
HAL Id: hal-00786063
https://hal.science/hal-00786063v1

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinearity detection in hyperspectral images using a
polynomial post-nonlinear mixing model
Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret

To cite this version:
Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret. Nonlinearity detection in hyperspectral
images using a polynomial post-nonlinear mixing model. IEEE Transactions on Image Processing,
2012, 22 (4), pp.1267-1276. �10.1109/TIP.2012.2210235�. �hal-00786063�

https://hal.science/hal-00786063v1
https://hal.archives-ouvertes.fr


 
 

 

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 8389 
 
 

 
To link to this article : DOI:10.1109/TIP.2012.2210235  

URL : http://dx.doi.org/ 10.1109/TIP.2012.2210235 

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible. 

 
To cite this version : 
Altmann, Yoann and Dobigeon, Nicolas and Tourneret, Jean-Yves 
Nonlinearity detection in hyperspectral images using a polynomial 
post-nonlinear mixing model. (2013) IEEE Transactions on Image 
Processing, vol. 22 (n° 4). pp. 1267-1276. ISSN 1057-7149 
 
 
 
 
 
 
 
 
 
 
 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes.diff.inp-toulouse.fr㩷
 



Nonlinearity Detection in Hyperspectral Images
Using a Polynomial Post-Nonlinear

Mixing Model
Yoann Altmann,Student Member, IEEE, Nicolas Dobigeon,Member, IEEE,

and Jean-Yves Tourneret,Senior Member, IEEE

Abstract—This paper studies a nonlinear mixing model
for hyperspectral image unmixing and nonlinearity detection.
The proposed model assumes that the pixel reflectances are
nonlinear functions of pure spectral components contaminated
by an additive white Gaussian noise. These nonlinear functions
are approximated by polynomials leading to a polynomial
post-nonlinear mixing model. We have shown in a previous
paper that the parameters involved in the resulting model can be
estimated using least squares methods. A generalized likelihood
ratio test based on the estimator of the nonlinearity parameter
is proposed to decide whether a pixel of the image results from
the commonly used linear mixing model or from a more general
nonlinear mixing model. To compute the test statistic associated
with the nonlinearity detection, we propose to approximate
the variance of the estimated nonlinearity parameter by its
constrained Cramér–Rao bound. The performance of the
detection strategy is evaluated via simulations conducted on
synthetic and real data. More precisely, synthetic data have
been generated according to the standard linear mixing model
and three nonlinear models from the literature. The real data
investigated in this study are extracted from the Cuprite image,
which shows that some minerals seem to be nonlinearly mixed
in this image. Finally, it is interesting to note that the estimated
abundance maps obtained with the post-nonlinear mixing
model are in good agreement with results obtained in previous
studies.

Index Terms—Constrained Cramér–Rao bound, nonlinearity
detection, post-nonlinear mixing model (PPNMM), spectral
unmixing (SU).

I. I NTRODUCTION

ESTIMATING the macroscopic materials (endmembers)
present in a hyperspectral image as well as their

proportions (abundances) in each pixel of the scene is of
prime interest when analyzing hyperspectral images. Most
spectral unmixing (SU) strategies used for endmember and
abundance estimation assume that the pixel reflectances are
linear combinations of the endmembers [1]–[5]. However,

The authors are with the IRIT/INP-ENSEEIHT/TéSA, University of
Toulouse, Toulouse 31071, France (e-mail: yoann.altmann@enseeiht.fr;
nicolas.dobigeon@enseeiht.fr; jean-yves.tourneret@enseeiht.fr).

as explained in [6], the linear mixing model (LMM) can be
inappropriate for some hyperspectral images, such as those
containing sand, mineral mixtures, trees or vegetation areas.
Nonlinear mixing models provide an interesting alternative
for overcoming the inherent limitations of the LMM. Some
nonlinear models have been proposed in the literature to
handle specific kinds of nonlinearity. For instance, the
bidirectional reflectance-based model studied in [7] has been
introduced for intimate mixtures. The linear mixing model
assumes that the components present in a given pixel are
sitting side-by-side, leading to an observation that is the sum
of the individual contribution of each material. Conversely,
intimate mixtures occur when the photons are interacting
with all the materials simultaneously, which can occur when
the materials are not spatially distinguishable for instance.
This kind of mixtures if often associated with sand or mineral
areas. The bilinear models recently studied in [8]–[11] mainly
focus on scattering effects, e.g., observed in vegetation areas.
Radial basis function networks [12], [13] and kernel-based
models studied in [14]–[17] have also been investigated for
nonlinear SU.

