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Introduction to Random Walks
on Noncommutative Spaces

Philippe Biane

Abstract We introduce several examples of random walks on noncommuta-
tive spaces and study some of their probabilistic properties. We emphasize
connections between classical potential theory and group representations.

1 Introduction

Whereas random walks form one of the most investigated class of stochastic
processes, their noncommutative analogues have been studied only recently.
In these lectures I will present some results on random walks which take their
values in noncommutative spaces. The notion of a noncommutative space has
emerged progressively from the development of quantum physics, see e.g. [C].
The key idea is to consider not the space itself but the set of real, or complex
functions on it. For a usual space, this forms an algebra, which is commu-
tative by nature. A noncommutative space is given by a noncommutative
(usually complex) algebra which is to be thought of as the algebra of com-
plex functions on the space. We shall explain this idea in more details in
section 2, and in particular define noncommutative probability spaces. Once
noncommutative spaces have been defined in this way it is easy to define ran-
dom variables, and stochastic processes taking their values in these spaces.
Rather than starting an abstract theory, these lectures will consist mainly in
a collection of examples, which I think show that this notion is interesting
and worth studying. We shall begin with the most simple stochastic process
namely the Bernoulli random walk. We shall show how to quantize it in
order to construct the quantum Bernoulli random walk. Simple as it is this
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62 P. Biane

noncommutative stochastic process exhibits quite deep properties, related to
group representation and potential theory. Actually interpreting it as a ran-
dom walk with values in a noncommutative space, the dual of SU(2), we will
be lead to define random walks with values in duals of compact groups. The
study of such random walks in the case of special unitary groups uncovers
connections with potential theory, in particular with the Martin boundary.
We will investigate more on these connections. From the Bernoulli random
walk we can take limit objects, as in the central limit theorem. One of these
objects is a noncommutative Brownian motion which we construct as a fam-
ily of operators on a Fock space and interpret then as a continuous time
stochastic process with independent increments, with values in the dual of
the Heisenberg group. We then extend this construction to more general
noncompact locally compact groups. Finally we will also start to consider
quantum groups in the last section.

The next section consists in preliminaries about C∗ and von Neumann
algebras and noncommutative spaces.

2 Noncommutative Spaces and Random Variables

2.1 What are Noncommutative Spaces?

The random walks that we are going to study take their values in noncom-
mutative spaces, so we should start by making this notion more precise. In
many parts of mathematics, one studies spaces through the set of functions
defined on them. There can be many kind of functions, e.g. measurable, inte-
grable, continuous, bounded, differentiable, and so on. Each property of the
functions reflects a property of the space on which they are defined. Some-
times, in probability theory for example, one is even not interested at all in
the space, but only in the functions themselves, the random variables. Also
very often the set of complex functions considered determines completely the
underlying space. This is the case for example for compact topological spaces,
determined by their algebra of continuous functions, or differentiable mani-
folds which are determined by their smooth functions. The common feature
shared by these situations is that all these spaces of complex valued func-
tions are commutative algebras. It has been realized, since the beginning of
quantum mechanics that one can obtain a better description of nature by
relaxing this commutativity hypothesis. Henceforth we shall consider a non
commutative space as given by a complex algebra, which plays the role of
space of functions on the space. We will see many examples throughout these
lectures. Some algebras may come equipped with a supplementary struc-
ture, for example an antilinear involution, a norm, a preferred linear form,
a topology, etc... Actually most of the times these algebras will be algebras
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of operators on some complex Hilbert space H , and the involution will be
given by the adjoint operation. We shall decribe the kind of algebras we will
consider, mainly C∗ and von Neumann algebras. We will use the language
and some basic results in the theory of these objects, but we will need no
deep knowledge of them. We will only assume that the reader is familiar with
the spectral theorem for selfadjoint operators on a Hilbert space. We refer
for example to the treatises [D1], [D2] or [T] for more details.

2.2 C
∗ Algebras

A C∗ algebra is a normed ∗-algebra which is isometric with a subalgebra of
the algebra B(H) of all bounded operators on some complex Hilbert space H ,
stable under taking the adjoint, and closed for the operator norm topology.
Elements in a C∗-algebra of the form aa∗ for some a ∈ A are called positive.
Positive elements are exactly the selfadjoint positive operators which belong
to the algebra.

Let X be a locally compact topological space, then the algebra of complex
continuous functions on X , vanishing at infinity, is a C∗-algebra, and the fa-
mous Gelfand-Naimark theorem states that any commutative C∗-algebra is
isomorphic to such an algebra. The topological space is compact if and only if
the algebra has a unit, and there is a one to one correspondence between the
points of the space and the characters of the algebra, that is, the continuous
algebra homomorphisms with values in the complex numbers, or equivalently
with the maximal closed ideals, therefore the space is unique up to home-
omorphism and can be recovered from the algebra. It is usually denoted
by spec(A) if A is the C∗-algebra. Thus we should think of a C∗-algebra
as providing the algebra of continuous functions on some noncommutative
space. Note that C∗ algebras are closed under continuous functional calcu-
lus, namely if a is a self-adjoint element in a C∗ algebra, and f a continuous
functions on its spectrum, then the operator f(a) also belongs to the algebra
C. This can be easily seen by approximating uniformly f by polynomials on
the spectrum of a.

If A ⊂ B(H) is a C∗-algebra, then the multiplier algebra M(A) of A is the
set of all operators x such that xA ⊂ A and Ax ⊂ A. It is a C∗ algebra with
a unit, containing A. It coincides with A if and only if A has a unit. If A is
abelian, then M(A) is just the algebra of all bounded continuous functions on
spec(A). In the noncommutative situation, it corresponds to the Stone-Cech
compactification of the topological space underlying the algebra.

Continuous positive linear functionals on a C∗ algebra play the role of
positive bounded measures. Here positivity for a functional means that it
is positive on positive elements. Again in the commutative case, by Riesz’
theorem, such linear functionals correspond to finite positive Borel measures
on the underlying topological space. Positive linear functionals of norm one
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are called states, and correspond to probability measures in the commutative
case. A large supply of states is given by unit vectors in the Hilbert space on
which the C∗ algebra acts. Indeed any such vector ψ defines a state by the
formula

ωψ(a) = 〈aψ, ψ〉 a ∈ A

Given a self adjoint element a in a C∗ algebra A, and a state σ on A, there
exists a unique measure on R, with compact support, such that

σ(f(a)) =

∫

f(x)dμ(x) for all continuous f on R.

The support of this measure is included in the spectrum of a. The GNS
construction assigns to every C∗ algebra, with a continuous positive linear
functional σ, a representation of the algebra on a Hilbert space. A linear
functional is called tracial if for any a, b ∈ A one has τ(ab) = τ(ba).

Each continuous map between topological spaces f : X → Y gives rise
to a continuous algebra morphism Φf : C0(Y ) → C0(X); h �→ h ◦ f , and
conversely any such algebra morphism comes from a continuous map, there-
fore one can think of a homomorphism between C∗ algebras as a continuous
map between the underlying noncommutative spaces (with the direction of
the arrows reversed). One must note however that there may exist very few
morphisms between two C∗ algebras. For example there does not exist any
nonzero homomorphism from the finite dimensional C∗ algebra Mn(C) to
Mm(C) if n > m. Indeed this is a purely algebraic fact, since Mn(C) is
a simple algebra, if a homomorphism from Mn(C) is not injective, then it
must be 0.

2.3 von Neumann Algebras

Let S be a subset of B(H), then its commutant S′ is the set of bounded
operators which commute with every element of S. A von Neumann algebra
is a subalgebra of B(H) which is closed under under taking the adjoint,
and is equal to its bicommutant, i.e. the commutant of its commutant. By
the von Neumann bicommutant theorem the von Neumann algebras are the
∗-subalgebra of B(H), containing the identity operator, and closed for the
strong topology. Since the strong topology is weaker than the operator norm
topology any von Neumann algebra is also a unital C∗ algebra, although
generally too large to be interesting as such.

A von Neumann algebra is closed under Borel functional calculus, namely
if a ∈ M is self-adjoint and f is a bounded Borel function on the spectrum of
a, then f(a) belongs to M , and again, the same is true for f(a1, . . . , an) where
a1, . . . , an are commuting selfadjoint operators in the von Neumann algebra,
and f is a bounded Borel function defined on the product of their spectra.
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The nuance between C∗ algebras and von Neumann algebras can be grasped
by looking at the commutative case. Indeed commutative von Neumann al-
gebras correspond to measure spaces, more precisely any commutative von
Neumann algebra is isomorphic to the algebra L∞(X, m) where X is a mea-
sure space and m a positive measure (the algebra actually depends only on
the class of the measure). This statement can be seen as a reformulation
of the spectral theorem for commuting self-adjoint operators on a Hilbert
space. Therefore it is natural to think of von Neumann algebras as “algebras
of noncommutative random variables”. A normal state on a von Neumann
algebra is a positive linear form which is continuous for the σ-weak topology
and takes the value 1 on the unit. It corresponds, in the commutative case,
to a probability measure, which is absolutely continuous with respect to the
measure m. We shall sometimes call a von Neumann algebra, with a normal
state, a “non commutative probability space”.

A weight on a von Neumann algebra is a map ϕ from the cone of posi-
tive elements of the von Neumann algebra to [0, +∞], which is additive, and
homogeneous, i.e. ϕ(λx) = λϕ(x) for x positive and real λ > 0. A weight is
called normal if supi∈I ϕ(xi) = ϕ(sup(xi)i∈I) for every bounded increasing
net (xi)i∈I . Coming back to the commutative case, weights are positive, pos-
sibly unbounded measures, in the measure class of m. A weight μ is called
finite if μ(1) < ∞, in this case μ is a multiple of a state.

Given a selfadjoint element, a ∈ M and a normal state σ on M , we denote
by μa the distribution of a, namely the measure such that

σ(f(a)) =

∫

f(x)dμa(x)

for all bounded Borel functions on spec(a). More generally if a1, . . . , an is a
family of commuting self-adjoint operators in M , their joint distribution is
the unique probability measure μa1,...,an on Rn such that

σ(f(a1, . . . , an)) =

∫

f(x)dμa1,...,an(x)

for all bounded Borel function f on Rn.
Let N ⊂ M be a von Neumann subalgebra, and σ a state on M , then a

conditional expectation of M onto N is a norm one projection σ(.|N) such
that σ(a|N) = a for all a ∈ N , σ(abc|N) = aσ(b|N)c for all a, c ∈ N, b ∈ M ,
and σ(σ(b|N)) = σ(b) for all b ∈ M . Given M, N and σ, such a map need
not exist, but it always exists, and is unique, if σ is tracial.

We will consider spatial tensor products of von Neumann algebras. If
A ⊂ B(H) and B ⊂ B(K) are two von Neumann algebras, their algebraic
tensor product acts on the Hilbert space H ⊗K, and the spatial tensor prod-
uct of A and B is defined as the von Neumann algebra generated by this
tensor product. Given an infinite family of von Neumann algebras (Ai; i ∈ I)
equipped with normal states ωi it is possible to construct an infinite tensor



66 P. Biane

product ⊗i(Ai, ωi) which is a von Neumann algebra with a state ⊗iωi. One
considers operators of the form ⊗i∈Iai where ai ∈ Ai and ai �= Id only for
a finite number of i ∈ I. These generate an algebra, which is the algebraic
tensor product of the Ai. One can define a positive linear functional on this
algebraic tensor product by ω(⊗i∈Iai) =

∏

ωi(ai). The GNS construction
then yields a Hilbert space H , with a pure state on B(H), and the von Neu-
mann algebra tensor product is the von Neumann algebra in B(H) generated
by this algebraic tensor product.

2.4 Random Variables, Stochastic Processes

with Values in some Noncommutative Space

Given a von Neumann algebra M equipped with a normal state σ, and a C∗

algebra C, a random variable with values in C (or, more appropriately, in the
noncommutative space underlying C), is a norm continuous morphism from
C to M . The distribution of the random variable ϕ : C → M is the state
on C given by σ ◦ϕ. If the algebra C is commutative, then it corresponds to
some topological space, and the state σ ◦ ϕ to a probability measure on this
space. When C = C0(R) there exists a self-adjoint element a ∈ M such that
ϕ(f) = f(a) for all f ∈ C, and we are back to the situation in the preceding
section, where the distribution of a was defined. We will call the state σ ◦ ϕ
the distribution of the random variable ϕ. More generally a family of random
variables with values in some noncommutative space, indexed by some set, is
a stochastic process.

If A and B are two C∗-algebras, a positive map Φ : A → B is a linear
map such that Φ(a) is positive for each positive a ∈ A. When A and B are
commutative, thus A = C0(X) and B = C0(Y ), such a linear map can be
realized as a measure kernel k(y, dx) where for each y ∈ Y one has a finite
positive measure k(y, dx) on X . If A and B are unital, and Φ(I) = I then this
kernel is a Markov kernel, i.e. all measures are probability measures. Thus
we see that the generalization of a Markov kernel to the non-commutative
context can be given by the notion of positive maps. It turns out however
that this notion is slightly too general to be useful and it is necessary to
restrict oneself to a particular class called completely positive maps.

Definition 2.1. linear map between two C∗ algebras A and B is called com-
pletely positive if, for all n ≥ 0, the map Φ ⊗ Id : A ⊗ Mn(C) → B ⊗ Mn(C)
is positive. It is called unit preserving if furthermore Φ(Id) = Id.

We shall consider semigroups of unit preserving, completely positive maps on
a C∗ algebra C. These will be indexed by a set of times which will be either
the nonnegative integers (discrete times) or the positive real line (continuous
time). Thus a discrete time semigroup of unit preserving, completely positive
maps on a C∗ algebra C will be a family (Φn : C → C)n≥0 of completely
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positive maps, such that Φn ◦ Φm = Φn+m. In continuous time we will have
a family (Φt)t∈R+ which satisfies Φt ◦Φs = Φt+s. In the discrete time setting
one has Φn = (Φ1)

n and the semigroup is deduced from the value at time 1.
We shall denote generally the time set by T when we do not specify whether
we are in discrete or continuous time.

Definition 2.2. Let C be a C∗ algebra, then a dilation of a semigroup
(Φt)t∈T of completely positive maps on C is given by a von Neumann algebra
M , with a normal state ω, an increasing family of von Neumann subalgebras
Mt; t ∈ T , with conditional expectations ω(.|Mt), and a family of morphisms
jt : C → (M, ω) such that for any t ∈ T and a ∈ C, one has jt(a) ∈ Mt and
for all s < t

ω(jt(a)|Ms) = js(Φt−s(a)) (2.1)

A dilation of a completely positive semigroup is the analogue in noncommu-
tative probability of a Markov process, and the equation (2.1) expresses the
Markov property of the process: the conditional expectation of the future on
the past is a function of the present.

