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Abstract

In this paper, a spatiotemporal strategy for image sequence analysis is proposed: a video
sequence is processed as a 3-D data batch instead of a series of 2-D images.

Applying this approach to motion detection, a 3-D Markovian model associated with a spa-
tiotemporal relaxation is defined. Using a 3-D neighbourhood of pixels for modelling spatiotem-
poral interactions, robust results are obtained for detecting moving objects in noisy sequences or
in the case of overlapping motion.

In order to improve the performance to detect poorly-textured objects or very slow motion,
the algorithm is integrated in a spatiotemporal multiresolution scheme. The data pyramid is built
by using 3-D low-pass filtering and 3-D subsampling. Robust results for synthetic and real-world
outdoor image sequences are reported.

This approach is also applied successfully to speaker’s lip segmentation in image sequences, for
audiovisual telecommunication.

Key words: motion detection, image sequences, Markov Random Field (MRF), spatiotempo-
ral approach, multiresolution, lip segmentation.

Résumé

Cet article présente une approche spatio-temporelle pour ’analyse de séquences d’images’ :
une séquence est traitée comme un flot de données a trois dimensions au lieu d’une succession
d’images a deux dimensions.

L’utilisation de cette approche pour la détection de mouvement conduit a la définition d’un
modele markovien 3-D associé a une relaxation spatio-temporelle. Grace a une modélisation fine
des interactions spatio-temporelles entre les pixels d’un voisinage cubique, des résultats robustes
sont obtenus pour la détection d’objets mobiles dans une scéne trés bruitée et d’objets dont le
mouvement s’effectue avec recouvrement d’une image & la suivante.

Dans le but d’améliorer ’aptitude de 1’algorithme & détecter des objets tres peu texturés et
des objets de mouvement tres lent, on définit un cadre de multirésolution spatio-temporelle. La
pyramide de données est construite par une succession de filtrages et de sous-échantillonnages
appliqués dans chacune des trois dimensions. L’intérét de la multirésolution spatio-temporelle est
mis en évidence par divers résultats de détection de mouvement sur des scénes synthétiques et
réelles.

Une autre application de cette approche porte sur la segmentation des levres d’un locuteur,
dans un contexte de télécommunications audio-visuelles.

LA paper in French is also available [5].



1 Introduction

Motion detection and region-based segmentation are important issues in image sequence analysis or
coding, with applications in video-surveillance and video-communication.

Although three dimensions (z,y, t) are required to describe an image sequence, most of the meth-
ods dealing with sequence analysis are time sequential (each image is processed in turn), and work
on a pair of consecutive images. This might induce limitations e.g. for detecting subpixel motion?.
A common way to integrate motion information over a larger temporal domain is to use recursive
temporal filtering such as Kalman filtering.

In this paper, another strategy is proposed. The point is to consider a video sequence not as an
image series, but as a 3-D data batch, taking into account spatial and temporal dimensions within a
single process. This approach is coherent with the fact that a moving object covers a volume in the
(z,y,t) space.

The scope of the paper is twofold: to give an insight into the pros and cons of the spatiotemporal
approach, together with focusing on practical applications. The performance of this approach is indeed
illustrated with two applications: robust motion detection and lip segmentation in video sequences.

As for robust motion detection, a 3-D non-separable Markov Random Field (MRF) based algo-
rithm is defined. This method yields better results than the separable version of the same algorithm
in the case of noisy sequences or overlapping motion®. The same observations (temporal variations
of the intensity function) as in the separable case are retained, the enhanced performance of the
3-D algorithm coming from the improvement of the MRF model which is better at taking temporal
constraints into account.

To detect subpixel motion and uniform moving objects*, a larger spatiotemporal domain must be
taken into account. This is done by computing observations on a spatiotemporal pyramid.

In section 2, a separable motion detection algorithm is presented. The algorithm is inspired by
the work of Bouthémy et al. [3]. There are two major differences between the algorithm described in
[3] and the one presented here. The first difference is the way temporal information is dealt with. In
[3], the processing of each image is done in two steps (”two-pass algorithm”). An initial detection of
moving areas at time ¢ is derived when considering images I(¢—1) and I(¢). This detection is updated
when considering images I(t) and I(t + 1). Two successive label fields are always simultaneously
considered (optimization in two passes), and the decision about uncovered areas is postponed to the
next processing pass. In section 2, we propose a ”one-pass algorithm”: a single label field (the current
one) is optimized at each time (and only once). It makes implementation easier, for an equivalent
quality of results. This is made possible thanks to another way of doing initialisation: we use a coarse
estimate of the future label field, instead of repeting the past as is done in [3]. Uncovered areas are
handled by giving more weight to the future than to the past (anisotropy in temporal interactions).

