
, z , 0.

The properties of the Landau equation depend heavily on γ. It is customary to speak of hard

potentials for γ > 0, and soft potentials for γ ∈ (−3, 0). The special cases, γ = 0 and γ = −3, are

called the Maxwellian and Coulomb potentials, respectively. Note the fact that the more γ is negative,

the more the Landau equation is physically interesting, see Villani [25] for a detailed survey about
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such considerations. We refer to [11, 12, 23, 25] for more details on this equation and its physical

meanings.

For a given nonnegative initial data f0, we shall use the notations

(1.3) m0 =

∫

R3

f0(v)dv, e0 =
1

2

∫

R3

f0(v)|v|2dv, H0 =

∫

R3

f0(v) log f0(v)dv,

for the initial mass, energy and entropy. It is classical that if f0 ≥ 0 and m0, e0, H0 are finite, then f0
belongs to

L log L(R3) =
{

f ∈ L1(R3) :

∫

R3

| f (v)| | log(| f (v)|)|dv < ∞
}

.

The solution of the Landau equation satisfies, at least formally, the conservation of mass, momentum

and energy, that is, for any t > 0,
∫

R3

f (t, v)ϕ(v)dv =

∫

R3

f0(v)ϕ(v)dv, ϕ(v) = 1, v, |v|2/2.

We also define

m =

∫

R3

f (t, v)dv = m0, e =

∫

R3

f (t, v)
|v|2

2
dv = e0.

Another fundamental a priori estimate is the decay of entropy, that is, the solution satisfies, at least

formally, for any t > 0,
∫

R3

f (t, v) log f (t, v)dv ≤

∫

R3

f0(v) log f0(v)dv.

For s ≥ 0, we introduce classical weighted spaces as follows

‖ f ‖L1
s (R3) =

∫

R3

| f (v)| < v >s dv = Ms( f ),

‖ f ‖2
L2

s (R3)
≡

∫

| f (v)|2 < v >2s dv,

where < v >:= (1 + |v|2)1/2. And we set

bi = ∂ jai j(z), c(z) = ∂i jai j(z),

āi j = ai j ∗ f , b̄i = bi ∗ f , c̄ = c ∗ f .

If γ > −3, we have

ai j = Πi j(z)|z|γ+2, bi = −2|z|γ+2 zi

|z|2
, c = −2(γ + 3)|z|γ,

and if γ = −3, the first two formulas remain true while the third one is replaced by

c = −8πδ0.

The theory of the homogeneous Landau equation for hard potentials is studied in great details by

Desvillettes-Villani [11, 12], while the particular case of Maxwellian molecules γ = 0 can be found

in Villani [24].

However, there are only scattered results concerning the soft potentials. We mention the compact-

ness properties in Lions [18] and the existence of weak solutions in the inhomogeneous context by

means of renormalization tools in Villani [21] for very soft potentials, the existence of H-solution

under some assumptions on initial conditions considered in Villani [23]. By using a probabilistic ap-

proach, Guerin [16] studied the existence of a measure solution for γ ∈ (−1, 0). Still by probabilistic

approach, Fournier-Guerin [14] studied the uniqueness and local existence of such weak solutions

for soft potentials. For the Coulomb potential case γ = −3, Arsen’ev-Peskov [3] studied the local
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existence of weak solutions and Fournier [13] considered the local well-posedness result for such so-

lutions. All these results give a priori estimates of solutions in some Lp spaces, globally if −2 < γ < 0

and locally if −3 ≤ γ ≤ −2.

This paper is devoted to some further a priori energy estimates by using the coercivity of the Landau

operator for soft potentials, given in Desvillettes-Villani [11], which is stated and proved therein for

γ > −2 but remains true for γ ≥ −3 (at least). Our main result is the following, where here and below

we use C or Ci to denote a generic constant.

Theorem 1.1. Consider the Cauchy problem for the classical homogenous Landau equation (1.1)-

(1.2) with initial data f0 ∈ L1
2
(R3) ∩ L log L(R3). Let the initial mass m0, energy e0 and entropy H0

defined in (1.3) be finite. Then we have

1. Assume that −2 ≤ γ < 0 and f0 ∈ L2(R3). Then we have the following global in time a priori

estimate on a weak solution in L2(R3)

‖ f (t)‖2
L2(R3)

≤ eC2t
(

‖ f0‖
2
L2(R3)

+C1t
)

,

where the constants C1 and C2 depend on γ, m0, e0 and H0.

2. Assume that −3 ≤ γ < −2 and that f0 ∈ L2
α(R

3) for some α ≥ −1 − 3γ/2. Assume moreover that

‖ f0‖L2
α(R3) is suitably small. Then there exists a constant C̃ depending only the entropy estimates of f0

and on ‖ f0‖L2
α(R

3) such that one has a global in time a priori estimate on a weak solution

f ∈ L∞([0,∞); L2
α(R

3)) and ‖ f (t, ·)‖L2
α(R3) ≤ C̃.

3. Under assumptions stated in 1. or 2. above, one has

f ∈ L2(0, T ; H1
α(R

3
v)) for any fixed T > 0,

where Hα denotes the corresponding weighted Sobolev space.

We note that from these a priori energy estimates in weighted L2 spaces and similar ones for

higher derivatives, eventually with different weight functions which can be obtained following the

general scheme displayed below, one could get the complete existence result by using the arguments

of Desvillettes-Villani [11] and Arsen’ev-Peskov [3]. In particular, one could eventually have an

immediate regularization property of solutions.

Moreover, we remark that uniqueness and convergence to equilibrium results of these weak solu-

tions can be derived based on the works of Fournier [13] and Fournier-Guerin [14]. Note also that we

decided to work in L2 type spaces, but our proofs can also be adapted to more general weighted Lp

spaces with 1 < p < +∞, at the expense of changing one crucial argument used in the proofs, namely

Pitt’s inequality, see Beckner [4, 5, 6] for example. Finally, a comparison with the recent result of

Fournier-Guerin [14] shows that we slightly improve their results even in the case γ > −2 but close

to γ = −2, and of course in the case −3 ≤ γ ≤ −2, though we need a smallness assumption.

The proof of our main result above rests mainly on Pitt’s inequality [4, 5, 6]. However, it is possible

to avoid this inequality at least in the case of not too soft potentials γ ∈ (−2, 0), by using standard

Nash Gagliardo Nirenberg inequalities [19] for example, and assuming enough control of moments

in L1, as follows from Villani [23]. For example, one can show that

Proposition 1.2. Under the same hypothesis as in Theorem 1.1, assume moreover that γ ∈ (−2, 0),

that Mµ(t) is bounded by cµ(1 + t), where µ =
−4γ(3−γ)

3(2+γ)
. Then it follows that

‖ f (t)‖2
L2(R3)

≤ C(1 + t)2.

Comparing with Theorem 1.1, we improve on the temporal growth of this L2 norm. But we do ask

for many more moments: in particular, note that for γ very close to −2, then we ask for almost all
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moments to be controlled. This point might be linked with working with L2 type estimations, see last

Section for further comments.

The organization of the paper is as follows. Firstly, a proposition of coercivity for soft potentials is

proved in Section 2, following the arguments of Desvillettes-Villani [11], for γ ≥ −3. This section is

merely for the convenience of the reader since the proof follows by carefully looking to the proof in

[11].

Then in Section 3, the a priori energy estimates are carried out for the case γ ∈ (−2, 0) to get the

global estimate of weak solutions, giving the first part of Theorem 1.1.

In Section 4, we carry out the weighted energy estimates for the case −3 < γ ≤ −2 to get the global

estimates of weak solutions in weighted L2 spaces, upon a smallness assumption on the initial data.