Given a completely positive semigroup and an initial state, a dilation al-
ways exists [S].

Consider a completely positive semigroup on a C∗ algebra C, and let
B ⊂ C be a commutative C∗ subalgebra, thus isomorphic to C0(X) for
some locally compact topological space X . If the image algebras jt(B); t ∈ T
generate a commutative von Neumann algebra N ⊂ M , then there exists a
probability space (Ω,F , P ) such that (N , ω) ∼ L∞(Ω,F , P ), and random
variables Xt : Ω → X , corresponding to the morphisms jt restricted to
B, which form a classical stochastic process. If furthermore the C∗ algebra
B is invariant by the completely positive semigroup, then this semigroup
defines a Markov semigroup of transition probabilities on the space X , and
the stochastic process (Xt)t∈T is a Markov process with these probability
transitions. This remark will be at the basis of many constructions of classical
stochastic processes starting from quantum ones.

Once a dilation of a completely positive semigroup is given, one can com-
pute, for times t1 < · · · < tn, and a1, . . . , an ∈ C,

ω(jt1(a1) . . . jtn(an)) = σ(Φt1 (a1(Φt2−t1(a2(. . . Φtn−tn−1(an)) . . .)

where σ = ω ◦ j0 is the initial state on C (the distribution of the process
at time 0). Observe however that when the algebras jt(C); t ∈ T do not
commute, this condition does not specifiy the values of

ω(jt1(a1) . . . jtn(an))

when the times t1, . . . , tn are not ordered. We will say that two dilations
j(1), ω1 and j(2), ω2, are equivalent if one has

ω1(j
(1)
t1 (a1) . . . j

(1)
tn

(an)) = ω2(j
(2)
t1 (a1) . . . j

(2)
tn

(an))
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where t1, . . . , tn is an arbitrary sequence of times (i.e. not necessarily in-
creasing) and a1, . . . , an ∈ C. Thus if C is a commutative algebra, then all
commutative dilations with the same initial distribution are equivalent, but
for a given semigroup of completely positive maps there may exist a lot of
non equivalent dilations. Actually we shall encounter in these lectures some
natural noncommutative dilations of Markov semigroups on classical spaces!
An important source of such dilations comes from restrictions: if B ⊂ C is
a subalgebra and the completely positive semigroup leaves B invariant, then
the restriction of (jt)t∈T to the subalgebra B is a dilation of the restriction
of the completely positive semigroup.

3 Quantum Bernoulli Random Walks

3.1 Quantization of the Bernoulli Random Walk

Our first example of a quantum random walk will be the quantization of
the simple (or Bernoulli) random walk. This is just the random walk whose
independent increments have values ±1. In order to quantize it we will replace
the set of increments {±1} by its quantum analogue, namely the space of
two by two complex matrices, with its structure of C∗-algebra. The subset
of hermitian operators is a four dimensional real subspace, generated by the
identity matrix I as well as the three matrices

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

The matrices σx, σy , σz are the Pauli matrices. They satisfy the commutation
relations

[σx, σy ] = 2iσz; [σy , σz] = 2iσx; [σz , σx] = 2iσy. (3.1)

The group SU(2) acts by the automorphisms A → UAU∗ on this C∗-algebra.
We observe that this group is much larger than the group of symmetries of the
two points space (which consists just of a two elements group). This action
leaves the space generated by I invariant, and acts by rotations on the real
three dimensional space generated by the Pauli matrices. Indeed the inner
product on the space of hermitian matrices 〈A, B〉 = Tr(AB) is invariant by
unitary conjugation.

A state ω on M2(C) is given by a positive hermitian matrix S with trace
1, by the formula

ω(A) = Tr(AS).

The most general such matrix can be written as

S =
1

2

(

1 + u v + iw
v − iw 1 − u

)
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where (u, v, w) ∈ R3 satisfies u2 + v2 + w2 ≤ 1. The extreme points on the
unit sphere (sometimes called the “Bloch sphere” in the physics litterature),
correspond to pure states, when S is a projection on a one dimensional sub-
space. Any hermitian operator has a two-point spectrum, hence in a state
ω its distribution is a probability measure on R supported by at most two
points. In particular, for each of the Pauli matrices, its distribution in the
state ω is a probability measure on {±1}, given by

P (σx = 1) =
1 + v

2
P (σy = 1) =

1 + w

2
P (σz = 1) =

1 + u

2
(3.2)

Mimicking the construction of a random walk, we use the infinite product
algebra (M2(C), ω)⊗N (recall the construction of section 2.3). For each Pauli
matrix we build the matrices

xn = I⊗(n−1)⊗σx⊗I⊗∞ yn = I⊗(n−1)⊗σy⊗I⊗∞, zn = I⊗(n−1)⊗σz⊗I⊗∞

which represent the increments of the process. It is easy to see that, for
example, the operators xn, for n ≥ 1, form a commuting family of operators,
which is distributed, in the state ω∞, as a sequence of independent Bernoulli
random variables.

Then we put

Xn =

n
∑

i=1

xi; Yn =

n
∑

i=1

yi Zn =

n
∑

i=1

zi.

This gives us three families of operators (Xn)n≥1; (Yn)n≥1 and (Zn)n≥1 on
this space.

We observe that each of these three families consists in commuting op-
erators, hence has a joint distribution. It is not difficult to check that this
distribution is that of a Bernoulli random walk, whose increments have dis-
tribution given by the probability distributions on {±1} of formula (3.2).
The three families of operators, however do not commute. In fact using the
commutation relations (3.1) one sees that for n, m positive integers,

[xn, ym] = 2izmδnm

and
[Xn, Ym] = 2iZn∧m (3.3)

as well as the similar relations obtained by cyclic permutation of X, Y, Z.
We will call the family of triples of operators (Xn, Yn, Zn); n ≥ 1 a quantum
Bernoulli random walk. We shall later interpret this noncommutative process
as a random walk with values in some noncommutative space, however for the
moment we will study some of its properties related to the automorphisms
of the algebra M2(C).
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3.2 The Spin Process

Because of the rotation invariance of the commutation relations (3.1), we see
that for any unitary matrix U we can define conjugated variables

xU
n = I⊗(n−1) ⊗ UσxU∗ ⊗ I⊗∞

yU
n = I⊗(n−1) ⊗ UσyU∗ ⊗ I⊗∞

zU
n = I⊗(n−1) ⊗ UσzU

∗ ⊗ I⊗∞

and

XU
n =

n
∑

i=1

xU
i ; Y U

n =

n
∑

i=1

yU
i ZU

n =

n
∑

i=1

zU
i

then this new stochastic process is obtained from the original quantum
Bernoulli random walk by a rotation matrix. It follows by a simple com-
putation, using the commutation relations, that X2

n + Y 2
n + Z2

n is invariant
under conjugation, namely one has

X2
n + Y 2

n + Z2
n = (XU

n )2 + (Y U
n )2 + (ZU

n )2

for any unitary matrix U .

Lemma 3.1. For all m, n ≥ 1 one has

[X2
n + Y 2

n + Z2
n, X2

m + Y 2
m + Z2

m] = 0

Actually we shall prove that [Xn, X2
m + Y 2

m + Z2
m] = 0 if m ≤ n. This follows

from the computation

[Xn, Y 2
m] = [Xn, Ym]Ym + Ym[Xn, Ym] = 2i(ZmYm + YmZm)

[Xn, Z2
m] = [Xn, Zm]Zm + Zm[Xn, Ym] = −2i(ZmYm + YmZm)

Using invariance of the commutation relations by cyclic permutation of
X, Y, Z we also have [Yn, X2

m + Y 2
m + Z2

m] = [Zn, X2
m + Y 2

m + Z2
m] = 0, and

the result follows. ⊓⊔
We deduce from this that the family of operators (X2

n + Y 2
n + Z2

n); n ≥ 1 is
commutative, and therefore defines a classical process.We shall compute its dis-
tribution now. For this we introduce the operators Sn =

√

X2
n + Y 2

n + Z2
n + I.

By the preceding Lemma, the family (Sn)n≥0 is a commuting family of op-
erators, therefore one can consider their joint distribution.

Theorem 3.2. Let us take for ω the tracial state, then the operators (Sn;
n≥ 1) form a Markov chain, with values in the positive integers, such that
P (S1 = 2) = 1, and transition probabilities

p(k, k + 1) =
k + 1

2k
; p(k, k − 1) =

k − 1

2k
.
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In order to prove the theorem, it is enough to consider the process up to a
finite time n. So we shall restrict considerations to a finite product M2(C)⊗n

acting on (C2)⊗n. We remark that the state ω⊗n on (C2)⊗n is the unique
tracial state, and it gives, to every orthogonal projection on a subspace V , the

value dim(V )
2n . We shall find a basis of this space consisting of joint eigenvectors

of the operators (Sk; 1 ≤ k ≤ n). For this we analyze the action of the
operators A+

n := 1
2 (Xn − iYn) and A−

n = 1
2 (Xn + iYn). One has

A+
n =

n
∑

j=1

I⊗(j−1) ⊗ α+ ⊗ I⊗n−j A−
n =

n
∑

j=1

I⊗(j−1) ⊗ α− ⊗ I⊗n−j

where

α+ =

(

0 0
1 0

)

α− =

(

0 1
0 0

)

.

Let us call e0, e1 the canonical basis of C2. An orthonormal basis of (C2)⊗n

is given by the vectors eU ; U ⊂ {1, 2, . . . , n} where eU = ei1 ⊗ . . .⊗ein , ik = 1
if k ∈ U and ik = 0 if k /∈ U . In terms of this basis the action of A+

n and A−
n

is given by
A+

n eU =
∑

k/∈U eU∪{k}
A−

n eU =
∑

k∈U eU\{k}
ZneU = (n − 2|U |)eU

Let us consider the vector e∅ = e⊗n
0 and its images by the powers of A−

n ,
normalized to have norm one. These are the vectors

εj
n =

√

j!(n − j)!

n!

∑

U⊂{1,2,...,n};|U|=j

eU j = 0, 1, . . . , n

and these vectors are orthogonal. The action of the operators A+
n , A−

n , Zn on
these vectors is given by

A+
n εj

n =
√

(j + 1)(n − j)εj+1
n

A−
n εj

n =
√

j(n − j + 1)εj−1
n

Znεj
n = (n − 2j)εj

n

Snεj
n = (n + 1)εj

n

In particular we see that these vectors belong to the eigenspace of Sn of
eigenvalue n + 1. We shall generalize this computation to find the common
eigenspaces of the operators S1, S2, . . . , Sn.

Lemma 3.3. Let J = (j1, . . . , jn) be a sequence of integers such that

• i) j1 = 2
• ii) ji ≥ 1 for all i ≤ n
• iii) |ji+1 − ji| = 1 for all i ≤ n − 1
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then there exists a subspace HJ of (C2)⊗n of dimension jn = l + 1, which
is an eigenspace of S1, . . . , Sn, with respective eigenvalues j1, . . . , jn, and an
orthonormal basis (φ0, . . . , φl) such that

A+
n φj =

√

(j + 1)(l − j)φj+1

A−
n φj =

√

j(l − j + 1)φj−1

Znφj = (l − 2j)φj

Furthermore, the spaces HJ are orthogonal and (C2)⊗n = ⊕JHJ .

Proof of the lemma. We shall use induction on n. The lemma is true
for n = 1, using φ0 = e0; φ1 = e1. Assume the lemma holds for n, and
let J = (j1, . . . , jn) be a sequence satisfying the conditions i), ii), iii), of
the lemma. We shall decompose the space HJ ⊗ C2 as a direct sum of two
subspaces. Let the vectors ψj and ηj be defined by

ψj =

√

l − j + 1

l + 1
φj ⊗ e0 +

√

j

l + 1
φj−1 ⊗ e1 j = 0, . . . , l + 1

and

ηj =

√

j + 1

l + 1
φj+1 ⊗ e0 −

√

l − j

l + 1
φj ⊗ e1 j = 0, . . . , l − 1

It is easy to check that these vectors form an orthonormal basis of the tensor
product HJ ⊗ C2, and a simple computation using

Xn+1 = Xn + I⊗n ⊗ σx, Yn+1 = Yn + I⊗n ⊗ σy , Zn+1 = Zn + I⊗n ⊗ σz

shows that these vectors have the right behaviour under these operators. ⊓⊔
We can now prove theorem 3.2, indeed for any sequence satisfying the

hypotheses of lemma 3.3 one has

P (S1 = j1, . . . , Sn = jn) =
jn

2n
=

j1
2

j2
2j1

. . .
jn

2jn−1

where the right hand side is given by the distribution of the Markov chain of
theorem 3.2. ⊓⊔

We shall give another, more conceptual, proof of the former result in
section 5, using the representation theory of the group SU(2) and Clebsch-
Gordan formulas. For this we shall interpret the quantum Bernoulli random
walk as a Markov process with values in a noncommutative space, but we
need first to give some definitions pertaining to bialgebras and group alge-
bras, which we do in the next section.
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4 Bialgebras and Group Algebras

4.1 Coproducts

Let X be a finite set, and F(X) be the algebra of complex functions on X .
A composition law on X is a map X × X → X . This gives rise to a unit
preserving algebra morphism ∆ : F(X) → F(X × X), where F(X × X)
is the algebra of functions on X × X , and one has a natural isomorphism
F(X × X) ∼ F(X) ⊗ F(X). Conversely, such an algebra morphism ∆ :
F(X) → F(X)⊗F(X) comes from a composition law, and many properties
of the composition law can be read on it. For example, associativity translates
into coassociativity of the coproduct which means that

(∆ ⊗ I) ◦ ∆ = (I ⊗ ∆) ◦ ∆

whereas commutativity gives cocommutativity for the coproduct, which
means that

v ◦ ∆ = ∆

where v : F(X) ⊗ F(X) → F(X) ⊗ F(X) is the flip automorphism v(a ⊗
b) = b ⊗ a. In order to obtain an analogue of a composition law in the
noncommutative context, one can define a coproduct for any algebra A as a
morphism ∆ : A → A⊗A, however in general the algebraic tensor product is
too small for obtaining interesting examples. Think for example to the case
A = Cb(X), X a locally compact space, and see that A ⊗ A ⊂ Cb(X × X) is
a small subspace. We shall therefore consider coproducts which take values
in a suitable completion of the algebraic tensor product. An algebra endowed
with a coassociative coproduct is called a bialgebra. If the algebra is a C∗

(resp. a von Neumann) algebra and the tensor product is the minimal C∗

product (resp. the von Neumann algebra tensor product), then one has a
C∗ (resp. a von Neumann) bialgebra.

