
HAL Id: hal-00786040
https://hal.science/hal-00786040v1

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LUX Color Transform for Mosaic Image Rendering
Franck Luthon, Brice Beaumesnil, Nicolas Dubois

To cite this version:
Franck Luthon, Brice Beaumesnil, Nicolas Dubois. LUX Color Transform for Mosaic Image Rendering.
17th IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2010),
May 2010, Cluj-Napoca, Romania. pp.93-98. �hal-00786040�

https://hal.science/hal-00786040v1
https://hal.archives-ouvertes.fr

LUX Color Transform for Mosaic Image Rendering
Franck Luthon, Senior Member, IEEE, Brice Beaumesnil, and Nicolas Dubois

University of Pau and Adour, Anglet, France

Computer Science Department, Email: Franck.Luthon@univ-pau.fr

Abstract— In this paper, we present an image mosaic ap-
plication and investigate the color rendering performances
obtained with various color spaces, among which the non-
linear LUX transform, that is based on a logarithmic im-
age processing model and on biological evidence about the
retina processing within the human visual system. We fo-
cus on the color matching step for automatic forming of the
mosaic image (without any user interaction nor color correc-
tion post-processing). We derive a semi-normalized version
of the LUX transform, and test its benefits for the mosaic
color rendering. The LUX nonlinear color space exhibits
a nice behavior of adaptation to light context (logarithmic
compression), which is in agreement with the biological pro-
cessing made by the cones in the eye retina. We compare its
behavior for color discrimination and color adaptation with
other models proposed in the literature. We show qualita-
tive and quantitative results that demonstrate the improve-
ment achieved by the LUX transform (in terms of color con-
trast and peak signal to noise ratio PSNR) for building the
mosaic.

Keywords— Mosaic, Color Space, LUX, Color Distance,
Logarithmic Hue, Color Matching.

I. Introduction

The principle of image mosaic is the following [1], [2]:
given an input image (target) and an input video, an out-
put image is built, that is a mosaic mapping looking like the
original image. But instead of being made of a lot of little
patches with uniform color as is usual for ordinary mosaics,
the mosaic is made of a lot of little frames properly chosen
from the input video in order to get a color rendering as
close as possible to the target image. A typical result is
shown in Fig. 1. From a certain distance, one sees the orig-
inal image, but with a closer look, one sees snap-shots of
the film. This technique exploits layered imagery, which is

Fig. 1. Photomosaic made of frames from the French movie “Les
Visiteurs”

inspired both by human portraits of 16th century painter
Guiseppe Arcimboldo, and by paintings of the impression-
ist mouvement (small brush strokes of various colors). Im-

age mosaics might be used for commercial or artistic pur-
pose : posters, advertisement for new movies, cover pages,
graphical art, postcards, personal pictures, etc. The key-
point in creating image mosaics lies in the matching step
for choosing the best video frame to render appropriately
the local pixel color of the target image. Indeed it impacts
both computation cost and aesthetical effect [3]. Therefore,
the choice of a proper color space is important: this is the
first contribution of this paper. Moreover, the computa-
tion time of the color matching algorithm should be short,
in order to have a fast enough creation procedure, which
is the second contribution of this paper. Other issues, not
dealt here, but addressed by researchers in the literature
are the use of tiles with varying size and orientation (irreg-
ular dense tiling) in order to preserve also edge information
[4], tiles and container of arbitrary shapes to make jigsaw
image mosaics [5], or creation of video mosaics where not
only color spatial coherence but also temporal coherence
must be maintained [6].

The paper is organized as follows: in section II, we ex-
plain the principle of mosaic building, based on the opti-
mization of a color matching algorithm. Section III de-
scribes the LUX transform used for color processing. Fi-
nally, section IV gives the computation cost and exhibits
comparative results before the conclusion in section V.

