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Trapping energy of a spherical particle on a curved liquid interface

Joseph Léandri and Alois Wiirger
LOMA, Université de Bordeauxr & CNRS, 351 cours de la Libération, 33405 Talence, France

We derive the trapping energy of a colloidal particle at a liquid interface with contact angle 6 and
principal curvatures c¢1 and ce. The boundary conditions at the particle surface are significantly
simplified by introducing the shift € of its vertical position. We discuss the undulating contact line
and the curvature-induced lateral forces for a single particle and a pair of nearby particles. The
single-particle trapping energy is found to increase with the square of the mean curvature ci + c2
and to decrease with the square of the anisotropy ci — ca. Thus particles on a minimal surface
(c1 + c2 = 0) move toward strongly curved regions, whereas on a deformed droplet they migrate to

flatter areas.

PACS numbers:

I. INTRODUCTION

Colloidal particles trapped at a liquid phase boundary
are subject to capillary forces which induce pattern for-
mation and directed motion [1-3], and contribute to sta-
bilize Pickering emulsions and particle aggregates [4, 5].
Such microstructures affect the mechanical and flow be-
havior of liquid and gel phases [6], which in turn are rel-
evant for material properties and biotechnological appli-
cations [7]. In many instances, the particles are trapped
at curved liquid interfaces; rather surprisingly, even for
spherical particles the influence of curvature on capillary
forces is not fully understood at present.

At a flat interface, capillary phenomena arise from nor-
mal forces induced by the particle’s weight or charge, or
from geometrical constraints due to its shape [8, 9]. As a
simple example, an oat grain floating on a cup of milk is
surrounded by a meniscus that results from the its weight
and buoyancy; the superposition of the dimples of nearby
grains reduces the surface energy and thus causes aggre-
gation. Charged beads exert electric stress on the inter-
face. The meniscus overlap of nearby particles causes
a repulsive electrocapillary potential [10, 11], whereas
beyond the superposition approximation, a significantly
larger attractive term is found [12, 13]. In the absence
of gravity and electric forces, capillary phenomena still
occur for non-spherical particles: A capillary quadrupole
may arise from surface irregularities [14], pinning of the
contact line [15], and for ellipsoids [16-19], and favors the
formation of clusters with strong orientational order.

A more complex situation occurs for interfaces with
principal curvatures ¢; and co. The superposition of the
weight-induced meniscus and the intrinsic curvature re-
sults in a coupling energy that is linear in the mean cur-
vature H = c¢; + co. Its spatial variation gives rise to a
lateral force that drags a colloidal sphere along the cur-
vature gradient [20, 21]. Non-spherical particles interact
through their capillary quadrupole with the curvature
difference d¢ = ¢1 — ¢, and thus experience both a torque
and lateral force [22]. The latter is well known from
the locomotion of meniscus-climbing insects and larvae,
which bend their body according to the local curvature
such that the capillary energy overcomes gravity [23, 24];

FIG. 1: Three-phase boundary of a spherical particle at a
liquid interface with curvatures co = —%cl. The contact line
is not a circle but undulates in space.

through a similar effect, ellipsoidal particles prevent ring
formation of drying coffee stains [25, 26]. A recent exper-
iment on micro-rods trapped at a water-oil meniscus il-
lustrates both rotational and translational motion driven
by curvature [3].

In this paper, we evaluate the geometrical part of the
trapping energy of a spherical particle on a curved in-
terface; thus we consider only terms that arise from the
interface profile but are independent of body forces such
as weight and buoyancy. Previous papers considered lim-
iting cases such as a minimal surface (H = 0) [27], a
spherical droplet (dc = 0) [28, 29], or a cylindrical in-
terface (H = dc¢) [30]; yet a comprehensive picture is
missing so far. Here we treat the general case where
both H and dc are finite, and obtain the trapping energy
in a controlled approximation to quadratic order in the
curvature parameters.

As an original feature of the formal apparatus, we in-
troduce the curvature-induced shift ¢ of the vertical par-
ticle position as an adjustable parameter, in addition to
the amplitude &, of the quadrupolar interface deforma-
tion. As a main advantage, the boundary conditions at
the contact line separate in two independent equations
for € and &,, which are readily solved and provide a sim-
ple physical picture for the effects of the two curvature
parameters.



