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Invariant distribution of duplicated diffusions and application

to Richardson-Romberg extrapolation

Vincent Lemaire∗, Gilles Pagès†, Fabien Panloup‡

November 20, 2013

Abstract

With a view to numerical applications we address the following question: given an
ergodic Brownian diffusion with a unique invariant distribution, what are the invariant
distributions of the duplicated system consisting of two trajectories? We mainly focus
on the interesting case where the two trajectories are driven by the same Brownian
path. Under this assumption, we first show that uniqueness of the invariant distri-
bution (weak confluence) of the duplicated system is essentially always true in the
one-dimensional case. In the multidimensional case, we begin by exhibiting explicit
counter-examples. Then, we provide a series of weak confluence criterions (of integral
type) and also of a.s. pathwise confluence, depending on the drift and diffusion coef-
ficients through a non-infinitesimal Lyapunov exponent. As examples, we apply our
criterions to some non-trivially confluent settings such as classes of gradient systems
with non-convex potentials or diffusions where the confluence is generated by the dif-
fusive component. We finally establish that the weak confluence property is connected
with an optimal transport problem.

As a main application, we apply our results to the optimization of the Richardson-
Romberg extrapolation for the numerical approximation of the invariant measure of
the initial ergodic Brownian diffusion.

Keywords: Invariant measure ; Ergodic diffusion ; Two-point motion ; Lyapunov expo-
nent ; Asymptotic flatness ; Confluence ; Gradient System ; Central Limit Theorem ;
Euler scheme ; Richardson-Romberg extrapolation ; Hypoellipticity; Optimal transport.

AMS classification (2000): 60G10, 60J60, 65C05, 60F05.

1 Introduction and motivations

When one discretizes a stochastic (or not) differential equation (SDE) by an Euler scheme
with step h, a classical method to reduce the discretization error is the so-called Richardson-
Romberg (RR) extrapolation introduced in [TT90] for diffusion processes. Roughly speak-
ing, the idea of this method is to introduce a second Euler scheme with step h/2 and to
choose an appropriate linear combination of the two schemes to cancel the first-order
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discretization error. Such an idea can be adapted to the long-time setting. More pre-
cisely, when one tries to approximate the invariant distribution of a diffusion by empirical
measures based on an Euler scheme (with decreasing step) of the diffusion, it is also pos-
sible to implement the same strategy by introducing a second Euler scheme with half-step
(see [Lem05]). In fact, tackling the rate of convergence of such a procedure involving a
couple of Euler schemes of the same SDE leads to studying the long run behaviour of the
underlying couple of continuous processes that we will call duplicated diffusion. When
the two solutions only differ by the starting value and are driven by the same Brownian
motion, the resulting coupled process is also known as 2-point motion (terminology com-
ing from the more general theory of stochastic flows, see [BS88, Car85, Kun90]). Before
being more specific as concerns this motivation, let us now define precisely what we call a
duplicated diffusion.
Consider the following Brownian diffusion solution to the stochastic differential equation

(SDE) ≡ dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x∈ R
d, (1.1)

where b : Rd → R
d and σ : Rd → M(d, q,R) (d × q matrices with real valued entries)

are locally Lipschitz continuous with linear growth and W is a standard q-dimensional
Brownian motion defined on a filtered probability space (Ω,A,P, (Ft)t≥0) (satisfying the
usual conditions). This stochastic differential equation (SDE) has a unique strong solution
denoted Xx = (Xx

t )t≥0. Let ρ ∈ M(q, q,R) be a square matrix with transpose ρ∗ such
that Iq − ρρ∗ is non-negative as a symmetric matrix. We consider a filtered probability
space, still denoted (Ω,A,P, (Ft)t≥0) on which is defined a 2q-dimensional standard (Ft)-

Brownian motion denoted (W, W̃ ) so that W and W̃ are two independent q-dimensional
standard (Ft)-Brownian motions. Then we define W (ρ) a third standard q-dimensional
(Ft)-Brownian motions by

W (ρ) = ρ∗W +
√
Iq − ρ∗ρ W̃ , (1.2)

which clearly satisfies
〈W i,W (ρ),j〉t = ρij t, t ≥ 0

(the square root should be understood in the set of symmetric non-negative matrices).
The duplicated diffusion or “duplicated stochastic differential system” (DSDS) is then
defined by