This paper considers a specific nonlinear model studied
in [18] for nonlinear SU and referred to as polynomial
post-nonlinear mixing model (PPNMM). The PPNMM
belongs to the wide class of post-nonlinear mixing models
introduced in [19], [20] for source separation problems.
It is a flexible generalization of the standard LMM that can
accurately model many different nonlinearities. The PPNMM
has the nice property to be characterized by few parameters.
In particular, its nonlinearity part is governed by a single
real parameter referred to as nonlinearity parameter. The
parameters of the PPNMM can be estimated using standard
Bayesian or least squares (LS) methods (see [18] for details).

Most existing unmixing algorithms can be decomposed into
two steps. The first step is an endmember identification using
all pixels of the image. In the last decades, many endmember
extraction algorithms (EEAs) have been developed to identify
the pure spectral components contained in a hyperspectral
image. Geometrical approaches can be used to select the purest
pixels of the image. The VCA algorithm [21] used in this paper
belongs to this class of EEAs. This algorithm is known to be
robust to the presence of weak nonlinearities in the image [11].
Other geometrical algorithms are based on the minimization
of the volume containing the data, which allows the absence



of pure pixels to be mitigated. Finally, non-geometrical EEAs
based on statistical approaches and sparse regression have also
received a considerable attention in the literature. The reader
is invited to consult [22] for a recent review of these methods.
After estimating the endmembers, we propose to estimate the
abundances, the nonlinearity parameter and the noise variance
of the PPNMM using the subgradient method of [18].

This paper addresses the problem of determining whether
an observed pixel of an hyperspectral image is a linear or
nonlinear function of endmembers using the PPNMM. Note
that the issue of nonlinearity detection in hyperspectral images
has already been adressed in [23] to detected nonlinear areas
in observed scenes using surrogate data. One of the most
interesting properties of the PPNMM is that it generalizes
the LMM thanks to a unique nonlinearity parameter whose
value characterizes the nonlinearity in the considered pixel.
In particular, when the nonlinearity parameter equals zero,
the resulting mixing model is linear. Consequently, it seems
natural to use this parameter for deriving new nonlinearity
detectors. It is precisely the objective of this paper which
is organized as follows. Section II introduces the PPNMM
for hyperspectral image unmixing. Section III derives the
statistical test for nonlinearity detection based on the parameter
estimators provided by the LS unmixing procedure. Section IV
studies the constrained Cramér–Rao lower bounds (CCRLBs)
of the PPNMM parameter estimators. These bounds will be
used to approximate variance of the nonlinearity parameter
estimator yielding an approximated test statistics for nonlin-
earity detection. Simulation results conducted on synthetic data
are finally shown in Section V.

II. POLYNOMIAL POST-NONLINEAR M IXING MODEL

This section introduces the nonlinear mixing model used
for nonlinearity detection in hyperspectral images and the
associated estimation algorithm.

A. PPNMM Model

The L-spectrumy = [y1, . . . , yL]T of a mixed pixel is
generally defined as a nonlinear transformationg(·) of a
linear mixture of R endmembersm1, . . . , mR contaminated
by additive noise

y = g

(

R
∑

r=1

ar mr

)

+ n = g (Ma) + n (1)

where mr = [mr,1, . . . , mr,L ]T is the spectrum of the
r th material present in the scene,ar is its corresponding
proportion, R is the number of endmembers contained in
the image andg(·) is an appropriate nonlinear function.
Moreover, L is the number of spectral bands andn is an
additive independent and identically distributed (i.i.d) zero-
mean Gaussian noise sequence with varianceσ 2, denoted as
n ∼ N

(

0L, σ 2I L
)

, whereI L is theL×L identity matrix. Note
that the matrix and vector notationsM = [m1, . . . , mR] and
a = [a1, . . . , aR]T have been used in the right hand side of (1).

