
HAL Id: hal-00786043
https://hal.science/hal-00786043

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum Reliability K-Hop Multicast Strategy in Tree
Networks

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Maximum Reliability K-Hop Multicast Strategy in Tree Net-
works. 12th IEEE International Symposium on Consumer Electronics (ISCE), Apr 2008, Vilamoura,
Portugal. pp.169-172, �10.1109/ISCE.2008.4559464�. �hal-00786043�

https://hal.science/hal-00786043
https://hal.archives-ouvertes.fr


© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works. 

MAXIMUM RELIABILITY K-HOP MULTICAST STRATEGY IN TREE NETWORKS 

 

Mugurel Ionut Andreica, Nicolae Tapus 

 

Polytechnic University of Bucharest, Computer Science Department, Bucharest, Romania 
 

ABSTRACT 

 

In this paper we consider directed tree networks, for which the reliability of each edge (a real number between 0 and 1) is 

known. For these networks, we investigate the problem of finding a k-hop multicast strategy of maximum reliability. This 

problem is equivalent to the k-station placement problem, which was previously solved in polynomial time for trees. We 

present here O(k∙n
2
) and O(k∙n

3
) dynamic programming algorithms for the problem, which improve upon the previous best 

known solution, which is O(k∙n
2
∙log(n)) and rather complicated to implement. We then extend the algorithms to general 

directed graphs and also present some new algorithms for this case. 

 

Index Terms— maximum reliability, k-hop multicasting, k-station placement problem, tree network, reliable multicast. 

 

1. INTRODUCTION 

 

The reliability of network nodes and links is an important aspect which needs to be considered when developing fault-tolerant 

distributed algorithms. Usually, the reliability is only a statistical measure, representing the probability that the network 

node/link will not fail. In this paper, we consider the reliability of network links in a tree network, in the context of developing 

a multicast content distribution strategy with the highest reliability, subject to restrictions regarding the number of 

intermediate hops. We then consider general directed graphs and see how the results obtained for tree networks can be 

extended to this case. In the end of the paper we choose a slightly different reliability metric and present some exact 

algorithms for that case. 

The paper is structured as follows. In Section 2 we define the problem of finding an optimal k-hop multicast strategy. In 

Sections 3 and 4 we present two algorithms for the problem. In Section 5 we extend the algorithms to general directed graphs 

and in Section 6 we consider a max-min reliability metric. Finally, in Section 7 we present related work and in Section 8 we 

conclude. 

 

2. MAXIMUM RELIABILITY K-HOP MULTICAST 

 

We are given a directed tree T with n nodes, in which the root of the tree wants to distribute some content to a set of 

destinations, which are the leaves of the tree. In order to send the content from a node u to a node v located in the subtree of u, 

the node u establishes a direct connection to node v and sends a message with the content on that connection. The 

transmission lasts for a fixed amount of time (one time unit). A node may establish any number of simultaneous connections 

to the nodes in its subtree. 

Each directed edge (u,v) of the tree (oriented from u to v) has an associated reliability ru,v. The reliability of transmitting a 

message on a direct connection from u to v is equal to the product of the reliabilities of the edges on the path from u to v. The 

reliability of the content distribution strategy is the product of the reliabilities of all the message transmissions performed. We 

are interested in finding a multicast strategy having the maximum reliability, subject to the constraint that it should not last for 

more than k time units. It is obvious that the root of the tree can send the content to every leaf during a single time unit, but 

the reliability of this strategy is 


Tvu

vleavesnr

r vu
),(

)(_

,
 

where nr_leaves(v) is the number of leaves located in the subtree rooted at v. 