(DSDS) ≡
{
dXt = b(Xt)dt+ σ(Xt) dWt, X0 = x1∈ R

d,

dX
(ρ)
t = b(X

(ρ)
t )dt+ σ(X

(ρ)
t ) dW

(ρ)
t , X

(ρ)
0 = x2∈ R

d.
(1.3)

Under the previous assumptions on b and σ, (1.3) has a unique (strong) solution. Then

both (Xx
t )t≥0 and (Xx1

t ,X
(ρ),x2

t )t≥0 are homogeneous Markov processes with transition

(Feller) semi-groups, denoted (Pt(x, dy))t≥0 and
(
Q

(ρ)
t ((x1, x2), (dy1, dy2))

)
t≥0

respectively,

and defined on test Borel functions f : Rd → R and g : Rd × R
d → R, by

Pt(f)(x) = Ef(Xx
t ) and Q

(ρ)
t (g)(x1, x

′
2 = E g(Xx1

t ,X
(ρ),x2

t ).

We will assume throughout the paper that the original diffusion Xx has an unique
invariant distribution denoted ν i.e. satisfying νPt = ν for every t∈ R+. The first part of

the paper is devoted to determining what are the invariant measures of (Q
(ρ)
t )t≥0 (if any)

depending on the correlation matrix ρ. Thus, if ρ = 0, it is clear that ν⊗ν is invariant for
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Q(0) and if ρ = Iq so is ν∆ = ν ◦ (x 7→ (x, x))−1, but are they the only ones? To be more
precise, we want to establish easily verifiable criterions on b and σ which ensure that ν∆ is
the unique invariant distribution of (DSDS). In the sequel, we will denote by µ a generic
invariant measure of Q(ρ). We present the problem in more details (including references
to the literature).

✄ Existence of an invariant distribution for (Q
(ρ)
t )t≥0. First, the family of probability

measures (µ
(ρ)
t )t>0 defined on (Rd × R

d,Bor(Rd)⊗2) by

µ
(ρ)
t =

1

t

∫ t

0
ν⊗2(dx1, dx2)Q

(ρ)
s ((x1, x2), (dy1, dy2))ds (1.4)

is tight since both its marginals on R
d are equal to ν. Furthermore, the semi-group

(Q
(ρ)
t )t≥0 being Feller, one easily shows that any of its limiting distributions µ(ρ) as t→ ∞

is an invariant distribution for (Q
(ρ)
t )t≥0 such that µ(ρ)(dx×R

d) = µ(ρ)(Rd× dx) = ν(dx).
Also note that, if uniqueness fails and (Pt)t≥0 has two distinct invariant distributions ν

and ν ′, a straightforward adaptation of the above (sketch of) proof shows that (Q
(ρ)
t )t≥0

has (at least) an invariant distribution with marginals (ν, ν ′) and another with (ν ′, ν) as
marginals.

✄ Uniqueness of the invariant distribution of (Q
(ρ)
t )t≥0. It is clear that in full generality

the couple (X,X(ρ)) may admit several invariant distributions even if X has only one such
distribution. So is the case when σ ≡ 0 if the flow Φ(x, t) of the ODE ≡ ẋ = b(x) has 0
as a unique repulsive equilibrium and a unique invariant distribution ν on R

d \ {0}. Then
both distributions ν⊗2 and ν∆ (defined as above) on (Rd \ {0})2 are invariant and if ν is
not reduced to a Dirac mass (think e.g. to a 2-dimensional ODE with a limit cycle around
0) (DSDS) has at least two invariant distribution.

In the case (σ 6≡ 0) the situation is more involved and depends on the correlation
structure ρ between the two Brownian motions W and W (ρ). The diffusion matrix

Σ(Xx1
t ,X

(ρ),x2

t ) of the couple (Xx1 ,X(ρ),x2) at time t > 0 is given by any continuous
solution to the equation

Σ(ξ1, ξ2)Σ(ξ1, ξ2)
∗ =

[
σσ∗(ξ1) σ(ξ1)ρσ

∗(ξ2)
σ(ξ2)ρ

∗σ∗(ξ1) σσ∗(ξ2)

]

(e.g. the square root in the symmetric non-negative matrices or the Choleski transform. . . ).

