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Real-Time DSP Implementation for
MRF-Based Video Motion Detection

Christophe Dumontier, Franck Luthon, and Jean-Pierre Charras

Abstract— This paper describes the real-time implementation
of a simple and robust motion detection algorithm based on
Markov random field (MRF) modeling. MRF-based algorithms
often require a significant amount of computations. The intrinsic
parallel property of MRF modeling has led most of implementa-
tions toward parallel machines and neural networks, but none of
these approaches offers an efficient solution for real-world (i.e.,
industrial) applications. Here, an alternative implementation for
the problem at hand is presented yielding a complete, efficient and
autonomous real-time system for motion detection. This system
is based on a hybrid architecture, associating pipeline modules
with one asynchronous module to perform the whole process,
from video acquisition to moving object masks visualization. A
board prototype is presented and a processing rate of 15 images/s
is achieved, showing the validity of the approach.

Index Terms—Digital signal processor (DSP), Markov random
field (MRF), motion detection, real-time implementation.

I. INTRODUCTION

M ARKOV random field (MRF) modeling is widely used
in image processing, e.g., for motion analysis [1]–[3],

image restoration [4], and texture analysis [5]. Although the
performance of such algorithms is usually very good, their
structure is complex and the data flow to process is large.
Consequently, the computation cost is high. Since the original
paper by Geman and Geman [4], the locality (neighborhood
structure) and parallelism of MRF models have been used to
speed up the computations. Various real-time implementations
of MRF-based algorithms, either on parallel machines or
neural networks, have been proposed.

• Single Instruction Multiple Datamachines (SIMD): this
approach fully takes parallel characteristics of the algo-
rithm into account. For example in [6], an MRF-based
global region labeling algorithm is implemented on a
SIMD array of over 40 000 processing units. The key-
points in SIMD implementations are the distribution of
data onto the processors and the communication between
processors.

• Multiple Instructions Multiple Datamachines (MIMD):
for example in [7], a motion detection and interpretation
algorithm is implemented on an MIMD vision machine
based on twelve transputers. These machines offer an
attractive solution for real-time implementation, but their
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size, cost and complexity remain too high and limit their
use in specific applications.

• Cellular Neural Networksperform well by exploiting
both parallelism and locality. Moreover, MRF modeling
implies the minimization of an energy function which can
be solved by electrical networks [8]–[11]. For example,
in [12], a Hopfield network is used and simulated to
implement an MRF-based optical flow estimation algo-
rithm. Compared to parallel machines, cellular analog
networks induce dedicated hardware design (ASIC) which
limits the flexibility and adaptivity of implementations.
Current CMOS technology constraints only allow the
implementation of simple algorithms and restrict the size
of computed images (100 100 pixels). Main advantages
of such implementations are relaxation convergence speed
(faster than 1 s) and reduced hardware size.

This paper addresses the problem of video motion detection
based on MRF modeling with real-time implementation
constraints in mind [13]. An alternative solution to parallel
machine and neural network approaches is proposed here,
based on a split-technology (pipeline/asynchronous) with
standard programmable devices (DSP, FPGA, RAM). In
Section II, the MRF-based motion detection algorithm is
presented. Section III describes the alternative architecture of
the machine. Section IV discusses real-time implementation
and Section V reports some experimental results.

II. M OTION DETECTION ALGORITHM

The algorithm described below is derived from the work of
Bouthemy et al. [2]. Some definitions are recalled first, then
our algorithm is compared to the work in [2].

A. Definitions

Motion detection is a binary labeling problem whose goal
is to attribute to each pixel of image at time
one of the two following label values

if moving object
if static background.