Because of the lack of knowledge about the nonlinearity
in (1), we proposed in [18] to approximateg(·) using a second

order polynomial functiongb(·) defined by

gb : [0, 1]L → R
L

x �→

⎡

⎢

⎣

x1 + bx2
1

...

xL + bx2
L

⎤

⎥

⎦

with x = [x1, . . . , xL ]T . An interesting property of the
resulting PPNMM is that it reduces to the classical LMM
for b = 0. Another motivation for using the PPNMM is
the Weierstrass approximation theorem which states that any
continuous function defined on a bounded interval can be
uniformly approximated by a polynomial with any desired
precision [24, p. 15]. As explained in [9], it is reasonable
to consider polynomials with first and second order terms
(since higher order terms can generally be neglected) which
leads to the following mixing model (for a given pixel of the
image)

y = gb (Ma) + n = Ma + b(Ma) ⊙ (Ma) + n (2)

where⊙ denotes the Hadamard (term-by-term) product. Note
that the resulting PPNMM includes bilinear terms such as
those considered in [8]–[11]. However, the nonlinear terms
are characterized by a single amplitude parameterb, which
significantly simplifies the analysis.

Due to physical considerations, the abundance vectora
satisfies the following positivity and sum-to-one constraints

R
∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R} . (3)

Moreover, it has been shown in [18] that the PPNMM is
general enough to handle a wide class of nonlinear models.

B. Parameter Estimation

The PPNMM parameters can beestimated by minimizing
the following LS criterion

J(a, b) = 1

2

∥

∥y − gb(Ma)
∥

∥

2

= 1

2
‖y − Ma − b(Ma) ⊙ (Ma)‖2 (4)

subject to the constraints (3), where‖x‖ =
√

xT x is the
standardℓ2 norm. After estimatinga andb, the noise variance
σ 2 can be determined as follows

σ̂ 2 = 1

L

∥

∥

∥
y − Mâ − b̂(Mâ) ⊙ (Mâ)

∥

∥

∥

2
. (5)

Since the additive noise vectorn is i.i.d zero-mean and
Gaussian, the resulting estimator ofθ = [aT , b, σ 2]T is the
maximum likelihood estimator (MLE) ofθ , denoted asθ̂ .
Consequently, the estimatorθ̂ = [âT , b̂, σ̂ 2]T is asymptoti-
cally efficient and asymptotically distributed according to a
Gaussian distribution [25, Chap. 7] . Note that the asymptotic
region corresponds toL → ∞. Since L is very large
(some hundreds of spectral bands) for hyperspectral images,



the asymptotic region will be achieved in most practical appli-
cations.1 The two LS algorithms considered in [18] (i.e., based
on linearization and subgradient methods) for minimizing (4)
subject to the constraints (3) have provided very similar
performance. As a consequence, this paper will concentrate
on one estimator only, namely the subgradient-based estimator.
The next section derives a nonlinearity detector based on the
MLE of the nonlinearity parameter.

III. N ONLINEARITY DETECTION

As shown in Section II, the PPNMM allows the nonlinearity
to be characterized by the parameterb for each pixel of
the scene. An arbitrary threshold could be used to decide if
the observed pixel is better modeled by the LMM or by a
general nonlinear model defined by (2). However, it would
be difficult to choose the appropriate threshold in order to
guarantee a given probability of false alarm (PFA) or a given
probability of detection (PD). In this section, we propose
a statistical test for a pixel-by-pixel nonlinearity detection
based on the distribution of̂b. Based on the asymptotic
properties of the MLE and on the large number of spectral
bands available for a hyperspectral image, it makes sense to
approximate the distribution of̂b by the following Gaussian
distribution2

b̂ ∼ N

(

b, s2
)

(6)

wheres2 � s2(a, b, σ 2) is the variance of the estimatorb̂. It
is important to note that the variance ofb̂ is a function of
the parametersa, b andσ 2. Obviously, when the observation
vectory results from the LMM (i.e.,b = 0), then

b̂ ∼ N

(

0, s2
0

)

(7)

wheres2
0 = s2(a, 0, σ 2). This interesting property can be used

for testing the mixing model appropriate to the observation
vector. The resulting nonlinearity detection problem can be
considered as a two hypothesis testing problem, where the
hypotheses are defined as

{

H0 : y is distributed according to the LMM
H1 : y is distributed according to the PPNMM.