The second difference concerns computational complexity: we use four model parameters (sec-
tion 2.4), instead of five in [3], since the function expressing the link between observations and labels
is simpler in our case. The decision about a temporal clique (past or future) requires only one con-
ditional test to choose among two configurations, while eight different configurations are tested in
Bouthémy’s algorithm (Table 1 in [3]). The number of 2-D fields required for the relaxation is five
in our case (Fig. 1-b), instead of six for Bouthémy’s algorithm (Fig. 2 in [3]). Hence, the amount of
memory required for data storage is minor in our case. Therefore, the two-step algorithm proposed
in [3] is less adequate for real-time implementation (i.e. processing at video rate).

Since real-time processing is of major concern for practical video applications, the paper ad-
dresses on several occasions the issues of computation cost and hardware implementation, either on
general purpose programmable devices (digital signal processors (DSPs) or video processors), parallel
machines (SIMD or MIMD) or dedicated circuits (ASICs, VLSI cellular analog networks).

?Subpixel motion means displacements of less than one pixel between two images (i.e. slow motion).
#Overlapping motion means that the intersection of the masks of a moving object at times ¢ — 1 and ¢ is not empty.
4Uniform moving objects means moving objects that are poorly-textured, i.e. have uniform intensity.



The algorithm which is presented in section 2 is called 3-D separable motion detection algorithm
in the sense that space and time have distinct roles in the processing (hereafter, the algorithm is
referred to as the ”separable algorithm”).

Its 3-D non separable counterpart is described in section 3. A comparison between the performance
of both algorithms is made. In section 4, it is shown how the integration of the 3-D algorithm
in a spatiotemporal multiresolution framework allows subpixel motion and poorly-textured moving
objects to be detected. In section 5, another application of this approach is presented, for speaker’s
lip segmentation in a context of audiovisual telecommunication. A discussion in section 6 concludes
the paper.

2 Separable MRF Model

MRF modelling is widely used for motion analysis, either for detection, estimation, or segmentation.
For a state of the art about image motion analysis and an extensive bibliography, the reader may
refer to [13].

2.1 Observations and Labels

The purpose of motion detection is to localize moving and static areas in a dynamic scene. It is a
binary labelling problem that consists in attributing to each pixel or site s = (z,y) of image S at
time ¢ one of the two labels: [y = a if s belongs to a moving area, [; = b if s belongs to the static
background.

With the assumptions of quasi-constant illumination (very small lighting variations between ¢ — 1
and t) and static camera, motion information is closely related to temporal changes of the intensity
function I4(t). Therefore, observations are given by:

05 = |I,(t) = I,(t = 1)] (1)

The following notation is used: | = {l;,s € S} and 0 = {05,5 € S} represent one particular
realisation at time ¢ of the label and observation fields L and O, respectively®.

Given a realisation o of field O, the aim is to find the most probable configuration [ of field
L. This is done by using the Maximum A Posteriori criterion (MAP). From Bayes theorem and
the equivalence between MRF and Gibbs distribution, it is known that the maximisation of the a
posteriori probability is equivalent to the minimisation of an energy function [9]:

max P(L=1|0=o0) <:>mlin U(l,o). (2)

2.2 Energy Functions

The energy function is classically the sum of two terms (corresponding to prior knowledge and data-
link, respectively):

U(l,0) = Un(l) + Uy(o,1). (3)

The model energy Uy, ([) is a regularisation term. It puts a priori constraints (spatiotemporal homo-
geneity) on the masks of moving objects, erasing isolated points due to noise. Its expression is given
by:

Um(l) = Z Vc(lsaln) (4)

ceC

where ¢ denotes any of the binary cliques defined in the neighbourhood of Fig. 1-a. A binary clique

SEvery time the instant considered is different from the current time ¢, a temporal index will be added in the notation.
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Figure 1: a) Neighbourhood and binary cliques. b) Separable algorithm block diagram (I° denotes a
coarse estimate or initialisation of label field L).

¢ = (s,n) is any pair of distinct sites in the neighbourhood, including the current pixel s and any of
the neighbours n. C'is the set of all cliques. V,(Is,[,) is an elementary potential function associated
with each clique ¢ = (s,n). In order to put homogeneity constraints into the model, it is defined as:

=B il =1,

where the positive parameter 8 depends on the nature of the clique: a parameter (3, is defined for
spatial cliques, a parameter 3, for past temporal clique and a parameter 3; for future temporal clique.

The link between labels and observations is expressed by the relationship: oy = ¥(ls) + g5 where
g is a Gaussian uncorrelated centered noise with variance o? and:

wwz{o S ()

a >0 otherwise.

U models the observations: if a pixel is static, no temporal change occurs in the intensity function and
the observation should be zero; if a pixel is mobile, a change occurs and the observation is supposed
to take a positive value close to «, which represents the average value of non-zero observations.

The link-to-data energy U,(o,!) (attachment energy) is derived from the above function:

Ua(o,1) = 55 Ylos = W(0,)P (7
s€S

2

where the observation variance o is evaluated on-line for each image.