II. Mosaic Processing

A. Principle of Mosaic Creation

The first step is to resize the original image, to cut it
into pieces of equal size proportional to the input video
format, and to store them as a matrix of subimages (top
left in Fig. 2). Then, for each subimage, one looks in the
video for the frame that is closest in terms of color resem-
blance. For that purpose, a color distance between two
images must be computed in a well chosen color space (see
sections II-D and II-E). Thus, the mosaic program manip-
ulates three objects: the set of initial subimages that do
not change (input subimages); the set of resulting mosaic
little frames taken from the video (initialized in black); a
2D table storing the current computed distances between
initial subimages and resulting mosaic little frames (this
table is initialized with a value corresponding to the max-
imum possible distance, e.g. dmax = 200 in the example
shown in Fig. 2). The algorithm is made of two processing
loops for computing the distance for each image pair (input
subimage and video frame). One loop scans the frames in
the film and the other one scans the matrix of input subim-
ages. For a given pair, if the distance is lower than the one
currently stored in the 2D table, then the mosaic is up-

978-1-4244-6723-5/10/$26.00 ©2010 IEEE AQTR 2010

2

Fig. 2. Principle of image mosaicing: target image is cut into subim-
ages (or tiles) that are replaced by selected frames from a video.

dated with the current video frame and the new distance
value is stored in the 2D table.

B. Optimization: Video Frame Discarding

To get a faster rendering, two solutions may be adopted:
either to simplify as much as possible the algorithm in the
main loop (mainly optimization of the resizing, of color
format conversion and of distance computation) and/or to
decrease the number of iterations. As regards the itera-
tion number reduction, certain frames of the video should
be discarded without any further computation. Throwing
away every two image would be very simple but not very
clever nor efficient. The question is then how to estimate
in advance the current frame potential quality. By quality,
we mean a good adequacy (i.e. color likeness) with one of
the subimages in the input image. To answer this question,
we start from the following fact: movies are often made of
a succession of sequences (e.g. a man that is speaking) se-
pareted by sharp cuts (change of camera, change of scene,
etc). Within each sequence, video frames are very similar
(without speaking of the temporal redundancy from the
quantitative viewpoint of information theory). We may
therefore assume that if the first frame of a sequence is
“very bad” in some sense, the following frames will be bad
also, and this until the end of that sequence. Then two
problems arise: how to detect a change of sequence or cut
(i.e. how to know the length of a sequence) and what is a
“very bad” frame ?
• Length of a sequence: since our mosaic application does
not decode by itself the movie (it uses OpenCV instead),
one can not use the key-frames of the codec. A solution
is then to estimate the sequence length: since a sequence
lasts rarely less than half a second, and in order not to
discard potentially interesting frames, we adopt the follow-
ing simple scheme: we reject without any computation all
batches of 13 video frames that immediately follow every
“very bad” frame encountered during the processing.
• Bad frame: What do we mean by very bad frame and
why ? If a frame is simply bad (but not very bad) and the

sequence gets better (as regards color likeness of course),
the following frames may become “good”. A good frame
is a frame of the video that may be selected by the algo-
rithm for taking place inside the final mosaic image, i.e. its
distance to one of the original subimages is lower than the
corresponding distance currently stored in the 2D lookup
table (L.U.T). Conversely, a bad frame is a frame that has
all its distances to all input subimages greater than the
ones currently stored in the L.U.T. Hence a very bad frame
has all its distances much bigger than the ones in the LUT.
Stated in other words, a very bad frame is a frame for which
all the differences between its distances to the input subim-
ages and the distances currently stored in the 2D-table are
greater than a certain threshold. The threshold θ is chosen
proportional to the subimage dimensions: θ = k × L × C.
Here we simply take k = 1.

C. Unicity of Frame Placing

The algorithm described so far works, but it does not
avoid trivial solutions that consist in using many times the
same video frame inside the mosaic. This would lead to uni-
form areas with little variations, built with the same little
images, which is not very interesting for a nice color ren-
dering in the application. Therefore we introduce a unicity
constraint: a frame from the input video should occur only
once in the final mosaic. This constraint is not so easy to
take into account: when a frame may suit at various places
in the mosaic, one must choose which place will actually
get it.
• First Found Placing: This technique consists in exiting
the comparison loop as soon as the video frame has found
a place in the mosaic. Its main advantage is to be very
fast. It even speeds up the algorithm. But the results are
poor since the first encountered frames are favoured: no
qualitative criterion is taken into account.
• Best Distance Placing: This method is the more intu-
itive one: the comparison loop looks for the position inside
the mosaic that gives the best distance. The computing
complexity is the same as for the initial algorithm (it is ac-
tually faster since there is only one single copy of a frame in
the mosaic, whereas in the first algorithm, the same frame
could be copied many times in the mosaic). In the cur-
rent implementation, it is even better since we use memory
swapping (no recopy is done). Nevertheless, the drawback
of this technique is that it searches for the best possible
local quality at the expense of the image global quality.