First, note that if Iq − ρ∗ρ is positive definite as a symmetric matrix, it is straight-
forward that ellipticity or uniform ellipticity of σσ∗(when q ≥ d) for Xx is transferred

to Σ(Xx1
t ,X

(ρ),x2

t )Σ(Xx1
t ,X

(ρ),x2

t )∗ for the couple (Xx1 ,X(ρ),x2). Now, uniform ellipticity,
combined with standard regularity and growth/boundedness assumption on the coeffi-
cients b, σ and their partial derivatives, classically implies the existence for every t > 0
of a (strictly) positive probability density pt(x, y) for Xx

t . These additional conditions
are automatically satisfied by the “duplicated coefficients” of (DSDS). At this stage,
it is classical background that any homogeneous Markov process whose transition has a
(strictly) positive density for every t > 0 has at most one invariant distribution (if any).
Consequently, under these standard assumptions on b and σ which ensure uniqueness of
the invariant distribution ν for X, we get uniqueness for the “duplicated” diffusion process
(X,X(ρ)) as well.

The hypo-elliptic case also implies the existence of a density for Xx
t and the uniqueness

of the invariant distribution under controllability assumptions on a companion differen-
tial system of the SDE. This property can also be transferred to (DSDS), although the
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proof becomes significantly less straightforward than above (see Appendix B for a precise
statement and a detailed proof).

We now consider one of the main problems of this paper: the degenerate case ρ = Iq.
This corresponds to W (ρ) =W so that X(ρ),x2 = Xx2 , i.e. (DSDS) is the equation of the
2-point motion in the sense of [Kun90] section 4.2 and [Har81]. This 2-point motion has
been extensively investigated (see [Car85]) from an ergodic viewpoint, especially when the
underlying diffusion, or more generally the stochastic flow Φ(ω, x, t) lives on a (smooth)
compact Riemannian manifold M . When this flow is smooth enough in x, the long run
behaviour of such a flow (under its steady regime) can be classified owing to its Lyapunov
spectrum. For what we are concerned with, this classification is based on the top Lyapunov
exponent defined by

λ1 := lim sup
t→+∞

1

t
log ‖DxΦ(x, t)‖

where ‖DxΦ(x, t)‖ denotes the operator norm of the differential (tangent) of the flow.
In this compact setting and when the top Lyapunov exponent is positive, the long run
behaviour of the two-point on M2\∆ has been deeply investigated in [BS88] (see also
[DKK04] for further results in this direction). Such assumption implies that ∆ is somewhat
repulsive.

Here, we are in fact concerned with the opposite case. Our aim is to identify natural
assumptions under which the invariant distribution of the 2-point motion is unique (hence
equal to ν∆). It seems clear that these conditions should in some sense imply that the
paths cluster asymptotically either in a pathwise or in a statistical sense. When λ1 < 0,
a local form of such a clustering has been obtained in [Car85] (see Proposition 2.3.3) :
it is shown that at a given point “asymptotic clustering” holds with an arbitrarily high
probability, provided the starting points are close enough. However, this result seems to
be not sufficient to imply uniqueness of the invariant distribution for the two-point motion
and is still in a compact setting.

In Sections 2 and 3, we provide precise answers under verifiable conditions on the
coefficients b and σ of the original Rd-valued diffusion, not assumed to be smooth. More
precisely, we show in Section 2 that in the one-dimensional case, uniqueness of ν∆ is almost
always true (as soon as (SDE) has a unique invariant distribution) and that under some
slightly more constraining conditions, the diffusion is pathwise confluent (i.e. pathwise
asymptotic clustering holds). This second result slightly extends by a different method a
result by Has’minskii in [Has80].
Section 3 is devoted to the multidimensional framework. We first provide a simple counter-
example where uniqueness of ν∆ does not hold. Then, we obtain some sharp criterions
for uniqueness. We begin by a general uniqueness result (for ν∆) (Theorem 3.2) involving
in an Euclidean framework (induced by a positive definite matrix S and its norm | . |

S
) a

pseudo-scale function fθ designed from a non-negative continuous function θ : R+ → R.
Basically both uniqueness and pathwise confluence follow from

conditions involving the coefficients of the diffusion b and σ, S and θ, combined with a
requested behavior of the pseudo-scale function at 0+. The main ingredient of the proof is
Birkhoff’s ergodic Theorem applied to the one-dimensional Itô process fθ(|Xx1

t −Xx2
t |2

S
).