2.3 Spatial Deterministic Relaxation

Fig. 1-b shows the block diagram of the separable algorithm. The algorithm works on three con-
secutive frames. Suppose the past label field [;_; has been determined as the result of the previous
optimization. The current label field is initialised with a binary map [{ derived from observation
field o;, and a coarse estimate [ ; of the future label field is also derived from binarisation of field
ot+1. The binary maps are obtained with the likelihood method proposed in [10], but could also be
computed with a simple thresholding method, for computation savings purpose.

To find the minimum of the energy function, the deterministic relaxation algorithm ICM (Iterated
Conditional Modes) is used [2]. For each pixel s of the current image, the two labels a and b are
tested and the label which induces the minimum local energy in the neighbourhood is kept. The
process iterates over the image until convergence, one iteration corresponding to the scanning in z
and y dimensions of the image at time ¢. The stopping criterion for convergence of the relaxation is



based on the relative decrease of the global energy function: AU(l,0) / U(l,0) = 0.01%. Then, the
next image of the sequence is processed.

Note that, since the algorithm works with three frames, label fields are obtained with a delay of
one frame.

2.4 Parameter Setting

The separable algorithm depends on five parameters: four parameters for MRF modelling (s, 87, Bp, @)
plus one threshold parameter 6 for binarisation of observations. From various experiments both on
real-world and synthetic image sequences, the model parameters are fixed to the following values:
Bs = 20, By = 10, By = 30, = 10. This manual learning phase for parameter tuning was based on
empirical observations: contextual homogeneity of detected masks, good agreement between contours
of masks and actual moving objects, and insensitivity to acquisition noise. Unsupervised estima-
tion methods, like Expectation-Maximisation [7], could also be used to estimate model parameters
Bs,Bf, Bp. But they are prohibitive in terms of computation cost. Morevover high precision in the
determination of these values is not required (robustness of MRF method insensitive to a slight change
of these values). Parameter 35 controls spatial homogeneity and may be decreased in case of very
noisy sequences. Parameters 8y and (3, control temporal homogeneity. More weight is given to the
future by taking 3y > f,, so that the background area which has been uncovered during motion is
faster eliminated. Indeed, in such a region, the past temporal neighbour is a-labelled while the future
one is b-labelled. But the good label is the static one (I = b), given by the future information. Note
that temporal homogeneity constraint can be relaxed in case of fast motion.

Parameter a stands for some kind of average value of non-zero observations. This parameter may
either be computed on-line for each image as explained in [3], or fixed to an arbitrary value before
processing. From experimental tests, on-line computation of « for each image does not significantly
improve motion detection results.

The threshold 6 required for binarisation (computation of initial binary maps with a method
derived from [10]) is the only parameter which must be adjusted for each sequence. Here, it is
determined manually (off-line learning phase at the beginning of video acquisition or before running
the automatic processing). One could use likelihood tests such as described in [10, 1] to determine
this decision threshold automatically, but at the expense of computation cost. A too low value of
f induces many false detections. A too high value of # erases moving pixels in overlapping motion
areas. For all sequences acquired with the same camera under the same lighting conditions, the same
value of # may be kept (e.g. 6 = 32 for all street sequences presented in this paper).

2.5 Computational Complexity

The processing rate is evaluated in the case of images of size 128 x 128. When implemented on
a Sparc-10 workstation with C programming, the processing of an image takes about 1.8s of cpu
time (= 0.4s per iteration). This corresponds roughly to Ng x N, x N, x N; = 2.5 107 elementary
operations. Ny = 400 is the number of elementary operations (additions, multiplications, conditional
tests) involved in the computation of the local energy associated with each pixel (1 multiplication =
10 additions). N, = 128 and N, = 128 represent the image dimensions and N; = 4 is the average
number of iterations until convergence.

To achieve real-time processing, various hardware implementations (on parallel SIMD machine,
DSP board, or cellular VLSI analog network) have been either developped or simulated [6, 8]. A
processing rate of 12 to 25 frames per second is then achieved. Another implementation on a Pro-
grammable Video Processor (PVP) for telecommunication applications is now under study. The PVP
is an intensive computing unit with a parallel SIMD architecture (8 sub-processors connected to a
shared memory of 16 Kbytes) and seven I/0 ports for data flow circulation. It offers a high computing
power (2 Gops) with a high I/O rate (4 Gbits/s). For images of size 256 x 256 and a clock frequency



of 70 MHz, a processing rate of 150 frames/s is obtained when implementing the algorithm on the
PVP software simulator.
2.6 Experimental Results

The separable algorithm was tested both on synthetic and real-world image sequences. A typical
example for video-surveillance application (traffic control) is shown in Fig. 2. This street sequence,
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Figure 2: Top) Street sequence with a moving pedestrian; Bottom) Masks of the moving body detected
after relaxation (black = moving label, white = static label).

acquired with a standard video camera, contains a single pedestrian walking on the pavement. The
image sequence is not very noisy and motion of the pedestrian is large enough between two images,
allowing a good detection. The mask of the moving body detected in the image plane is given at four
consecutive instants.