Some further properties of a coproduct are the existence of the dual notion
of the unit element and the inverse, which are respectively called a counit,
ε : A → C and an antipode, i : ∆ → ∆.

A Hopf algebra is a bialgebra with a unit and an antipode, satisfying some
compatibility conditions. I refer for example to [K] for an exposition of Hopf
algebras and quantum groups.

4.2 Some Algebras Associated to a Compact Group

We shall investigate in more details the notions above in the case of the group
algebra of a compact group, which we assume for simplicity to be separable.
Recall that every representation of a compact group can be made unitary, and
can be reduced to an orthogonal direct sum of irreducible representations. The
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right regular representation of a compact group G is the representation of G
on L2(G, m) (where m is a Haar measure on G) by right translations ρgf(h) =
f(hg−1) and the left regular representation acts by left translations λgf(h) =
f(gh). A fundamental theorem is the Peter-Weyl theorem. It states that every
irreducible representation of G arises in the decomposition of the left (or
right) regular representation, actually one has an orthogonal direct sum

L2(G) = ⊕χ∈ĜEχ

where Ĝ is the (countable) set of equivalence classes of irreducible representa-
tions of G, and for χ ∈ Ĝ, Eχ is the space of coefficients of the representation
i.e. the vector space generated by functions on G of the form

f(g) = 〈χ(g)u, v〉

where u, v are vectors in the representation space of χ (〈., .〉 being an invariant
hermitian product on the space). The space Eχ is finite dimensional, its
dimension being dim(χ)2, and it is an algebra for the convolution product
on G, isomorphic to the matrix algebra Mn(C) with n = dim(χ). We shall
denote this space Mχ when we want to emphasize its algebra structure.

We shall describe several algebras associated to G. The first one is the
convolution algebra A0(G) generated by the coefficients of the finite di-
mensional representations. As a vector space it is the algebraic direct sum
A0(G) = ⊕χMχ ∼ ⊕χMdim(χ)(C). There are larger algebras such as L1(G)
the space of integrable functions (with respect to the Haar measure on G),
and C∗(G) the C∗ algebra generated by L1(G). This algebra consists of se-
quences (mχ; χ ∈ Ĝ) such that mχ ∈ Mχ; |mχ| → 0 as χ → ∞.

The multiplier algebra of C∗(G) coincides with the von Neumann algebra
A(G), which is generated (topologically) by the left translation operators
λg; g ∈ G, it consists of sequences (mχ; χ ∈ Ĝ) such that supχ |mχ| < ∞. In
both cases, the norm in these algebras is supχ |mχ|. Note that the left and
right translation operators λg and ρg are unitary, and the right translation
operators generate the commutant of A(G).

When the group G is abelian, there is a natural isomorphism, given by
Fourier transform, between the algebra A(G) and L∞(Ĝ) where here Ĝ is
the group of characters of G (this is consistent with our earlier notation
since then all irreducible representations of G are one dimensional and are
thus characters). This group of characters is a discrete abelian group, and its
Haar measure is the counting measure.

In the general case, the algebra L∞(Ĝ) is isomorphic with the center of
A(G), since a bounded function on Ĝ can be identified with a sequence
(mχ)χ∈Ĝ of scalar operators.

Any closed subgroup of G generates a von Neumann subalgebra A(H) fur-
thermore the coproduct ∆ restricts to this subalgebra and defines a coproduct
∆ : A(H) → A(H) ⊗ A(H). If the subgroup is abelian, then this subalgebra
is commutative and is isomorphic to the algebra L∞(Ĥ),
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Finally we shall also use the algebra Â(G) =
∏

χ Mχ which consists in

unbounded operators on L2(G), with common dense domain ⊕χEχ (algebraic
direct sum), affiliated with the von Neumann algebra A(G). One has natural
inclusions

A0(G) ⊂ C∗(G) ⊂ M(C∗(G)) = A(G) ⊂ Â(G)

The algebra Â(G) ⊗ Â(G) is an algebra of operators on the algebraic direct
sum ⊕χ,χ′Eχ ⊗Eχ′ and we denote by Â(G)⊗̂Â(G) its completion for simple
convergence on ⊕χ,χ′Eχ ⊗ Eχ′ . One has

Â(G) ⊗ Â(G) =
∏

χ

Mχ ⊗
∏

χ

Mχ ⊂ Â(G)⊗̂Â(G) ∼
∏

χ,χ′

Mχ ⊗ Mχ′

The ∗ algebra structure extends obviously to Â(G), and an element is positive
if and only if its components are positive.

4.3 The Coproduct

The coproduct formula ∆ : λg → λg ⊗λg extends by linearity and continuity
to the von Neumann algebra A(G) if we use the von Neumann algebra tensor
product. It defines a structure of cocommutative von Neumann bialgebra on
A(G). One can also define an extension of the coproduct

∆̂ : Â(G) → Â(G)⊗̂Â(G).

Indeed it is easy to check that for any χ ∈ Ĝ, and a ∈ Mχ, the operator ∆(a)
is nonzero on the space Eχ′ ⊗ Eχ′′ if and only if χ has a non zero multiplic-
ity in the decomposition of the tensor product representation Eχ′ ⊗ Eχ′′ . It
follows that for any sequence (aχ)χ∈Ĝ ∈ ∏

χ∈Ĝ Mχ the sum
∑

χ∈Ĝ ∆(aχ) is
a finite sum in each component Eχ ⊗ Eχ′ therefore it defines an element in

Â(G)⊗̂Â(G) ∼ ∏

χ,χ′ Mχ ⊗ Mχ′ .
One can define the convolution of two finite weights μ and ν by the formula

μ ∗ ν = (μ ⊗ ν) ◦ ∆

since the coproduct is cocommutative and coassociative, one checks that this
is an associative and commutative operation.

4.4 The Case of Lie Groups

For compact Lie groups there is another algebra of interest, which is the
envelopping algebra of the Lie algebra. Recall that the Lie algebra of a Lie
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group is composed of right invariant vector fields on the group. As such it
acts on the L2 space as a family of unbounded operators. Therefore the Lie
algebra is a subspace of the “big” algebra Â(G), and the algebra generated
by this subspace is naturally isomorphic to the envelopping Lie algebra (for
simply connected groups). The elements of the Lie algebra have the following
behaviour with respect to the extended coproduct on Â(G)

∆(X) = X ⊗ I + I ⊗ X

This can be seen by taking derivatives with respect to s in the equation

∆(esX) = esX ⊗ esX

where esX ; s ∈ R is the one parameter subgroup generated by X .

4.5 States and Weights

A normal state ν on A(G) is determined by its value on the generators λg ,
thus by the function φν(g) = ν(λg). It is a classical result that a function φ
on G corresponds to a state on C∗(G), and to a normal state on A(G), if and
only if it is a continuous positive definite function on the group, satisfying
φ(e) = 1.

Every normal weight on A(G) is given by a sequence of weights (νχ)χ∈Ĝ

on each of the subalgebras Mχ, therefore for a weight ν on A(G) there exists
a sequence of positive elements fχ ∈ Mχ such that νχ(a) = Tr(afχ) for
all a ∈ Mχ. Conversely any such sequence fχ defines a normal weight, thus

normal weights on A(G) correspond to positive elements in Â(G).

5 Random Walk on the Dual of SU(2)

5.1 The Dual of SU(2) as a Noncommutative Space

We shall now interpret the process constructed in section 3 as a random
walk on a noncommutative space. For this we consider the group SU(2) of
unitary 2×2 matrices with determinant 1. It is well known that the irreducible
representations of this group are finite dimensional, moreover, for each integer
n ≥ 1 there exists, up to equivalence, exactly one irreducible representation
of dimension n, therefore one has

A(SU(2)) = ⊕∞
n=1Mn(C)
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as a von Neumann algebra direct sum and similarly the C∗ algebra of SU(2)
can be identified with the algebra of sequences (Mn)n≥1 where Mn is an
n × n matrix and one has ‖Mn‖ → 0 as n → ∞. We shall interpret this
C∗-algebra as the space of “functions” vanishing at infinity on some non-
commutative space. The associated von Neumann algebra corresponds to the
space of “bounded functions” on our noncommutative space. In order to get a
better picture of this space it is desirable to have a geometric understanding
of its structure. For this we first note that this space has a continuous group
of symmetries, since the group SU(2) acts on the algebra by inner automor-
phisms. Since the elements ±I act trivially, this is really an action of the
quotient SU(2)/{±I} which is isomorphic with the group SO(3), therefore
this space has a three dimensional rotational symmetry. We can understand
this symmetry by looking at some special elements in the larger algebra
Â(SU(2)), which correspond to “unbounded functions”. Let us consider the
self-adjoint elements corresponding to the Pauli matrices, viewed as elements
of the Lie algebra of SU(2) (or rather the complexified Lie algebra). These
define unbounded operators on L2(SU(2)), which we shall denote X, Y, Z,
and which lie in Â(SU(2)). A good way to think about these three functions
is as three “coordinates” on our space, corresponding to three orthogonal
directions. Each of these elements has a spectrum which is exactly the set of
integers (which you can view as the group dual to the one parameter group
generated by one of these Lie algebra elements). Moreover this is true also of
any linear combination xX +yY +zZ with x2 +y2 +z2 = 1. This means that
if you are in this space and try to measure your position, you can measure,
as in quantum mechanics, one coordinate in some direction (x, y, z) using the
operator xX + yY + zZ, and you will always find an integer. Thus the space
has some discrete feature, in that you always get integer numbers for your
coordinates, but also a continuous rotational symmetry which comes from the
action of SU(2) by automorphisms of the algebra. This is obviously impos-
sible to obtain in a classical space. Of course since the operators in different
directions do not commute, you cannot measure your position in different
directions of space simultaneously. What you can do nevertheless is measure
simultaneoulsy one coordinate in space, and your distance to the origin. This
last measurement is done using the operator D =

√
I + X2 + Y 2 + Z2 − I

which is in the center of the algebra Â(SU(2)), and therefore can be measured
simultaneously with any other operator. Its eigenvalues are the nonnegative
integers 0, 1, 2 . . . , and its spectral projections are the identity elements of
the algebras Mn(C), more precisely, one has in Â(SU(2))

D =

∞
∑

n=1

(n − 1)IMn(C)

We thus see that the subalgebra Mn(C) is a kind of “noncommutative
sphere of radius n − 1”, and moreover by looking at the eigenvalues of
the operators xX + yY + zZ in the corresponding representation, we see
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A(SU(2))

Fig. 1 Noncommutative space underlying A(SU(2)).

that on any “radius” of this sphere, corresponding to a direction of space,
the coordinate on this radius can only take the n values n − 1, n−3,
n− 5, . . . ,−n + 1.

If we rescale the noncommutative sphere of large radius to have radius
1, it looks more and more like a classical sphere, see e.g. [Rie] for a precise
statement.

5.2 Construction of the Random Walk

Let ω be a state on M2(C), which we can also consider as a state on
A(SU(2)) by the projection A(SU(2)) → M2(C). Let us consider the in-
finite tensor product algebra, with respect to the product state ν = ω⊗∞ on
N = ⊗∞

1 A(SU(2))).
Let T : N → N be defined by ∆ ⊗ s where s : A(SU(2))[2,∞[ →

A(SU(2))[3,∞[ is the obvious shift isomorphism. Let jn : A(SU(2)) → N
be the morphisms defined by by jn = T n ◦ i where i(a) = a ⊗ I∞ is the
GNS representation of A(SU(2)) associated with ω, acting on the first fac-
tor. Note that one has actually N = ⊗∞

1 M2(C) and i(a) = ρ2(a)⊗ I∞ where
ρ2 is a two dimensional irreducible representation. The morphisms jn can be
extended to the large algebra Â(SU(2)) and for V in the Lie algebra, using
the formula for the coproduct one checks that

jn(V ) =

n
∑

i=1

I⊗(i−1) ⊗ V ⊗ I⊗∞
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Thus the quantum Bernoulli random walk is obtained by taking the operators
(jn(X), jn(Y ), jn(Z)) where X, Y, Z are the Lie algebra elements correspond-
ing to the Pauli matrices. For n ≥ 0, we let Nn be the algebra generated by
the first n factors in the tensor product. There exists a conditional expecta-
tion ν(.|Nn) with respect to the state ν onto such a subalgebra, it is given
simply by I⊗ω∞ on the factorization N = A(SU(2))⊗n⊗A(SU(2))⊗[n+1,∞[.

The family of morphisms (jn)n≥1 form a noncommutative process wih
values in the dual of SU(2). The following proposition is left to the reader,
as an exercise in manipulation of coproducts.

Proposition 5.1. The family of morphisms jn; n ≥ 1, together with the fam-
ily of algebras N ,Nn; n ≥ 1, and the conditional expectations ν(.|Nn), form
a dilation of the completely positive map A(SU(2)) → A(SU(2)) given by
Φω = (I ⊗ ω) ◦ ∆.

Let us now consider the three one-parameter subgroups generated by the
Pauli matrices, they consist respectively of the matrices

(

cos θ i sin θ
i sin θ cos θ

) (

cos θ sin θ
− sin θ cos θ

) (

eiθ 0
0 e−iθ

)

θ ∈ [0, 2π[

Each of these subgroups generates a commutative von Neumann subalgebra
of A(SU(2)), which is isomorphic with the group von Neumann algebra of
the group U(1) of complex numbers of modulus 1. Such a von Neumann alge-
bra is isomorphic, by Pontryagin duality, to the algebra of bounded functions
on the dual group, therefore the restriction of the dilation to this subalgebra
provides a random walk on this dual group, which is isomorphic to Z. Thus
we recover, from the abstract considerations on duals of compact groups, our
concrete Bernoulli random walks. In terms of our noncommutative space, we
can observe a particle undergoing this random walk along any fixed direc-
tion of space, and what we see is a Bernoulli random walk (recall that the
coordinate in some fixed direction of space can only take integer values).

We now turn to the spin process which can be interpreted in terms of the
restriction of the dilation (jn)n≥1 to the center of the group algebra A(G).