Using additional martingale arguments, we also establish that the asymptotic pathwise
confluence holds under slightly more stringent conditions.
Then, in Subsection 3.3, we draw a series of corollaries of Theorem 3.2 (illustrated on few
examples) which highlight easily verifiable conditions. To this end we introduce a function
Λ

S
: Rd×R

d \∆Rd×Rd → R called Non-Infinitesimal S-Lyapunov (NILS) exponent defined
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for every x, y∈ R
d, x 6= y by

ΛS (x, y) =
(b(x)− b(y)|x− y)

S

|x− y|2
S

+
1

2

‖σ(x)− σ(y)‖2
S

|x− y|2
S

−
(∣∣∣(σ

∗(x)− σ∗(y))S(x− y)

|x− y|2
S

∣∣∣
2
)
. (1.5)

In particular we show (see Corollary 3.2) that if, for every probability measure m on
c∆Rd×Rd such that m(dx× R

d) = m(Rd × dy) = ν,
∫

Rd×Rd

Λ
S
(x, y)m(dx, dy) < 0

then ν∆ is unique and if furthermore ΛS ≤ −c0 < 0 on a uniform stripe around the
diagonal ∆Rd×Rd , then pathwise confluence holds true. Moreover, under a directional
ellipticity condition on σ, we show that the negativity of Λ

S
(at least in an integrated

sense) can be localized near the diagonal (see Subsection 3.3 for details). A differential
version of the criterion is established when b and σ are smooth (see Corollary 3.3).

Note that these criterions obtained in the case ρ = Iq can be extended to the (last) case
ρ∗ρ = Iq using that W (ρ) = ρW is still a standard B.M. (think to ρ = −1 when d = 1).
For the sake of simplicity (and since it is of little interest for the practical implementation
of the Richardson-Romberg extrapolation), we will not consider this case in the paper.

Then, we give some examples and provide an application to gradient systems (b = −∇U
and a constant σ function). In particular, we obtain that our criterions can be applied
to some situations where the potential is not convex. More precisely, we prove that for
a large class of non-convex potentials, super-quadratic at infinity , the 2-point motion is
weakly confluent if the diffusive component σ is sufficiently large. Furthermore, in the
particular case U(x) = (|x|2 − 1)2, we prove that the result is true for every σ > 0.

We end the first part of the paper by a connection with optimal transport. More
precisely, we show that, up to a slight strengthening of the condition on the Integrated
NILS, the weak confluence property can be connected with an optimal transport problem.

The second part of the paper (Section 4) is devoted to a first attempt in a long run
ergodic setting to combine the Richardson-Romberg extrapolation with a control of the
variance of this procedure (see [Pag07] in a finite horizon framework). To this end we
consider two Euler schemes with decreasing steps γn and γ̃n satisfying γ̃2n−1 = γ̃2n = γn/2
and ρ-correlated Brownian motion increments. We show that the optimal efficiency of the
Richardson-Romberg extrapolation in this framework is obtained when ρ = 0, at least
when the above uniqueness problem for ν∆ is satisfied. To support this claim we establish
a Central Limit Theorem whose variance is analyzed as a function of ρ.

Notations. • |x| =
√
xx∗ denotes the canonical Euclidean norm of x∈ R

d (x∗ transpose
of the column vector x).
• ‖A‖ =

√
Tr(AA∗) if A ∈ M(d, q,R) and A∗ is the transpose of A (which is but the

canonical Euclidean norm on R
d2).