3 3-D Non Separable MRF Model

3.1 Spatiotemporal Relaxation

Although the separable algorithm integrates motion information from three consecutive frames, only
the current frame is processed at each time (Fig. 1-b). The 3-D non separable model for motion
detection is based on the intuitive idea that, by taking into account more than three consecutive
frames of the sequence, the analysis of motion may be improved. Therefore, the video sequence is no
longer considered as an image series but as a 3-D data batch. L and O are now 3-D random fields
(or volumes).

To find the minimum of the energy function, a spatiotemporal version of ICM is required. The key
point is that, at each iteration, the relaxation runs over temporal sections of length N; (Fig. 3). The
scanning is done not only in spatial dimensions (z,y) at a given time ¢, but in the three dimensions
(z,y,t) together. It is performed back-and-forth spatially and temporally. One iteration corresponds
to the scanning of a whole temporal section. All frames of the temporal section are processed together.
After convergence of ICM, labels of all pixels included in that section are available.

All along the paper, we refer to the 3-D non-separable motion detection algorithm as ”the 3-D
algorithm”.

3.2 A Priori Model

The mathematical framework of MRF modelling remains the same. The relationships of section
2 still hold, since there is no restriction about the dimensions of fields L and O. However, fields
L and O are now supposed to be spatiotemporal 3-D random fields, bringing about the following
changes: in Eq. (7), S represents now a temporal section of N; images, instead of a single image.
The neighbourhood structure associated with L is now a complete spatiotemporal cube (Fig. 4), and
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Figure 3: Temporal section of length Nj.

B—O : spatid clique

M : current pixel s

O: aneighbour n W—-—O: temporal clique

| O: spatiotemporal clique

Figure 4: 3-D neighbourhood and binary cliques.



clique parameters (3 in Eq. (5)) have to be redefined as functions of sites: §(s,n). Moreover, a weight
parameter A is added in the global energy function for balancing U,,(I) and U,(o,!) influences in this
extended neighbourhood:

U(l,0) = Un(l) + A Ua(0,1). (8)

We suppose that the proposed neighbourhood contains all the dependencies of pixel s. This is the
simplest 3-D neighbourhood. One could increase in space and time the size of the neighbourhood,
but at the expense of computation cost. In this spatiotemporal neighbourhood, three kinds of binary
cliques are defined: spatial, temporal and spatiotemporal (Fig. 5). They differ according to their

-
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Figure 5: The three types of binary cliques.

spatial and temporal extent (along the z,y and ¢ axis, respectively). Let d,, d,,0; represent in the

3-D space (z,y,t) the coordinates of vector (s,n) corresponding to a clique with origin in the current
pixel s (0 € {—1;0;1}). Then we get: eight purely spatial cliques (horizontal (6, = +1, ¢, = 0,
0 = 0), or vertical (§, =0, §, = £1, § = 0), or diagonal (J, = %1, 6, = £1, 6; = 0)); two purely
temporal cliques (6, = 0, §, = 0, §; = £1); sixteen spatiotemporal cliques ((d, = £1, §, =0, §; = +1)
or (0, =0, 6, = %1, § = £1) or (6, = %1, §, = +1, §; = £1)).

For the definition of clique potentials in Eq. (5), a spatial parameter 5 is used to control spatial
homogeneity (no distinction is made between z and y) and a temporal parameter §; for homogeneity
in temporal dimension. This is a simple way to take into account the non-homogeneity between space
and time. Note that no more distinction is made between past and future, since the 3-D algorithm
will propagate information forward and backward in time and allow to change a decision taken in
the past, especially as regards uncovered areas, thanks to the spatiotemporal nature of iterations (see
comments in section 3.5).

All clique potentials are defined with these two parameters, according to the physical principle
that interaction with the current pixel gets weaker when the neighbour is far. Here, interaction is
assumed to be inversely proportional to the squared distance between sites in the cube. Thus, the
actual potential 3(s,n) associated with a clique ¢ = (s,n) is defined by the following expression:

1
/8(87 n) = i (9)

where d(s,n) = /02 + 07 + 62 is the Euclidian distance between the current pixel s and the considered
neighbour n. This relationship gives:

e [((s,n) = f, for spatial horizontal or vertical cliques (d(s,n) = 1);



e [(s,n) = % for spatial diagonal cliques (d(s,n) = v/2);
e (3(s,n) = p; for temporal cliques (d(s,n) = 1);

e 3(s,n) = % for spatiotemporal horizontal or vertical cliques (d(s,n) = v/2);

e (B(s,n) = % for spatiotemporal diagonal cliques (d(s,n) = v/3).

3.3 Parameter Setting

Four model parameters are required: B = 20, f; = 5, a = 15 and A = 5. These values were
determined experimentally (as in the separable model). We choose in practice 85 > ; to give more
importance to spatial homogeneity which is supposed to be more reliable than temporal homogeneity
(especially true in the case of non-deformable objects undergoing arbitrary motion).