With the hypothesis of static camera and little variation of
scene illumination between two consecutive images (and

), motion information at any pixel is closely related to
the temporal change of the intensity function . Therefore,
observations are defined as

(1)

Let and represent one
particular realization of label and observation fieldsand ,
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Fig. 1. Spatiotemporal neighborhood and binary cliques.

respectively. The most probable configuration of label field
, given one realization of observation field, is obtained

with the maximum a posterioricriterion (MAP). From the
equivalence between MRF’s and Gibbs distributions [4], we
have

(2)

Maximizing thisa posterioriprobability is equivalent to min-
imizing an energy function which is the sum of two
terms, :

• the a priori model energy is a regularization term
given by

(3)

where denotes any binary clique in the
spatiotemporal neighborhood shown in Fig. 1 andis
the set of all cliques. is an elementary potential
function associated with each clique. In order to put
homogeneity constraints into thea priori model (i.e., to
give advantage to configurations where two neighbors
have the same label), stepwise potential functions are
used:

if
if

Three different constant potentials are taken for the three
kinds of cliques: for spatial, for past, for future.

• the observation energy represents the link between
labels and observations. It is given by the relationship

(4)

where is supposed to be a centered Gaussian
noise with variance and is a function that models
the observation behavior

if
if

If the pixel belongs to the static background, there is no
temporal change between two consecutive images, so that
observation is almost zero. If the pixel belongs to a moving
area, observation is supposed to take a positive value close to

which stands for the average value of nonzero observations.
The parameter may be estimated on-line as proposed in [2].

Fig. 2. Block diagram of the motion detection algorithm.

But for the real-time implementation described in this paper,
it has been determined manually after experimental tests.

Since stochastic relaxation algorithms are prohibitive for
real-time implementation, the deterministic relaxation algo-
rithm iterated conditional modes (ICM) is used to find the
minimum of [14].

Fig. 2 summarizes the detection algorithm. At time, it
requires three consecutive frames. Suppose the past label
field has been determined as the result of previous
relaxation. The current label field is initialized with a binary
field derived from the observation field (comparison
to a threshold ). A coarse estimate of the future label
field is also derived from the binarization of field . For
each site of the current image, the two label values one and
zero are tested and the label which induces the minimum local
energy in its spatiotemporal neighborhood is kept. The process
iterates on the label field until convergence, one iteration

corresponding to the scanning inand directions of the
whole field at time .

Note that the algorithm implies a one image delay for
obtaining the motion masks at time, since the frame at time

is required.

B. Comparison with Bouthemy’s Algorithm [2]

As regards temporal information, both algorithms work
on three consecutive frames of the sequence. Both of them
respect spatial coherence and take into account temporal
discontinuities. Bouthemy’s algorithm estimates the final label
field in two steps with asliding pair of images, while our
algorithm works in one step with a triplet of images and gives
advantage to the future with respect to the past by taking

. This helps to eliminate the areas uncovered by motion.
No significant difference has been observed as to the qual-

ity of the results produced by the two algorithms, but our
algorithm is more efficient if computation complexity is taken
into account, as in the following.
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Fig. 3. Block diagram of the board with hybrid (pipeline/asynchronous)
architecture.

• The number of parameters required for MRF modeling
is lower in our case: four parameters
instead of five in [2],

• The processing of the temporal direction requires one test
only, while in [2] eight different configurations are tested,

• the operations involved in the processing of temporal and
spatial dimensions are identical in our case,

• The number of data used during the relaxation process
is minor in our algorithm in comparison with thesliding
pair algorithm in [2].

Note that in our model, temporal neighbors are not literally
speaking Markovian because their associated parameters

are not equal and their labels are not updated during
relaxation. These neighbors must rather be considered as side
information for the relaxation process.

III. H ARDWARE ARCHITECTURE

The algorithm block diagram (Fig. 2) exhibits two process-
ing stages (preprocessing and Markov processing) and two
video stream connection stages (acquisition and visualization).
Taking into account the video stream connection within the
design of the architecture alleviates a lot of problems linked to
data control (when acquisition and vizualization are computed
with an external board). Moreover, this integration makes the
final board autonomous and enables its use in size-restricted
applications (embedded applications). For that purpose, a hy-
brid architecture made of pipeline and asynchronous modules
has been designed. Pipeline modules are synchronized by
video clock (here, MHz). The asynchronous
module operates at a faster clock (33 MHz).