• Most Urgent Placing: Here, one tries to maximize the im-
provement instead of the quality. Improvement is defined
as the difference between the old and the new distance. For
instance, with our sample image (Fig. 2), the improvement
for the first subimage block is ∆ = 200− 156 = 44. Since
only one single subimage is changed at a time, the global
improvement is equal to the local improvement on that im-
age. Compared to the previous case, the algorithm is only
slightly changed: instead of looking for the place yielding
the best distance, one looks for the place giving the best
improvement. In addition to yielding better results than
the previous one, this method also guarantees that all input

AQTR 2010

3

subimages will be assigned one frame of the video, which
was not sure with all previous techniques.
• Most Urgent Placing with Stack: However, all the previ-
ous techniques are not optimal in the sense that there is no
guarantee that for a given video frame, the best possible
place inside the mosaic will be found. Indeed, there may be
alternative placings for this frame. Therefore, if this video
frame turns out to be removed and replaced by a better one
in the running of the selection process, it may well be that
this frame, instead of being suppressed, could be placed
somewhere else while increasing the improvement. To han-
dle this situation during the placing search, one can mem-
orize with each frame the list of all its alternative positions
(candidate places) and their respective computed distances.
Then, when a previous frame has just been replaced, one
scans its candidate-list (or stack) to check if there were
not another position for this frame, that would improve
the quality. If there are more than one possible position,
the most urgent placing procedure is applied. The image
is then replaced and this algorithm must be run again, re-
cursively. This technique avoids losing frames that could
advantageously be placed elsewhere. But it can be very
slow since the position-list (size of the stack) may be huge.
In order to avoid this bottleneck, the size of the stack is
limited and only the best distances are stored in the stack.

D. Color Distance

The problem to address is: how to compute the proper
color distance between two subimages ? In the literature,
there exist many algorithms for measuring the correlation
between images but two key issues are the computation cost
(long processing time to choose the optimal frame) and the
choice of the best color space in which to apply this metrics.
Indeed a two hours video at 25fps yields 180,000 frames.
For an input image cut into 15 pieces only (as the exam-
ple in Fig. 2), this induces 2,700,000 distances to compute.
Here, we use the simplest measure that is computationaly
efficient, namely the sum of absolute differences (SAD, also
known as Manhattan distance) of the three color compo-
nents of each pixel (either Red, Green, Blue or any other
integer triplet depending on the color space chosen, like
YCrCb, YUV, YIQ ...) The distance between two images
A and B of size N = L× C is then given by:

d(A,B) =

3
∑

i=1

N
∑

n=1

|Ai(n)−Bi(n)| (1)

where n is the pixel index and i the color component index.

E. Color Spaces: YCrCb and Others

As regards the choice of the color space, the RGB (red,
green, blue) space is not best suited for our purpose. If
RGB is the technological choice adopted for monitors, YUV
or YCrCb color spaces are preferred for TV standards,
video cameras, JPEG compression or MPEG codecs (color-
opponent coding with one luminance channel Y plus two
chrominance channels). Indeed the eye is sensitive to the
average quantity of light: Y ≈ (R + G + B)/3 and to

color differences: U ≈ R − Y ; V ≈ B − Y . The Y CrCb
video format is a linear combination of RGB components.
The coefficients are standard-specific. For example, we may
consider the following matrices:

T1 =

0.3 0.6 0.1
0.5 −0.4 −0.1
−0.2 −0.3 0.5

 ; T2 =

0.3 0.6 0.1
0.7 −0.6 −0.1
−0.3 −0.6 0.9

(2)
This may be written in a generic vector form as:
[Y, U, V]′ = T.[R,G,B]′, where ′ denotes transposition and
T is a 3 × 3 matrix of chromatic coefficients. In fact, any
matrix T = [tij] corresponding to one of the various TV
standards like YIQ, NTSC, PAL, YUV might be used as
well, provided that the coefficients verify:

3
∑

j=1

t1j = 1

3
∑

j=1

t2j = 0

3
∑

j=1

t3j = 0 (3)

But from a perception point of view, which is our con-
cern, biological and psychovisual studies have proven that
the eye works nonlinearly with color components (cf. log-
arithmic compression realized by the transfer function of
the cones in the retina). It implies for example that the
eye is more sensitive to variations for low intensity (dark)
context than for high intensity (bright) context. The HSI
color space (hue, saturation, intensity) is a typical nonlin-
ear (angular) transform of the RGB space. It has proven
to be suited for color processing since it is more related
to psychovisual perception. However, the computation of
the hue is very sensitive to noise, since it is based on a
nonlinear function applied to a ratio of color differences.
Another nonlinear color space called LUX was proposed in
[7], that proved to be relevant for image segmentation and
compression. In what follows, we use this color space to
compute color distances as given by Eq. (1).

