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ABSTRACT 

 

Polarimetry and multi-pass interferometry extend the 

dimensionality of SAR data, so the necessity to have 

multivariate statistic (and non-Gaussian, because of the high 

resolution) distributions as models for these types of data: 

such are the SIRV (Spherically Invariant Random Vectors). 

However, as the statistic model becomes so complicated, 

correctly estimating its parameters gets difficult. More, 

although they are versatile, the SIRV models are not 

guaranteed to match the PolSAR / InSAR data. To evaluate 

the pertinence of those models with respect to the PolSAR 

data, through one of their most important statistic property, 

namely the circularity, it is the purpose of this paper. 

 

Index Terms— Polarimetry, SAR, circularity, SIRV 

 

1. INTRODUCTION 

 

Multidimensional Synthetic Aperture Radar (SAR) data, 

like PolSAR and multi-pass InSAR images, describe 

interaction between the electromagnetic waves and the 

backscatterrers inside each resolution cell, thus allowing 

extracting information concerning the physical properties of 

the illuminated target. Generally, and especially for 

distributed targets (terrains, forests, etc.), the analysis relies 

on the stochastic properties of the data. The classic 

approach, assuming Gaussian model, is quite limited and 

already outdated in the context of improved resolution of 

modern SAR. Diminishing the size of the resolution cells 

leads to a reduction on the number of backscatterrers inside 

each resolution cell. Thus, the central limit theorem is no 

longer applicable and the Gaussian model must be 

reconsidered. More complex stochastic models, such as the 

SIRP (Spherically Invariant Random Process), are then 

required. Several special cases (K-compound, Weibull, etc.) 

of those have been already used instead of Gaussian 

distributions in some specific areas of interest (for example, 

in coastal radar applications) before being reunited under the 

common umbrella of SIRP. 

For example, polarimetry extends the dimensionality of 

recorded data (to 3 or 4) and, thus, multivariate versions of 

SIRP distributions, namely SIRV (Spherically Invariant 

Random Vectors), are used in PolSAR. 

However, the more complex the (stochastic) model, the 

more difficult estimating its parameters becomes. More, the 

question of either or not the SIRV models, in spite of their 

flexibility, are appropriate for describing any 

multidimensional SAR dataset, still remains. This fact 

prompted us to analyze, in this paper, the pertinence of those 

models with respect to various multidimensional SAR 

datasets, especially in the light of a specific and very 

important (because often assumed) stochastic property: the 

circularity. 

 

2. STOCHASTIC MODELS IN POLSAR 

 

The four components of the k target vector describing the 

polarimetric characteristics of a given resolution cell are the 

elements of the Sinclair matrix: Shh, Shv, Svh and Svv. For 

mono-static configurations, where the reciprocity theorem 

applies, S
hv
= S

vh
, so only three independent components 

remain: Shh, Shv and Svv. In this case, the useful vector 

becomes k =
1

2
S
hh
! S

vv
,2S

hv
,S
hh
+ S

vv

"# $%
T
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For distributed targets, the corresponding k vector is 

considered non-deterministic and its multivariate probability 

distribution may be written, under the SIRV assumption: 

k = ! z . !  is a positive random variable (texture) while z  

is a complex-valued, centered and Gaussian distributed, 

random vector. The two random variables are statistically 

independent. 

Characterizing k, in this case, reduces to write the 

probability distribution p
!
(! )  of !  and the covariance 



matrix M  of z . If p
!
(! )  is a Dirac pulse, then the 

Gaussian (multivariate) model is retrieved for k. In many 

field applications, p
!
(! )  is assumed to be the Fisher 

probability distribution. In this latter case, the obtained 

SIRV distribution is known as KummerU [1].  

In the final paper, this presentation will include the multi-

pass InSAR case. 

 

3. CIRCULARITY OF COMPLEX RANDOM 

PROCESSES 

 

A complex-valued random vector Z
0

 is circular [2], [14] 

(i.e. its stochastic distribution has circular symmetry) if its 

distribution remains invariant to multiplication with 

complex numbers on the unity circle: Z
0

 has the same 

stochastic distribution as e
j!
Z
0

. 

Characterizing a complex-valued random vector Z
0

 simply 

means characterizing its real and imaginary parts, X
0

 and 

Y
0

 respectively. Thus, Z
0

 is circular if and only if the real 

random vector V
0
= (X

0
,Y
0
)T  is spherically symmetric with 

respect to the origin. This also means that the characteristic 

function of Z
0

 may be written as !
Z
0

(z) = ! | z |2( ) , where 

! : [0,!["#  is named characteristic generator. If defined, 

the probability density of Z
0

 takes the form 

f
Z
0

(z) = g | z |2( ) , where g : [0,![" [0,![  is known as 

density generator [3]. 
 

4. TESTING THE CIRCULARITY 

 

Let’s consider the mono-static POLSAR case, where 

the vector has three complex-valued components. 