(8)

HypothesisH0 is characterized byb = 0 whereas nonlinear
models (H1) lead to b �= 0. As a consequence, the two
hypotheses in (8) can be rewritten as

{

H0 : b̂ ∼ N
(

0, s2
0

)

H1 : b̂ ∼ N
(

b, s2
1

) (9)

wheres2
1 = s2(a, b, σ 2) andb �= 0.

A. Known Parametersa and σ 2

For a given observation vectory and its corresponding
estimated nonlinearity parameterb̂, we propose to decide
between hypothesesH0 and H1 using a classical generalized

1The asymptotic behavior of the considered MLEs will be discussed in
Section V.

2This assumption will be validated in the simulation results.

likelihood ratio test (GLRT) for (9). Using (6) and (7), the
GLRT consists of comparing the test statistic

sup
b

p(b̂|H1)

p(b̂|H0)
(10)

to an appropriate threshold, wherep(b̂|H0) (resp. p(b̂|H1))
is the probability density function of̂b under H0 (resp.H1).
Obviously, p(b̂|H1) is maximized forb = b̂. Straightforward
computations lead to the following test strategy

T = b̂2

s2
0

H1
≷
H0

η (11)

whereη is a threshold that is related to the test PFA as follows

PFA = P

[

b̂2

s2
0

> η

∣

∣

∣

∣

H0

]

= 2φ(−√
η) (12)

where φ(·) is the cumulative distribution function of the
normalized Gaussian distribution. For a given value ofb, the
power of the testPD(b) can be computed as follows

PD(b) = P

[

b̂2

s2
0

> η

∣

∣

∣

∣

H1

]

= P

[

b̂2

s2
0

> η

∣

∣

∣

∣

b �= 0

]

. (13)

Straightforward computations lead to

PD(b) = 1 + φ

(−s0
√

η − b

s1

)

− φ

(

s0
√

η − b

s1

)

. (14)

It can be observed that for a given value of the thresholdη,
the probability of detectionPD(b) is an increasing function
of |b|, which is an intuitive result. In order to apply the
detection strategy (11) and to compute the correspondingPFA
and PD(b), we need to know the parameterss0 ands1 whose
determination is the objective of the next section.

B. Unknown Parametersa and σ 2

The test (11) assumes known parametersa and σ 2 to
computes2

0 = s2(a, 0, σ 2). However, these parameters are
unknown in practical applications. To alleviate this problem,
we propose to approximate the variance ofb̂ underH0 by an
appropriate estimator̂s2

0 leading to

T̂ = b̂2

ŝ2
0

H1
≷
H0

η∗. (15)

More precisely, in order to build̂s2
0, we propose to use the

constrained CRLB ofθ = [aT , b, σ 2]T under hypothesisH0
(i.e., b = 0) as explained in the next section.

IV. CONSTRAINED CRAMÉR–RAO BOUND

This section studies the constrained Cramér–Rao lower
bound associated with any unbiased estimatorθ̂ of the para-
meter vectorθ involved in the PPNMM. Equation (2) shows
that y|a, b, σ 2 ∼ N

(

gb (Ma) , σ 2I L
)

. As a consequence, the
likelihood function ofy is defined as

f (y|a, b, σ 2)=
(

1

2πσ 2

)
L
2

exp

(

−‖y − gb (Ma) ‖2

2σ 2

)

. (16)



Fig. 1. MSEs of the MLE (blue crosses) for the nonlinearity parameterb
versusL compared with the CCRLBs (black lines).

Fig. 2. MSEs of the MLE (blue crosses) for the nonlinearity parameterb
versusσ2 compared with the CCRLBs (black lines).

The corresponding unconstrained CRLB for any unbiased
estimator ofθ constructed fromy is given by

CRLB(θ) = J−1
F (17)

where J F is the Fisher information matrix whose
elements are3

[ J F ] i, j = −Ey|θ

[

∂2 ln f (y|θ)

∂θi ∂θ j

]

i , j = 1, . . . , R + 2.