III. Nonlinear LUX color transform

A. Presentation of LUX Color Space

Here, we investigate the use of the original nonlinear
transform, called the LUX transform, that already proved
to be efficient for color segmentation [7] and color com-
pression [8]. This color transform originates both from bi-
ology [9] and mathematics [10]. The nonlinear color space
is based on a logarithmic transform. The idea of introduc-
ing a logarithmic non linearity is in accord with the human
visual system (Fig. 3): the cone transduction function may
be described by a loglike function, while the action of hor-
izontal and bipolar cells (weighted average and weighted
difference resp.) may be modelled by a linear matrix like
T . LUX space is inspired not only by biological consid-
erations, i.e., cone distribution in the fovea and nonlinear
transduction of cones followed by bipolar cell differencing in
the retina, but also by a mathematical framework, namely
the logarithmic image processing (LIP) model, known to
yield impressive contrast enhancement [11]. The LIP the-
ory was developed for gray level images. The LIP model is
basically defined in the continuous case by three equations:

AQTR 2010

4

Fig. 3. Biological analogy (cf. Fig. 6 in [9]).

a transform f from the intensity space (variable x) to the
space of tones, an isomorphism φ from the space of tones
onto a logarithmic space (variable y) and an inverse iso-
morphism φ−1 (expressions are not given here, the reader
is referred to [10] for details). For our purpose, only the
composition function Φ = φ ◦ f is of pratical interest. The
isomorphism Φ provides a logarithmic transform normal-
ized by the maximum transmitted light:

Φ : x → y = M ln
(x0

x

)

Φ−1 : y → x = x0 exp
(

−
y

M

)

(4)

where x ∈]0 . . . x0] is a continuous gray level, x0 ∈]0 . . .M]
is the maximum transmitted light and M is the dynamic
range of gray levels (typ. M = 256 for 8-bit coding).
The LUX color space (for Logarithmic hUe eXtension)

extends the LIP model to handle colors (i.e., Y CrCb) as
well. From a mathematical viewpoint, the diagram below
helps understand how the LUX color space is built by com-
position of three functions:

(R,G,B)
norma
−→ (R,G,B)

Φ
−1

◦T◦Φ
−→ (l, u, x)

denorma
−→ (L,U,X)

• First, the color components are normalized. The normal-
ization consists in two steps to adapt the dynamics: trans-
lation of dynamic range (Eq. 5) and rescaling of the quan-
tities w.r.t. their maximum values (Eq. 6). Indeed, since
(R,G,B) ∈ [0,M [×[0,M [×[0,M [in the discrete case, one
has to define translated quantities (r, g, b) to stick to the
interval]0,M] as required by the LIP theory, and also nor-
malized quantities R,G,B. Let (r0, g0, b0) be the maximal
values of (r, g, b). We have :

r = R+ 1 g = G+ 1 b = B + 1 (5)

R = r/r0 G = g/g0 B = b/b0 (6)

• Then the nonlinear transform Ψ which is the composition
of Φ−1 ◦ T ◦ Φ may be computed directly as:

l = R
t11

G
t12

B
t13

u = R
t21

G
t22

B
t23

(7)

x = R
t31

G
t32

B
t33

where tij are coefficients of matrix T .
• Chromaticity range testing : So far, this logarithmic
model works only for positive values of chrominances. To
take account of the possibly negative values of the chro-
matic components, one has to consider also the opposite
formulae and implement a test:

u =

{

u
2

if u ≤ 1
1− 1

2u
if u > 1

x =

{

x
2

if x ≤ 1
1− 1

2x
if x > 1

(8)

• Finally, a proper denormalization step yields the three
nonlinear color components in the range [0,M [i.e. [0, 255]:

L = Ml − 1

U = Mu− 1 (9)