 

4.1. Gaussian random processes 

 

In the Gaussian case, the stochastic model is: 

p
G
(k) =

1

! m T
e
!k

H
T
!1
k

 

where m = 3  (for the mono-static case). Define the 

covariance T = E kk
H{ } , the pseudo-covariance [4], [15] 

C = E{kkT} , the extended vector z = [k
T
,k

H
]
T

 and, finally, 

the SCM (Sample Covariance Matrix) estimator 

R̂
SCM

=1/ N z
i
z
i

H

i=1

N

! , then the sphericity test relies on the 

GLRT (Generalized Likelihood Ratio Test).  

 

 

 

The considered hypotheses are: 

1. H1 : k  is spherically, i.e. C = 0
m

 

2. H2 : k  is not spherically, i.e.  C ! 0
m

 

The sphericity test then becomes [5], [6]: 
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Figure 1 shows the analyzed dataset in RGB coloring 

and the GLRT values, normalized (between 0 and 1). The 

estimation has been made over a moving  9! 9  square 

window. 

 

 

 
(a) 

 

 
(b) 

Figure 1: PolSAR dataset (a) and GLRT values (b) for 

the Toulouse site (Ramses, X-band) 

 

 

 



The obtained results match expectations: i.e., those 

areas with distributed targets (such as forests and 

agricultural fields) expose not only Gaussian distribution, 

but also strong circularity. On the other hand, the GLRT 

values are small valued for urban areas and even the 

Gaussian distribution is not much confirmed. 
 

4.2. Spherically Invariant Random Processes 

 

In this case, the stochastic model is: 
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With the previous notations, the sphericity test makes 

use of the GLRT adjusted for CES (Complex Elliptically 

Symmetric) distributions [7], [8], known as aGLRT. 

The hypotheses remain the same and the sphericity test 

becomes: 
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Asymptotically, GLRT (R
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)  is equivalent to 

aGLRT (R
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Finally, it is also possible to show that  

H1 : 
   
!

a
(k
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N
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m

2
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Figure 11 shows the detection map of non-circular 

random processes, obtained for an imposed false alarm rate 

  
P

FA
= 10

!2
 and a moving analysis  9! 9  square window. 

 

 

Figure 2: Detection map of non-circularity for the 

Toulouse dataset (Ramses, bande X) 

 

The result confirms once again our expectations, as the 

strongly non-circular regions are located in urban areas. 

 

5. CONCLUSIONS 

 

Obtained results show that circularity assumption is 

generally respected for the considered datasets. This is even 

more valid for those areas with uniform and distributed 

targets (forests, agricultural fields, etc.). However, the urban 

regions with high density of point scatterrers and quite 

heterogeneous are less suited form the circularity point of 

view. 

The bottom line is that characterization of urban regions 

is much more complex (and difficult) – since a more 

complex model, with more parameters, is required. In 

practice, circularity is often assumed and most of the 

developed models (the SIRV model for one) bear this 

limitation. In the light of the results shown in this paper, 

those models are less appropriate for urban areas 

characterization. 

However, alternative explications are possible. As an 

example, the root of this inappropriateness might as well be 

the assumed ergodicity / stationarity (in spatial sense) for 

the backscattered signal and, also, even in the hypothesis of 

randomness: targets exhibit a deterministic behavior. 

First, the very use of a sliding analysis window for 

estimating the stochastic parameters of the scattered signal 

may be questioned, as it implicitly assume that the 

considered signal is ergodic / stationary. While this 

hypothesis holds for distributed and uniform targets, where 

the physical parameters (and, thus, the electromagnetic 

scattering behavior) differs very little from one resolution 

cell to another, in urban areas the physical structure (and, as 

such, its electromagnetic behavior) may change 

considerably from one resolution cell to the next. This 

makes the hypothesis of ergodicity / stationarity less 

applicable. 

Second, one should not that even the randomness of the 

radar echo is not given, but assumed. This is mainly a way 

to deal with the inherent complexity of the signal. Anyway, 

for identical measuring conditions, the recorded radar data is 

perfectly identical. Even if small differences in measuring 

conditions lead to strong discrepancies in the recorded data, 

this is not an evidence for randomness, as such behavior can 

be fully explain under a deterministic paradigm – the 

chaotic models. 

Various parameters, such as meteorological conditions 

and, even more important, the changes that the target suffers 

in time (between two succeeding acquisitions, for example), 

account for the observed randomness of the recorded data. 

However, these changes of the target are more 

significant for green targets (such as forests and agricultural 

fields), where humidity and wind modify both their physical 

structure and their electromagnetic behavior. On the other 

hand, those changes are less significant for urban targets 

and, as such, randomness is less likely for the latter. 



In perspective, applying chaotic [9], [11], [12] [13] or 

pseudo-chaotic [10] models to PolSAR / InSAR data from 

urban areas is envisageable. These models should be able to 

take into account the deterministic features of those areas 

(presence of dihedral angles, straight edges, cavities, etc.), 

while still leaving room for some unpredictability 

(orientation of those elements). 

Using chaotic models in PolSAR and InSAR data will make 

the object of future work. 
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