However, the positivity and sum-to-one constraints (3) are
not considered in this expression. Particularly, the sum-to-one
constraint in (3) enforces theR-dimensional abundance vector
a to belong to an(R−1)-dimensional subspace. This constraint
can be considered by computing a reduced-rank Fisher matrix
yielding a constrained Cramér–Rao lower bound (CCRLB).
The CCRLB principles have been introduced in [26] for
parameters satisfying equality and/or inequality constraints.
The constraints for the abundance vector in (3) can be

3The Fisher information matrixJ F is derived in Appendix.

Fig. 3. MSEs of the MLE (blue crosses) for the nonlinearity parameterb
and R = 3, 4, 5, 6 versusσ2 compared with the CCRLBs (black lines).

rewritten

uθ =
[

1T
R 0 0

]

⎡

⎣

a
b
σ 2

⎤

⎦ − 1 = cT
θ − 1 = 0 (18)

and

vθ =
[

−I R 0R 0R
]

⎡

⎣

a
b
σ 2

⎤

⎦ = Aθ � 0R (19)

where 1R is an R × 1 vector of ones,c = [1T
R, 0, 0]T is

an (R + 2) × 1 vector, A is an R × (R + 2) matrix, uθ is
the equality constraint,vθ is an R × 1 pure inequality vector
(see [26] for details) and� denotes the termwise inequality.
Since the set of admissibleθ is an (R + 1)-dimensional
subset ofRR+2, the CCRLB associated with the covariance
matrix of any constrained unbiased estimator ofθ is given
by [26]

CCRLB(θ) = Q J−1
F (20)

with

Q = I R+2 − J−1
F ∇uθ

{

∇uT
θ

J−1
F ∇uθ

}

∇uT
θ

where, from (18),∇uθ = c is the gradient ofuθ . It is
interesting to note that the CCRLB can be easily computed
since this matrix results from simple operations applied on
the unconstraint CRLBJ−1

F and the vectorc. Moreover, no
arbitrary reparametrization is needed. The CCRLB ofb is then
given by the(R+1)th diagonal element ofCCRLB(θ) denoted
as CCRLB(b; a, σ 2). An estimator of the variance of̂b under
hypothesisH0 is required to compute the test statistic (15).
We propose to estimates2

0 as follows

ŝ2
0 = CCRLB(0; â, σ̂ 2) (21)

whereâ and σ̂ 2 are the MLEs ofa andσ 2. The next sections
study the performance of the nonlinearity detector defined
by (15) for synthetic and real hyperspectral data.



Fig. 4. Histograms of̂b (black lines) and associated Gaussian distributions
(red lines) for the four mixturesM0 toM3.

V. SYNTHETIC DATA

A. Estimation

The statistical test proposed in (15) assumes the efficiency
and normality of the estimator̂b resulting from the unmixing
procedure. We first propose to show that the asymptotic
region in term of MLE efficiency is usually achieved in the
hyperspectral imagery context [i.e., for largeL and high signal
to-noise ratio (SNR)]. Four different mixtures are considered
to illustrate the estimator efficiency. These mixtures are com-
posed of R = 3 materials (i.e., green grass, olive green
paint and galvanized steel metal) whose endmember spectra,
composed ofL = 826 bands, have been extracted from the
spectral libraries provided with the ENVI software [27]. The
synthetic mixtures have been obtained using the following
parameters4

Mixture M0 : a = [0.3, 0.6, 0.1]T , b = 0, σ 2 = 3 × 10−3

Mixture M1 : a = [0.5, 0.1, 0.4]T , b = 0, σ 2 = 3 × 10−3

Mixture M2 : a = [0.3, 0.6, 0.1]T , b = 0.2, σ 2 = 3 × 10−3

Mixture M3 : a = [0.3, 0.6, 0.1]T , b = 0, σ 2 = 1 × 10−3.

The efficiency of the proposed unmixing algorithm is
evaluated by comparing the CCRLB presented in Section IV
with the mean square errors (MSEs)

MSE(b̂) = 1

N

N
∑

n=1

[

b̂(n) − b(n)
]2

, i = 1, . . . , R + 2 (22)

associated with the nonlinearity parameterb, whereN is the
number of pixels to be unmixed andb̂(n) is the estimated value
of the nth actual parameterb(n).