Parameter A controls the influence of both terms of energy. If it is necessary to reinforce a priori
constraints (because of bad observations for example), A should be decreased. If it is necessary to
reinforce the link to data, A should be increased.

The specification of neighbourhood and clique potentials entirely defines the MRF model, so that
actual values of Ny, N, or Ny do not influence the modelling. Different values of N; were tested. The
default value is Ny = 8. It may be decreased when spatiotemporal homogeneity constraint is broken
(fast motion) and it may be increased for very noisy sequences. Still, at least N; = 5 images per
section are required because of temporal boundary effects (first and last images of a section are not
processed because of the lack of past and future neighbours, respectively).

3.4 Computational Complexity

At first sight, the computational complexity of the 3-D algorithm may be a bottleneck. In prac-
tice, handling a video sequence as a 3-D data batch does not drastically increase the global com-
putation time compared to a serial processing image per image. On a Sparc-10 workstation with
C-programming, 4s of cpu-time per image of size 128 x 128 are necessary to detect motion. The
increase of computation cost comes primarily from the increased number of iterations required until
convergence (10 iterations on average instead of 4), the stopping criterion remaining the same as in
section 2.3. The neighbourhood extension (26 neighbours instead of 10) does not induce a major
extra computing charge.

On the other hand, the delay required before obtaining motion detection results may be crucial.
Since the 3-D algorithm runs on temporal sections of length Ny, all motion masks of a section are
available at the same time, when the processing of the whole section is completed. In order to limit
both the delay and the required memory for software implementation, N; should be small (anyway
much lower than the actual length of any video sequence).

Therefore, a long sequence should be processed recursively, by cutting it into smaller temporal
sections. Fig. 6 illustrates the recursive process with Ny = 5. The 3-D algorithm runs in space and
time on the first section of five images: images t — 2, ¢ — 1 and ¢ are processed together (section 1);
then it runs on the second section of five images: images t — 1, ¢t and ¢t 4+ 1 are processed, with initial
label fields 1?_;, I? given by results of section 1, etc...

Every time, one new image is stored and only 5 successive frames stay in memory. When image
t 4+ 3 is acquired, the final result for image £ may be computed, corresponding to a delay of 120ms
(3 x 40ms for sequences acquired at 25 images per second), which might be acceptable in many
applications (e.g. video-surveillance).

The recursive process does not increase computational complexity. Of course, each label field
is estimated in three consecutive temporal sections. For example, [; is processed when estimating
(ly—2,l4—1,1;) (section 1), (I4—1,ls,l41) (section 2), and (I, l;41,li12) (section 3). But as regards the
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Figure 6: Section-recursive algorithm (N; = 5)

two last estimations (temporal sections 2 and 3), the initial label field I? is more reliable (close to the
final one), so that convergence is faster (fewer iterations are needed).

This recursive version of the algorithm was implemented on a SIMD machine [6]. The parallel
machine is a linear network of 256 elementary processors with 4Kbytes of local memory each. It com-
municates with a host workstation via Ethernet interface. Assembler or C-parallel programming can
be used. Local computations are done in parallel. Data are uniformly distributed among processors.
The processing rate achieved is around 3 to 4 images/second (images of size 128 x 128).

3.5 Experimental Results

Fig. 7 illustrates the efficiency of the 3-D algorithm to recover moving objects in a noisy sequence.
The synthetic sequence contains two moving objects: a clear rectangle which translates rightward (1

Figure 7: From top to bottom: 1) Synthetic sequence with impulse noise; 2) Initial binary maps
(0 = 20); 3) Masks detected after spatial relaxation (separable algorithm); 4) Masks detected after
spatiotemporal relaxation (3-D algorithm, N; = 8).

pixel/image) and a dark square which translates leftward (1 pixel/image). Shown are the binary masks

detected with the separable and the 3-D algorithms, respectively. One can see that spatiotemporal
relaxation is useful to eliminate bad detection due to noise (isolated points).
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The 3-D algorithm is also more effective in case of overlapping motion. Indeed, information is
propagated both in space and time. The sequence of Fig. 8 contains two moving areas: a group
of three pedestrians walking on the pavement and a bicycle riding leftward on the road. With the

> 3 8
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Figure 8: From top to bottom: 1) Street sequence; 2) Masks detected with separable algorithm; 3)
Masks detected with 3-D algorithm; 4) Contours of masks obtained with the 3-D algorithm, super-
imposed on the image sequence.

separable algorithm, the pedestrians mask is only partially recovered because of a lack of information
in the overlapping motion area. The separable algorithm implies causal processing and does not allow
to back-propagate spatiotemporal constraints in time and to change a decision taken in the past. The
3-D algorithm, in contrary, makes it possible to back-propagate information in time and to fully
recover the pedestrians mask for each image of the sequence. In the bottom of Fig. 8, the precision
of the masks in terms of contours is shown: the upper mask corresponds to the group of pedestrians,
while the lower mask corresponds to the bicycle.