By using intermediate nodes, the reliability of the strategy can be improved. We will now define the k-hop multicasting 

problem. We will build k+1 sets of nodes: S0, S1,...,Sk. The root is the only node in S0. In the first time unit, the root sends a 

message to a subset of nodes S1; every leaf is either in S1 or is a descendant of exactly one node X in S1. During the i
th

 time 

unit (2≤i≤k-1), each node X in Si-1 which is not a leaf, sends a message to a subset Si,X of nodes from its subtree, such that 
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each leaf which is a descendant of X either belongs to Si,X or is also a descendant of exactly one node in Si,X. The set of nodes 

Si is the union of the sets Si,X, for each X in Si-1. During the k
th

 time unit, each node X in Sk-1 which is not a leaf must send a 

message to each leaf node which is a descendant of X (the leaves receiving the message in the k
th

 time unit form the set Sk). 

The nodes belonging to the union of the sets Si are called intermediate nodes. Every intermediate node (except the root) 

receives the content from exactly one other intermediate node. Obviously, there can be many multicast strategies and we are 

interested in the one with the maximum reliability. 

By replacing the reliability of each edge (u,v) by cost(u,v)=-log(ru,v), the requirement to maximize the reliability becomes 

equivalent to minimizing the total cost of message transmissions, where the cost of sending a message is equal to the sum of 

the costs of the edges composing the connection along which the message is sent. 

 

3. A DYNAMIC PROGRAMMING SOLUTION 

 

First, we will transform the directed tree into a binary directed tree. This transformation is quite standard. For each node i 

having q>2 sons s1,s2,...,sq, we keep his first son s1 and insert an extra node x as his second son. We make s2,..., sq the sons of 

x and then recursively repeat the procedure for the node x and for the son s1. The edge between i and x will have cost 0 (or, 

equivalently, reliability 1). 

With this modified tree, we will compute the following values in a bottom-up fashion: C(i,j,p) = the minimum cost of 

distributing the content to all the leaves in the subtree of node i, using at most j (0≤j≤k) time units and considering only the 

edges in i's subtree when computing the cost and: 

 if 1<p≤n, then i is on the paths between an intermediate node x located above i and p intermediate nodes located below i 

to which x sends messages directly. 

 if p=1, then either i is an intermediate node or i is on the path between an intermediate node x located above it and the 

only intermediate node y located below i to which x sends a message directly. 

For all nodes i, we define C(i,-1,p)=+∞. If i is a leaf, then for all 0≤j≤k we have C(i,j,1)=0 and C(i,j,p)=+∞ (for 1<p≤n). 

If i is not a leaf, then it has either one or two sons. If it has only one son s, we have the following equations: 
np1 p),j,C(s,s)p·cost(i,p)j,C(i,   




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The first case is straightforward: i is not an intermediate node, therefore it lies on the paths between p intermediate nodes 

below it and another intermediate node above it. Therefore, i will have to forward p messages to the p intermediate nodes on 

the edge (i,s). In the second case, either i is an intermediate node and consumes one time unit and the number of intermediate 

nodes to which i sends a message directly can be any number p1, or i is not an intermediate node, and we find the same 

situation as before. 

If i has two sons s1 and s2, we have the equations: 














 p1)}pj,C(s2,s2)cost(i,p1)(p

p1)j,C(s1,s1)cost(i,p1
minp)j,C(i,

pp11np1 













 p2)}1,jC(s2,s2)cost(i,p2

p1)1,jC(s1,s1)cost(i,p1
minj,1)C(i,

np2p1
 p2,1 p1,1

 

In the first case, i is not an intermediate node, and all the p messages coming from the intermediate node closest to i and 

above it will be forwarded to the p intermediate nodes below it. Out of these, p1 intermediate nodes are located in s1's subtree 

and p-p1 are located in s2's subtree. In the second case, i is an intermediate node and consumes one time unit and there are p1 

intermediate nodes located in s1's subtree and p2 in s2's subtree, to which i will send the message directly. If i is an extra node 

inserted during the tree transformation, then i has two sons, but cannot act as an intermediate node, so C(i,j,1) will be +∞ for 

all values of j. 