This center consists of operators of the form (mχ; χ ∈ Ĝ) where each mχ is
a scalar operator in Mχ, it is a commutative algebra, isomorphic with the

algebra of bounded functions on Ĝ (recall that we have assumed that Ĝ is
countable). Equivalently it is the algebra generated by the operator D i.e.
the algebra of operators of the form f(D) where f is a bounded complex
function on the nonnegative integers. It is also easy to compute the restric-
tion of the completely positive map Φω to this center. It is given by the
Clebsch-Gordan formula which computes the decomposition into irreducible
of a tensor product of representations of the group SU(2). What we need is
the formula (where ρn is the n-dimensional irreducible representation)

ρ2 ⊗ ρn = ρn−1 ⊕ ρn+1
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which tells us that the Markov chain can jump from n to either n−1 or n+1,
furthermore the transition probabilities are proportional to the dimensions
of the targets, since we are in the trace state. We see that the restriction of
jn to this algebra thus corresponds to the spin process.

Finally there are other commutative algebras which are invariant under
the completely positive map. They are generated by the center of A(SU(2))
and by a one parameter subgroup. Each such algebra is a maximal abelian
subalgebra of A(SU(2)), and its spectrum can be identified with the set of
pairs (m, n) of integers such that n ≥ 1 and m ∈ {n−1, n−3, . . .−n+1}. One
can compute the associated Markov semigroup, using the Clebsch Gordan
formulas for products of coefficient functions of the group SU(2). However
the images of such an algebra by the morphisms (jn)n≥1 do not commute.
Thus in this way we get a noncommutative dilation of a purely commutative
semigroup. We will come back to this Markov chain when we study Pitman’s
theorem and quantum groups.

6 Random Walks on Duals of Compact Groups

It is easy to generalize the construction of the preceding section by replacing
the group SU(2) by an arbitrary compact group G. We will do a construction
parallel to the usual construction of a random walk on a group. Let φ0 and φ
be continuous positive definite functions on G, with φ0(e) = φ(e) = 1, thus
these functions correspond to normal states ν0 and ν on A(G). The state ν0

will play the role of initial condition of our Markov chain, whereas the state
ν represents the distribution of the increments. To the state ν is associated
a completely positive map

Φν : A(G) → A(G) Φν = (I ⊗ ν) ◦ ∆.

The completely positive map generates a semigroup Φn
ν ; n ≥ 1. We now build

the infinite tensor product N = A(G)∞ with respect to the state ν0 ⊗ ν⊗∞,
and obtain a noncommutative probability space (N , ω). Let T : N → N
defined by ∆⊗s where s : A(G)[1,∞[ → A(G)[2,∞[ is the obvious isomorphism.
Let jn : A(G) → N be the morphisms defined by induction jn = T n ◦ i where
i(a) = a⊗ I∞ is the inclusion of A(G) into the first factor (strictly speaking
this is an inclusion only if the state ν0 is faithful).

Let us translate the above construction in the case of an abelian group,
in terms of the dual group Ĝ. The states ν and ν0 correspond to probability
measures on Ĝ, the probability space is now the product of an infinite number
of copies of Ĝ, with the product probability ν0 ⊗ ν⊗∞, and the maps jn

correspond to functions Xn : Ĝ∞ → G given by Xn(g0, g1, . . . , gk, . . .) =
g0g1 . . . gn−1. We thus recover the usual construction of a random walk.



Introduction to Random Walks on Noncommutative Spaces 81

For n ≥ 0, we let Nn be the algebra generated by the first n + 1 factors
in the tensor product. There exists a conditional expectation ω(.|Nn) with
respect to the state ω onto such a subalgebra, it is given simply by I ⊗ ν∞

on the factorization N = A(G)⊗(n+1) ⊗A(G)⊗∞.

Proposition 6.1. The morphisms (jn)n≥0, together with the von Neumann
algebras N ,Nn, n ≥ 0 and the state ω, form a dilation of the completely
positive semigroup (Φn

ν )n≥1, with initial distribution ν0.

The proof of this proposition follows exactly the case of SU(2) treated in the
preceding section.

Let H be a closed commutative subgroup of G, then its dual group Ĥ
is a countable discrete abelian group. The von Neumann subalgebra A(H)
generated by H in A(G) is isomorphic to L∞(Ĥ), and the restriction of
the positive definite function φ to H is the Fourier transform of a probability
measure μ on Ĥ . The coproduct ∆ restricts to a coproduct on the subalgebra
generated by H , thus the images of A(H) by the morphisms jn generate
commuting subalgebras of N . These restrictions thus give a random walk on
the dual group Ĥ , whose independent increments are distributed according
to μ.

We now consider another commutative algebra, namely the center Z(G) of
A(G). Recall that this center is isomorphic with the space L∞(Ĝ) of bounded
functions on the set of equivalence classes of irreducible representations of G.
As a von Neumann algebra of operators on L2(G), it is generated by the
convolution operators by integrable central functions (recall that a function
f on G is central if it satisfies f(ghg−1) = f(h) for all h, g ∈ G).

Proposition 6.2. The algebras jn(Z(G)); n ≥ 1 commute.

Proof. Let a, b ∈ Z(G) and let k ≤ l we have to prove that jk(a) and jl(b)
commute. Let a′ = i(a), b′ = i(b), and note that a′ and b′ belong to the center
of N . One has

jk(a)jl(b) = T k(a′)T k(T l−k(b′))
= T k(a′T l−k(b′))
= T k(T l−k(b′)a′)
= T l(b′)T k(a′)
= jl(b)jk(a)

⊓⊔
Furthermore one has.

Proposition 6.3. If the function φ is central then Φν(Z(G)) ⊂ Z(G).

Proof. Indeed if ψ is central function, belonging to A0(G), then Φν(ψ) = φψ
is a central function on the group, and thus defines an element of Z(G). ⊓⊔

We deduce from the preceding propositions that, in the case when the in-
crements correspond to a central state, the restriction of the dilation (jn)n≥0

to the center of the algebra A(G) defines a Markov process on Ĝ, whose
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transition operator is given by the restriction of Φν to the center Z(G). We
shall now give a more concrete form of the transition probabilites of this
Markov chain.

Proposition 6.4. For χ an irreducible character of G, let

φχ =
∑

χ′∈Ĝ

hφ(χ′, χ)χ′

be the expansion of the positive definite central function φχ into a combination
characters, then the probability transitions of the Markov chain obtained from
the restriction of (jn)n≥1 to the center are given by

pφ(χ′, χ) =
dim(χ)

dim(χ′)
hφ(χ′, χ)

Proof. For χ ∈ Ĝ, the convolution operator associated with the function
dim(χ)χ is the minimal projection of Z(G) associated with χ. In other words
it corresponds to the indicator function 1χ in the isomorphism of L∞(Ĝ)
with Z(G). The transition operator for the restriction of the dilation to the
center is the restriction to this center of Φω. On the other hand, the transition
probabilities pφ(χ, χ′) are related to these indicator functions by Φω(1χ′) =
∑

χ pφ(χ′, χ)1χ. The conclusion follows immediately. ⊓⊔

7 The Case of SU(n)

7.1 Some Facts About the Group SU(n)

We shall investigate the quantum random walk defined in the preceding
section when the group G is the group SU(n) of unitary matrices with de-
terminant 1. First we recall some basic facts about this group and its repre-
sentations. Let T ⊂ SU(n) be the subgroup of diagonal matrices, which is a
maximal torus. The group of characters of T is an n− 1 dimensional lattice,
generated by the elements (the notation e is here to suggest the exponential
function)

e(ei)(

⎛

⎜

⎝

u1 0
. . .

0 un

⎞

⎟

⎠
) = uj

These elements satisfy the relation (written in additive notation) e1 +
e2 + . . . + en = 0, which corresponds to the relation e(e1)e(e2) . . . e(en) = 1
for the characters. We denote by P this group, and by P+ the subset of
positive weights, i.e.

P+ = {m1e1 + . . . + mn−1en−1|m1 ≥ m2 ≥ . . . ≥ mn−1}
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Fig. 2

We shall also need the set

P++ = {m1e1 + . . . + mn−1en−1|m1 > m2 > . . . > mn−1}

and note that the two sets are in bijection by

P++ = P+ + ρ (7.1)

where ρ = (n− 1)e1 + (n− 2)e2 + . . .+ en−1 is the half sum of positive roots.
The symmetric group acts on this character group by permutation of the ei.

Below is a picture of P and P+ for the group SU(3). Thus P consists of
the points in a triangular lattice in the plane, and P+ is the intersection of
this triangular lattice with a cone, fundamental domain for the action of the
symmetric group S3. The subset P++ consists in points of P+ which are in
the interior of the cone.

Recall from the representation theory of the group SU(n) (see e.g. [BtD],
[GW], or [Z]) that the equivalence classes of irreducible representations of
SU(n) are in one to one correspondence with the elements of P+, which are
called “highest weights”. For each x ∈ P let e(x) be the associated character
of T, then the character of the representation with highest weight x ∈ P+

given, for u ∈ T, by Weyl’s character formula

χx(u) =

∑

σ∈Sn
ǫ(σ)e(σ(x + ρ))(u)

∑

σ∈Sn
ǫ(σ)e(σ(ρ))(u)

(7.2)

In particular the defining representation of SU(n) has character e(e1)+ . . .+
e(en) corresponding to the highest weight e1. The normalized positive definite
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Fig. 3 The random walk on the dual of the maximal torus for SU(3).

function on SU(n) corresponding to this character is φ(g) = 1
nTr(g). We shall

investigate the quantum random walk associated with this positive definite
function.

7.2 Two Classical Markov Chains

We shall obtain two classical Markov chains by restricting the Markov chain
associated with φ to suitable subalgebras of C∗(SU(n)). The first subalgebra
is that generated by the maximal torus T. This algebra is isomorphic to the
algebra of functions vanishing at infinity on the dual group P. It is easy to
see that the restriction to the torus of the quantum random walk (jn)n≥0,
constructed using φ, is a random walk on the lattice P with increments
distributed as 1

n (δe1 + . . . + δen). Its one step transition probabilities are
given by

p1(x, y) = 1
n if y ∈ {x + e1, . . . , x + en}

p1(x, y) = 0 if not

We give the picture for the case of the group SU(3).
The second subalgebra is the center of C∗(SU(n)). By the preceding sec-

tion, it can be identified with the space of functions vanishing at infinity on
P+. We shall rather use the identification of the set of irreducible represen-
tations with P++ given by (7.1). As we saw in section 6 the restriction of the
dilation (jn)n≥0 gives a classical Markov chain on the spectrum of the center,
therefore we obtain in this way a Markov chain on P++, the generator of the
Markov chain being given by the restriction of the generator of the quantum
Markov chain on A(SU(2)).
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We shall now derive a relation between these two Markov chains (the one
obtained from the maximal torus, and the one from the center). The set of
highest weights, P++ is the intersection of P with the Weyl chamber, which
is the cone

C = {x1e1 + . . . + xn−1en−1|x1 > x2 > . . . > xn−1}

We consider now the random walk on P killed at the exit of this cone. Thus
the transition probabilites of this killed random walk are given by

p0(x, y) = 1
n if y ∈ P++ ∩ {x + e1, . . . , x + en}

p0(x, y) = 0 if not.

The sum
∑

y p0(x, y) is < 1 for points near the boundary, corresponding to
the fact that the random walk has a nonzero probability of being killed.

Let x ∈ P++ and consider the irreducible representation ξx of SU(n), with
highest weight x − ρ. We can use Weyl’s character formula (7.2) for decom-
posing the representation ξx ⊗ ξn (where ξn is the defining representation of
SU(n)).

We remark that 1
n

∑n
j=1 e(ej) = 1

n!

∑

σ∈Sn
e(σ(e1)). One has

χnχx−ρ =
1

n
(e(e1) + . . . + e(en))

∑

σ∈Sn
ǫ(σ)e(σ(x))

∑

σ∈Sn
ǫ(σ)e(σ(ρ))

=

∑

τ∈Sn

∑

σ∈Sn
ǫ(σ)e(σ(x) + τ(e1))(u)

n!
∑

σ∈Sn
ǫ(σ)e(σ(ρ))

=
1

n

∑n
j=1

∑

σ∈Sn
ǫ(σ)e(σ(x + ej))

∑

σ∈Sn
ǫ(σ)e(σ(ρ))

=
1

n

∑

y∈{x+e1,x+e2,...,x+en}∩P++

χy−ρ

since if y = x + ej belongs to P+ \ P++ then it is fixed by some reflexion in
Sn and thus the sum

∑

σ∈Sn
ǫ(σ)e(σ(x + ej)) vanishes.

For x ∈ P++, let us denote h(x) the dimension of the representation
with highest weight x− ρ. We conclude from the preceding computation and
Proposition 6.4, that the transition probabilities for the Markov chain on
P++ are

q(x, y) =
h(y)

h(x)
p0(x, y) x, y,∈ P++ (7.3)

Since the transition operator is unit preserving, it follows in particular that
the function h is a positive harmonic function with respect to the transition
kernel p0, i.e. satisfies
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Fig. 4

h(x) =
∑

y

h(y)p0(x, y) for all x ∈ P++,

Again we draw the picture in the case of SU(3).
Let us recall that, given transition (sub)probabilities p(x, y) for a Markov

chain, and a positive harmonic function h for p, i.e. a function such that

h(x) =
∑

y

h(y)p(x, y) for all x

one calls the Markov chain with transition probabilities h(y)
h(x)p(x, y) the

Doob conditioning, or h-transform, of the Markov chain with transition
probabilities p.

We can summarize the preceding discussion in the following proposition.

Proposition 7.1. The Markov chain obtained by restriction to the center
is related to the random walk on the dual of the maximal torus by a killing
at the exit of the Weyl chamber followed by a Doob conditioning using the
dimension function on the set of highest weights.

For more information on Doob’s conditioning, I refer to the books by
Kemeny, Knapp and Snell [KKS], or Revuz [R].