The paper is organized as follows. Section 2 gives a
detailed derivation of the trapping energy as a function
of the parameters H and dc, and the unknowns ¢ and
&,. In Section 3, we impose Young’s law at the three-
phase boundary, and determine € and &, as a function
of curvature. In Section 4 we compare the trapping en-
ergy with previous work, and discuss the contact line and
curvature-induced forces. Section 5 contains a brief sum-
mary.

II. TRAPPING ENERGY

Here we derive the expression for the trapping en-
ergy and then evaluate it explicitly to quadratic order
in the curvatures. First consider a particle dispersed in
the liquid phase with the smaller surface tension 7,, =
min(7;,7,). The total energy vSo+,,4ma? accounts for
the interface area Sy and for the particle surface 4ma?, as
illustrated in Fig. 2a.

A particle approaching the interface gets trapped if
the surface tensions satisfy the inequality |y, — 5| <
~. Imposing local mechanical equilibrium relates these
parameters to the contact angle 6 at the three-phase line
in terms of Young’s law

Y1 — 72 = ycosb. (1)

The situation shown in Fig. 2 corresponds to v,, = 7v,,
that is, a contact angle § < 5. The total energy consists
of the particle segments in contact with the two phases,
v151 + 7252, plus a term S proportional to the area of
the liquid interface.

The trapping potential is given by the energy difference
of these two situations,

E = 7,51 + 7382 + 7S — 7Sy — v dma’. (2)

As illustrated in Fig. 2b, S is smaller than the unper-
turbed area Sp. Since Young’s law needs to be satisfied
everywhere along the three-phase contact line, S may
show a significantly more complex profile than Sy.

A. Flat interface H =0 = dc

We briefly recall the well-known results for zero curva-
ture wy = 0, where both Sy and S are flat [1]. Then the
area of the liquid interface is reduced by

S — Sy = —mrg,
and the segments of the particle surface read
Sy = 2ma® + 2maz.

S, = 2ma? — 2mazo,

Here and in the following we use the vertical and radial
coordinates of the contact line,

zp =acosf, rog=asind,
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FIG. 2: Surface and interface areas contributing to the trap-
ping energy in Eq. (2). The upper liquid is labelled “1” and
the lower “2”. a) The particle is in the phase of lower surface
energy (here v, < 7;); the liquid interface of area Sp is de-
scribed by (4). b) Trapped state. The presence of the particle
reduces the area of the liquid phase boundary to the value S
and deforms its profile. The surface areas Si and Sz are in
contact with the two liquid phases. Note that the figure shows
one vertical section of the interface; both Sy and S undulate
when rotating about the vertical axis.

as illustrated in the left panel of Fig. 3. With Young’s
law one finds for a flat interface [1],

Ey = —ma?y(1 — | cos6])?. (3)

The trapping energy vanishes for contact angles 8 = 0
and 0 = . For |y, —75| > v Young’s law has no solution,
meaning that there is no stable trapped state.

B. Finite curvature

The profile of a curved interface in Monge representa-
tion reads as wo = % (c1u? + c2v?), with the coordinates
u and v along the local principal curvature axes. For later
convenience we transform to polar coordinates; inserting
u = rcos ¢ and v = rsin g, resulting in

r2

wy (ry9) = 1 (H + dc cos(2¢)). 4)

The axes are chosen such that both H and dc are positive.



The unperturbed interface profile wq is related to the
pressure difference P and the tension v, according to the
Young-Laplace equation

V2w + P/y =0, (5)

where V is the 2D gradient in the u — v-plane. Ex-
perimentally a curved interface is realized by applying
body forces, hydrostatic pressure, or appropriate bound-
ary conditions.

The quadratic form (4) provides a good approximation
at distances within the curvature radius

R=2/vH?+0c2.

In the case of a spatially varying curvature, the para-
meters H and dc change in general on the scale of the
curvature radius. Like previous papers, the present work
relies on the separation of length scales, assuming that
the characteristic length of the deformation induced by a
colloidal particle of size a, is much larger than that of the
unperturbed interface, R. All approximate formulae of
the present paper can be cast in the form of a truncated
series in powers of 1/R, and the trapping energy derived
below is exact to quadratic order.