Fig. 3 gives an overview of this architecture which is
composed in practice of two computation stages, two I/O
stages and one buffer stage:

Input Stage: Video input stream control. This stage converts
standard interlaced video input into digital images of size
512 512 and 8-b pixel depth. It works at standard
European video rate, i.e., 25 images/s and uses standard
8-b AD converters.
Preprocessing Stage: This stage computes observations and
initial labels. An optional lowpass (LP) filtering is added

before this computation in order to improve the quality
of initialization in case of very noisy sequences. This
stage requires elementary operations only (difference, ab-
solute value, threshold and convolution). These operations
are easily implemented on logical components. Field pro-
grammable gate arrays (FPGA’s) are used because of their
flexibility. Initial images are made of two interlaced frames
(odd and even) temporally shifted by 20 ms (CCIR stan-
dard). To comply with the spatial coherence of our model,
only odd frames are processed, so that the image size
computed by this stage is reduced to 256256 pixels.
Markov Processing Stage: This stage performs the energy
minimization to obtain the final masks of moving objects. It
is implemented on a digital signal processor (DSP) since
a careful analysis of the algorithm (cf. Section IV-B3)
shows that most of computations involved are similar to
convolutions. DSP’s are particularly suited for this kind of
calculation. Since the energy minimization is an iterative
process, data need to be accessed several times during
relaxation. Moreover, the number of operations performed
and their complexity imply a high computation rate. These
characteristics are not compatible with video flow compu-
tation. Consequently, this stage works asynchronously, at a
rate faster than video rate, on data stored in a buffer memory.
The DSP is also in charge of dynamic memory control that
is performed under exception processing. This control takes
about 8% of the CPU time (one exception appears at the
beginning of each line, i.e., each 64s).
Buffer Stage: This stage enables asynchronous data accesses
and ensures continuity of video data flow. A video RAM
component (VRAM) is chosen for this purpose. This video
memory is composed of two banks. One is used for input
data storage and the other one is used for output mask stor-
age. However, this memory is not fast enough for zero wait-
state accesses, so that static memory (SRAM) is also used
by the DSP for temporary data storage. Fig. 4 shows the
synchronization of computations with respect to video flow.
Output Stage—Video Output Stream Control:This stage
converts the resulting frames into a standard interlaced video
signal to be visualized on a control monitor. It uses standard
8-b DA converters.

IV. REAL-TIME IMPLEMENTATION

A. Hardware Configuration

A printed circuit board (PCB) prototype was developed to
validate this architecture. The main features of this board are
the following:

• standard PC-ISA bus;
• one digital signal processor DSP Motorola 96 002 work-

ing at 33 MHz for implementing the deterministic relax-
ation algorithm;

• one FPGA Xilinx XC4003 working at standard European
video rate (25 images/s) on images of size 512512 for
lowpass filtering initial images;

• one FPGA Xilinx XC4005 for differentiating consecutive
images, computing the observation field and thresholding
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Fig. 4. Synchronization of computations with respect to video flow. (a) Video stream (25 images/s). (b) Preprocessing frames (12 images/s). (c) Details
of computations performed to obtain the moving object masks.

Fig. 5. PC board prototype photo.

observations (initial label field). This stage works on odd
frames of size 256 256. A local SRAM memory is
required for storage of image ;

• 32 Kwords of zero wait-state SRAM for temporary data
storage;

• two banks, 256 Kbytes each, of triple-port fast page mode
VRAM for precomputed field storage ( and )
and final label field storage .

• combined DAC/ADC converters and look-up-tables
(Brooktree components).

Fig. 5 shows a photo of the PCB prototype. This implemen-
tation includes on a single board all successive stages involved
in the processing (from acquisition to visualization).