4 Spatiotemporal Multiresolution Framework

Both versions of the algorithm (separable and 3-D) yield poor results in case of uniform intensity
moving areas or subpixel motion. In such cases, although objects are moving, temporal variations of
the intensity function are almost zero (observations of poor quality). To solve this problem, the 3-D
algorithm is run on a spatiotemporal pyramid of data with a coarse-to-fine strategy. Spatial filtering
is a common way to deal with large uniform intensity moving areas. Temporal filtering is effective in
order to deal with subpixel motion.

Multiresolution may also improve the initialisation step for spatiotemporal relaxation. Indeed it
has been conjectured that multiresolution analysis smoothes the energy function [11], making it easier
to find the global minimum. This may be crucial when a deterministic relaxation algorithm like ICM
is used, since it may get stuck in the first encountered local minimum of the energy function in case
of bad initialisation.

4.1 Spatiotemporal Low-Pass Pyramid

The spatiotemporal structure of the 3-D MRF model suggests to build not only a spatial but a
spatiotemporal pyramid. The basic convolution kernel is the binomial low-pass filter £ [1 2 1] which is

11



applied in the three dimensions z,y and ¢. This gives the 3-D convolution kernel of Fig. 9-a. Inspired
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Figure 9: a) Spatiotemporal filter convolution kernel. b) Pyramid building process (the superscript
k denotes the resolution level).

by Burt’s spatial pyramid [4], this kernel, associated with a spatiotemporal subsampling, is used to
build a spatiotemporal pyramid (Fig. 9-b). Note that frames after filtering and before subsampling
are less corrupted by noise than frames after filtering and subsampling. An example of spatiotemporal
pyramid with three resolution levels is shown in Fig. 10. Spatiotemporal subsampling reduces the

Figure 10: Spatiotemporal pyramid: original sequence in top row, and the three spatiotemporal levels
below (k =0,1,2).

size of each image by a factor of 4 and the length of the sequence by a factor of 2 at each resolution
level.

The 3-D algorithm is run at each level of the spatiotemporal low-pass pyramid. The strategy
is coarse-to-fine: the algorithm starts at the lowest resolution level (kpq;). After spatiotemporal
interpolation (Fig. 11), the result of relaxation at level & is used to initialise relaxation at level k£ — 1.
Running the algorithm on this pyramid gives a multiresolution label field. At each level, the label
field is optimised according to observations at the corresponding level in the spatiotemporal pyramid
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Figure 12: Spatiotemporal multiresolution scheme.

The optimal number of levels for the pyramid (k,.,;) depends on the size and speed of moving
objects: to detect very slow motion, k., should be increased. If the scene contains very small moving
objects, kpmqy should be decreased. The default value is k4, = 2 (three resolution levels).

4.2 Pyramid of Observations

The spatiotemporal filtering integrates motion information over a larger spatial and temporal domain,
so that observations at low resolution levels are more relevant in case of subpixel motion and uni-
form moving areas. Spatial filtering improves observations for poorly-textured areas, while temporal
filtering on many consecutive frames improves observations in case of subpixel motion.

Fig. 13 exhibits the quality of observations, computed both with mono- and multiresolution
schemes, for the well-known Trevor sequence. This sequence represents the motion of a TV speaker.
Motion between two consecutive frames is very slow (subpixel motion) and many areas of the shirt,
head and hands are poorly-textured. The figure presents the multiresolution observations at three
resolution levels. The darker the pixel, the larger the corresponding observation. Multiresolution
observations are clearly more consistant than monoresolution observations in that case.

4.3 Parameter Adaptation

Parameters of the algorithm are adapted along the pyramid as explained below.

First, the evolution of observations along the pyramid has been investigated in order to adapt pa-
rameter « at each resolution level. Of course, low-pass filtering reduces the amplitude of observations.
Let us focus on a pixel s at a motion transition, as shown in Fig. 14 (vertical edge moving rightward
at a speed of 1 pixel/frame). After spatiotemporal filtering, the amplitude of observation is divided
by a factor % ~ 3 (obvious computation with the 3-D convolution kernel of Fig. 9-a). Therefore
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Figure 13: From top to bottom: 1) Four consecutive images of Trevor Sequence; 2) Monoresolu-
tion observations; 3) Multiresolution observations, 3 resolution levels (k = 0,1,2). All displays are
normalised in order to span over the full available dynamic range [0; 255].

’

observations

- J

Figure 14: Evolution of observation after spatiotemporal filtering: typical case of a vertical edge
moving rightward. I;(t—1) = Iy, I;(t) = Iy+AT and I4(t+1) = I+ AI. AT represents the amplitude
of step observed at pixel s. Before 3-D spatiotemporal filtering: os = |Is(t) — Is(t — 1)| = |AI|. After
spatiotemporal filtering: o; = g7 (4|AI| + 16|AI| + 4|AI|) = 3|AT|.
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parameter ¢, which stands for the average value of non-zero observations, has to be reduced in the
same proportion along the pyramid, i.e. oy, = ap/3¥. Since observations decrease by a factor of about
3, the observation variance o2 decreases by a factor of about 9, so that the ratio in Eq. (7) remains
constant.