One could ask whether this relation, between the Markov chains on the
dual of the torus and on the center, holds for more general groups and positive
definite functions. It turns out that the fundamental concept in this direction
is that of a minuscule weight, see [B3] for more details.
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8 Choquet-Deny Theorem for Duals of Compact Groups

8.1 The Choquet-Deny Theorem in an Abelian Group

As we have seen in the preceding section, the fact that the dimension function
is a positive harmonic function on the Weyl chamber plays an important role
in understanding the quantum random walk on the dual of SU(n). A natural
question arises, is this positive harmonic function unique? We shall answer
this question, which is purely a question of “classical” potential theory using
the theory of quantum random walks. Actually we shall do this by extending a
well known result of Choquet and Deny [CD] on harmonic measures for locally
compact abelian goups. The Choquet-Deny theorem describes completely the
solutions of the convolution equation

μ ∗ φ = φ (8.1)

on a locally compact abelian group G, where μ is a positive finite measure, and
φ is an unknown positive measure. One assumes that the subgroup generated
by the support of μ is the whole group. In order to state the Choquet-Deny
theorem, one needs to define the exponentials on the group G. These are the
continuous functions f on G, with values in ]0, +∞[, which are multiplicative,
i.e. satisfy

f(gh) = f(g)f(h)

for all g, h ∈ G. An exponential e : G →]0, +∞[ is called μ-harmonic if one
has

∫

G
e(−x)μ(dx) = 1. The set of μ-harmonic exponentials is a Borel subset

of the set of all continuous functions on G, which we denote by Eμ. Let φ be
a positive measure on G of the form φ(dx) = e(x)dx where dx is the Haar
measure on G and e is a μ-harmonic exponential, then one has for all positive
measurable functions f

∫

G f(x)φ ∗ μ(dx) =
∫

G

∫

G f(x + y)φ(dx)μ(dy)

=
∫

G

∫

G f(x + y)e(x)dxμ(dy)

=
∫

G

∫

G f(x)e(x − y)dxμ(dy)

=
∫

G
f(x)e(x)dx

∫

G
e(−y)μ(dy)

=
∫

G
f(x)φ(dx)

therefore the measure φ is μ-harmonic. i.e. satisfies the equation (8.1). The
Choquet-Deny theorem states that every solution is a convex combination of
solutions of this kind.

Theorem 8.1 (Choquet-Deny). Assume that the subgroup generated by
the support of the measure μ is G, then every positive measure φ, solution
of the convolution equation (8.1), is absolutely continuous with respect ot the
Haar measure on G, and its density has a unique representation as an integral
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dφ(x)

dx
=

∫

Eµ

e(x)dνφ(e)

where νφ is some finite positive measure on Eμ.

This result contains in particular the determination of all positive har-
monic functions for the transition operator associated with the measure μ,
indeed if h is such a positive μ-harmonic function, then the measure h(−x)dx
is a μ-harmonic measure.

Note that a locally compact abelian group corresponds to a commutative
and cocommutative Hopf C∗-algebra. What we shall do next is to extend this
theorem to (a class of) cocommutative Hopf C∗-algebras. This will allow us to
answer the question about the uniqueness of the positive harmonic function.
Before we state our analogue of the Choquet-Deny theorem on the dual of a
compact group, we will first clarify some points about states and weights.

8.2 Some Further Properties of Duals of Compact

Groups

Let G be a compact group and A(G) be its von Neumann algebra. This
von Neumann algebra has a structure of cocommutative Hopf-von Neumann
algebra for the coproduct ∆, counit ε and antipode i given respectively by
continuous linear extension of

∆(λg) = λg ⊗ λg ε(λg) = δe,g i(λg) = λg−1 .

We have seen in section 4.3 that the convolution of two finite normal weights
μ and ν on A(G) is defined by the formula μ ∗ ν = (μ ⊗ ν) ◦ ∆. Assume
now that μ is a positive finite weight and φ is positive, then we can write φ
as a sum of finite weights φ =

∑

χ φχ with respect to the restrictions of φ
to the subalgebras Mχ. The sum

∑

χ ν ∗ φχ is then a sum of positive finite
weights and thus it defines a (not necessarily normal) weight on A(G). We
can therefore consider the equation (8.1) where this time μ and φ are positive
normal weights, with μ finite.

Next we define the notion of exponential. The following definition is a
straighforward extension of the definition in the case of abelian groups.

Definition 8.2. A group-like element is a non zero element f of Â(G), such
that

∆(f) = f ⊗ f.

If this element is positive, then we call it an exponential.
If μ is a finite weight, f is an exponential and μ(i(f)) = 1 then we call f

a μ-harmonic exponential.

Let f, g, h be positive elements in Â(G) then one has the identity

tr(f ⊗ g∆(h)) = tr(i(h) ⊗ g∆(i(f))) (8.2)
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which is easily checked on coefficient functions. Let g ∈ Â(G) be associated
to μ, i.e. μ(.) = tr(g.), then it follows from 8.2 that for all h

φ ∗ μ(h) = tr(f ⊗ g∆(h))
= tr(i(h) ⊗ g∆(i(f)))
= tr(i(h)i(f))tr(gi(f))
= φ(h)

Thus if f is a μ-harmonic exponential, and φ is the weight associated with
f , then φ satisfies the equation (8.1).

8.3 The Analogue of the Choquet-Deny Theorem

We shall assume that the state ν satisfies a non degeneracy condition which
is the analogue, in the noncommutative setting, of the requirement that the
support of the measure generates the whole group. This condition states that
for every finite weight ρ on A(G) which is supported by some algebra Mχ for

χ ∈ Ĝ, there exists an integer n ≥ 1 and a constant c > 0 such that cν∗n ≥ ρ.

Theorem 8.3. Let φ be a ν-harmonic weight, then there exists a unique finite
positive measure on the set of ν-harmonic exponentials such that

φ =

∫

Eµ

e dmφ(e)

Sketch of proof. We let Sν be the convex cone of normal weights satisfying

φ ∗ ν ≤ φ

This cone is a closed subset of Â, and we can use Choquet’s integral repre-
sentation theorem to conclude that any element of this cone can be written
as the barycenter of a measure supported on the set of its extremal rays. Now
one can analyze the extremal rays of this set, and see that such an extremal
ray consists in multiples of an exponential. The uniqueness argument comes
from the existence of an algebra of functions on the cone, which separates
points, see [B4] for details.

8.4 Examples

For a finite group, the set of exponentials is reduced to the identity.
If the state ν is tracial, then there exists only one ν-harmonic exponential,

namely the identity. In the case of the group SU(n), the exponentials are in
one to one correspondence with the positive elements in SL(n, C).
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From these results we deduce that the positive harmonic function h of
Proposition 7.1 was unique. Indeed in order to prove that a function h is
the unique (up to a multiplicative constant) positive harmonic function for
a transition kernel p, it is enough to check that all the positive harmonic

functions for the relativized kernel h(y)
h(x)p(x, y) are constant, which is what

the Choquet-Deny theorem tells us.

9 The Martin Compactification of the Dual of SU(2)

In the preceding section we have seen that the classical Choquet-Deny theo-
rem about solutions of convolution equations has an analogue in duals of com-
pact groups. This allows one to give an explicit description of all μ-harmonic
positive functions for a finite positive measure μ on a commutative group.
By the Choquet-Deny theorem the positive μ-harmonic functions admit a
unique integral representation in terms of minimal μ-harmonic functions,
and these minimal harmonic functions can be identified with exponentials.
The next natural question in this line of ideas is to describe the Martin com-
pactification associated to a random walk with values in Zn. This Martin
compactification provides a way to attach a boundary to the space Z

n in
order to obtain a compact space, where the boundary is naturally identified
with the set of minimal μ-harmonic functions. The Martin compactification
of Zn was computed by Ney and Spitzer in a classical paper [NS], where
they showed that it consists in adding a sphere at infinity, and identifying
this sphere with the set of minimal harmonic functions with the help of the
Gauss map. In this section we will describe the Martin compactification of
some quantum random walks with values in the dual of SU(2). We will first
recall some basic facts about classical Martin boundaries, then describe Ney
and Spitzer’s theorem, before going to the case of the dual of SU(2).

9.1 The Martin Compactification for Markov Chains

Consider a Markov chain on a countable state space E. The Markov chain
has transition subprobabilities p(x, y), x, y ∈ E, i.e. we have

∑

y p(x, y) ≤ 1,
so that the kernel is submarkovian and the process may die in a finite time.
There is an associated transition operator given by

Pf(x) =
∑

y∈E

p(x, y)f(y)

and the iterated operator is given by n-step transition probabilities

Pnf(x) =
∑

E

pn(x, y)f(y)
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We assume that the associated Markov chain is transient, so that the potential

U =
∞
∑

n=0

Pn

is finite, i.e. the function

u(x, y) =

∞
∑

n=0

pn(x, y) < ∞

Let us choose an initial distribution r(dx) such that the function rU(y) =
∑

E u(x, y)r(dx) is everywhere > 0. The Martin kernel is defined by

k(x, y) =
u(x, y)

rU(y)

It follows from the Harnack inequalities that the functions k(x, .) form a uni-
formly continuous family on E. The Martin compactification of the Markov
chain is the smallest compact topological space Ēu, which contains E as a
dense subset, and such that these functions extend continuously to the bound-
ary ∂Eu = Ēu \ E. This space exists because the functions k(x, .) separate
the points of E and because of the uniform continuity. For any ξ ∈ ∂Eu

the function x �→ k(x, ξ) is a p-harmonic function. Recall that a positive p-
harmonic function f on E is called minimal if for every positive p-harmonic
function g satisfying g ≤ Cf for some C > 0, one has actually g = cf for
some constant c. One can prove that any minimal p-harmonic function f ,
which is r-integrable, is a multiple of k(., ξ) for some ξ ∈ ∂Eu. The subset
∂Em of ξ ∈ ∂Eu such that k(., ξ) is minimal is a Borel subset, and one can
prove that any positive p-harmonic function f , which is r-integrable, admits
a representation

f =

∫

∂Eu

k(., ξ)dmf (ξ)

with a unique positive measure mf .

9.2 The Martin Compactification of Zd

When the Markov chain is a random walk on Zd, with increments distributed
as μ, a (sub)probability measure on Zd, we have seen that every positive μ-
harmonic function admits an integral representation in terms of exponentials.
When the increments of the random walk are integrable, Ney and Spitzer have
determined explicitly the Martin compactification of Zd, which we shall now
describe. Let φ : R

d → [0, +∞] be the function

φ(x) =
∑

y∈Zd

e〈x,y〉μ(dy)
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We assume that it is finite in a neighbourhood of the set

Eμ = {x|φ(x) = 1}

Then the set Eμ is the boundary of the convex set {x|φ(x) ≤ 1} and it is
either reduced to a point or homeomorphic to a sphere. In the latter case the
homeomorphism can be expressed thanks to the Gauss map as

∇φ

‖∇φ‖
Since φ is convex this is a homeomorphism from Eμ onto the unit sphere. Ney
and Spitzer proved that the Martin compactification is homeomorphic to the
usual compactification of Zd by a sphere at infinity, where the identification
between the sphere and the set of minimal μ-harmonic functions is provided
by the map above.

9.3 Noncommutative Compactifications

Before we investigate the problem of finding an analogue of the Ney-Spitzer
theorem for the dual of SU(2) let us translate in the noncommutative lan-
guage the notion of a compactification of a topological space. So let X be a
topological space, and X̄ a compact space such that X ⊂ X̄ is a dense open
subset, and ∂X̄ = X̄ \ X is the boundary, then C(X̄) is can be identified
with a subalgebra of Cb(X), the algebra of all bounded continuous functions
on X , and one has an exact sequence

0 → C0(X) → C(X̄) → C(∂X) → 0

where the first map is the continuous extension, to X̄, by 0 on the boundary,
of a function on X , and the second map is the restriction to a closed subset.
A compactification of C0(X) is thus given by a certain commutative C∗-
subalgebra of the multiplier algebra of C0(X), containing C0(X). In the case
of the Martin compactification this subalgebra is just the algebra generated
by C0(X) and by the functions y �→ k(x, y). The vector space generated by
functions of the form y �→ k(x, y) can be identified with the image of the
Martin kernel, considered as an integral operator f �→ ∑

x∈E f(x)k(x, y). It
is this interpretation of the Martin kernel that has a natural noncommutative
analogue.

9.4 The Martin Kernel for the Quantum Random

Walk

We consider a central quantum random walk, therefore we have a positive
definite central function φ on SU(2) such that φ(e) ≤ 1, and the associated
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state ν on A(SU(2)). We have seen that it has an associated transition kernel
given by the completely positive map Φν = (I ⊗ ν) ◦ ∆. This map acts as
λg �→ φ(g)λg on the generators λg of the von Neumann algebra A(SU(2)). We
know that if φ(e) = 1 then there exists only one φ-harmonic weight, namely
the one given by the function 1. In this case we expect that the Martin
boundary will be given by a one point compactification, which consists just
in adding a unit to the algebra, so in order to avoid this case, we shall assume
here that φ(e) < 1.

We can consider the associated potential which is equal to U =
∑∞

n=0 Φn
ν ,

and which acts by multiplication by the function
∑∞

n=0 φn = 1
1−φ . We shall

consider the action of the potential on the space of coefficients i.e. the di-
rect sum ⊕χMχ where each element of this space can be identified with a
polynomial function on SU(2) acting by convolution, i.e. by the operator
∫

SU(2) p(g)λgdg. Then the Martin kernel will be defined, by analogy with the

case of classical Markov chains, by

p �→
∫

SU(2)
p(g)

1−φ(g)λgdg
∫

SU(2)
1

1−φ(g)λgdg

Note that the operator
∫

SU(2)
1

1−φ(g)λgdg lies in the center of A(SU(2)),

therefore there is no ambiguity in the quotient of the preceding formula.

9.5 Pseudodifferential Operators of Order Zero

and the Martin Compactification

In order to find the Martin compactification of the quantum random walk,
we shall identify the C∗-algebra generated by C∗(SU(2)) and by the image of
the Martin kernel, and show that it gives rise to a three terms exact sequence.
We will first exhibit a certain exact sequence

0 → C∗(SU(2)) → M → C(S2) → 0 (9.1)

where M is our sought for Martin compactification, and C(S2) is the algebra
of continuous functions on the two dimensional sphere S2. For this we consider
the three operators in Â(SU(2)) associated with Pauli matrices, which we call
X, Y, Z, and the Casimir operator C = X2+Y 2+Z2+I which acts by (n+1)2

on the space of coefficients of the n-dimensional representation of SU(2), and
build three operators

x = XC−1/2, y = Y C−1/2, z = ZC−1/2

Clearly these operators are self-adjoint and bounded. Using the commutation
relations (3.1) one can see that [x, y], [x, z], [y, z] and x2 + y2 + z2 − I are
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compact operators on L2(SU(2)). It follows that there exists a map from
the algebra generated by x, y, z to the algebra of polynomial function on
the sphere, sending x, y, z to the three coordinate functions, and this map
vanishes on the compact operators. Actually this map extends by continuity
to the C∗ algebra generated by x, y and z and yields the exact sequence (9.1).
One can interpret also the algebra M as the algebra of right invariant pseudo
differential operators of order zero on SU(2), then the map M → C(S2) of
(9.1) is the principal symbol map (see [B5]). Once we have introduced the
exact sequence above, we can state the theorem which is the analogue, for
central states on the dual of SU(2), of the Ney-Spitzer theorem.