• ∆Rd×Rd = {(x, x), x∈ R
d} denotes the diagonal of Rd × R

d.
• S(d,R) = {S ∈ M(d, d,R), S∗ = S}, S+(d,R) the subset of S(d,R) of non-negative
matrices, S++(d,R) denotes the subset of positive definite such matrices and

√
S denotes

the unique square root of S ∈ S+(d,R) in S++(d,R) (which commutes with S). x⊗ y =
xy∗ = [xiyj]∈ M(d, d,R), x, y∈ R

d.
• If S ∈ S++(d,R), we denote by ( . | . )

S
and by | . |

S
, the induced inner product and

norm on R
d, defined by (x|y)

S
= (x|Sy) and |x|2

S
= (x|x)

S
respectively. Finally, for

A∈ M(d, d,R), we set ‖A‖2
S
= Tr(A∗SA).
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• µn
(Rd)
=⇒ µ denotes the weak convergence of the sequence (µn)n≥1 of probability measures

defined on (Rd,Bor(Rd)) toward the probability measure µ. P(X,A) denotes the set of
probability distributions on (X,A).
• For every function f : R

d → R, define the Lipschitz coefficient of f by [f ]Lip =

supx 6=y
|f(x)−f(y)|

|x−y| ≤ +∞.

2 The one-dimensional case

We first show that, in the one-dimensional case d = q = 1, uniqueness of ν implies that
ν∆, as defined in the introduction, is the unique invariant distribution of the duplicated
diffusion. The main theorem of this section is Theorem 2.1 which consists of two claims.
The first one establishes this uniqueness claim using some ergodic-type arguments. Note
that we do not require that σ never vanishes. The second claim is an asymptotic pathwise
confluence property for the diffusion in its own scale, established under some slightly more
stringent assumptions involving the scale function p, see below. This second result, under
slightly less general assumptions, is originally due to Has’minskii (see [Has80], Appendix
to the English edition, Theorem 2.2, p.308). It is revisited here by different techniques,
mainly comparison results for one dimensional diffusions and ergodic arguments. Note
that uniqueness of ν∆ can always be retrieved from asymptotic confluence (see Remark
2.1).

Before stating the result, let us recall some definitions. We denote by M the speed
measure of the diffusion classically defined by M(dξ) = (σ2p′)−1(ξ)dξ, where p is the scale
function defined (up to a constant) by

p(x) =

∫ x

x0

dξe
−

∫ ξ
x0

2b
σ2 (u)du, x∈ R.

Obviously, we will consider p only when it makes sense as a finite function (so is the case
if b/σ2 is locally integrable on the real line). We are now in position to state the result.

THEOREM 2.1. Assume that b and σ are continuous functions on R being such that strong
existence, pathwise uniqueness and the Feller Markov property hold for (SDE) from any
x ∈ R. Assume furthermore that there exists λ : R+ → R+, strictly increasing, with
λ(0) = 0 and

∫
0+ λ(u)

−2du = +∞ such that for all x, y ∈ R, |σ(y) − σ(x)| ≤ λ(|x − y|).
Then, the following claims hold true.

(a) If (Xt)t≥0 admits a unique invariant distribution ν, the distribution ν∆ = ν ◦ (ξ 7→
(ξ, ξ))−1 is the unique invariant measure of the duplicated diffusion (Xx1

t ,Xx2
t )t≥0.

(b) (Has’minskii) Assume that the scale function p is well-defined as a real function on
the real line and that,

lim
x→±∞

p(x) = ±∞ and M is finite.

Then, ν = M/M(R) is the unique invariant distribution of (Xt)t≥0 and (p(Xt))t≥0 is
pathwise confluent: P-a.s., for every x1, x2∈ R, p(Xx1

t )−p(Xx2
t ) tends to 0 when t→ +∞.

REMARK 2.1. ✄ The general assumptions on b and σ are obviously fulfilled whenever
these functions are locally Lipschitz with linear growth.
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✄ The proofs of both claims are based on (typically one-dimensional) comparison argu-
ments. This also explains the assumption on σ which is a classical sufficient assumption
to ensure comparison of solutions, namely, if x1 ≤ x2, then X

x1
t ≤ Xx2

t for every t ≥ 0 a.s.
(see [IW77]).