C. Interface area

Now we add a colloidal particle to the interface (4).
Because of the undulating contact line, Young’s law can-
not be satisfied along the intersection of wg(r, ¢) and the
spherical bead, but requires a modified interface profile

w = wy + &. (6)

The deformation field £ is chosen such that the con-
tact angle 6 is realized everywhere along the three-phase
boundary.

The deformation field £ affects the trapping energy in
two respects: First, it results in a more complex profile
of the liquid interface S, and, second, it modifies the
contact line, that is, the common boundary of S, S7, and
So. We start with the liquid-interface areas S and Sp;
their formally exact expressions depend on Vw and Vwy,
respectively [27]. The unperturbed interface profile (4)
relies on the small-gradient approximation |Vwy| < 1 in
the vicinity of the particle. Accordingly, we truncate at
quadratic order in Vw and Vwy, and find for the change
of interface area

S-Sy = %/IdA ((Vw)? = (Vuo)?) —/IdA%

/PdA (1 + % (Vw0)2> . (7)

The first integral accounts for the change of area of the
deformed interface, the second one for the work done by
the Laplace pressure P, and the third one for the area

occupied by the particle. Projection on the tangential
plane defines the parameter domains Z and P, and their
boundary 9P corresponds to the projection of the contact
line.

The first integral in (7), over the domain Z, is evalu-
ated according to the usual procedure [27]: Integrating
by parts and inserting w = wqo + &, we find a line integral
along 0P that is given below, and the surface integral of
—%£V2§ — £V2wg. The latter term cancels the Laplace
pressure according to (5). Minimizing the former with
respect to &, we find that the deformation satisfies the
equation of a minimal surface

Vi =0. (8)

Regarding the third integral, which runs over the do-
main P, we calculate

2 2

(V)2 = 12 H? +6c” + QCQH(SC7
4

with the shorthand notation C; = cos(2¢). Integrating

the radial part of dA = drrdy, we find

1
S-Sy = _E}[ ds- (V& +2Vuyp) &
P

2 J 7:’2 7’;’4 9 9
—/0 gﬁ(;ﬁ-ﬁ(fl +dc +2C2Héc)),
where 7(¢) is the radial coordinate of the contact line.

The integrand of the first term is of second order in the
curvature-induced deformation field £&. Thus we evaluate
the contour at order zero, replace the gradients with the
radial components 0,.§ + 20,-wg, and use r¢0,wo = 2wWy.
By the same token, in the last term which is quadratic in
the curvatures, we replace the radius of the contact with
its unperturbed expression, (7*) = r§. This gives

S =Sy = —m((rod& + 4iip)E)

) =T (2 sy, ()

where we have introduced the shorthand notation for the
azimutal integral

27
/ dp(..) =2 (..) .
0

The particle segments in contact with the two liquid
phases are given by the vertical coordinate z(¢) of the
contact line with respect to the particle center,

S; = 2ma® — 2ma (Z(p)), (10)
Sy = 2ma® +2ma (Z(¢)) . (11)



FIG. 3: Side view on a sphere trapped at a liquid phase
boundary. The left panel shows a flat interface, where ro =
asinf and zg = a cos @ are the radial and vertical coordinates
of the contact line with respect to the particle center. The
right panel illustrates the case of finite curvature. In a vertical
section of given azimuth, we show both the unperturbed inter-
face wo and the deformed profile w. Two phenomena concur
in order to satisfy Young’s law: The interface profile changes
by € = w — wop, and the particle adjusts its vertical position
by e. Besides its radial coordinate 7, we indicate the vertical
position of the contact line with respect to the tangent plane,
w, and with respect to the particle center, Z = 20 + W + €.
In the case of finite curvature anisotropy dc, the contact line
is not a circle but undulates along the particle surface, as
illustrated by the top view in Fig. 4.

D. Curvature-induced energy

The interface and surface areas give the trapping en-
ergy (2) as a function of the coordinates r and z of the
undulating contact line, which both depend on the az-
imuthal angle . The curvature-induced change of the
vertical position with respect to that on a flat interface
comprises two terms,

T=z20+0+e, (12)

where w accounts for the vertical displacement of the
contact line on the particles surface, and ¢ for the change
in the particle position with respect to the tangential
plane, as illustrated in the right panel of Fig. 3.