Secondly, since spatial and temporal information are integrated in the same way along the pyramid,
the parameter ratio (s/f; is kept constant for all resolution levels.

Thirdly, from a qualitative point of view, spatiotemporal interactions should get weaker at low
resolution levels, since two neighbouring pixels are actually far away in the full-resolution image
sequence. The evolution of potentials $(s,n) should be related to the physical distance between
pixels in a square grid. This can also be stated from a quantitative point of view: at each resolution
level, the physical distance d(s,n) between two pixels is actually doubled because of subsampling.
This leads to a decrease of 4 for clique potentials 3(s,n) in Eq. (9). For computational simplicity,
this evolution law is simply implemented by adapting the weight factor \; as follows: X\, = 4% ).
The global energy is then: U(l,0) = Uy, (1) + A\, Ua(o,1).

Finally, parameter 6 does not need to be adapted along the pyramid, since the binarisation method
derived from [10] (and hence parameter €) is only used for label initialisation at the lowest resolution
level kpq.- At finer resolution levels, initialisation is simply performed by interpolating the results
of lower resolution levels, with no need of #. But compared to the monoresolution scheme, # must
be increased when multiresolution is used (experimental observation). The theoretical explanation of
the necessary increase of # with multiresolution level is the influence of data low-pass filtering on the
method given in [10] for setting the threshold value.

4.4 Computational Complexity

The building of the pyramid is not computationally expensive: since the 3-D convolution kernel of
Fig. 9-a is separable, the implementation of the spatiotemporal filtering is equivalent to the imple-
mentation of three 1-D binomial filters in z, y and ¢ dimensions, respectively.

The relaxation at low resolution levels is quick due to the smaller number of sites and therefore
Markovian constraints are propagated faster. Compared with the full-resolution level k = 0, the data
flow to be processed at level £ = 1 is reduced by a factor of 8 (N, Ny, N; decrease each by a factor
of 2). Thus, one iteration at resolution level & is equivalent (in terms of computation cost) to 1/2%*
iterations at the finest resolution level (k = 0).

Then, at higher (finer) resolution levels, fewer iterations are needed compared to a monoresolution
scheme, because of a better initialisation propagated from lower resolution levels. So, multiresolution
usually reduces the overall number of iterations.

The computation time has been recorded experimentally for many sequences. The same stopping
criterion as in section 2.3 was used. In fact, the multiresolution spatiotemporal algorithm does not
drastically speed up the processing rate. So the main interest of the multiresolution framework here is
the improved performance for detecting subpixel motion and poorly-textured moving areas as shown
in next section, but not computation savings.

4.5 Experimental Results

Fig. 15 presents the masks detected in a case of subpixel motion with both versions (mono- and
multiresolution) of the 3-D algorithm. The synthetic scene contains three mobile objects: a clear
rectangle moving rightward (1 pixel/frame), a dark square moving leftward (1 pixel/frame) and an-
other square on the left moving slowly upwards (0.35 pixel/frame). With the 3-D monoresolution
algorithm, the slowest square is badly detected. With the multiresolution version of the algorithm,
this square is well detected, starting from the second resolution level.

Fig. 16 presents the masks detected for the Trevor sequence with both versions (mono- and
multiresolution) of the 3-D algorithm. Monoresolution masks are very fragmented, since speaker’s
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Figure 15: From top to bottom: 1) Synthetic sequence with the lower-left dark square undergoing
subpixel motion; 2) Monoresolution masks; 3) Multiresolution masks (2 levels : £ =0,1).

motion is very slow and the scene contains many poorly-textured areas (hands, shirt, head). On the
contrary, multiresolution masks are spatially and temporally homogeneous. The whole body is fully
detected, starting from the third resolution level (k = 2).

5 Lip Segmentation

The proposed approach was also applied to lip segmentation in color image sequences, for audiovisual
communication between two speakers. Fig. 17 shows the context of application for a high quality
and low bit rate videophone. It can also be used for man-machine communication (automatic speech
recognition) or videoconferencing.

The speaker wears a light helmet equipped with a micro-camera and a microphone, so that the
camera, is fixed with respect to the head. The segmentation is based on the assumption that lips are
areas in the face were red hue and motion predominate.

The main steps of the processing are as follows (details may be found in [12]). First, a color video
sequence of speaker’s face is acquired under natural lighting conditions and without any particular
make-up. A logarithmic color transform is performed from RGB (red, green, blue) to HIS (hue,
intensity, saturation) color space, in order to gain independence from illumination brightness and
noise.