B. Software Implementation

1) Convergence Criterion:Pixel recursive updating is used
for ICM relaxation [14]. Theoretically, the convergence of the
ICM algorithm is reached when no more label change occurs
after a scan of the whole image. Experience shows that this
criterion is too strict and induces superfluous iterations that
do not improve the final result (visually). Another criterion
focuses on the relative variation of the global energy function
between two consecutive iterations ( %). A

Fig. 6. Evolution of the number of pixels changing of label during the
relaxation process. Results are given for three real-world scenes (image size
128 � 128).

third criterion stops the process after a fixed numberof
iterations. This number is determined experimentally. For ob-
vious reasons of computational simplicity, this third criterion
is used here. Practical tests show that is sufficient to
obtain moving masks of good visual quality. Fig. 6 shows
results obtained on three real-world scenes (presented in
Section V).

2) Parameter SettingThe motion detection algorithm de-
pends on four MRF parameters and one threshold
. Experimental tests were made on several synthetic and real-

world image sequences. Good quality results were obtained
with a fixed set of parameters: and

. However, for a specific application, these parameters
must be adjusted to optimize the quality of the results. More
weight is given to the future by taking . This helps
to deal with motion discontinuities, to take into account any
innovation in motion in a faster way, and to better eliminate
background areas which are uncovered during motion.

The contribution of each energy term ( and ) entering
into the global energy is fixed to approximately 50%
each. Depending on the scene processed, this balance can be
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Fig. 7. Computation ofup(ls = 0) that is equivalent to 3-D filtering+ LUT operation at sites.

modified by introducing a weight parameterin the definition
of the global energy .

The binarization operation also requires the definition of a
threshold . This threshold is estimated by the relationship

where represents the standard deviation of the
noise induced by the acquisition process (cameradigitizer).
Depending on the scene, this threshold can take values in the
range (for images coded with 256 gray levels).
The value of can either be set manually by the user, or
computed directly by the processor (online computation of

) and updated by the way of a serial link between the DSP
and the FPGA. So, some flexibility is kept in the hardware
implementation.

3) Storage and Computation CostTwo important points
are the complexity of the calculation and the size of data
flow. Since the algorithm used for energy minimization is
iterative, data (frames) have to be stored. Five frames are
actually required at each time: four binary frames

and one 8-b frame .
The contribution of each processing stage to the global

computation load has been evaluated. Initialization process
(preprocessing) accounts for about 10% andMarkov process-
ing, for 90%. This last process is divided into about 70% for

computation, 25% for and 5% for the final choice
of label at pixel . These time evaluations take into account
the kind of computations involved and the data access times.

Moreover, a careful analysis of the algorithm [15] exhibits
three interesting characteristics for the evaluation of

(5)

where and represent the local energy values
at pixel contributing, respectively, to and , as
follows.

1) The local model energy takes the same absolute
value but a different sign for each of the two possible
labels ( or ) at a site

(6)

2) the computation of over the spatiotemporal neigh-
borhood for one of the two possible labels is equivalent
to a convolution with a 3-D-filter followed by a look-
up-table (LUT) operation. First, the static label

is taken and a temporary value is computed with
the convolution kernel shown in Fig. 7. Then is
processed by the LUT to obtain the actual value of

. Next, the remark 1) is applied to obtain
the value of for the moving label

;
3) the third remark concerns the evaluation of observation

energy given by (4). Theoretically, this evaluation
must be done at each pixelof image (giving a value

for each pixel). In practice, can only take
256 different values in the range . It is not
necessary to compute for each pixel and at each
iteration of the process, but only to compute once and
for all the 256 possible values at the beginning of each
relaxation process.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

Three examples of experimental results obtained with the
proposed hardware board are given in Figs. 8–10. Sequences
were acquired with a standard CCD camera and results are
obtained with the fixed set of parameters given in Section IV-
B2. Each experiment emphasizes one major property of the
algorithm, as follows.