Any point at the surface of the sphere satisfies the

condition 72 4+ Z2 = a2, which can be rewritten as

72 =12 =2z (W +¢) — (W+e) (13)

This relation simplifies the second term in (9).

Inserting these expressions in (2) and separating the
terms on a flat interface from the contributions that de-
pend on curvature, we find

E—Ey = —my((rod.& + 4i)€)

+ry (@ +€)%) — wy% (H? 4 6c%) . (14)

Note that the contributions linear in w + ¢ have disap-
peared: The term in S — Sy stemming from (72), exactly
cancels that arising from ;57 + 7,52. The remainder
is of quadratic order in the parameters H and dc, in the
curvature-induced deformation amplitude &, and in ver-
tical shift e of the particle position.

Regarding the deformation field, the general solution of
(8) reads o Inr+ >, &, (ro/r)¥ cos (k). Because of the
twofold symmetry of the source field (4), the quadrupolar
term k = 2 is the only contribution that is linear in the
curvature. Thus we write

& = &, (ro/r)? cos (2¢0) (15)

and discard quadratic and higher-order terms in £. For
notational convenience we rewrite shift and modulation
of the contact line as

Wy = wp + wa cos(2¢p),

with the parameters

1
4

1

wo=<=Hr}, wy= Zécrg. (16)
Inserting these expressions in (14) and performing the

integrals over the azimuthal angle ¢, we obtain

E—Ey = 1€ — 2my€yws
T
ry(wo + €)% + %(wz + &)
—7y (w§ + w3) . (17)

Besides the curvature parameters wg and ws, this energy
depends on two unknown parameters, the deformation
amplitude &, and the vertical shift ¢ of the particle posi-
tion with respect to its value on a flat interface.

In view of their different sign, it is worthwhile to detail
the origin of each contribution to the trapping energy.
The first one, 7r'y§§, gives the deformation energy of the
liquid interface, and the second one, —27y£,ws, accounts
for the coupling of the deformation amplitude £ with the
intrinsic curvature wg. The remainder of (17) arises from
the second integral of the interface area (7), the positive

terms from the “1”, and the negative one from 3 (Vwo)®.

III. YOUNG’S LAW AT THE CONTACT LINE

The quantities £, and ¢ are determined from Young’s
law for the contact angle #, which we write in the form
[27]

cosf =nj-np, (18)
where nj is the normal vectors on the interface and np

the normal on the particle surface. The former is best
given in Monge gauge with respect to the vertical axis,



and the latter takes a simple form because of the spherical
geometry,

e; — VU nP:M_ (19)

n = —r/————,
Tt (Vo) a

Inserting in (18) and linearizing in w and €, we obtain
the condition

@+ e — 1o =0 (20)

along the contact line. Taking the derivative and using
the shorthand notation w = w(ry) we find

—@o4¢— 3¢ =0.

After inserting the explicit expressions for wy and E,
and separating the constant part from the modulation,
one readily solves for

2 2
T wo r5oc
eswo=— L=g=p

=

(21)

In physical terms, the mean curvature results in a shift
¢ of the particle toward the convex side of the interface.
(In Fig. 2 this means in downward direction.) On the
other hand, the non-uniform curvature dc gives rise to
the quadrupolar amplitude &,, which in turn enhances
the angular modulation of the interface.

IV. DISCUSSION

The main results of the present paper are given by
Egs. (17) and (21). Here we discuss their most important
features and compare with the results of previous work.

A. Vertical particle position

Properly imposing Young’s law along a non-circular
contact line is not an easy matter. Eq. (18) relates the
contact angle to the essential parameters, the slope of
the interface, as expressed by the gradient Vw, and the
vertical position z of the contact line on the particle. Pre-
vious authors mostly chose to cast this in a geometrical
relation for the angle « of inclination of the interface,
tana = Vw, in the frame attached to the particle. We
found it helpful to introduce the vertical shift € of the
particle position with respect to the tangential plane.