If i is the root of the tree and has only one son s, then the only entry defined is: 

p1)}1,kC(s,s)cost(root,{p1mink,1)C(root,
np11




 

If the root has two sons s1 and s2, then the only entry defined is C(root,k,1). This entry represents the minimum cost of the 

k-hop multicast strategy. In order to actually find the strategy, we can trace the way the C(i,j,p) values were computed and for 

each intermediate node we can find out to which other intermediate nodes it sends messages directly. 

Let's analyze the time complexity of the algorithm. The most complex case is when a node i has two sons. For each 0≤j≤k 

and 1<p≤nr_leaves(i), C(i,j,p) can be computed in O(n) time. For each j and p=1, C(i,j,1) can be computed in O(n
2
) time. The 

time complexity for a node i with two sons is O(k·n
2
) and the overall time complexity is O(k∙n

3
). 
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4. AN IMPROVED SOLUTION 

 

We will present now a dynamic programming solution with a better time complexity. First, we assign a label from 1 to M to 

each leaf of the tree, where M is the total number of leaves. The j
th

 leaf visited by a depth-first traversal of the tree (starting 

from the root) receives the label j. It is obvious that the labels of the leaves located in the subtree of a node i (including node i 

itself) form an interval of consecutive values, denoted by [lmin(i), lmax(i)]. This interval can be computed in O(n) time for all 

the nodes, with a simple bottom-up traversal. We will also compute in O(n
2
) time the values dist(i,j)=the sum of the costs of 

the edges on the directed path from i to j. We will now compute the values C(i,j,p)=the minimum cost for distributing the 

content to the first p leaves in node i’s subtree (denoted by STi), using at most j time units, with i being an intermediate node. 

The first p leaves are the leaves labeled lmin(i), …, lmin(i)+p-1. If i is a leaf with label q, then C(i,j,1)=0 for all the values of j 

and lmin(i)=lmax(i)=q. If i is not a leaf, then we have: 
  i) nr_leaves(p1 ,p)C(i,0, ;k j0 0,j,0)C(i,   
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The last equation considers the following case: node i sends a message to a node x in STi with lmax(x) equal to the label 

of the p
th

 leaf in STi, letting x take care of sending the content further to all the leaves in STx, using at most j-1 time units; 

node i takes care of the lmin(x)-lmin(i) remaining leaves (with labels in [lmin(i), lmin(x)-1]), using at most j time units. Each 

of the O(n) nodes x in STi must only be considered for only one of the O(n) values of p, equal to lmax(x)-lmin(i)+1. Thus, as 

a preprocessing step, for each node i, we will compute in O(n) time an array of lists L(i), where L(i,p) is a list containing all 

the nodes x in STi with lmax(x)=lmin(i)+p-1. When computing C(i,j,p), only the nodes x in L(i,p) will be considered. This 

way, we can compute the values C(i,j,p) in O(n) time for a given pair (i,j) and all the values of p (and in O(1) amortized time 

for each tuple (i,j,p), if we also do not add to L(i,p) any node x in STi with exactly one son). The time complexity of the 

algorithm is O(k·n
2
) and the minimum cost is C(root,k,M). 

 

5. EXTENSIONS TO GENERAL DIRECTED GRAPHS 

 

We will now consider the situation in which a general directed graph G with n nodes is given, where each directed edge 

(u,v) has an associated reliability ru,v. We may consider that the given graph is complete - if some edges (u,v) should not be 

used, we can set ru,v=0. A source node src needs to send some important content to a subset D of nodes (called destinations), 

using a k-hop multicast strategy. In this case, we need to find a directed tree rooted at the node src, where all the leaves 

belong to the set D and all the nodes in D belong to the tree, for which a k-hop multicast strategy with maximum reliability 

can be developed. If the tree is known, we can use one of the algorithms presented before, with some slight adjustments: if a 

node i which is not a leaf belongs to the set D, then we will insert a leaf node i’, whose parent will be the node i. The directed 

edge (i,i’) will have cost 0. Afterwards, we remove the node i from D and insert the leaf node i’ in D in its place. This way, all 

the nodes in D will be leaves in the multicast tree. 