X = Mx− 1

• Simplified formulae : Since the computation of the max-
ima is expensive, we may assume that each value r0, g0
and b0 is close to a maximal intensity I0. This hypothesis
is valid when the camera is calibrated for full range on the
white values. A second approximation is that I0 is close to
the dynamic range M . This assumption corresponds to an
automatic contrast correction. Moreover we impose maxi-
mal values: l0 = u0 = x0 = M in order to keep the same
maximum dynamic range. Incorporating those hypotheses
inside the previous equations yields the expression of LUX
as given in [7], valid for matrix T2 of Eq. 2:

L = (R + 1)0.3(G+ 1)0.6(B + 1)0.1 − 1

U =

M
2

(

R+1

L+1

)

if R < L,

M − M
2

(

L+1

R+1

)

otherwise.
(10)

X =

M
2

(

B+1

L+1

)

if B < L,

M − M
2

(

L+1

B+1

)

otherwise.

This is the formulae we actually use in our experiments.
Note that there is another reason for using these formu-
lae: indeed, as we want to compare two color images, the
normalization w.r.t. the maxima in each image is not ap-
propriate since the dynamic ranges would not be compa-
rable anymore. Hence the color distance computed in the
max-normalized LUX space would not be meaningful.

B. Behavior of LUX Nonlinearity

Fig. 4 shows the variation of nonlinearity for two opposite
contexts: we plot the redish chrominance U as a function
of R and B for two limiting cases : a) G = 255 simulating
a case of bright image, and b) G = 0 simulating a case
of dark image. This shows the adaptation of the curves to
the color context, in accord with the Human Visual System
behavior. We may compare these curves with Fig. 5 given
in [12] where a generic model with nonlinear and adaptive
processing is presented that explains the variablity in color
discrimination data from various observers [13]. In this fig-

AQTR 2010

5

a) G = 255 b) G = 0

c) side views of a) and b)

Fig. 4. Logarithmic nonlinearity of U as a function of (R,B): a) for
G = 255 ; b) for G = 0 ; c) side views of a) and b) resp.

Fig. 5. Photoreceptor nonlinear transduction function depending on
the adaptation state X0 (cf. [12])

ure, X is the photoreceptor excitation level and X0 is the
background level to which the photoreceptor is adapted.
R = X/(X+X0) is the photoreceptor response modeled in
[12] by a Naka-Rushton law. We see that the LUX trans-
form exhibits also this nice adaptation behavior.

IV. Experimental Results

A. Prototype Implementation and Computation Cost

A software prototype was implemented with GTK and
OpenCV. Two versions are available: Linux version is
based on MPlayer and wxWindows, whereas Windows ver-
sion is based on DirectX, MFC and VisualStudio. The
prototype gives the choice between various color spaces for
computing the distance: RGB, YCrCb, XYZ, HSV, HLS,
CIE Lab, CIE Luv and LUX. For a target image cut into
4,800 subimages (60 × 80 tiles), the video can be read at
40 frames per second on a Pentium Centrino 1.7GHz, with
subimages of size 20 × 15. It takes about 8ms to compare
a video frame with a sub-image: the processing includes
proportional resizing, color transform, comparison (color

distance computation), and swap (stack management). So
it is fast compared to other work [2]: indeed it takes less
than one minute to create an image mosaic from a video.

B. Quantitative Comparison of Color Spaces

The Peak SNR between input image A and its output
mosaic B is computed as the mean value of the PSNR for
each of three color planes in the RGB space:

PSNR(A,B) =
1

3

3
∑

i=1

2552

1

N

N
∑

n=1

[Ai(n)−Bi(n)]2
(11)

LUX yields always the best (highest) PSNR compared to
all other color spaces that we have tested (Fig. 6).
• The HSV and HLS color spaces are the least efficient (col-
ors do not match well). For example (Fig. 6a,b), with Lena
as input image and a film (Simpson cartoon) whose color
content is far from this target image, HLS and HSV render
a bluish face whereas other color spaces give a rendering
closer to the input image.
• The XYZ color space yields a very pale rendering.
• CIE Lab and CIE Luv color spaces give better results:
good agreement in color, but little contrast.
• The RGB color space works quite well. But its perfor-
mance is variable: it may give sometimes a PSNR better
than YCrCb. But colors tend to smudge and the mosaic
has less contrast than with YCrCb or LUX.
• The best visual results were systematically obtained with
YCrCb and LUX that perform well in all our tests. LUX
gives better contrast and renders better the scene lighting.
Fig. 7c,d shows mosaics obtained for Lena with the Ma-
trix movie. The PSNR with LUX is 3dB higher than with
YCrCb. Finally, Fig. 7f shows the particular case when
the input image chosen is one of the frames from the video
itself. It that case, the PSNR is of course higher (here
31dB) since the color matching is better than when the
input image and the video have nothing in common.