Theorem 9.1. The C∗ algebra generated by the image of the Martin kernel
is the algebra M. The Martin kernel yields a section K : C(S2) → M.

The proof of the theorem relies on a detailed analysis of the Clebsch-Gordan
formulas, see [B5].

Recently the problem of the Martin or Poisson boundary have been con-
sidered for quantum groups, see [Col], [I], [INT]

10 Central Limit Theorems for the Bernoulli Random
Walk

Just as in the classical case there exists central limit theorems for the
Bernoulli random walk, however the noncommutativity here plays an im-
portant role, and according to whether the state we chose is central or not
the limit is quite different.

10.1 The Case of a Central State

We consider the triple of processes (Xn, Yn, Zn)n≥1 constructed in section
(3.1). We use the tracial state to contruct the product, M2(C)⊗∞ which is
thus endowed with the tracial state σ = (1

2Tr)⊗∞. We renormalize the three
processes according to

X
(λ)
t =

X[λt]√
λ

, Y
(λ)
t =

Y[λt]√
λ

, Z
(λ)
t =

Z[λt]√
λ

where [x] is the integer part of x. This triple of processes converges when
λ → ∞, in the sense of moments, towards a three dimensional Bownian
motion.

Theorem 10.1. Let (Xt, Yt, Zt)t≥0 be a three dimensional Brownian motion,
then for any polynomial in 3n noncommuting indeterminates P , and all times
t1, . . . , tn, one has
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limλ→∞ σ(P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn

, Y
(λ)
tn

, Z
(λ)
tn

)) =

E[P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn)]

Let us sketch the proof of this result. It is enough to prove the result for
monomials. First we see that for any real coefficients x, y, z the process

xX
(λ)
t + yY

(λ)
t + zZ

(λ)
t converges towards real Brownian motion. By po-

larization this implies that for any monomial in X, Y, Z the sum over all
monomials with the same total partial degrees in X, Y, Z converges towards

the required limit. Consider two monomials of the form M1X
(λ)
t Y

(λ)
s M2 and

M1Y
(λ)
s X

(λ)
t M2, their difference is, thanks to the commutation relations,

M1Z
(λ)
s∧tM2/

√
λ. This is a monomial of smaller degree, with a factor 1/

√
λ. We

conclude, by induction on degrees of monomials, that the difference betwen

the expectations of the two monomials M1X
(λ)
t Y

(λ)
s M2 and M1Y

(λ)
s X

(λ)
t M2

converges to 0 as λ → ∞. It follows that the expectations of all monomials
with the same partial degrees in variables converge to the same limit. ⊓⊔

We observe that the spin process, normalized by S[λt]/
√

λ converges in
distribution to a three dimensional Bessel process as λ → ∞.

10.2 The Case of a Pure State

Now we consider the quantum Bernoulli random walk with the pure state
given by the vector e0. We shall consider the convergence of the moments of
the triple of processes

(X
(λ)
t , Y

(λ)
t , Z

(λ)
t ) = (

X[λt]√
λ

,
Y[λt]√

λ
,
Z[λt]

λ
); t ≥ 0.

We shall prove that there exists operators (Xt, Yt, Zt)t≥0 on some Hilbert
space H with a vector Ω ∈ H , such that for every polynomial in noncom-
muting indeterminates P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn) one has

limn→∞〈P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn

, Y
(λ)
tn

, Z
(λ)
tn

)e∞0 , e∞0 〉) =

〈P (Xt1 , Yt1 , Zt1 , . . . , Xtn , Ytn , Ztn)Ω, Ω〉

For this we shall first investigate the case where n = 1, t1 = 1, thus we have
just three operators (Xn√

n
, Yn√

n
, Zn

n ) and let n → ∞. Let H be a Hilbert space

with a countable orthonormal basis ε0, . . . , εn, . . ., and let us define operators,
with domain the algebraic sum ⊕n

i=0Cεi, by the formula

a+(εi) =
√

j + 1 εj+1

a−(εj) =
√

j εi−1
(10.1)
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Theorem 10.2. For any polynomial in three noncommutative indetermi-
nates one has

lim
n→∞

〈P (
Xn√

n
,

Yn√
n

,
Zn

n
)e⊗n

0 , e⊗n
0 〉 = 〈P (a+ + a−,

1

i
(a+ − a−), I)ε0, ε0〉

The proof is immediate by inspection of the formula (3.2) and comparison
with (10.1). ⊓⊔

Observe that one has the adjointness relations

〈a+u, v〉 = 〈u, a−v〉

for all u, v in the domain. It follows that the operators a++a− and 1
i (a

+−a−)
are unbounded symmetric operators on H , and thus are closable. We will see
below that they have self-adjoint extensions. They satisfy the commutation
relation

[a+, a−] = −I

on their common domain, spanned by the vectors εi.
The operators a+, a− thus obtained are well known under the name of

creation and annihilation operators for the quantum harmonic oscillator. One
can give a natural model for these operators using a gaussian random variable.
For this, remark that the distribution of the operator a+ + a− is gaussian.
This follows easily from the fact that each Xn follows a standard binomial
distribution, and the convergence of this binomial distribution to the gaussian
distribution, by the de Moivre-Laplace theorem. This property of the operator
a+ + a−, and the fact that ε0 is a cyclic vector for a+ + a−, i.e. the vectors
(a+ + a−)nε0 span a dense subspace of H , allows us to identify the space
H in a natural way with the L2 space of a gaussian random variable. The
vectors εn can be obtained from the vectors (a++a−)n by the Gram-Schmidt
orthogonalization procedure. It is well known that, for a gaussian variable X ,
the polynomials obtained by the Gram-Schmidt orthonormalization process
from the sequence Xn are the Hermite polynomials. Thus when we identify
the space H with the L2 space of the gaussian measure on R the vectors εn

become identified with the Hermite polynomials. Then the operator a− is
identified with d

dx and the operator a+ with x − d
dx .

The product a+a− has eigenvalues 0, 1, 2, . . . corresponding to the the re-
spective eigenvectors ε0, ε1, . . .. It is known as the number operator in quan-
tum field theory.

We will in the next section systematize the construction above and show
how to deduce the limit of the renormalized quantum random walk to a
quantum Brownian motion.
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10.3 Fock Spaces

Let H be a complex Hilbert space. For each integer n the symmetric group
Sn acts on H⊗n by permutation of the factors in the tensor product.

Definition 10.3. We denote H◦n the subspace of H⊗n formed by vectors
invariant under the action of Sn.

If h1, . . . , hn ∈ H then we let

h1 ◦ . . . ◦ hn =
1√
n!

∑

σ∈Sn

hσ(1) ⊗ . . . ⊗ hσ(n)

which is a multiple of the orthogonal projection of h1⊗ . . .⊗hn on H◦n. One
has

〈h1 . . . ◦ hn, h′
1 ◦ . . . ◦ h′

n〉 =
∑

σ∈Sn

n
∏

i=1

〈hi, h
′
σ(i)〉

The Fock space built on H is the Hilbert space direct sum

Γ (H) = ⊕∞
n=0H

◦n

where H◦0 is a one dimensional Hilbert space spanned by a unit vector
Ω, called the vacuum vector of the Fock space. The algebraic direct sum
⊕∞

alg,n=0H
◦n, denoted by Γ0(H), is a dense subspace of Γ (H).

For every h ∈ H we define the exponential vector associated with h by

ξ(h) =

∞
∑

n=0

h◦n

n!

one has
〈ξ(h), ξ(h′)〉 = e〈h,k〉

furthermore the vectors ξ(h); h ∈ H form a linearly free subset, generating
algebraically a dense subspace of Γ (H).

If the space H is written as the orthogonal direct sum of two Hilbert
subspaces H = H1 ⊕ H2, then there is a canonical isomorphism

Γ (H) ∼ Γ (H1) ⊗ Γ (H2) (10.2)

which can be obtained, for example, by identifying the exponential vector
ξ(v1+v2) ∈ Γ (H), where v1 ∈ H1 and v2 ∈ H2, with the vector ξ(v1)⊗ξ(v2) ∈
Γ (H1) ⊗ Γ (H2).

Let h ∈ H , we define two operators on the domain Γ0(H) by

a+
h (h1 ◦ . . . ◦ hn) = h ◦ h1 ◦ . . . ◦ hn

a−
h (h1 ◦ . . . ◦ hn) =

∑n
i=1〈hi, h〉h1 ◦ . . . ◦ ĥi ◦ . . . ◦ hn
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Operators of the form a+
h are called creation operators while the a−

h are
called annihilation operators. When H is one dimensional, generated by a
unit vector u there is a natural identification of Γ (H) with the Hilbert space
of the preceding section where the vector u◦n is identified with

√
n!ǫn. Then

the operators a+
u and a−

u coincide with a+ and a−.
Another operator of interest on Γ (H) is the number operator Λ which has

eigenvalue n on the subspace H◦n. If (ei)i∈I is an orthonormal basis in H ,
then the number operator Λ has the expansion

Λ =
∑

i

a+
e1

a−
ei

.

One can see that the creation and annihilation operators satisfy the adjoint
relation

〈a+
h u, v〉 = 〈u, a−

h v〉 h, u, v ∈ Γ0(H)

as well as the commutation relation

[a+
h , a−

k ] = −〈h, k〉I

on the domain Γ0(H). In particular they are closable, and it is easy to see
that the exponential vectors belong to the domain of their closure, with

a+
h ξ(h′) =

d

dt
ξ(h′ + th)t=0 a−

h ξ(h′) = 〈h′, h〉ξ(h) (10.3)

We shall see that the real part of the creation operator Ph = a+
h +a−

h has a self-
adjoint extension, as well as its imaginary part Qh. For this we consider the
following Weyl operators, given on the vector space generated by exponential
vectors by the formula

Wuξ(h) = ξ(h + u)e−〈h,u〉− 1
2 〈u,u〉

It is easy to check that

〈Wuξ(h), Wuξ(h′)〉 = 〈ξ(h), ξ(h′)〉 (10.4)

for all u, v, h, h′ ∈ H , therefore the operators Wu extend to unitary operators
on Γ (H), furthermore

WuWv = Wu+ve−iℑ〈u,v〉 (10.5)

and for any u ∈ H the operators (Witu; t ∈ R) form a one parameter group
of unitary operators, whose generator is given by Pu on exponential vectors.
Similarly, the operators (Wtu; t ∈ R) form a one parameter group of unitary
operators, whose generator is given by Qu, and more generally for θ ∈ [0, 2π[
the vectors (Weiθ tu; t ∈ R) form a one parameter group of unitary operators,
whose generator is given by cos θQu + sin θPu.
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It follows from Stone’s theorem that Pu, Qu, and all their linear combina-
tions, have a self adjoint extension. These operators satisfy the commutation
relation

[Pu, Qv] = −2iℜ〈u, v〉.
We observe that if H splits as an orthogonal direct sum H = H1 ⊕ H2 and
u ∈ H1, then the operator Wu admits a decomposition Wu = Wu ⊗ I in the
decomposition (10.2).

Let now K ⊂ H be a real Hilbert subspace such that ℑ〈u, v〉 = 0 for
all u, v ∈ K (if K is maximal, it is called a Lagrangian subspace), then by
(10.5) the unitary operators Wiu; u ∈ K form a commutative family, and the
generators Pu, u ∈ K of the one parameter subgroups (Witu; t ∈ R) form
a commuting family of self-adjoint operators with common dense domain
Γ0(H). We can therefore investigate the joint distribution of these operators.

Proposition 10.4. The operators Pu, for u ∈ K form a gaussian family with
covariance 〈Pu, Pv〉 = 〈u, v〉.

The operators Qu, for u ∈ K form a gaussian family with covariance
〈Qu, Qv〉 = 〈u, v〉.

For the proof it is enough to prove that any linear combination of these
operators has a gaussian distribution with the right variance, i.e. that Pu is
a gaussian with variance 〈u, u〉. For this one computes the Fourier transform

〈eiPuΩ, Ω〉 = 〈eiPuξ(0), ξ(0)〉 = 〈ξ(u)e−
1
2 〈u,u〉, ξ(0)〉 = e−

1
2 〈u,u〉

The proof for the operators Qu is similar. ⊓⊔
We let now H = L2(R+), and take as Lagrangian subspace the subspace of

real valued functions. Then the family (Pt := P1[0,t]
; t ≥ 0) has the covariance

〈Pt, Ps〉 = s∧ t, and thus has the distribution of a real brownian motion. The
same is true of the operators Qt := 1

i (a
+
1[0,t]

− a−
1[0,t]

) which form another

Brownian motion satisfying the commutation relations

[Pt, Qt] = 2it

We shall call the pair (Pt, Qt)t≥0 of continuous time processes a noncommu-
tative brownian motion.

We can now state the limit result we had in view in the beginning of this
section.

Theorem 10.5. For any polynomial P in noncommuting variables, one has

limλ→∞〈(P (X
(λ)
t1 , Y

(λ)
t1 , Z

(λ)
t1 , . . . , X

(λ)
tn

, Y
(λ)
tn

, Z
(λ)
tn

)e∞0 , e∞0 〉) =
〈P (Pt1 , Qt1 , t1.I, . . . , Ptn , Qtn , tn.I))Ω, Ω〉]

The proof is an elaboration of the proof we gave for one time.
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We shall see in the next section that, again, one can interpret this pair of
processes as a noncommutative Markov process with values in a noncommu-
tative space.

The noncommutative Brownian motion is the basis of a theory of noncom-
mutative stochastic integration which has been developped by Hudson and
Parthasarathy, see e.g. [Pa].

11 The Heisenberg Group and the Noncommutative
Brownian Motion

The Heisenberg group is the set H = C × R endowed with the group law

(z, w) ⋆ (z′, w′) = (z + z′, w + w′ + ℑ(zz̄′))

This is a nilpotent group, its center being {0}×R, and the Lebesgue measure
on C × R is a left and right Haar measure for this group.