Finding the multicast tree with the minimum cost strategy (with the costs defined like in the previous case) is NP-hard, as 

it is a variation of the well-known Steiner tree problem. We will now present an exact exponential time algorithm for finding 

the maximum reliability k-hop multicast strategy in general directed graphs, based on the second algorithm presented for 

directed tree networks. We will compute in O(n
3
) time all the values dist(i,j)=the minimum sum of the edge costs of a directed 

path in G between the pair of nodes (i,j). Afterwards, we will compute the values: C(i,j,S)=the minimum cost of distributing 

the content to all the nodes in S, starting from node i and using at most j time units. S is a subset of nodes from D. We have: 

kj0 0,D){i}j,C(i,  ; D{i}S,S)C(i,0,   

W)}\Sj,C(i,W)1,jC(x,x){dist(i,minS)j,C(i,

nx1
W

{i})\(SW








 

The algorithm is similar to the one for directed trees, except for the parameter describing the subset of nodes. For each 

pair (i,j), we have 2
|D|

 subsets S. For each subset S, we need to consider all the subsets W which are included in S. There are 
q

DC ||
subsets S with q nodes and for each of them, there are 2

q
 subsets W. Overall, we have: 





||

0

||

|| 32
D

q

Dqq

DC . 

The time complexity is O(k·n
2
·3

|D|
). The algorithm can be implemented by considering the sets S in ascending order of 

their cardinality. The multicast tree and the multicast strategy can be obtained from the values C(i,j,S) (or by storing 

additional information about the way the values were computed), starting from C(src, k, D). The first algorithm for directed 

trees can also be extended to directed graphs, with a time complexity of O(k·n
3
·3

|D|
). 
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6. A MAX-MIN RELIABILITY METRIC 

 

In this section we study a different problem, in which a directed graph G is given, where each directed edge (u,v) has an 

associated reliability ru,v, duration du,v and transmission processing time tpu,v. Moreover, a source node src and a set of 

destinations D are given. The source node needs to send a piece of content to all the nodes in D, under the following 

conditions: 

 the time after which every node in D receives the content is at most K 

 the minimum reliability of an edge traversed by a message must be maximized 

A node u can send a message directly to a node v only if the directed edge (u,v) exists in G. If the message is sent at time 

t, the node v receives the message at time t+du,v. Then, node u can send the next message at time t+tpu,v.  

Our solution is based on binary searching the minimum reliability R of an edge traversed by a message. Then, all the 

edges (u,v) with reliability ru,v<R are discarded from the graph, obtaining a new graph G’. The feasibility test consists of 

determining the minimum time multicast strategy in G’ and verifying if the minimum time is at most K; if it is, then a larger 

value of R is tested; otherwise, we will test a smaller value. When all the values tpu,v are 0, the minimum time multicast 

strategy is obtained using the well-known pruned Dijkstra method [7] with the durations du,v in G’. 

We will now present an algorithm based on a technique similar to the one in the previous section. We compute 

Tmin(i,S)=the minimum duration of distributing the content to all the nodes in SD , starting from the node i; S is the set of 

nodes in node i’s subtree (including i). We have: 

0{i})Tmin(i,  ;  DS if 0,S)Tmin(i,   

}

otherwise W),\STmin(i,tp

DW)\(S if 0,
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xi,

xi,
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W
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Tmin(src, {1,2,…,n}) is the minimum multicast duration. The time complexity of the algorithm is O(n
2
·3

n
). 

We will now consider a special case, which occurs frequently: du,v=tpu,v=1 and |D| is bounded by a constant C. The values 

of du,v and tpu,v suggest that during every time unit, a node may either send a message or receive a message (but not both). For 

this case, we present an O(C·n
2·C

) polynomial time algorithm for determining the minimum time multicast strategy. We denote 

the C vertices in D by d1, d2, …, dC. We will compute a table Tmin, where each entry is a tuple of C nodes. 