Fig. 1 compares the MSEs of the subgradient-based
estimator,5 estimated withN = 20000 noise realizations, with
the CCRLB versus the number of spectral bands (the number
of spectral bands has been adjusted by a regular subsampling

4Note thatM1,M2, andM3 have been obtained by changinga, b, and
σ2 inM0, respectively.

5Similar results have been obtained using the linearization-based estimator
and are reported in [28].

of the initial L = 826 bands). These results confirm the
efficiency of the MLE for these four mixtures since the
MSEs (crosses) are very close to the correspondingCCRLBs
(continuous lines). Similarly, Fig. 2 compares the MSEs of
the MLE (estimated withN = 20000 noise realizations and
L = 826) with theCCRLB versus the noise varianceσ 2 for the
mixed pixelsM0 toM2. These results show that the efficiency
property is valid for any value ofσ 2.

Fig. 3 compares the MSEs of the MLE (estimated with
N = 20000 noise realizations andL = 826) with the
CCRLB versus the noise varianceσ 2 for R = 3, 4, 5, 6. The
considered endmembers are the three materials presented
above and construction concrete, micaceous loam and bare
red brick. The synthetic mixtures have been obtained using
the following parameters

R = 3 : a = [0.3, 0.6, 0.1]T , b = 0.2

R = 4 : a = [0.2, 0.3, 0.3, 0.2]T , b = 0.1

R = 5 : a = [0.1, 0.15, 0.15, 0.2, 0.4]T, b = −0.2

R = 6 : a = [0.15, 0.20, 0.25, 0.1, 0.1, 0.2]T, b = −0.1.

These results show that the efficiency assumption of
Section III is valid for different values ofR.

The asymptotic normality for the MLE ofb is then
investigated by considering the distributions ofb̂ for the
four mixturesM0 to M3. The histograms of̂b estimated
from N = 20000 Monte Carlo runs are depicted in
Fig. 4. These results confirm that the distributions of the
subgradient-based algorithm can be approximated by a
Gaussian distribution whose mean is the actual parameterb
and whose variance is given by the CCRLB.

B. Detection Performance

The performance of the proposed nonlinearity detection
procedure can be measured by comparing the actual PFA
(given by (12)) with the empirical PFA defined as

Pemp
FA (η) = 1

N

N
∑

n=1

dn(η) (23)

with

dn(η) =
{

0, if Tn < η

1, if Tn > η
(24)

whereN is the number of noisy realizations of a given mixture
underH0, η is the theoretical test threshold,Tn is the value of
the test statistic for thenth noise realization anddn(·) is its cor-
responding decision (dn(·) = i means hypothesisHi has been
accepted withi ∈ {0, 1}). The actual PFA is also compared to
its approximation obtained by approximating the CCRLB

Papp
FA (η) = 1

N

N
∑

n=1

d̂n(η) (25)

where

d̂n(η) =
{

0, if T̂n < η

1, if T̂n > η.
(26)



(a) (b) (c)

Fig. 5. (a) Actual values ofb, and detection maps for (b)PFA = 0.01
and (c) PFA = 0.05, using the subgradient-based algorithm. Black pixels
correspond to pixels detected as linearly mixed. White pixels correspond to
pixels detected as nonlinearly mixed.

Fig. 5 comparesPFA, Pemp
FA and Pappr

FA as a function of
the thresholdη for N = 20000 noisy realizations of the
mixtureM0. These results first show that the theoretical and
empirical PFAs coincide. Moreover, the CCRLB approxima-
tion proposed for the final test does not modify the perfor-
mance in term of PFA.

Fig. 6 shows the test performance in term of receiver
operating characteristics (ROCs) [29, p. 74-75] for
a = [0.3, 0.6, 0.1]T and σ 2 = 3 × 10−3 (SNR =
L−1σ−2

∥

∥gb (a)
∥

∥

2 ≃ 15 dB). Four different values ofb
have been assumed under hypothesisH1, i.e., b = 5σ 2,
b = 10σ 2, b = 15σ 2 and b = 20σ 2. The theoretical ROCs
are compared with the empirical and approximated ROCs,
where the probabilities of detection are defined as

Pemp
D (η) = 1

N

N
∑

n=1

dn(η) (27)

and

Papp
D (η∗) = 1

N

N
∑

n=1

d̂n(η) (28)

and where the data have been generated according to hypothe-
sis H1. These results show that the proposed test provides simi-
lar performance when compared to the original likelihood ratio
test (assuming the actual parametersa, b andσ 2 are known).