This gives the second part of Theorem 1.1, completed by Section 5. for the special case γ = −3.

In Section 6, again the same process is shown to yield local in time estimate for the case γ ∈

(−3,−2), unless we can get better moment estimates in L1 (that is, if the moment is uniformly bounded

w.r.t time). But up to now, we have only a upper bound with a linear time growth according to Villani

[22].

Finally, Section 7 is devoted to the proof of Proposition 1.2.

2. Coercivity

This section is devoted to the proof of coercivity for soft potentials, which is an extension of hard

potential case in Desvillettes-Villani [11]. In fact as mentioned to us by Desvillettes, the proof stated

therein works for γ > −2 but we show that it still holds true for γ ≥ −3.

Proposition 2.1. (Coercivity) Let γ ∈ [−3, 0). Let f ∈ L1
2
∩ L log L(R3) with m( f ) = m0, e( f ) ≤ e0,

H( f ) ≤ H0. Then there exist a constant Ccoer, explicitly computable and depending on γ, m0, e0 and

H0, such that

(2.1) ∀ξ ∈ R3, āi jξiξ j ≥ Ccoer < v >γ |ξ|2.

To prove the coercivity proposition, we use the same notations as in [11], and recall the following

lemma from [11]:

Lemma 2.2. Let f ≥ 0 be a function of L1(R3) such that m( f ) = m0, e( f ) ≤ e0, H( f ) ≤ H0. Then,

for all ǫ > 0, there exists η(ǫ) > 0, depending only on m0, e0,H0, such that for any measurable set

A ⊂ R3,

|A| ≤ η(ǫ) ⇒

∫

A

f ≤ ǫ,

where |A| denotes the Lebesgue measure of A.

Proof of Lemma 2.2: the arguments are taken from the nonhomogeneous case dealt with by Desvil-

lettes [10]. But we slightly modify some of his steps, since we display an explicit expression of η(ε)

which could be required elsewhere (and which of course is not unique as regards of the proof below).

We note firstly that

∫

f | log f | −

∫

f log f = 2

∫

f≤1

− f log f

= 2

∫

e
−1−1

|v|2

2 ≤ f≤1

− f log f + 2

∫

f≤e
−1−
|v|2

2

− f log f

≤ 2m + 2e + 3(2π)3 exp(1).

Using the decrease of entropy, and the conservation of mass and energy, it follows that
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∫

f | log f | ≤ H0 + 2m0 + 2e0 + 3(2π)3 exp(1) ≡ H̃0.

Now let a fix an arbitrary set A. One has, for all δ ≥ 1

∫

A

f =

∫

A, f≤δ

f +

∫

A, f≥δ

f

≤ δ|A| + (log δ)−1H̃0.

Assume that |A| ≤
H̃0

δ log δ
. Then it follows that

∫

A

f ≤ 2H̃0
1

log δ
.

We want this to be less than a fixed ε > 0. It is enough to take the value of δ as δ = e2H̃0ε
−1

. In

conclusion, we have shown that setting

η(ε) =
ε

2
e−2H̃0ε

−1

,

then it follows that

∫

A

f ≤ ε for any measurable set A such that |A| ≤ η(ε),

ending the proof.

Proof of Proposition 2.1: Let ξ ∈ R3, |ξ| = 1, 0 < θ < π
2
. And set

Dθ,ξ(v) =
{

v∗ ∈ R
3 : |

v − v∗

|v − v∗|
· ξ| ≥ cos θ

}

,

which is the cone centered at v, of axis directed by by ξ and of angle θ (see the figure in [11]).

For all v∗ ∈ R
3\Dθ,ξ(v), we have

ai j(v − v∗)ξiξ j = |v − v∗|
γ+2
(

δi j −
(v − v∗)i(v − v∗) j

|v − v∗|2

)

ξiξ j

= |v − v∗|
γ+2[1 − |

v − v∗

|v − v∗|
· ξ|2] ≥ |v − v∗|

γ+2 sin2 θ.

Then for all v ∈ R3, θ ∈ (0, π
2
), R∗ > 0, we get

āi j(v)ξiξ j ≥

∫

R3\Dθ,ξ(v)

dv∗ f∗1|v∗ |≤R∗ai j(v − v∗)ξiξ j

(2.2) ≥

∫

R3\Dθ,ξ(v)

dv∗1|v∗ |≤R∗ |v − v∗|
γ+2 f∗ sin2 θ.

We first take care of large |v∗|. Let R∗ = 2(e0/m0)1/2 and B∗ be the ball with center 0 and radius R∗.

Then

(2.3)

∫

B∗

dv∗ f∗ ≥ m0(1 −
2e0

m0R2
∗

) ≥
m0

2
,

and we also note that

(2.4) |B∗ ∩ Dθ,ξ(v)| ≤ 2πR∗(|v| + R∗)
2 tan2 θ.

We consider two cases:

Case 1: |v| ≥ 2R∗. Note that
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∀v, v∗ ∈ R
3, |v| ≥ 2R∗, |v∗| ≤ R∗ :

1

2
|v| ≤ |v − v∗| ≤

3

2
|v|,

from (2.2), we have

(2.5) āi j(v)ξiξ j ≥























(1
2
|v|)γ+2 sin2 θ

∫

B∗\Dθ,ξ(v)
dv∗ f∗ for γ ∈ [−2, 0),

(3
2
|v|)γ+2 sin2 θ

∫

B∗\Dθ,ξ(v)
dv∗ f∗ for γ ∈ [−3,−2).

Now we choose θ > 0 such that

tan2 θ = min{
2η(m0

4
)

9πR∗|v|2
, 1},

so according to (2.4), we have

|B∗ ∩ Dθ,ξ(v)| ≤ 2πR∗(
3

2
|v|)2 tan2 θ ≤ η(

m0

4
)

thus
∫

B∗∩Dθ,ξ(v)

dv∗ f∗ ≤
m0

4
,

and then from (2.3) and (2.5) we have

āi j(v)ξiξ j ≥



























(1
2
|v|)γ+2 cos2 θ min{

2η(
m0
4

)

9πR∗|v|2
, 1}(

m0

2
−

m0

4
) ≥

m0

32
(1

2
|v|)γ min{

2η(
m0
4

)

9πR∗
, 4R2

∗} for γ ∈ [−2, 0),

(3
2
|v|)γ+2 cos2 θ min{

2η(
m0
4

)

9πR∗ |v|2
, 1}(

m0

2
−

m0

4
) ≥

9m0

32
(3

2
|v|)γ min{

2η(
m0
4

)

9πR∗
, 4R2

∗} for γ ∈ [−3,−2),

which is also

(2.6) āi j(v)ξiξ j ≥ c|v|γ ≥ c < v >γ for γ ∈ [−3, 0), |v| ≥ 2R∗.

where c is a constant depending on γ, m0, e0 and H0.

Case 2: |v| ≤ 2R∗. Note that when |v∗| ≤ R∗, we have |v − v∗| ≤ 3R∗ thus
∫

B∗\Dθ,ξ(v)

dv∗ f∗|v − v∗|
γ+2 ≥

∫

B∗\Dθ,ξ(v)

dv∗ f∗|v − v∗|
γ+3/(3R∗)

≥
[ 3

4π
η(m0

8
)]
γ+3

3

3R∗

∫

B∗\Dθ,ξ(v)

dv∗ f∗1|v−v∗ |≥[ 3
4π
η(

m0
8

)]1/3 .