Tmin[(v1,v2,…,vC)] represents the minimum amount of time after which the message destined to each node di reached the 

node vi. Initially, we have Tmin[(src,…,src)]=0 and all the other entries are uninitialized (denoted by a special value Ω). The 

algorithm uses a queue of states Q and considers transitions from a state S1 to another state S2: a transition lasts for one time 

unit and every node ui in S1 sends the message to the receiving node vi in S2 (if vi≠ui) or does not send anything (vi=ui); (ui,vi) 

is called a transition pair. 

Q={(src,…,src)} 

while (Q≠empty) 

  (u1, …, uC)=Q.head_element(); Q.remove_head() 

  for each state (v1,…,vC) such that Tmin[(v1,…,vC)]= Ω do 

    if ( i.((ui≠vi) and ((ui,vi)G’)) then continue 

    transition_ok=true // transition from (u1,..,uC) to (v1,..,vC) 

    for each x in {u1,…,uC,v1,…,vC} do 

      sndx=cardinality({(ui,vi)|1≤i≤C and (ui=x) and (vi≠x)}) 

      rcvx=cardinality({(ui,vi)|1≤i≤C and (vi=x) and (ui≠x)}) 

      if (sndx+rcvx >1) then transition_ok = false 

    if (transition_ok = true) then 

      Tmin[(v1,…,vC)]=Tmin[(u1,…,uC)]+1 

      Q.add_to_tail((v1,…,vC)) 

Tmin[(d1,…,dC)] contains the minimum time after which all the destinations receive the message from the source node. 

The multicast strategy can be computed from the values stored in the table Tmin. This table contains n
C
 states and for each 

state, O(n
C
) transitions to other states are considered, with O(C) time spent per transition. The time complexity is O(C·n

2·C
). 

The algorithm can be extended to handle other communication constraints, like the following ones: during every time unit, a 

node u may process at most Os,u send operations, at most Or,u receive operations and at most Os+r,u operations overall 

(send+receive). In this case, we only need to count the number of operations of each type performed by a node during a 

transition from one state to another and invalidate the transition if the numbers are too large. The algorithm can also be 
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extended to the case when the source wants to send a different message to each destination. In this case, two transition pairs 

(ui,vi) and (uj,vj) with ui=uj, vi=vj, ui≠vi and i≠j must be considered distinct, because the two message transmissions between ui 

and vi correspond to two different messages. 

 

7. RELATED WORK 

 

Reliable multicast strategies and reliable multicast trees have been the object of many research papers, like [1,2,3]. The k-

station placement (k-SP) problem (equivalent to the k-hop multicasting problem) was investigated in [4] and was solved in 

polynomial time for directed trees, with a time complexity of O(k∙n∙M(n)), where M(n) is the fastest min-cut algorithm on a 

graph with n vertices and O(n) edges. M(n) is O(n∙log(n)) [5] and the time complexity of the algorithm in [4] is O(k∙n
2
∙log(n)), 

but the implementation is cumbersome. We are not aware of any other results on the k-SP problem. Finding optimal multicast 

trees and strategies in directed graphs is related to the well-known Steiner tree problem, for which many types of algorithms 

were developed [6,7]. 

 

8. CONCLUSIONS 

 

In this paper we presented two algorithms for computing the maximum reliability k-hop multicast strategy in directed tree 

networks, which is equivalent to the k-SP problem. The algorithms are either faster or easier to implement than the previous 

best known solution. They are interesting for computing optimal multicast strategies which can either be implemented directly 

or can be used in the performance evaluation of other multicast techniques. We also extended the algorithms to general 

directed graphs, but the time complexity became exponential. In the end, we presented exponential and polynomial time 

algorithms for a max-min multicast reliability metric and a different transmission model (without any long-distance 

connections). 
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