The performance of the proposed nonlinearity detector
is also investigated by testing independently each pixel of
a 100 × 100 synthetic image generated according to the
PPNMM. The abundance vectorsan, n = 1, . . . , 10000, have
been randomly drawn from a uniform distribution in the
simplex defined by the positivity and sum-to-one constraints.
All pixels have been corrupted by an additive Gaussian noise
of varianceσ 2 = 3 × 10−3, corresponding to SNR≃15 dB.
The nonlinearity parameters have been chosen in the set
{5σ 2, 10σ 2, 20σ 2, 30σ 2}, defining four different nonlinearity
levels. Fig. 5 presents the actual nonlinearity parameters and
the detection maps using the subgradient-based estimation
procedure forPFA = 0.01 and PFA = 0.05. The white
(resp. black) pixels are detected as nonlinearly (resp. linearly)
distributed pixels. Note that similar results would be obtained
when using the Taylor-based estimation procedure (see [28]
for details).

The capacity of the PPNMM to detect various nonlinearities
is then investigated by unmixing a 100× 100 synthetic image
generated according to four different mixing models. The
R = 3 end members contained in this image have been

(a) (b)

Fig. 6. (a) Actual location of the four sub-imagesS1 (LMM), S2 (FM),
S3 (GBM), and S4 (PPNMM). (b) Associated detection map using the
subgradient-based algorithm. Black pixels correspond to pixels detected as
linearly mixed. White pixels correspond to pixels detected as nonlinearly
mixed.

extracted from the spectral libraries provided with the ENVI
software [27] (i.e., green grass, olive green paint and
galvanized steel metal). The considered image is divided into
four 50× 50 sub-images as follows. The first synthetic sub-
imageS1 has been generated using the standard linear mixing
model (LMM). A second sub-imageS2 has been generated
according to the bilinear mixingmodel introduced in [10],
referred to as “Fan model” (FM). A third sub-imageS3
has been generated according to the generalized bilinear
mixing model (GBM) recently introduced in [11], [30],
whereas a fourth sub-imageS4 has been generated according
to the proposed PPNMM. For each sub-image, the abundance
uniform distribution in the admissible set defined by the pos-
itivity and sum-to-one constraints. All sub-images have been
corrupted by an additive white Gaussian noise corresponding
to SNR= 15 dB. The nonlinearity coefficients are uniformly
drawn in the set(0, 1) for the GBM and the parameterb
has been generated uniformly in the set(−0.3, 0.3) for the
PPNMM. Fig. 6 shows the detection maps obtained with the
GLRT for PFA = 0.05. From this figure, it can be seen that
the location of the nonlinear mixtures on the detection maps
is straightforward. Note that for the GBM and the PPNMM,
mixed pixels can be close to the simplex corresponding to
the noise-free LMM and can be detected as linearly dis-
tributed pixels. Conversely, for the FM, only almost pure
pixels are close to that simplex, leading to a larger number
of pixels detected as nonlinear. This remark is illustrated
in Fig. 7 which shows the location of the pixels detected
as nonlinear in the 3-dimensional subspace spanned by the
three dominant axes resulting from a principal component
analysis.

VI. A NALYSIS OF REAL DATA

The performance of the proposed nonlinearity detector has
been evaluated on a real hyperspectral image composed of
L = 189 spectral bands. The selected scene has been extracted
from the AVIRIS Cuprite image, acquired over a mining site in
Nevada, in 1997. The geologic characteristics of the complete
data have been described in [31]. The area of interest of size
190× 250 is represented in Fig. 8 and has been previously
studied in [21] to test the VCA algorithm withR = 14



Fig. 7. Pixels detected as linear (red crosses) and nonlinear (blue dotted)
for the four subimagesS1 (LMM), S2 (FM), S3 (GBM), and S4 (PPNMM).
Black lines depict the simplex corresponding to the noise-free case LMM.