Then, two observations are derived. The first observation is computed from the hue value at each
pixel: it gives information about areas where red hue is most prominent. The second observation is
the same as in Eq. (1): frame differences between two consecutive images. It gives information about
motion areas.

From these two thresholded observations, four initial labels (ag, a1, by, b1) are derived, for coding
four pixel classes: pixels with (1), respectively without (p) motion, belonging (a), respectively not
belonging (b), to red hue areas.

The spatiotemporal MRF approach is then used for regularizing the solution. Some changes were
introduced in the model presented in section 3.2, in order to take into account better the a priori
knowledge available for this specific application (lip shape and motion). Namely, the spatiotemporal
potential function (s, n) is now inversely proportional to the Euclidian distance (and not the squared
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Figure 16: From top to bottom: 1) Four images of Trevor sequence; 2) Monoresolution masks; 3)

Multiresolution masks (3 levels : £ =0,1,2).
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Figure 17: Context of audiovisual communication: from the image sequence of speaker’s face, geo-
metrical features of lips are extracted and provide modelling parameters for talking face synthesis

and animation.
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distance) between two neighbours. As in section 3.2, the distance integrates two elementary potentials
Bs and By as scaling factors. But for this application, we force some spatial anisotropy: 3, = 2.8y = s
in order to put emphasize on horizontal configurations (geometrical constraints on lip shape). This

yields:
1 Bs Bt

J &)+ () +( \/5t (32 +462) + 6207
Moreover, in contrary to section 3.2, parameters ﬂs and (; are not constant, but depend on the labels
taken by sites s and n. They are defined to constrain the model to, respectively, spatial homogeneity
of labels, and temporal homogeneity of hue when no motion is detected. For example, Bs(ls,1,) is
proportional to: |r(s) —r(n)|+ |m(s) — m(n)|, where r(s) and m(s) are binary digits (0 or 1) coding
the presence at pixel s of red hue and motion, respectively. For the definition of 5;(ls,1,), see Table
3 in [12].

With this modelling, one obtains robust label fields after relaxation, exhibiting areas in the face
where red hue and motion are predominant (Fig. 18).

(10)

ﬂ(san) =

v ¢ v @ ©

Figure 18: From top to bottom: 1) Sequence of luminance images: male face without make-up; 2)
Initial label fields; 3) Final label fields after relaxation: the four labels are shown in gray levels (from
white to black: by, a1, by, ag); 4) Sequence of lip masks (combination of ay and ay).

From the final label field, a region of interest is determined automatically (mouth bounding box
in Fig. 19). Measurements of geometrical features are performed on lip masks (height and width,

< =

Figure 19: Top) Sequence of luminance images: female face with soft red make-up; Bottom) Sequence
of lip masks with bounding box superimposed on the luminance.

surface), and used for face synthesis at the receiver’s end.

The proposed method for lip segmentation solves two crucial problems that usually arise in such
a context: indeed, the processing gains independence both from lighting conditions and make-up of
lips. This is due both to the use of the logarithmic color transform, and to the robust spatiotemporal
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MRF model which is effective for detecting the elusive contours of lips and recovering homogeneous
lip areas.

A parallel implementation of this algorithm on a Programmable Video Processor is under study.
The achievable processing rate is estimated to be 13 images/s for images of size 256 x 256.

6 Discussion

A spatiotemporal strategy for image sequence analysis was presented, and applied successfully to
motion detection and lip segmentation in a Markovian framework. It primarily consists in processing
a video sequence as a 3-D data batch.

With such an approach, improved performance is reported for motion detection in case of noisy
sequences and in case of overlapping motion.

A 3-D spatiotemporal multiresolution scheme coherent with the 3-D MRF is also proposed. This
multiresolution approach is efficient to handle two difficult cases: subpixel motion and poorly-textured
moving areas. But in case of very fast motion, the multiresolution algorithm yields worse results than
the monoresolution version. This is due to the fact that temporal filtering induces an averaging of
motion information over many images, so that it is no longer possible to precisely detect motion
boundaries. As a result, motion masks are bigger than actual moving objects. Spatial multiresolution
without temporal multiresolution would be beneficial in that case, since it allows to spatially linearize
intensity without temporal blurring. Mono- and multiresolution algorithms being complementary,
it would be interesting to develop a strategy for switching automatically between both versions of
the algorithm according to the analysed sequence. Moreover, the multiresolution pyramid involves
3-D low-pass filtering. In order to limit the blurring effect, the use of 3-D wavelets (3-D orthogonal
high-pass and low-pass filter banks) could be considered.

The second application reported here concerns speaker’s lip segmentation in a color video sequence.
The interest of the spatiotemporal method, together with a logarithmic color transform, is supported
by the good quality of results obtained in this challenging situation (natural images of speaker’s face
without any particular make-up or lighting).

The spatiotemporal approach has also been used to compute spatiotemporal gradients with spline
functions (results not reported here). The implementation involves 3-D recursive filterings. Thus, we
do believe it could also be applied with success to optical flow estimation.
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