This approach leads to a rather simple relation of the
contact angle to the interface deformation, in terms of
(19) and (12). The resulting linearized differential equa-
tion (20) comprises two constraints: The term varying
with the azimuthal angle determines the deformation am-
plitude &,, whereas the constant provides the vertical
shift . The rather simple solution (21) shows that the
vertical shift is determined by the mean curvature, and
the deformation amplitude by the anisotropy dc.

B. Trapping energy

Inserting the above expressions for € and &, in the trap-
ping energy, we find

a3 0 1oo
E = Ey+ myry (16H 245(:). (22)
The curvature-induced correction E — Ej is a quadratic
function of the curvature parameters H and dc. The
linear terms present in each of the areas S — Sy, S1, and
S1, exactly cancel each other.

The numerical coefficients % and 72—14 result from
several positive and negative terms of comparable size
in (17). Thus it is essential to carefully evaluate all
quadratic contributions to (2). We find that a finite
mean curvature H increases the energy and thus reduces
the trapping strength, whereas a curvature anisotropy dc
lowers the energy and enhances trapping.

We compare our Eq. (22) to the results of previous
work. In an earlier paper [27], one of us considered the
case of a minimal surface (H = 0) and found, in the
notation adopted here, £ — Ey = —ﬁﬂ'yréécz, which
agrees with the second term in (22). Kralchevsky et al.
[28] and Komura et al. [29] treated the case of a par-
ticle trapped on a liquid droplet of radius R and mean
curvature H = 2/R. Expanding their surface energy in
powers of 1/R and truncating at second order, we ob-
tain £ — Ey = %WyréH 2 in agreement with our Eq.
(22). (We discard the volume enthalpy term Py Vi + PVs
which Komura et al. add in view of the Laplace pres-
sure P; — P5.) More recently, Zeng et al. [30] considered
the case of a particle trapped at a cylindrical interface of
radius R, where H = dc = 1/R, and found the curvature-
dependent binding energy E— FEg = 'yré(l—?’ﬁﬁ—o.533)/R2.
The positive term agrees with our Eq. (22), whereas the
negative one does not. This discrepancy could be due
to the fact that in [30] the deformation amplitude is not
derived from the boundary conditions but obtained from
a more qualitative argument.

C. Contact line

It turns instructive to explicitly give the position of the
contact line. Inserting w and € in (12) we have
2 2
~ réH  rgde
Z—2z9= OT + OT cos(2¢p). (23)
The right-hand side is independent of the sign of cos®f.
Thus in the case a finite mean curvature H, the contact
line always moves toward the convex side of the interface.
If the anisotropy dc exceeds the mean curvature, the con-
tact line may move in either direction on different parts
of the contact line, depending on the ratio dc/H.
Regarding the change of the radial position, we expand
(13) to linear order in zZ — zg and find
20 (r%H réde

Foro=-2 (B4 B e2g)) . (o)



a) H>0, §¢>0

S 4

FIG. 4: Top view of the three-phase contact line on a particle
of radius a. The dashed circle indicates the contact line of
radius ro at a flat interface. The solid (red) line gives the
radial coordinate 7 according to (24). a) The upper panel
shows the case where both curvature parameters H and dc
are positive and take similar values. For small contact angles
0 < %, the radius 7 of the contact line is reduced according
to (24), whereas it increases for large contact angles 6 > 7.
In both cases the effect is strongest along the axis u with the
largest principal curvature ci. The lower panel illustrates the
case where either H are dc vanish. b) For zero mean curvature
H = 0, that is on a minimal surface, the radial coordinate
undulates about the mean value r9. ¢) In the case of zero
asymmetry, dc = 0, the curvature-induced change of the radial
coordinate is constant, and 7 describes a circle.

Note that rg is always positive, whereas zy = a cos 6 takes
a positive sign for small contact angles 6 < 5, and a
negative one for ¢ > Z. Thus (23) and (24) have opposite
sign for small contact angles, and the same sign for large

6.