Note that
∫

B∗\Dθ,ξ(v)

dv∗ f∗1|v−v∗ |≥[ 3
4π
η(

m0
8

)]1/3 =

∫

B∗\Dθ,ξ(v)

dv∗ f∗ −

∫

B∗\Dθ,ξ(v)

dv∗ f∗1|v−v∗ |≤[ 3
4π
η(

m0
8

)]1/3

≥

∫

B∗

dv∗ f∗ −

∫

B∗∩Dθ,ξ(v)

dv∗ f∗ −
m0

8
,

and we know the first term is greater than m0/2 from (2.3) . For the second term to be less than m0/8,

we expect

|B∗ ∩ Dθ,ξ(v)| ≤ 2πR∗(3R∗)
2 tan2 θ ≤ η(

m0

8
),

which requires

tan2 θ = min{
η(

m0

8
)

18πR3
∗

, 1},
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thus from (2.2) we have

(2.7) āi j(v)ξiξ j ≥
[ 3

4π
η(m0

8
)]
γ+3

3

3R∗

m0

4
sin2 θ ≥

[ 3
4π
η(m0

8
)]
γ+3

3 m0

24R∗
min{

η(m0

8
)

18πR3
∗

, 1}, for |v| ≤ 2R∗.

Estimates (2.6) and (2.7) together ensure the validity of (2.1). �

Remark 2.3. From the proof, we can see that actually the coercivity proposition holds for all γ < 0.

3. The case γ ≥ −2: energy estimates

We multiply the equation (1.1) by f and integrate to get

(3.1)
d

dt

1

2
‖ f ‖2

L2 +

∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f =
1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2.

The second term on the l.h.s. can be bounded below by using the coercivity property (2.1) thus

(3.2)

∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f ≥ Ccoer

∫

< v >γ |∇v f |2dv.

For the nonlinear term arising on the on the r.h.s., we have

(3.3)
1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2
= (γ + 3)

∫

v∗

∫

v

|v − v∗|
γ f∗ f 2 ≡ A1 + A2,

where

A1 = (γ + 3)

∫

v∗

∫

|v−v∗ |≥R

|v − v∗|
γ f∗ f 2

and

A2 = (γ + 3)

∫

v∗

∫

|v−v∗ |≤R

|v − v∗|
γ f∗. f

2

For the first term in (3.3), since γ < 0, we have

(3.4) A1 ≤ (γ + 3)Rγ
∫

v∗

∫

|v−v∗ |≥R

f∗ f 2 ≤ (γ + 3)Rγm‖ f ‖2
L2 .

The second term can be estimated as follows

A2 = (γ + 3)

∫

v∗

∫

|v−v∗ |≤R

|v − v∗|
γ f∗ f 2

= (γ + 3)

∫

v∗

∫

|v−v∗ |≤R

|v − v∗|
γ < v∗ >

−γ f∗(< v >γ/2 f )2 < v∗ >
γ< v >−γ .

Since < v >−γ / < v∗ >
−γ≤ cγ(1 + R2)−γ/2, we get

A2 ≤ cγ(γ + 3)(1 + R2)−γ/2
∫

v∗

< v∗ >
−γ f∗

∫

v

|v − v∗|
γ(< v >γ/2 f )2.

We use Pitt’s inequality [4, 5, 6] to get that
∫

v

|v − v∗|
γ(< v >γ/2 f )2 ≤ cpitt

∫

ξ

|ξ|−γ| ̂< v >γ/2 f (ξ)|2.

In order to use Pitt’s inequality, we need that γ ∈ (−3, 0).

Recalling that

M−γ(t) =

∫

v∗

< v∗ >
−γ f∗,
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we get

A2 ≤ 3cγ(γ + 3)(1 + R2)−γ/2 M−γ(t)cpitt

∫

ξ

|ξ|−γ | ̂< v >γ/2 f (ξ)|2.

For any R∗, write
∫

ξ

|ξ|−γ| ̂< v >γ/2 f (ξ)|2 ≤

∫

|ξ|≤R∗

|ξ|−γ | ̂< v >γ/2 f (ξ)|2 +

∫

|ξ|≥R∗

|ξ|−γ| ̂< v >γ/2 f (ξ)|2,

and using the fact that f is in L1, we get
∫

ξ

|ξ|−γ | ̂< v >γ/2 f (ξ)|2 ≤ m2

∫

|ξ|≤R∗

|ξ|−γ +

∫

|ξ|≥R∗

|ξ|−γ | ̂< v >γ/2 f (ξ)|2

Now we need to assume −γ ≤ 2:
∫

ξ

|ξ|−γ| ̂< v >γ/2 f (ξ)|2 ≤ R
−γ+3
∗ m2

+
1

R
γ+2
∗

∫

|ξ|≥R∗

|ξ|−γ|ξ|γ+2| ̂< v >γ/2 f (ξ)|2

≤ R
−γ+3
∗ m2

+ cparseval

1

R
γ+2
∗

‖∇v[< v >γ/2 f ]‖2
L2

≤ max(m2, cparseval)[R
−γ+3
∗ +

1

R
γ+2
∗

‖∇v[< v >γ/2 f ]‖2
L2 ]

Optimizing w.r.t. R∗, we find
∫

ξ

|ξ|−γ | ̂< v >γ/2 f (ξ)|2 ≤ 2 max(m2, cparseval)‖∇v[< v >γ/2 f ]‖
−γ+3

5

L2 .

All in all, we have obtained, for γ ≥ −2,

A2 ≤ 3cγ(γ + 3)(1 + R2)−γ/2cpitt2 max(m2, cparseval)M−γ(t)‖∇v[< v >γ/2 f ]‖
−γ+3

5

L2 .

Fix a small ε > 0. Then

A2 ≤ ε
γ−6

5 3cγ(γ + 3)(1 + R2)−γ/2cpitt2 max(m2, cparseval)M−γ(t)ε
−γ+6

5 ‖∇v[< v >γ/2 f ]‖
−γ+6

5

L2 .

And apply Young’s inequality for product with p = 10
−γ+6

, q = 10
4+γ

, we obtain

A2 ≤
1

q

{

ε
γ−6

5 3cγ(γ + 3)(1 + R2)−γ/2cpitt2 max(m2, cparseval)M−γ(t)

}q

+
1

p

{

ε
−γ+6

5 ‖∇v[< v >γ/2 f ]‖
−γ+6

5

L2

}p

,

which is also

(3.5) A2 ≤
4 + γ

10

{

ε
γ−6

5 3cγ(γ + 3)(1 + R2)−γ/2cpitt2 max(m2, cparseval)M−γ(t)

}

4+γ
10

+
−γ + 6

10
ε2‖∇v[< v >γ/2 f ]‖2

L2 .

Note that there are two terms in A2 above: M−γ and ‖∇v[< v >γ/2 f ]‖2
L2 . First, for γ ∈ [−2, 0),

(3.6) M−γ =

∫

< v >−γ f ≤

∫

(1 + v2) f = m + e.

Second, we consider ‖∇v[< v >γ/2 f ]‖2
L2 . Note that

∇v[< v >γ/2 f ] =
γ

2
< v >γ/2−2 f v+ < v >γ/2 ∇v f .
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Now, since γ < 0, we have

‖∇v[< v >γ/2 f ]‖2
L2 ≤ 2

(

‖
γ

2
< v >γ/2−2 f v‖2

L2 + ‖ < v >γ/2 ∇v f ‖2
L2

)

(3.7) ≤
γ2

2
‖ f ‖2

L2 + 2‖ < v >γ/2 ∇v f ‖2
L2

Recall the constant Ccoer which appears in the coercive inequality (3.2). Then we can choose ε

such that
−γ + 6

5
ε2
=

1

2
Ccoer,

and then combining all the above results, we get

(3.8)
d

dt
‖ f ‖2

L2 +Ccoer‖ < v >γ/2 ∇v f ‖2
L2 ≤ C1 +C2‖ f ‖

2
L2 ,

or, we just simply have

(3.9)
d

dt
‖ f ‖2

L2 ≤ C1 +C2‖ f ‖
2
L2 ,

and therefore, by directly using Gronwall’s inequality, we get

(3.10) ‖ f (t)‖2
L2 ≤ eC2t

(

‖ f0‖
2
L2 +C1t

)

,

then we have the first part of Theorem 1.1.