Fig. 8. AVIRIS image of 190× 250 pixels extracted from Cuprite scene
observed in composite natural colors.

endmembers. Therefore, in this experiment, the same number
of endmembers has been extracted by VCA.

The subgradient-based estimator has been used to estimate
the parameters of the PPNMM related to the analyzed image,
i.e., the abundance vectors, the nonlinearity parameters and
the noise variances associated with all image pixels6. Fig. 9
shows the abundance maps corresponding to theR = 14 com-
ponents. The proportions of pure materials obtained with the
PPNMM are in good agreement with those obtained with the
LMM. However, the PPNMM has the advantage of providing
additional information regarding the linearity or nonlinearity of
endmember mixtures via the nonlinearity parameterb. Fig. 10
shows the estimated nonlinearity parameter map. Examples of
decision maps associated with the subgradient-based estimator
are also depicted in this figure. These decision maps have been
obtained by applying the test (15) for all pixels of the image
for two PFAs. Fig. 10 highlights some structures, e.g., the

6Similar results have been obtained using the linearization-based method. In
the sequel of the paper, they are omitted for brevity but are reported in [28].

road is clearly identified at the top right corner, especially for
PFA = 10−2. A spread nonlinear area is also detected (at the
bottom left corner of the image). It can be noted from the
classification map of [32] thatthis area is mainly composed of
several kinds of Kaolinite. The proposed nonlinearity detector
shows that nonlinear effects occur between the different kinds
of Kaolinite in this area.

VII. C ONCLUSION

A nonlinearity detector was presented for hyperspectral
image analysis. This detector decided if a pixel of a
hyperspectral image is a linear combination of endmembers
or results from a general nonlinear mixture. It assumed that
the hyperspectral image pixels are related to the endmembers
by a polynomial post-nonlinear mixing model generalizing
the widely used linear mixing model. A subgradient-based
algorithm was used to estimate the model parameters.
Constrained Cramér–Rao lower bounds were also derived for
the PPNMM parameters. These bounds provide a reference
in term of estimation variance for estimators satisfying the
positivity and sum-to-one constraints of the abundances.
The bound for the nonlinearity parameter was also used
to approximate the variance of the nonlinearity detector
investigated in this paper. Results obtained on synthetic and
real images illustrated the accuracy of the polynomial post-
nonlinear model for detectingnonlinearities in hyperspectral
images.

It is interesting to note that the proposed nonlinearity detec-
tion strategy assumed fixed endmembers for all the pixels of
the observed image. Accounting for the endmember variability
is a problem that have recently received some attention in
[3], [33], [34] and that might be considered for the proposed
nonlinearity detector. This problem will be tackled in future
works. The consideration of spatial correlation between pixels
of the hyperspectral image to improve unmixing and detection
results is also an interesting prospect.

APPENDIX

FISHER INFORMATION MATRIX

The likelihood function ofy can be expressed as

f (y|a, b, σ 2) =
(

1

2πσ 2

)
L
2

exp

(

−‖y − gb (Ma) ‖2

2σ 2

)

where gb (Ma) = Ma + b(Ma) ⊙ (Ma) is the estimated
spectrum ofy. The corresponding log-likelihoodl can be
written

l = ln f (y|a, b, σ 2) = − L

2
ln(2πσ 2) − ‖y − gb (Ma) ‖2

2σ 2 .

The partial derivatives ofl with respect to the model
parameters are
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= 1

2σ 2

[
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]T ∂ gb (Ma)

∂ar
∂l

∂b
= 1
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]T ∂ gb (Ma)

∂b
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σ 2 = − L

2σ 2 + ‖y − gb (Ma) ‖2

2σ 4 .



Fig. 9. Fourteen abundance maps estimated withthe subgradient algorithm for the Cuprite scene.

(a) (b) (c)

Fig. 10. (a) Map ofb̂ for the Cuprite scene. Associated detection map for (b)PFA = 10−2 and (c) for PFA = 10−6. Black pixels correspond to pixels
detected as linearly mixed. White pixels correspond to pixels detected as nonlinearly mixed.

Straightforward computations lead to
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It can be easily shown that
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