The radial modulation, that is the projection of the
contact line on the u — v-plane, is illustrated in Fig. 4.
The upper panel a) shows the case of positive mean cur-
vature H and finite dc, where the contact line moves up-
ward and undulates around the particle; for small con-
tact angle, the upward motion reduces the mean radius,
whereas for 6§ > 7, it is accompanied by an increase of
the radius. Fig. 4b) shows the case of zero mean curva-
ture and finite dc, where the radius undulates along the
contact line but its mean value is unchanged; a similar
picture occurs for 6 > 7, albeit with the axes u and v
exchanged. Finally, Fig. 4c) illustrates the case dc = 0,
where the contact line remains a cercle.

D. Lateral force

On an interface with spatially varying curvature, the
trapping energy changes with position and thus gives rise
to a lateral force F = —V E on the trapped particle,

1
F = myrg (%HVH + ﬁéchSc) . (25)

As shown in our previous work [27], the gradient of the
curvature anisotropy pushes the particle towards more
strongly curved regions of the interface. The term pro-
portional to the gradient of the mean curvature, carries
the opposite sign.

E. Two-particle interaction

Finally we discuss curvature-induced forces between
neighbor particles. In a first step we derive the modified
parameters H and dc that account for both the intrinsic
curvature and additional terms due to a colloidal particle.
The mean curvature H is given by VZw = V2(wo + £).
Since the deformation field £ obeys the equation (8) of
a minimal surface, we find H=H ; in other words, the
particle does not change the mean curvature of the inter-
face.

The anisotropy is best calculated in cartesian coordi-
nates u and v, where

¢ = bc+ 02¢ — D%,

This form is readily evaluated and gives after transfor-
mation to polar coordinates

4
dc =dc (1 + i cos(4go)) . (26)

Thus the deformation field ¢ significantly modifies the
curvature in the vicintiy of the particle. The additonal
term decays with the fourth power of the distance; be-
cause of its fourfold symmetry, the angular modulation is
maximum along the principal axes v and v, and minimum
in between.

Each particle feels the additional curvature induced by
its neighbor. Superposition of their deformation fields
gives the pair potential [27]

Tydctrs

U =
48p*

cos(4yp),

where p and ¢ describe the relative position of the parti-
cles. With the corresponding unit vectors e, and e, the
mutual force reads as

Tyridc?

F:
2 125

(cos(dp)e, +sin(dp)e,),  (27)
Thus the capillary force between two nearby particle is
not a central force: Besides the attractive radial com-
ponent, there is an additional force that tends to align



the particles parallel to one of the principal axes. As
noted previously, the latter force favors aggregates of cu-
bic symmetry [27].

A simple estimate shows that either of the forces Fj
and F' may dominate. The curvature parameters vary
on the scale of the curvature radius R, resulting in
curvature-induced force F' ~ yrg R=3, whereas that due
to pair interactions decays on the scale of the particle dis-
tance, Fy ~ yr8p~®R~2. With typical values ro ~ 1 ym
and R ~ 1 mm, one finds that the ratio Fy/F ~ Rrgp=°
is larger than unity at distances of a few rg, and smaller
than unity beyond.

V. SUMMARY

Starting from the well-known form (2), we have eval-
uated the trapping energy of a spherical particle to
quadratic order in the curvature parameters.

(i) On a formal level, the introduction of the shift e
of the vertical partical position, leads to a remarkably
simple equation (20) for Young’s law at the three-phase
boundary, which is solved in (21). This could be useful for

disentangling the involved boundary condtions occurring
at the surface of cylinders and ellipsoids [31], or on Janus
particles [32].

(ii) As a main result, Eq. (22) shows that the mean
curvature H augments the energy and thus weakens trap-
ping, whereas the anisotropy dc lowers the energy and en-
hances trapping. As a consequence, on a minimal surface
(H = 0) the curvature-induced lateral force (25) drives
particles toward strongly curved regions. On the other
hand, on a deformed droplet the term proportional to
V H prevails in most cases, such that a trapped particle
moves toward flatter parts of the interface.

(iii) Egs. (23) and (24) give the radial and vertical
coordinates of the undulating contact line in terms of
contact angle and curvature parameters; the main de-
pendencies are illustrated in Fig. 4.

(iv) The particle-induced interface deformation ¢ is
proportional to the curvature anisotropy dc but indepen-
dent of the mean curvature. As a consequence, only the
anisotropy gives rise to a capillary interactions of nearby
particles, and the interaction potential U reduces to the
form derived previously for dc # 0 = H.
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