Remark 3.1. 1. By repeating the same process for higher derivatives, one can get the global existence

of weak solutions. However, the bound depends on time, but the result does not require any assumption

of smallness on the initial data. This is compatible with the works of Fournier-Guerin [14] where they

have global existence in that case too, though in different Lp spaces.

2. We work with the usual L2 space but one can easily adapt our arguments for weighted L2 spaces.

This is done for example in the next section when −3 < γ < −2. The same remark also applies for

estimation of higher derivatives as well.

4. The case −3 < γ < −2: weighted energy estimates

We carry out the weighted energy estimates in this section for −3 < γ < −2. Of course one can

consider the general case of γ ∈ (−3, 0) but recall that we have already good estimates from the

previous section.

We want to estimate g =< v >α f in L2, and we assume that α ≥ −1− 3/2γ, see below for the final

arguments, explaining this value of the weight.

Multiplying the Landau equation by < v >α and setting g =< v >α f , we have

∂vg = ∂vi

{

∫

v∗

ai j( f∗ < v >α ∂v j
f − g∂v∗ j

f∗)

}

−

{

∫

v∗

ai j( f∗∂v j
f − f∂v∗ j

f∗)

}

∂vi
< v >α

= ∂vi

{

∫

v∗

ai j( f∗∂v j
g − g∂v∗ j

f∗)

}

−∂vi

{

∫

v∗

ai j f∗ f∂v j
< v >α

}

−

{

∫

v∗

ai j( f∗∂v j
f − f∂v∗ j

f∗)

}

∂vi
< v >α .
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Multiplying by g and integrating, we get

d

dt
‖g‖2

L2 = −

∫

v

∫

v∗

ai j f∗∂v j
g∂vi

g +

∫

v

∫

v∗

ai j∂v∗ j
f∗g∂vi

g

(4.1) +

∫

v

∫

v∗

ai j f∗ f∂vi
g ∂v j

< v >α

−

∫

v

∫

v∗

ai j f∗g∂v j
f∂vi
< v >α +

∫

v

∫

v∗

ai j f g∂v∗ j
f∗)∂vi

< v >α

= −I + II + III − IV + V.

We then estimate each of these terms. Here I can be controlled through the coercivity estimation

(2.1). More precisely, we have

(4.2) I ≥ Ccoer

∫

v

< v >γ |∇vg|2dv.

By a similar argument as for (3.7) with f replaced by g, we have
∫

v

< v >γ |∇vg|2dv ≥
1

2

∫

v

|∇v[< v >γ/2 g]|2dv −
γ2

4

∫

v

g2dv,

and thus (4.2) can be rewritten as

(4.3) I ≥
Ccoer

2

∫

v

|∇v[< v >γ/2 g]|2 −CCcoer

∫

v

g2.

Now, as in the previous section, the term II is

(4.4) II = (γ + 3)

∫ ∫

|v − v∗|
γ f∗g

2 ≡ (γ + 3)[A + B],

where

(4.5) A =

∫ ∫

1|v−v∗ |≥ε|v − v∗|
γ f∗g

2 ≤ mCεγ‖g‖2
L2

and

(4.6) B =

∫ ∫

1|v−v∗ |≤ε|v − v∗|
γ f∗g

2.

We further decompose B over the sets { f ≤ f∗} and { f ≥ f∗} to get

B ≤

∫ ∫

1|v−v∗ |≤ε|v − v∗|
γ < v >2α f 3

+

∫ ∫

1|v−v∗ |≤ε|v − v∗|
γ < v >2α f 3

∗ ,

and then after direct computation we obtain

(4.7) B ≤ Cε3+γ(1 + ε2)α
∫

< v >2α/3 f 3.

We need to control < v >2α/3 f in L3 by using a control of < v >α f and of ∇[< v >γ/2+α f ] in L2,

and we will do it by applying Holder’s inequality [7].

We write p1 = p2 = p3 = 9 and

< v >2α/3 f = f
1
p1 [< v >α f ]

2
p2 [< v >γ/2+α f ]

6
p3 · < v >2α/3−2/9α−2/3(γ/2+α) .

The last exponent is −2/9α − γ/3. Raised to the power 9 this is −2α − 3γ. We ask this number to be

less than 2: α ≥ −1 − 3/2γ.

In conclusion we write, with α ≥ −1 − 3/2γ,
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< v >2α/3 f ≤ [ f < v >2]
1
p1 [< v >α f ]

2
p2 [< v >γ/2+α f ]

6
p3 .

Finally we obtain the interpolation inequality

(4.8)

∫

< v >2α f 3 ≤ C[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

In conclusion, we combine (4.4)-(4.8) to get

(4.9) II ≤ mCεγ‖g‖2
L2 +Cε3+γ(1 + ε2)α[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

We now analyze the term III which is given by

III =

∫

v

∫

v∗

ai j f∗ f ∂vi
g ∂v j

< v >α .

We have immediately that

III =

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α +

∫

v

∫

v∗

ai j f∗ f∂vi
f < v >α ∂v j

< v >α

=

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α +
1

2

∫

v

∫

v∗

ai j f∗∂vi
f 2 < v >α ∂v j

< v >α

=
1

2

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α −
1

2

∫

v

∫

v∗

∂vi
ai j f∗ f 2 < v >α ∂v j

< v >α

−
1

2

∫

v

∫

v∗

ai j f∗ f 2 < v >α ∂vi
∂v j
< v >α,

then

|III| ≤ C

∫

v

∫

v∗

|v − v∗|
γ f∗ f 2 < v >2α−2,

(see the next section for similar arguments).

Since f < v >α= g, this term can be controlled like B in (4.6), thus controlled by II, and we can

absorb III and II together to get that

II + III ≤ mCεγ‖g‖2
L2 +Cε3+γ(1 + ε2)α[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

Next for IV , we have

IV =

∫

v

∫

v∗

ai j f∗g∂v j
f∂vi
< v >α=

1

4

∫

v

∫

v∗

ai j f∗∂v j
f 2∂vi

< v >2α

= −
1

4

∫

v

∫

v∗

∂v j
ai j f∗ f 2∂vi

< v >2α −
1

4

∫

v

∫

v∗

ai j f∗ f 2∂v j
∂vi
< v >2α

≤ C

∫ ∫

|v − v∗|
γ+1 f∗ f 2 < v >2α−1

+C

∫ ∫

|v − v∗|
γ f∗ f 2 < v >2α−2,

and so again we can absorb it with earlier terms. One can see that V is also similar so all in all

II + |III| + |IIV | + |V | ≤ mCεγ‖g‖2
L2

+Cε3+γ(1 + ε2)α[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

By combining the above estimations, the final conclusion is that

(4.10)
d

dt
‖g‖2

L2 +Ccoer

∫

v

|∇v[< v >γ/2 g]|2 ≤
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CCcoer‖g‖
2
L2 + mCεγ‖g‖2

L2 +Cε3+γ(1 + ε2)α[

∫

< v >2 f ]
1
3 ‖g‖

2
3

L2

∫

|∇(< v >γ/2 g)|2.