• Fig. 8 shows the noise reduction achieved by MRF re-
laxation. The scene contains threewalking pedestrians, a
pedestrianhiddenbehind a street lamp and a car appearing
on the right of the street (in the last image of the
sequence). The initial label field is very noisy (acquisition
noise of a standard camera), but after relaxation, only the
moving objects are detected.

• Fig. 9 shows the cancellation of uncovered areas. The
mobile has a fast rotational motion. In the initial label
field, a large uncovered area is visible (i.e., the position
of the mobile at time ). After relaxation, the final
label field only exhibits the mobile mask at time.

• Fig. 10 illustrates the regularizing behavior of the al-
gorithm and the quality of the masks (e.g., for video-
surveillance or traffic control application). Note the de-
tection of the pedestrian’s shadow on the bonnet of the
car (lower left corner of the image), and the fairly good
reconstruction of the leg motion.

The main difficulties encountered by the motion detection
algorithm concern the following two kinds of situations.
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Fig. 8. Noise reduction.

Fig. 9. Cancellation of uncovered areas.

Fig. 10. Mask quality.

• Very small moving objects: a too small object is consid-
ered as noise in the frame. Specific MRF-based algorithms
have been developed for these cases [16].

• Low speed objects:there is a lack of information given
by the preprocessing stage (thresholded frame differences
are zero almost everywhere). Spatiotemporal approaches
and multiresolution framework may improve the detection
quality for this kind of motion [17].

In practice, a processing rate of12 to 15 images/sfor images
of size 128 128 is achieved by our PCB prototype. This

corresponds to about half the European standard video rate (25
images/s). Compared to the rate of ten images/s obtained with
a parallel implementation of the same algorithm on a SIMD
machine with 256 elementary processors [18], the performance
achieved by our prototype is satisfying.

The main shortcoming is the limited image size (128
128 pixels). This size may be sufficient for many applications
(intruder detection for example). Images of size 256256
could be processed by our board, but this would decrease the
computation rate by about a factor of four (four images/s).
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Another solution consists in using the lowpass filter imple-
mented in the preprocessing stage. With this filter, initial
images (256 256 pixels) can be subsampled without aliasing
and then, the relaxation stage still works on images of size 128

128. To get final label fields of size 256 256, a simple
interpolation (duplication of pixels) is performed. Of course,
this procedure induces a slight lowering in the precision of
the mask edges.

VI. CONCLUSION

In this paper, a simple and robust MRF-based motion
detection algorithm is presented and a hardware architecture
is proposed for its real-time implementation. The algorithm
is adapted in order to limit as much as possible the data
flow and the computation cost. It practically works on three
consecutive images (which implies a one image delay at the
output) and integrates contextual spatiotemporal information
to give homogeneous masks. The regularizing behavior of the
algorithm is shown on several real-world sequences.

A hybrid architecture (pipeline/asynchronous) is proposed
for real-time implementation and a PCB prototype is described.
This implementation isautonomousand integrates thewhole
processingon a single board, from image acquisition to mask
visualization. Logical programmable components (FPGA’s)
and ADC/DAC components are used for pipeline modules
and a single digital signal processor (DSP) asynchronously
performs the more complex tasks (energy minimization). The
link between these modules is implemented by the way of a
buffer memory (VRAM). Results are promising (15 images/s
on images of size 128 128) and validate the perspective of
using MRF algorithms in industrial applications. Indeed, this
work shows that MRF algorithms do not necessarily imply a
complex, bulky and expensive hardware implementation.

However, the intrinsic parallel property of MRF modeling
is not completely exploited by our implementation. The pro-
cessing rate and the computed image size could be increased
by using an up-to-date processor, integrating some parallelism
(e.g., programmable video processors like Texas Instrument
TMS320C80 with MIMD architecture).
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