The Weyl operators defined in the preceding section on a Fock space Γ (C)
define unitary representations of the group H, by setting, for τ ∈ R∗,

ρτ (z, w) = Wzτ1/2eiτw

if τ > 0 and
ρτ (z, w) = Wz̄|τ |1/2eiτw

if τ < 0.
Another family of representations is given by the one dimensional charac-

ters
ρξ(z, w) = eiℜ(zξ̄)

for ξ ∈ C.
All these representations are irreducible, are non equivalent and they ex-

haust the family of equivalence classes of irreducible representations of H.
We consider the C∗ algebra of H, which is the C∗-algebra generated by

the convolution algebra L1(H) on L2(H). This algebra is a sub C∗-algebra of
B(L2(H)). Let us denote z = q + ip then the Lie algebra of H is composed
of the vector fields

∂

∂w
;

∂

∂q
+ p

∂

∂w
;

∂

∂p
− q

∂

∂w
.

We shall denote by iT, iQ, iP the unbounded operators on L2(H), affiliated to
C∗(H), which correspond to these vector fields. Thus P, Q, T are unbounded
self-adjoint operators, which satisfy the commutation relation

[P, Q] = −2iT.
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The plane T=0

T

T=t

[P,Q]=it

The "quantum plane"

Fig. 5 The dual of the Heisenberg group.

As in the case of SU(2) one can give a heuristic description of the non-
commutative space dual to H using the generators of the Lie algebra of H,
which define three noncommuting unbounded self-adjoint operators P, Q, T .
We think of these operators as coordinate functions on this dual space, sat-
isfying the commutation relations

[P, Q] = −2iT [P, T ] = [Q, T ] = 0.

Since the coordinate T belongs to the center, it allows to decompose the
space into slices according to the values of this coordinate. When T = 0,
the coordinates P and Q commute, and the corresponding slice is a usual
plane, with two real coordinates. This corresponds to the one dimensional
representations of the group. When T = τ a non zero real number, the
two coordinates P, Q generate a von Neumann algebra isomorphic to B(H),
and corresponding to the irreducible representation sending T to τI. Note
that in this representation the operator P 2 + Q2 has a discrete spectrum
2|τ |, 6|τ |, 10|τ |, . . ..

Let us consider, for t ≥ 0, the functions on H

ϕ±
t (z, w) = 〈ρ±t(z, w)Ω, Ω〉 = e±itw− 1

2 tzz̄ .

By construction, these functions are positive definite functions on H, and
form two multiplicative semigroups. To these functions correspond convo-
lution semigroups of states, and semigroups of completely positive maps.
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The semigroup of noncommutative brownian motion on the dual of H is
the associated semigroup of completely positive maps on C∗(H). Recall
that this semigroup is obtained by composing the coproduct ∆ : C∗(H) →
M(C∗(H)) ⊗ M(C∗(H)) (recall that M(A) is the multiplier algebra of A)
with the state associated with the function. Thus

Φ±
t = (νϕ±

t
⊗ I) ◦ ∆

or equivalently
Φ±

t (λg) = ϕ±
t (g)λg for g ∈ H.

Let ν be a state on C∗(H), and ρν : C∗(H) → B(Hν) be the associated
GNS representation. We consider the two families of homomorphisms

j±t : C∗(H) → B(Hν ⊗ Γ (L2(R+)))
j±t (z, w) = ρν(z, w) ⊗ Wz1[0,t]

e±itw

We shall prove that these homomorphisms constitute dilations of some com-
pletely positive convolution semigroups on C∗(H). For each time t ≥ 0 we
have a direct sum decomposition L2(R+) = L2([0, t]) ⊕ L2([t, +∞[) and a
corresponding factorization

Γ (L2(R+)) = Γ (L2([0, t])) ⊗ Γ (L2([t, +∞[))

Accordingly for each t > 0 there are subalgebras

Wt = B(Γ (L2([0, t]))) ⊗ I ⊂ B(Γ (L2(R+)))

and linear maps

Et := Id ⊗ 〈.Ω[t, Ω[t〉 : B(Γ (L2(R+))) → Wt

where Ω[t is the vacuum vector of the space Γ (L2([0, t])).

Lemma 11.1. For each t ≥ 0 the map Et is a conditional expectation with
respect to the state 〈.Ω, Ω〉.

Indeed if a ∈ B(L2(R+)) has a decomposition a = at] ⊗ a[t then one has

Et(a) = at] ⊗ 〈a[tΩ[t, Ω[t〉

and for b, c ∈ B(L2([0, t]))

〈bacE(u), E(v)〉 = 〈bEt(a)cE(u1[0,t]), E(v11[0,t])〉〈a[tE(u1[t,+∞[), E(v1[t,+∞[)〉
= 〈bEt(a)cE(u), E(v)〉

One checks easily that the homomorphism j±t sends C∗(H) to Wt, further-
more we have
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Proposition 11.2. The maps (j±t , Et, Wt) form a dilation of the completely
positive semigroup Φ±

t , with initial distribution ν.

Proof. This is a bookkeeping exercise using the definition of the Weyl oper-
ators, one has to check that, for t, s ≥ 0 and u, v ∈ L2(R+), one has

〈j±t+s(z, w)E(u1[0,t]), E(v1[0,t])〉 = e±isw− 1
2 s|z|2〈j±t (z, w)E(u1[0,t]), E(v1[0,t])〉

⊓⊔
For every one parameter subgroup of H, there is a completely posi-

tive semigroup given by restriction of (Φ±
t )t≥0. For subgroups of the form

(xz, 0); u ∈ R, with z ∈ C∗ isomorphic to R, one sees that the semigroup is
that of Brownian motion on the dual group. Thus we recover the Brownian
motions (Pt, Qt) of the preceding section by looking at jt(P ) and jt(Q).

The restriction to the center (0, w); w ∈ R gives a semigroup of uniform
translation on the real line.

11.1 The Quantum Bessel Process

Bessel processes are radial parts of Brownian motions. Here we shall exploit
the action of the unitary group U(1) on the Heisenberg group in order to find
an abelian algebra which is left invariant by the semigroup and study the
Markov process associated with the restriction of Φ±

t to this subalgebra. Let
eiθ be a complex number with modulus 1, then there exists an automorphism
aθ of the Heisenberg group defined by

aθ(z, w) = (eiθz, w)

and this automorphism extends to an automorphism of the C∗ algebra.

Proposition 11.3. The subalgebra of C∗(H) composed of elements invariant
under the above action of U(1) is an abelian C∗ algebra.

The characters of this abelian C∗-algebra have been computed by A. Koranyi,
they are given by the formula

χ(f) =

∫

H
ω(g)f(g)dg

for f ∈ L1(H), invariant under the action of U(1), where ω belongs to the
set of functions

{ωτ,m|τ ∈ R
∗, m ∈ N} ∪ {ωμ|μ ∈ R+}
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Fig. 6 The Heisenberg fan.

with
ωτ,m(z, w) = meiτw− 1

2 |τ ||z|
2

Lm(|τ ||z|2)
ωμ(z, w) = j0(μ|z|2)

Here Lm are the Laguerre polynomials defined by the generating series

∞
∑

m=0

Lm(x)tm =
e−

xt
1−t

1 − t

and j0 is the usual Bessel function.
The spectrum of the algebra C∗

R(H) can be identified with a closed subset
of R2, which consists in the union of the halflines {(x, kx); x > 0} for k ∈ N,
the halflines (x, kx); x < 0 for k ∈ N

∗, and the halfline (0, y); y ≥ 0.
It is the spectrum of the unbounded operator 1

2 (P 2 + Q2 − T ), and this
algebra is the algebra of functions of this operator.

The picture gives a “fan” consisting of a union of halflines originating from
0 as depicted below.

We shall call noncommutatif Bessel semigroup the restriction of Φ±
t to the

abelian subalgebra C∗
R(H). In order to compute this semigroup we need,

for each character ω to decompose the functions ωϕt into an integral of
characters. The result is given by the following.

Proposition 11.4. The noncommutative Bessel semigroup Φ+
t is given by

the following kernel.
If x = (σ,−kσ) with σ < 0 and τ = σ + t then

qt(x, dy) =
∞
∑

l=k

(l − 1)!

(k − 1)!(l − k)!
(1 − τ

σ
)l−k(

τ

σ
)kδ(τ,−lτ)(dy)
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Fig. 7

If x = (σ,−kσ) with σ < 0 and 0 = σ + t, (y = 0, r) then

qt(x, dy) =
( r

t )
k−1

(k − 1)!
e−

r
t δ0 ⊗ dr

If x = (σ,−kσ) with σ < 0 and τ = σ+ > 0 then

qt(x, dy) =

∞
∑

l=0

(l + k − 1)!

(k − 1)!l!
(1 − τ

t
)l+k(

τ

t
)kδ(τ,lτ)(dy)

If x = (0, r) then

qt(x, dy) =
( r

t )
k−1

l!
e−

t
lt δt,lt(dy)

If x = (σ, kσ) with σ > 0 and τ = σ + t

qt(x, dy) =

l=k
∑

l=0

(l − 1)!

(k − 1)!(l − k)!
(1 − σ

τ
)k−l(

σ

τ
)lδ(τ,lτ)(dy)

The computations can be found in [B6].
A typical trajectory of the process is depicted in the above picture. It

starts from a point (σ,−σ) with σ < 0. During the whole process the first
coordinates follows a uniform translation to the right. The trajectory starts
on the line y = −x, and with an intensity dt

−σ+t , then jumps to the line
(y = −2x), which it follows before jumping to the next line (y = −3x) with
an intensity 2dt

−σ+t , and so on, until it reaches after infinitely many jumps the
line x = 0, then the process on the right half plane does the jumps from the
line (y = kx) to (y = (k− 1)x), until it finally reaches the line y = 0 where it
stays forever. One can actually construct this process from a birth and death
process known as the Yule process, and the embedding of this process into
the Heisenberg fan yields a construction of the space-time boundary of this
process, see [B6].
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12 Dilations for Noncompact Groups

12.1 The General Case

We shall now extend the preceding construction to the case of arbitrary lo-
cally compact groups. Let G be a locally compact group, with right Haar
measure m, and consider its convolution algebra L1(G). We endow this alge-
bra with the norm ‖f‖ = sup ‖ρ(f)‖ where the supremum is over all unitary
representations ρ of the group G, extended to the algebra L1(G). This yields
the full C∗-algebra of G, denoted C∗(G). When the group G is amenable, for
example if G is compact or for the Heisenberg group which we have met be-
fore, this coincides with the completion of the action of the group on L2(G),
which is called the reduced C∗-algebra of G. When the group is nonamenable,
C∗

r (G) is strictly smaller than C∗(G). A continuous positive definite function
on G, such that ϕ(e) = 1 defines a state as well as a completely positive
contraction on C∗(G), whose restriction to L1(G) is given by f �→ fϕ. Let
now ψ be a continuous, conditionally negative definite function on G, with
ψ(e) = 0. Recall that this means that for all t ≥ 0 the function e−tψ is a
positive definite function on G, or equivalently, by Schönberg’s theorem, that
for all z1, . . . , zn ∈ C with

∑

i zi = 0, and g1, . . . , gn ∈ G one has

∑

ij

ziz̄jψ(g−1
j gi) ≤ 0.

There is an associated semigroup of completely positive contractions on
C∗(G). We shall now, following Parthasarathy and Schmidt [PS], construct
a dilation of this semigroup. Let ν be a state on C∗(G) which will be the
initial state. The GNS construction yields a unitary representation π of G on
a Hilbert space Hπ, and η ∈ Hπ such that ν(x) = 〈π(x)η, η〉 for x ∈ C∗(G).
A variant of the GNS construction associates to the function ψ a unitary
representation of G in a Hilbert space Hψ, and a cocycle v : G → Hψ for this
representation. Thus v is a continuous function which satisfies

v(gh) = gv(h) + v(g)

and
〈v(g), v(h)〉 = −ψ(h−1g) + ψ(g) + ψ(h−1) − ψ(e) (12.1)

for all g, h ∈ G. Conversely, any function ψ satisfying the above equation for
some representation and cocycle v is conditionally negative definite. Indeed
one has

∑

ij

ziz̄jψ(g−1
j gi) = −‖

∑

j

zjv(gj)‖2 ≤ 0

if
∑

j zj = 0.
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Let Γ = Γ (L2(R+) ⊗ Hψ), and let W = B(Hπ ⊗ Γ ) ∼ B(Hπ) ⊗ B(Γ ).
Let ω be the pure state on W associated with the vector η ⊗ Ω. One can
define the subalgebras Wt = B(Hπ ⊗Γt)⊗ Id associated with the orthogonal
decomposition L2(R+) ⊗ Hψ = (L2([0, t]) ⊗ Hψ) ⊕ (L2([t, +∞[) ⊗ Hψ), and
the conditional expectations Et : W → Wt with respect to the state ω. One
defines a unitary representation of G on exponential vectors by

V t(g)(E(u)) = etψ(g)+〈1[0,t]⊗vt(g),u〉E(U t(g)(u) + 1[0,t] ⊗ vt(g))

One thus gets a representation of G on Hπ ⊗Γ by taking the tensor product
of V t with the representation π, and this yields a family of morphisms jt :
C∗(G) → W .

Proposition 12.1. The family (jt,W ,Wt, Et, ω) forms a dilation of the com-
pletely positive semigroup, with initial distribution ν.

The proof is a bookkeeping exercise. This construction has been extended
by Schürmann to a class of bialgebras, see [Sc], allowing him in particular to
give a nice construction of the Azéma martingales.

12.2 Free Groups

Let now Fn be a free group on n generators g1, . . . , gn. Each element of Fn

can be written in a unique way as a reduced word w = gε1

i1
. . . gεk

ik
, where

one has εj = ±1 for all j and i1 �= i2 �= i3 . . . ik−1 �= ik. For such an element
one defines its length l(w) = k. This is the smallest integer k such that w can
be expressed as a product of k elements in the set {g1, g

−1
1 , g2, . . . , gn, g−1

n }.

Proposition 12.2. (Haagerup [H]) The function l is conditionally negative
definite on Fn.