Set E =
∫

< v >2 f dv = m + e (the summation of mass and energy) which is bounded uniformly

in time. Setting

X = ‖g‖2
L2 , ‖ < v >γ/2 g‖2

Ḣ1
=

∫

|∇(< v >γ/2 g)|2,

the above inequality (4.10) reads as

d

dt
X +Ccoer‖ < v >γ/2 g‖2

Ḣ1
≤

CCcoerX + mCεγX +Cε3+γ(1 + ε2)αE
1
3 X

1
3 ‖ < v >γ/2 g‖2

Ḣ1
,

which can be also written under the form

(4.11)
d

dt
X ≤ −‖ < v >γ/2 g‖2

Ḣ1

{

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

+ [CCcoer + mCεγ]X.

We want to proceed as in Toscani [20]. However, we have a major trouble in that the moment of

order s of f in L1 are not known to be uniformly bounded w.r.t. time, see Villani [22]. This means

that using Nash’s inequality as in Toscani [20] at that point involves a lower bound which decays in

time, and so can be very small for large time. Since we want to get global solutions, we are going to

use Pitt’s inequality instead of Nash’s inequality.

Assume that at time t, we have for some δ ≥ 0

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3 ≥ δ,

that is

(4.12) Cε3+γ(1 + ε2)αE
1
3 X

1
3 ≤ Ccoer − δ,

which is to be used for δ < Ccoer .

Then from (4.11) we obtain

(4.13)
d

dt
X ≤ −‖ < v >γ/2 g‖2

Ḣ1
δ + [CCcoer + mCεγ]X.

Pitt’s inequality tells us that

(4.14) ‖ < v >γ/2 g‖2
Ḣ1
≥ Cpitt

∫

< v >γ g2

|v|2
dv.

We are going to show a lower bound for the r.h.s. of this inequality.

We start from

∫

f (v)dv ≤

∫

|v|≤R

f (v)dv +
1

R2
e,

which is also

∫

f (v)dv ≤

∫

|v|≤R

< v >−α g(v)dv +
1

R2
e

=

∫

|v|≤R

< v >−α< v >−γ/2 |v| < v >γ/2 |v|−1g(v)dv +
1

R2
e,

by using Cauchy-Schwartz inequality, we obtain

(4.15)

∫

f (v)dv ≤ [

∫

|v|≤R

< v >−2α< v >−γ |v|2]
1
2 [

∫

|v|≤R

< v >γ |v|−2g2(v)dv]
1
2 +

1

R2
e.



LANDAU-SOFT 13

Recall that we have α ≥ −1 − 3/2γ, so the exponent

α̃ := −2α − γ + 2 ≤ 2γ + 4 ∈ (−2, 4) when γ ∈ (−3, 0).

Thus we can estimate the upper bound inside the first integral in (4.15) to get
∫

f (v)dv ≤ CR7/2[

∫

< v >γ |v|−2g2(v)dv]
1
2 +

1

R2
e.

Omitting the constant C, this is of the form
∫

f (v)dv ≤ R7/2A +
1

R2
e with A = [

∫

< v >γ |v|−2g2(v)dv]
1
2 ,

and we choose R such that

R7/2A =
1

R2
e,

that is

R = e2/11A−2/11.

It follows that

m =

∫

f (v)dv ≤ 2R7/2A = 2e7/11A4/11,

and furthermore we get

A ≥ Cm11/4e−7/4,

which is also

(4.16)

∫

< v >γ |v|−2g2(v)dv ≥ Cm11/2e−7/2.

We can now go back to our differential inequality (4.13): by Pitt’s inequality (4.14) and (4.16), we

have

(4.17)
d

dt
X ≤ −CpittCm11/2e−7/2δ + [CCcoer + mCεγ]X = F(X).

Recall that we have assumed (4.12), that is

δ < Ccoer

and that we want

Cε3+γ(1 + ε2)αE
1
3 X

1
3 ≤ Ccoer − δ,

that is

X ≤ [Ccoer − δ]
3C−3ε−3(3+γ)(1 + ε2)−3α/E ≡ X̃.

Now, let Xeq be the zero of the function F defined in (4.17). Assume that

(4.18) X(0) ≤ X̄ ≡ min{X̃, Xeq}.

Then, in view of the form of the differential inequality (4.17) and the behavior of the function F, it

follows that for all t > 0

X(t) ≤ X̄.

Thus we have obtain a global bound for the weighted L2 norm of f , uniformly in time, that is, we get

the second part of Theorem 1.1.
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Remark 4.1. Note that X̃ can be as large as we want, since this quantity depends on negative powers

of ε, which is a free parameter that we can take small. However, taking such a small ε, wee that Xeq

which is given by

Xeq =
CpittCm11/2e−7/2δ

[CCcoer + mCεγ]

is going to be small. Therefore by choosing ε sufficiently small, we can therefore assume that

X̄ = Xeq

and it follows that we will have X(t) ≤ Xeq.

At this point, it is important to recall that for any function f , again using the same notation as

above, one has the following interpolation inequality

X ≥ Cm7/2e−3/2

Thus we should have

Cm7/2e−3/2 ≤
CpittCm11/2e−7/2δ

[CCcoer + mCεγ]

that is

CpittCm2e−2δ

[CCcoer + mCεγ]
≥ C̃.

Now we note, in view of previous results on coercivity that an upper bound for Ccoer is given by

max{C1mR2
∗,C2

(Cm)(γ+3)/3

R∗
}

We choose the value of R∗ such that these two terms are equal, getting an upper bound like

m(9−2γ)/9.

Then it is enough to ask for

CpittCm2e−2δ

[Cm(9−2γ)/9 + mCεγ]
≥ C̃.

Then we choose a smaller ε so that the second term on the denominator is bigger than the first one,

so we are led to ask for

CpittCm2e−2δ

[2mCεγ]
≥ C̃

and replacing ε by δ1/γε′ with ε′ sufficiently small, we should require that me−2 should be large

enough.

Remark 4.2. Nash’s inequality which was used in by Toscani [20] says that for all h:

[

∫

|h(v)|2dv]1+2/3 ≤ C‖h‖
4/3

L1 ‖∇h‖2
L2 .

In our case, h =< v >γ/2< v >α f , so we see that we need a moment estimate on f . That estimate,

see Villani [22], grows up linearly in time, and so we get a bad estimate.

We can also use the result of Desvillettes-Villani [11] Lemma 7 on Page 43: it says that for any h

smooth, for all β > 0, for all δ > 0, we have
∫

h2 < v >2β≤ δ

∫

|∇h|2 +Cδ[

∫

h < v >5β/2]2.
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Again the choice h =< v >γ/2 g leads to ask for a value of γ close to zero

∫

h2 < v >2β≤ C(

∫

|∇h|2)3/5[

∫

h < v >5β/2)4/5,

using it, we can show that, setting

γ̃ = −1 − 9/4γ,

one has
∫

|∇ < v >γ/2 g|2 ≥ C‖g‖
10/3

L2 Mγ̃(t)
−4/3.

The corresponding additive inequality

∫

h2 < v >2β≤ Cδ5/3
∫

|∇h|2 +Cδ−5/2[

∫

h < v >5β/2]2

gives

‖ < v >γ/2 g‖2
Ḣ1
≥ Cδ−5/3X −Cδ−25/3[Mγ̃(t)]

2,

and going back to our differential inequality (4.11), we get

d

dt
X ≤ −‖ < v >γ/2 g‖2

Ḣ1

{

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

+ [CCcoer + mCεγ]X.

Assume that at time t, we have

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3 ≥ 0,

that is

(4.19) Cε3+γ(1 + ε2)αE
1
3 X

1
3 ≤ Ccoer.

Then using the above inequality, we have

d

dt
X ≤ −

{

Cδ−5/3X −Cδ−25/3[Mγ̃(t)]
2
}{

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

+ [CCcoer + mCεγ]X.