V. Conclusion

From our experience and observers visual evaluation,
the best color spaces for mosaic creation are respectively
LUX space in first position, and YCrCb in second position.
Choosing a proper color space like LUX (instead of YIQ)
is interesting to avoid the color correction post-processing
step often used by other authors [2], [6]. We are cur-
rently investigating further the proper max-normalization
that should be used with LUX for applications like image
mosaics, involving color comparison between two images.

References

[1] R. Silvers and M. Hawley, Photomosaics. New York: Henry
Holt & Company Inc., 1997.

[2] A. Finkelstein and M. Range, “Image mosaics,” in Proc. RIDT,
1998, pp. 11–22.

[3] W. Yunli, Z. Maojun, and G. Hui, “Selecting contributive frames
for image fusion in video mosaic,” in Int.Conf. Information En-
gineering and Computer Science (ICIECS 2009), 2009, pp. 1–4.

[4] A. Hausner, “Simulating decorative mosaics,” in Proc. SIG-
GRAPH2001, Los Angeles, CA, 2001, pp. 573–580.

AQTR 2010

6

a) HLS: PSNR=22.4 b) LUX: PSNR=26.4

c) HLS: PSNR=24.3 d) HSV: PSNR=24.7

e) CIE Lab: PSNR=25.2 f) CIE Luv: PSNR=25.4

g) XYZ: PSNR=25.5 h) RGB: PSNR=26.2

i) YCrCb: PSNR=25.6 j) LUX: PSNR=26.9

Fig. 6. Results obtained with various color spaces for mosaics made
of video frames from the Simpson Family cartoon: a) and b) Lena
mosaics ; c) to j) Mandril mosaics.

a) Mandril b) Lena

c) YCrCb: PSNR=22.2 d) LUX: PSNR=25.3

e) Shrek f) LUX: PSNR=31.2

Fig. 7. a) b) and e) Input images ; c) and d) Lena mosaics with
frames from the film Matrix ; f) Mosaic made with video frames
from the Shrek animation movie.

[5] J. Kim and F. Pellacini, “Jigsaw image mosaics,” in Proc. SIG-
GRAPH2002, 2002, pp. 657–664.

[6] A. Klein, T. Grant, A. Finkelstein, and M. Cohen, “Video mo-
saics,” in Proc. 2nd Int. Symposium on Nonphotorealistic an-
imation and rendering (NPAR’02). Annecy, France: ACM
Press, 2002.

[7] M. Liévin and F. Luthon, “Nonlinear color space and spatiotem-
poral MRF for hierarchical segmentation of face features in
video,” IEEE Trans. on Image Processing, vol. 13, no. 1, pp.
63–71, Jan. 2004.

[8] F. Luthon and B. Beaumesnil, “Color and R.O.I. with
JPEG2000 for wireless videosurveillance,” in IEEE Int. Conf.
on Image Processing (ICIP’04), Singapore, October 24-27 2004.

[9] S. Shah and M. Levine, “Visual information processing in pri-
mate cone pathways-Part I: A model,” IEEE Trans. on Systems,
Man and Cybernetics-B, vol. 26, no. 2, pp. 259–274, Apr. 1996.

[10] M. Jourlin and J. Pinoli, “Image dynamic range enhancement
and stabilization in the context of the logarithmic image pro-
cessing model,” Signal Processing, vol. 41, pp. 225–237, 1995.

[11] G. Deng and J.-C. Pinoli, “Differentiation-based edge detection
using the logarithmic image processing model,” Journal of Math-
ematical Imaging and Vision, vol. 8, pp. 161–180, 1998.

[12] D. Alleysson and J. Hérault, “Variability in color discrimination
data explained by a generic model with nonlinear and adaptive
processing,” Color Research and Application, vol. 26, 2001, sup-
plement.

[13] D. MacAdam, “Visual sensitivities to color differences in day-
light,” J. Opt. Soc. Am., vol. 32, pp. 247–273, 1942.

AQTR 2010