Proof. Consider the Cayley graph of Fn built on the generators. Thus this
graph has as vertices the elements of Fn and its edges are the pairs {g, h}
such that h−1g is a generator or the inverse of a generator. This Cayley graph
is a regular tree in which each vertex has 2n neighbours. For any g ∈ Fn one
can consider the unique shortest path in the graph between Id and g. Let En

be the set of edges of the Cayley graph, endowed with the counting measure,
then one defines v(g) ∈ L2(En) to be the indicator function of this shortest
path from Id to g in the Cayley graph. Thus v(g)(e) = 1 if and only if the
edge e is on the shortest path from Id to g. One can easily check, using the
properties of trees that for any h, h ∈ Fn one has

l(g) + l(h) − l(h−1g) = 2〈v(g), v(h)〉L2(Fn)
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indeed this scalar product counts the number of common edges in the shortest
paths from Id to g and h. This implies, by (12.1) that l is conditionally
negative definite. ⊓⊔

It follows from the previous proposition that there exists, on the full C∗

algebra of Fn, a semigroup of unit preserving completely positive maps, given
by the formula

Φt(λg) = e−tl(g)λg

The theory of the previous section allows us to construct a dilation of this
semigroup. As before we shall be interested in the restriction of this com-
pletely positive semigroup to commutative subalgebras. The first one will be
the subalgebra of the subgroup generated by one of the generators. Let gi

be this generator, then this subgroup is isomorphic to Z by k �→ gk
i , therefore

its dual is isomorphic to the group of complex numbers of modulus 1. The
restriction gives us a Markov semigroup on the group of complex numbers of
modulus 1. This semigroup is easy to characterize, it sends the function eikθ

on the unit circle to the function e−|k|+ikθ. In other words this is the integral
operator on the unit circle given by the Poisson kernel

Pt(θ, θ
′) =

1 − e−2t

1 − 2e−t cos(θ − θ′) + e−2t
.

This is a convolution semigroup, as expected.
The other commutative algebra of interest is the algebra R(Fn) consist-

ing of radial elements. It is generated by the elements χl =
∑

l(g)=l λg for
l = 0, 1, . . . , and it is immediate that the completely positive semigroup as-
sociated with the length function leaves this algebra invariant. Actually one
has Φt(χl) = e−tlχl. These elements satisfy the relations

χ0 = I

χ2
1 = χ2 + 2nχ0

χlχl = χl+1 + (2n − 1)χl−1 l ≥ 2

From this we conclude that R(Fn) is the commutative von Neumann algebra
generated by the self-adjoint element χ1, and its spectrum is the spectrum of
χ1. In order to compute the norm of χl we need just to consider the trivial
representation of Fn in which all gi are mapped to the identity, and we get
‖χl‖ = 2n(2n − 1)l−1 for l ≥ 1, the number of elements of length l in Fn.
Any character ϕ : R(Fn) → C is determined by its values on χ1. For such a
character ϕ, with ϕ(χ1) = x, one has

ϕ(χ0) = 1; ϕ(χ2) = x2−2n; ϕ(χl+1) = xϕ(χl)− (2n−1)ϕ(χl−1) for l ≥ 2

from which one infers that
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ϕ(χl) =
λl+1

1 − λl+1
2

λ1 − λ2
− λl−1

1 − λl−1
2

λ1 − λ2
for l ≥ 1 (12.2)

where λ1, λ2 are the two roots of the equation λ2 − xλ + 2n − 1 = 0.
We verify that the character ϕx defined by the formula above is real and

bounded if and only if x ∈ [−2n, 2n]. The spectrum of the algebra R(Fn)
thus coincides with the interval [−2n, 2n], and the element χl corresponds to
a polynomial function Pl(χ1) = χl, where the polynomials are determined by
the recursion

P0 = 1, P1(x) = x, xPl(x) = Pl+1(x) + (2n − 1)Pl−1.

This three term recursion relation is characteristic of a sequence of orthogonal
polynomials. The orthogonalizing measure is the distribution of χ1 in the
noncommutative probability space (A(Fn), δe) where δe is the pure state,
in the left regular representation of Fn, corresponding to the identity. Thus
δe(λg) = 1 if g = e and δe(λg) = 0 if not. This measure is known as the
Kesten measure (see [Ke]) and has the density

dmn(x) =
2n

2n − 1
4π

√

4(2n − 1) − x2

4n2 − x2

on the interval [−2
√

2n− 1, 2
√

2n − 1]. The discrepancy between the interval
[−2n, 2n] which is the spectrum of χ1 and the support of the measure mn

comes from the fact that Fn is a nonamenable group and therefore some of
its unitary representations are not weakly contained in the regular represen-
tation.

The semigroup of the restriction of (Φt)t≥0 to the subalgebra R(Fn)
sends the polynomial function Pl(x) on the interval [−2n, 2n] to the function
e−tlPl(x). We can compute the transition probabilities pt(x, dy) by finding
the integral representation

e−tlPl(x) =

∫

[−2n,2n]

pt(x, dy)Pl(y)

for each x ∈ [−2n, 2n].
If x belongs to the support of the Kesten measure, then since the poly-

nomials Pl; l ≥ 0 form an orthogonal basis of the L2 space of the Kesten
measure, and ‖Pl‖2

2 = 2n(2n − 1)l one obtains pt through the orthogonal
expansion

pt(x, dy) = e−tdmn(y) +
∞
∑

l=1

e−tl 1

2n(2n − 1)l−1
Pl(x)Pl(y)dmn(y)

When x is outside this support, then by (12.2) the sequence Pl(x) is un-

bounded and has exponential growth of rate ξ =
x+

√
x2−4(2n−1)

2 and the
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character value e−tlPl(x) has the asymptotic behaviour e−tlξl as l → ∞,
and if e−tξ > 2

√
2n − 1, then let x(t) = e−tξ + (2n − 1)et/ξ. The func-

tion e−tlPl(x) can be written as is a linear combination of Pl(x(t)), which
picks up the dominant term as l → ∞ and the Pl(y) for y in the interval
[−2

√
2n − 1, 2

√
2n − 1]. More precisely the quantity

Qt
l(x) = e−tlPl(x) − e−tξ − (2n − 1)et/ξ

e−tξ − et/ξ

ξ − (2n − 1)/ξ

ξ − 1/ξ
Pl(x(t))

decreases exponentially as l → ∞, and thus one has

pt(x, dy) = ctδx(t) +
∞
∑

l=1

e−tl 1

2n(2n− 1)l−1
(Pl(x) − ctPl(x(t)))Pl(y)dmn(y)

with ct = e−tξ−(2n−1)et/ξ
e−tξ−et/ξ

ξ−(2n−1)/ξ
ξ−1/ξ . If ξ(t) < 2

√
2n − 1 then there is a simi-

lar decomposition, but the term ct is 0.
Thus the process starting form a point x ∈ [−2n, 2n] \ [−2

√
2n − 1,

2
√

2n− 1] performs a translation towards the central interval, and at some
point jumps into it, and after that performs a certain pure jump process
inside the interval [−2

√
2n − 1, 2

√
2n − 1] where it remains forever.

13 Pitman’s Theorem and the Quantum Group SUq(2)

13.1 Pitman’s Theorem

Let (Bt)t≥0 be a real Brownian motion, with B0 = 0, and let

St = sup
0≤s≤t

Bs

then Pitman’s theorem states that the stochastic process

Rt = 2St − Bt; t ≥ 0

is a three dimensional Bessel process, i.e. is distributed as the norm of a
three dimensional Brownian motion. There is a discrete version of Pitman’s
theorem, actually it is this discrete version that Pitman proved in his original
paper [Pi]. We start from a symmetric Bernoulli random walk Xn = x1+. . .+
xn where the xi are i.i.d. with P (xi) = ±1 = 1/2, and build the processes
Sn = max1≤k≤n Xk, and Tn = 2Sn−Xn. Pitman proved in [Pi] that (Tn)n≥0

is a Markov chain on the nonegative integers, with probability transitions
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Fig. 8

p(k, k + 1) =
k + 2

2(k + 1)
p(k, k − 1) =

k

2(k + 1)

and the theorem about Brownian motion can be obtained by taking the
usual approximation of Brownian motion by random walks. We see that this
Markov chain is, up to a shift of 1 in the variable, exactly the one that we
obtained in Theorem 3.2 when considering the spin process. This is not a
coincidence as we shall see, actually we will understand this connection by
introducing quantum groups in the picture. Before that, let us give the proof
of Pitman’s theorem We consider the stochastic process ((Sn, Xn);n ≥ 1),
with values in {(s, k) ∈ N × Z | s ≥ k}. It is easy to see that this stochastic
process is a Markov chain, with transition probabilities

p((s, k), (s, k + 1)) = 1
2 , p((s, k), (s, k − 1)) = 1

2 for s > k

p((s, s), (s + 1, s + 1)) = 1
2 , p((s, s), (s, s − 1)) = 1

2

from which we can deduce the probability transitions of the Markov chain
((Tn, Xn);n ≥ 1), with values in {(t, k) ∈ N

∗×Z | k ∈ (−t,−t+2, . . . , t−2, t)},

p((t, k), (t − 1, k + 1)) = 1
2 , p((t, k), (t + 1, k − 1)) = 1

2 if t > k (13.1)

p((t, t), (t + 1, t + 1)) = 1
2 , p((t, t), (t + 1, t − 1)) = 1

2

The transition probabilities are depicted in this picture.
One checks then, by induction on n, that the conditional distribution of

Xn, knowing T1, . . . , Tn, is the uniform distribution on the set {−Tn,−Tn +
2, . . . , Tn − 2, Tn}. Then it follows that (Tn;n ≥ 0) is a Markov chain with
the right transition probabilities.
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13.2 A Markov Chain Associated with the Quantum

Bernoulli Random Walk

In section 5.2 we have seen that the quantum Bernoulli random walk gives
rise in a natural way to two Markov chains, one being the classical Bernoulli
random walk, and the other being the spin process. These two processes
were obtained in the preceding section as coordinates of a certain two-
dimensional Markov chain given by the transition probabilities (13.1). We
can also consider a two-dimensional Markov chain having these two processes
as marginals, by considering the Markov chain of the end of section 5.2.
Recall that this Markov chain was obtained by restricting the generator
of the quantum Bernoulli random walk to the commutative subalgebra
P(SU(2)) ⊂ A(SU(2)) generated by the center Z(SU(2)) and by a one para-
meter subgroup. The spectrum of this algebra can be identified with the set

P̂ = {(r, k) ∈ N × Z | k ∈ {−r,−r + 2, . . . , r − 2, r}}

Indeed this algebra is generated by the pair of commuting self-adjoint op-
erators X, D in the sense that it consists in bounded functions of the pair
(X, D). The joint spectrum of these operators can be computed from the
explicit description of the irreducible representations of SU(2), and coincides
with P̂ . The probability transitions can be obtained by using the Clebsch-
Gordan formula, or equivalently by the computation in the proof of Lemma
3.3. One finds

p((r, k), (r + 1, k + 1)) =
r + k + 2

2(r + 1)

p((r, k), (r + 1, k − 1)) =
r − k + 2

2(r + 1)

p((r, k), (r − 1, k + 1)) =
r − k

2(r + 1)

p((r, k), (r − 1, k − 1)) =
r + k

2(r + 1)
.

These transition probabilities are on this picture
Thus, although this Markov chain has the same one-dimensional marginal

as the one of the preceding section, they do not coincide. We will see that
in order to recover the transitions (13.1) we will have to introduce quantum
groups.

13.3 The Quantum Group SUq(2)

The Hopf algebra A(SU(2)) can be deformed by introducing a real para-
meter q. The algebraic construction proceeds with the introduction of three
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Fig. 9

generators t, e, f which are required to satisfy the relations

tet−1 = q2e, tft−1 = q−2f, ef − fe =
t − t−1

q − q−1

and a coproduct which is given by

∆(t) = t ⊗ t, ∆(e) = e ⊗ t−1 + 1 ⊗ e, ∆(f) = f ⊗ 1 + t ⊗ f

Formally putting t = qh and letting q converge to 1 one finds in the limit the
defining relations for the envelopping algebra of the Lie algebra of SU(2), as
well as the coproduct.

One can prove that the irreducible finite dimensional representations
of this algebra are deformations of those of SU(2), indeed for each inte-
ger r ≥ 0 there exists two representation in V +

r+1 and V −
r+1, with bases

vr±
k ; k ∈ {−r,−r + 2, . . . , r − 2, r}, given by

tvr±
j = ±qjvr±

j

evr±
j = ±

√

[

r − j

2

]

q

[

r + j + 2

2

]

q

vr±
j+2

fvr±
j =

√

[

r − j + 2

2

]

q

[

r + j

2

]

q

vr±
j−2.

with [n]q = qn−q−n

q−q−1 . Using the coproduct one can define the tensor product
of two representations, and this tensor product obeys the same rules as the
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one for representations of SU(2) i.e. one has

V ǫ1
r1+1 ⊗ V ǫ2

r2+1 =
⊕

r=|r2−r1|,|r2−r1|+2,...,r1+r2

V ǫ1ǫ2
r+1 .

We will now restrict our attention to representations of the kind V +
l , and con-

sider the von Neumann-Hopf algebra A+(SUq(2)) = ⊕r≥0End[V +
r+1], which

is isomorphic, as an algebra, to A(SU(2)), but whose coproduct is deformed.
The subalgebra P(SUq(2)) generated by t and by the center remains un-
changed in the deformation. We consider the tracial state 1

2Tr on the two-
dimensional component, and consider the associated random walk. As in the
case of SU(2), the restriction of the associated Markov transtion operator to
the commutative algebra P(SUq(2)) defines a Markov chain on the spectrum
of this algebra, whose transition probabilities can be computed, using the
deformed Clebsch Gordan formulas, as in Klimyk et Vilenkin [KV], formulas
(6) et (9), §14.4.3, to give

p((r, k), (r + 1, k + 1)) = q(r−k)/2

[

r+k+2
2

]

q

[r + 1]q
=

qr+1 − q−k−1

2(qr+1 − q−r−1)
(13.2)

p((r, k), (r + 1, k − 1)) = q−(r+k)/2

[

r−k+2
2

]

q

2[r + 1]q
=

q−k+1 − q−r−1

2(qr+1 − q−r−1)

p((r, k), (r − 1, k + 1)) = q−(r+k+2)/2

[

r−k
2

]

q

2[r + 1]q
=

q−k−1 − q−r−1

2(qr+1 − q−r−1)

p((r, k), (r − 1, k − 1)) = q(r−k+2)/2

[

r+k
2

]

q

2[r + 1]q
=

qr+1 − q−k+1

2(qr+1 − q−r−1)

Letting q tend to 0, one checks that (13.2) converges to (13.1), and thus
we get Pitman’s theorem as an outcome of the q → 0 limit of the quantum
Bernoulli random walk, see [B7] for details.

This observation is at the basis of a vast generalization of Pitman’s theo-
rem, see e.g. [BBO].
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