Now we note that this is also:

d

dt
X ≤ −Cδ−5/3X

{

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

+Cδ−25/3[Mγ̃(t)]
2
{

2Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

+[CCcoer + mCεγ]X,

then

d

dt
X ≤ −Cδ−5/3X

{

Ccoer −Cε3+γ(1 + ε2)αE
1
3 X

1
3

}

−Cδ−25/3[Mγ̃(t)]
2Cε3+γ(1 + ε2)αE

1
3 X

1
3

+Cδ−25/3[Mγ̃(t)]
2Ccoer + [CCcoer + mCεγ]X.

We see that we still have trouble with the growth rate of Mγ̃(t).
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5. The case γ = −3: weighted energy estimates

We adapt the proof given in the previous Section 4, by taking below γ = −3.

Again setting g =< v >α f , we have

d

dt
‖g‖2

L2 = −

∫

v

∫

v∗

ai j f∗∂v j
g∂vi

g +

∫

v

∫

v∗

ai j∂v∗ j
f∗g∂vi

g

(5.1) +

∫

v

∫

v∗

ai j f∗ f∂vi
g ∂v j

< v >α

−

∫

v

∫

v∗

ai j f∗g∂v j
f∂vi
< v >α +

∫

v

∫

v∗

ai j f g∂v∗ j
f∗)∂vi

< v >α

= −I + II + III − IV + V.

We still have

(5.2) I ≥
Ccoer

2

∫

v

|∇v[< v >γ/2 g]|2 −CCcoer

∫

v

g2.

For the term II, we have

II =

∫

v

∫

v∗

ai j∂v∗ j
f∗g∂vi

g =
1

2

∫

v

∫

v∗

ai j∂v∗ j
f∗∂vi

g2
= 4π

∫

v

< v >2α f 3dv

and therefore, similarly as in Section 4, we get, with α ≥ −1 − 3/2γ

(5.3) II ≤ [

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

Next, recalling the term III which is given by

III =

∫

v

∫

v∗

ai j f∗ f ∂vi
g ∂v j

< v >α,

we have immediately that

III =

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α +

∫

v

∫

v∗

ai j f∗ f∂vi
f < v >α ∂v j

< v >α

=

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α +
1

2

∫

v

∫

v∗

ai j f∗∂vi
f 2 < v >α ∂v j

< v >α

=
1

2

∫

v

∫

v∗

ai j f∗ f 2 ∂vi
< v >α ∂v j

< v >α −
1

2

∫

v

∫

v∗

∂vi
ai j f∗ f 2 < v >α ∂v j

< v >α

−
1

2

∫

v

∫

v∗

ai j f∗ f 2 < v >α ∂vi
∂v j
< v >α,

Since

∂vi
< v >α= ∂vi

(1+ |v|2)α/2 =
α

2
(1+ |v|2)(α−2)/22vi and |∂vi

< v >α | ≤ C(1+ |v|2)(α−1)/2 ≤ C < v >α−1,

we obtain

III ≤ C

∫

v

∫

v∗

|v−v∗ |
γ+2 f∗ f 2 < v >2α−2

+

∫

v

∫

v∗

|v−v∗|
γ+1 f∗ f 2 < v >2α−1

+

∫

v

∫

v∗

|v−v∗|
γ+2 f∗ f 2 < v >2α−2

Then, we have for any ε > 0 fixed

III ≤ IIIε + IIIε
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where

IIIε = C

∫

v

∫

v∗

1|v−v∗ |≥ε|v − v∗|
γ+2 f∗ f 2 < v >2α−2

+

∫

v

∫

v∗

1|v−v∗ |≥ε|v − v∗|
γ+1 f∗ f 2 < v >2α−1

+

∫

v

∫

v∗

1|v−v∗ |≥ε|v − v∗|
γ+2 f∗ f 2 < v >2α−2

and

IIIε = C

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f∗ f 2 < v >2α−2

+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+1 f∗ f 2 < v >2α−1

+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f∗ f 2 < v >2α−2 .

For IIIε, one has

IIIε ≤ C

∫

v

mεγ+2 f 2 < v >2α−2
+

∫

v

mεγ+1 f 2 < v >2α−1
+

∫

v

mεγ+2 f 2 < v >2α−2

and thus

IIIε ≤ Cm[εγ+2
+ εγ+1]‖g‖2

L2 .

For IIIε, splitting over the sets f∗ ≤ f and f ≤ f∗, we obtain that

IIIε ≤ A + B

where

A ≤ C

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f 3 < v >2α−2

+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+1 f 3 < v >2α−1

+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f 3 < v >2α−2

and

B ≤ C

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f 3

∗ < v >2α−2
+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+1 f 3

∗ < v >2α−1

+

∫

v

∫

v∗

1|v−v∗ |≤ε|v − v∗|
γ+2 f 3

∗ < v >2α−2 .

We have

A ≤ Cε3+2+γ

∫

v

f 3 < v >2α−2
+ε3+γ+1

∫

v

f 3 < v >2α−1
+ε3+γ+2

∫

v

f 3 < v >2α−2

and we see immediately that

A ≤ C[ε3+2+γ
+ ε3+γ+1

+ ε3+γ+2]II

and therefore

A ≤ C[ε3+2+γ
+ ε3+γ+1

+ ε3+γ+2][

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

For B, the same arguments leads to
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B ≤ C(1 + ε2)α[ε3+2+γ
+ ε3+γ+1

+ ε3+γ+2][

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2

and thus

IIIε ≤ C(1 + ε2)α[ε3+2+γ
+ ε3+γ+1

+ ε3+γ+2][

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2.

In conclusion, we get

III ≤ C(1 + ε2)α[ε3+2+γ
+ ε3+γ+1

+ ε3+γ+2][

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2

+Cm[εγ+2
+ εγ+1]‖g‖2

L2 .

The same arguments can be applied to all other terms, and thus we get

II+|III|+|IIV |+|V | ≤ C

{

1+(1+ε2)α[ε3+2+γ
+ε3+γ+1

+ε3+γ+2]

}

[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2

+Cm[εγ+2
+ εγ+1]‖g‖2

L2 .

Note the difference when γ > −3: in that case, the constant is small in the first term, while here for

γ = −3, we have a constant which is close to 1, for small ε.

We let O(ε) for the first function and Õ(1/ε) for the second one to get

II + |III| + |IIV | + |V | ≤ C

{

1 + O(ε)

}

[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2

+CmÕ(
1

ε
)‖g‖2

L2 .

By combining the above estimations, the final conclusion is that

(5.4)
d

dt
‖g‖2

L2 +Ccoer

∫

v

|∇v[< v >γ/2 g]|2 ≤

CCcoer‖g‖
2
L2 +C

{

1 + O(ε)

}

[

∫

< v >2 f ]
1
3 ‖ < v >α f ‖

2
3

L2

∫

|∇(< v >α+γ/2 f )|2

+CmÕ(
1

ε
)‖g‖2

L2 .

Again setting E =
∫

< v >2 f dv = m + e, which is bounded uniformly in time, let

X = ‖g‖2
L2 , ‖ < v >γ/2 g‖2

Ḣ1
=

∫

|∇(< v >γ/2 g)|2,

then we have obtained

(5.5)
d

dt
X ≤ −‖ < v >γ/2 g‖2

Ḣ1

{

Ccoer −C(1 + O(ε))E
1
3 X

1
3

}

+ [CCcoer + mCÕ(
1

ε
)]X.

At this point, we can use the arguments of Section 4. Assume that at time t, we have for some

δ ≥ 0

Ccoer −C(1 + O(ε))E
1
3 X

1
3 ≥ δ,

that is

(5.6) C(1 + O(ε))E
1
3 X

1
3 ≤ Ccoer − δ,

which is to be used for δ < Ccoer .
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Then we obtain, using again Pitt’s inequality (4.14) and (4.16),

(5.7)
d

dt
X ≤ −CpittCm11/2e−7/2δ + [CCcoer + mÕ(

1

ε
)]X = F(X).

Recall that we have assumed

δ < Ccoer

and that we want

C(1 + O(ε))E
1
3 X

1
3 ≤ Ccoer − δ,

that is

X ≤ [Ccoer − δ]
3C−3(1 + O(ε))−3/E ≡ X̃.

Now, let Xeq be the zero of the function F defined in (5.7). Then assume that

(5.8) X(0) ≤ X̄ ≡ min{X̃, Xeq},

then in view of the form of the differential inequality and the behaviour of function F, it follows that

for all t > 0:

X(t) ≤ X̄.

Thus we have obtain a global bound for the weighted L2 norm of f , uniformly in time, that is, we get

the second part of Theorem 1.1, for the specific case γ = −3.

6. The case −3 < γ < −2: local estimates

The energy estimate in Section 3 holds for γ ≥ −2. For the case γ ∈ (−3,−2), we recall (3.1)

d

dt

1

2
‖ f ‖2

L2 +

∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f =
1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2,

and from (3.2) and (3.7) we have
∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f ≥
Ccoer

2

∫

|∇v(< v >γ/2 f )|2dv −C

∫

f 2dv.

Next, we estimate

1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2
= (γ + 3)

∫

v∗

∫

v

|v − v∗|
γ f∗ f 2.

The problem is that it looks like a L3 norm, but at that point we need a L1 weighted estimation. Up to

now these bounds grow linearly in time [22] and so are not enough.

Let us fix a positive function of time φ(t). We split A into two terms (forgetting the positive constant

γ + 3 in front of A)

A = A1 + A2,

where

A1 =

∫

v∗

∫

v

1|v−v∗ |≥φ(t)|v − v∗|
γ f∗ f 2

and

A2 =

∫

v∗

∫

v

1|v−v∗ |≤φ(t)|v − v∗|
γ f∗ f 2.

For A1, since γ < 0, we have

(6.1) A1 ≤

∫

v∗

∫

v

φ(t)γ f∗ f 2 ≤ mφ(t)γ‖ f ‖2
L2 .

For A2, we split again according to whether or not f ≤ f∗ to get

(6.2) A2 ≤ 2

∫

v∗

∫

v

1|v−v∗ |≤φ(t)|v − v∗|
γ f 3 ≤ 2Cφ(t)3+γ‖ f ‖3

L3 .
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Next, we are going to work on ‖ f ‖L3 : if f = f1 f2 f3, then, with 1
3
=

1
p1
+

1
p2
+

1
p3

, we have

‖ f ‖L3
≤ ‖ f1‖Lp1

‖ f2‖Lp2
‖ f2‖Lp2

.

Now write

1 =
1

p1

+
2

p2

+
6

p3

,

f = f
1

p1 · f
2

p2 · f
6

p3

= f
1

p1 < v >
−3γ
p3 · f

2
p2 · (< v >

γ

2 f )
6
p3

= (< v >
−3p1γ

p3 f )
1
p1 · f

2
p2 · (< v >

γ
2 f )

6
p3

:= f1 · f2 · f3

with evident notations. We make the choice p1 = p2 = p3 = 9 for reasons linked to Sobolev

inequality. Then we get

‖ f ‖3
L3 . ‖ f1‖

3
Lp1
‖ f2‖

3
Lp2
‖ f2‖

3
Lp2

. [

∫

< v >−3γ f ]
1
3 · [

∫

f 2]
1
3 · [

∫

(< v >
γ
2 f )6]

1
3 .

Sobolev inequality tells us that

[

∫

(< v >
γ

2 f )6]
1
3 .

∫

|∇(< v >
γ

2 f )|2.

Finally, we have obtained

‖ f ‖3
L3 ≤ C[

∫

< v >−3γ f ]
1
3 ‖ f ‖

2
3

L2

∫

|∇(< v >
γ
2 f )|2,

and thus (6.2) becomes

A2 ≤ Cφ(t)3+γ[

∫

< v >−3γ f ]
1
3 ‖ f ‖

2
3

L2

∫

|∇(< v >
γ

2 f )|2.

From Villani [22] (Appendix B), in our case γ ≥ −3, i.e., −3γ ≤ 9, we have

(6.3) M−3γ :=

∫

< v >−3γ f ≤ C(1 + t),

then finally

A2 ≤ Cφ(t)3+γ(1 + t)
1
3 ‖ f ‖

2
3

L2

∫

|∇(< v >
γ
2 f )|2.

Now we choose φ(t) such that (for some ε fixed)

φ(t)3+γ(1 + t)
1
3 ≤ ε,

that is

φ(t) ≤ ε
1

3+γ (1 + t)
−1

3(3+γ) ,

or, for simplicity, we just choose

(6.4) φ(t) = ε
1

3+γ (1 + t)
−1

3(3+γ) .

With this choice, we get that

A2 ≤ Cε‖ f ‖
2
3

L2

∫

|∇(< v >
γ
2 f )|2.

Recall (6.1) to get also

A1 ≤ mφ(t)γ‖ f ‖2
L2 = mε

γ

3+γ (1 + t)
−γ

3(3+γ) ‖ f ‖2
L2 .
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In conclusion, we get:

(6.5) A ≤ mε
γ

3+γ (1 + t)
−γ

3(3+γ) ‖ f ‖2
L2 +Cε‖ f ‖

2
3

L2

∫

|∇(< v >
γ

2 f )|2.

Fix t, and optimize w.r.t. ε. The above term is of the form

ε
γ

3+γ B + εD

with

B = m(1 + t)
−γ

3(3+γ) ‖ f ‖2
L2 , D = C‖ f ‖

2
3

L2

∫

|∇(< v >
γ

2 f )|2.

We have equality in (6.5) if

ε
γ

3+γ B = εD,

that is

ε = B
3+γ

3 D−
3+γ

3 .

With this value, we get from (6.5) that

A ≤ 2εD = 2B
3+γ

3 D−
3+γ

3 D = 2B
3+γ

3 D−
γ

3 ,

that is

A ≤ 2[m(1 + t)
−γ

3(3+γ) ‖ f ‖2
L2 ]

3+γ
3 [C‖ f ‖

2
3

L2

∫

|∇(< v >
γ
2 f )|2]−

γ
3

≤ C(1 + t)
−γ

9 [

∫

|∇(< v >
γ

2 f )|2]−
γ

3 ‖ f ‖
18+4γ

9

L2 .

We choose another ε and write

A ≤ C(1 + t)
−γ

9 [

∫

|∇(< v >
γ

2 f )|2]−
γ

3 ‖ f ‖
18+4γ

9

L2

≤ Cε
γ

3 (1 + t)
−γ

9 ε−
γ

3 [

∫

|∇(< v >
γ

2 f )|2]−
γ

3 ‖ f ‖
18+4γ

9

L2 ,

use Young’s inequality for product of the first two factors (ie without the L2 norm) with p = −3/γ

and p′ = 3/(3 + γ):

A ≤

(

ε

p

∫

|∇(< v >
γ
2 f )|2 +Cε

γ

3+γ (1 + t)
−

γ

3(3+γ)

)

‖ f ‖
18+4γ

9

L2 .

Combine the above estimates, we get a differential inequality

(6.6)
d

dt
‖ f ‖2

L2 ≤ −

(

ccoer −
ε

p
‖ f ‖

18+4γ
9

L2

)

∫

|∇(< v >
γ

2 f )|2 +C‖ f ‖L2 +C(1 + t)
−

γ

3(3+γ) ‖ f ‖
18+4γ

9

L2 .

We see that we have trouble with the growth rate of coefficient, due to lack of uniform in time

bound of the moment in (6.3). The differential inequality (6.6) yields a local estimate of a weak

solution in this case and thus we have the following weaker conclusion

Proposition 6.1. Let γ ∈ (−3,−2). Let the initial data f0 ∈ L2(R3), then we have a local in time a

priori estimate (6.6) on a weak solution in L2.

Remark 6.2. We emphasize here that when γ ∈ (−3,−2), the a priori estimate in L2 is only local,

unless we can get a better moment estimates in L1,that is, uniformly bounded w.r.t. time.
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7. Proof of Proposition 1.2

Multiplying the Landau equation by f and integrating, we have

d

dt

1

2
‖ f ‖2

L2 +

∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f =
1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2.

Moreover, as usual now, we have also (note here that we keep the weight on the second term on the

r.h.s.)
∫ ∫

ai j(v − v∗) f∗∂vi
f∂v j

f ≥
Ccoer

2

∫

|∇v(< v >γ/2 f )|2dv −C

∫

< v >γ−2 f 2dv.

and
1

2

∫ ∫

ai j(v − v∗)∂v∗ j
f∗∂vi

f 2
= (γ + 3)

∫

v∗

∫

v

|v − v∗|
γ f∗ f 2,

All in all, we have

d

dt

1

2
‖ f ‖2

L2 +
Ccoer

2

∫

|∇v(< v >γ/2 f )|2dv ≤ (γ + 3)

∫

v∗

∫

v

|v − v∗|
γ f∗ f 2

+C

∫

< v >γ−2 f 2dv.

Define the first term on the r.h.s. as NLT (non linear term), that is

NLT = (γ + 3)

∫

v∗

∫

v

|v − v∗|
γ f∗ f 2.

From now on, we will omit or abbreviate any non important constant. For any ε > 0, we can write

NLT ≤ C

∫

v

f 2(v)

{

∫

v∗

|v − v∗|
γ1|v−v∗ |≤ε f∗ +

∫

v∗

|v − v∗|
γ1|v−v∗ |≥ε f∗

}

.

Then, we can use classical estimations on the truncated Riez potentials, see [26] for example,

involving the usual maximal function M f (v) to get

NLT ≤ C

∫

v

f 2(v)

{

ε3+γM f (v) + εγm

}

.

Fixing v, we optimize w.r.t. ε to find that

NLT ≤ Cm1+γ/3

∫

v

f 2(v)M f (v)−γ/3 ≤ CCm1+γ/3

∫

M f (v)2−γ/3 ≤ Cm1+γ/3

∫

f 2−γ/3,

by using our assumption on the values of γ.

Let q be defined by q = 2 − γ/3 =
6−γ

3
> 1. Note that we have also q1 =

q

2
=

6−γ

6
> 1. The

conjugate exponent is given by q′
1
=

6−γ

−γ
. We can then use Holder inequality together with the fact

that γ − 2 ≤ −3 to get

C

∫

< v >γ−2 f 2dv ≤ C

{

∫

f
6−γ

3

}
6

6−γ

.

Using the conservation of mass, again skipping all constants, we have obtained

(7.1)
d

dt

1

2
‖ f ‖2

L2 +
Ccoer

2

∫

|∇v(< v >γ/2 f )|2dv ≤ C1 +C2

∫

f
6−γ

3 dv.

Now the idea is this: we want to control the l.h.s. term by the r.h.s, and so we will use some Nash

Gagliardo Nirenberg type inequalities, [19] for example.
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We have a slight issue connected to moments (because on the l.h.s., we have only some control of

a negative power weight in Sobolev space), but let’s forget this point for the moment. Firstly recall

that (we are using homogeneous Sobolev spaces) Ḣs ⊂c Lm for 0 < s < 3/2 and m = 6
3−2s

. We want

to choose m = q =
6−γ

3
. This gives the value of s as s =

3γ

2γ−12
. Note that we have 0 < s < 1.

If this is the case, it follows that ‖ f ‖
q

Lq ≤ C‖ f ‖
q

Ḣs
.

On the other hand, by using classical ideas for proving Nash inequality (Fourier transform, opti-

mizing for small and big frequencies), one can show that (for s < 1 which is the case here)

‖ f ‖Ḣs
≤ Cm1− 1

5
(3+2s)

{

∫

|∇ f ‖2
}

1
10

(3+2s)

and thus

‖ f ‖
q

Lq ≤ Cm[1− 1
5

(3+2s)]q
{

∫

|∇ f ‖2
}

1
10

(3+2s)q

.

A little computation shows that µ ≡ 1
10

(3 + 2s)q = 1
5
[3 − γ] which gives µ < 1 iff γ > −2. Then

(up to the control of weights), we can absorb the r.h.s by the l.h.s in inequality (7.1).

Now to get everything rigorous, and in particular to take care of the loss of weights appearing on

the l.h.s, we need to interpolate with a weighted L1 space the r.h.s. of (7.1) (as well we can also use

some improved type Nash inequalities).

Starting with a fixed ε > 0, we look for α ∈ (0, 1) such that q = α.1 + (1 − α)(q + ε). We find that

α =
ε

q + ε − 1
and 1 − α =

q − 1

q + ε − 1
.

It follows that
∫

f q
=

∫

f α.1+(1−α)(q+ε)
=

∫

f α f (1−α)(q+ε)
=

∫

[< v >
−γ

2α
(1−α)(q+ε) f ]α[< v >γ/2 f ](1−α)(q+ε)

and using Holder inequality, we get

∫

f q ≤

{

M −γ

2α
(1−α)(q+ε)

}α

.

{

∫

[< v >γ/2 f ]q+ε
}1−α

,

which upon using another small ε̃ > 0, yields

∫

f q ≤ C(ε̃)M −γ

2α (1−α)(q+ε)(t) + ε̃

∫

[< v >γ/2 f ]q+ε.

Set qε = q + ε, γε = γ − 3ε and sε =
2γε

2γε−12
.

Then, we still have

‖g‖
qε
Lqε ≤ Cm[1− 1

5 (3+2sε)]qε

{

∫

|∇g‖2
}

1
10

(3+2sε)qε

.

Then note that µε =
1
10

(3 + 2sε)qε =
1
5
[3 − γε] =

1
5
[3 − γ + 3ε]. Since we have assumed γ > −2,

one obtains that µε ≤ 1 when choosing any ε such that 0 < ε ≤
2+γ

3
. Therefore we choose exactly

ε =
2+γ

3
.

With this value of ε, we find that α =
2+γ

5
, 1 − α =

3−γ

5
, q + ε = 8

3
, and thus all in all, we find that

∫

f q ≤ C(ε̃)M −4γ(3−γ)
3(2+γ)

(t) +C(ε̃,m) + ε̃C(m)

∫

|∇[< v >γ/2 f ]|2,

and therefore choosing ε̃ small enough, we find that, going back to our estimation inequality
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‖ f ‖2
L2 (t) ≤ C(1 + t)2

which ends the proof of Proposition 1.2.

Remark 7.1. (1) Of course, we get also a Sobolev estimation as well. Moreover, it might be also

possible to have direct estimation of the nonlinear term by using Holder inequality, together

with the standard Nash’s inequality.

(2) Note that the growth of this L2 estimate is linked with the moment estimate. One can also get

weighted L2 estimate and more generally Lp estimates. For example, one can show that the

nonlinear term is estimated by
∫

f p−γ/3. But it does not seem to be possible to improve the

range of values of γ. However, working with large p seem to require less moments on f .

(3) By interpolating also with L2, as in previous sections, one can get also local estimates for all

γ > −3.
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