✄ The additional assumptions made in (b) imply the uniqueness of ν (see the proof below).
The uniqueness of the invariant distribution ν∆ for the duplicated diffusion follows by
(a). However, it can also be viewed as a direct consequence of the asymptotic pathwise
confluence of p(Xxi

t ), i = 1, 2 as t → +∞. Actually, if for all x1, x2 ∈ R
d, p(Xx1

t ) −
p(Xx2

t )
t→+∞−−−−→ 0 a.s, we deduce that for any invariant distribution µ of (Xx1 ,Xx2) and

every K > 0
∫

R

(
|p(x1)− p(x2)| ∧K

)
µ(dx1, dx2) ≤ lim sup

t→+∞

1

t

∫ t

0
Eµ

(
|p(Xx1

s )− p(Xx2
s )| ∧K

)
ds = 0.

As a consequence, p(x1) = p(x2) µ(dx1, dx2)-a.s. Since p is an increasing function, it
follows that µ({(x, x), x∈ R}) = 1 and thus that µ = ν∆.

✄ As mentioned before, (b) slightly extends a result by Has’minskii obtained in [Has80]
with different methods and under the additional assumption that σ never vanishes (whereas
we only need the scale function p to be finite which allows e.g. for the existence of in-
tegrable singularities of b

σ2 ). Note however that the case of an infinite speed measure M
(which corresponds to null recurrent diffusions) is also investigated in [Has80], requiring
extra non-periodicity assumptions on σ.

Proof. (a) Throughout the proof we denote by (Xx1
t ,Xx2

t ) the duplicated diffusion at time
t ≥ 0 and by (Qt((x1, x2), dy1, dy2))t≥0 its Feller Markov semi-group. The set IDSDS of
invariant distributions of (Qt)t≥0 is clearly nonempty, convex and weakly closed. Since
any such distribution µ has ν as marginals (in the sense µ(dx1×R) = µ(R×dx2) = ν), the
set IDSDS is tight and consequently weakly compact in the the topological vector space
of signed measures on (R2,Bor(R2)) equipped with the weak topology. As a consequence
of the Krein-Millman Theorem, IDSDS admits extremal distributions and is the convex
hull of these extremal distributions.

Let µ be such an extremal distribution and consider the following three subsets of R2:

A+ = {(x1, x2), x2 > x1}, A− = {(x1, x2), x1 > x2} and A0 = {(x, x), x∈ R} = ∆R2 .

We first want to show that if µ(A+) > 0 then the conditional distribution µA
+
defined by

µA
+
= µ( .∩A+)

µ(A+) is also an invariant distribution for (Qt)t≥0. Under the above assumptions

on b and σ, one derives from classical comparison theorems and strong pathwise uniqueness
arguments for the solutions of (SDE) (see e.g. [IW77]) that

∀ (x1, x2) ∈ cA+ = R
2 \A+, Qt((x1, x2),

cA+) = 1.

We deduce that for every (x1, x2) ∈ R
2 and t ≥ 0,

Qt((x1, x2), A
+) = P

(
(Xx1

t ,Xx2
t )∈ A+

)
= 1A+(x1, x2)P(τx1,x2 > t)

where τx1,x2 = inf{t ≥ 0,Xx2
t ≤ Xx1

t }. The second equality follows from the pathwise
uniqueness since no bifurcation can occur. Now, let µ ∈ IDSDS. Integrating the above
equality and letting t go to infinity implies

µ(A+) =

∫

A+

µ(dx1, dx2)P(τx1,x2 = +∞).
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If µ(A+) > 0, then µ(dx1, x2)-a.s. P(τx1,x2 = +∞) = 1 on A+ i.e. Xx2
t > Xx1

t for every
t ≥ 0 a.s.. As a consequence, µ(dx1, dx2)-a.s., for every B ∈ B(Rd ×R

d),

1(x1,x2)∈A+Qt((x1, x2), B) = 1(x1,x2)∈A+Qt((x1, x2), B ∩A+) = Qt((x1, x2), B ∩A+)

where we used again that Qt((x1, x2), A
+) = 0 if x2 ≤ x1. Then, since µ is invariant, we

deduce from an integration of the above equality that

µ(B ∩A+) =

∫

R2

Qt((x1, x2), B)1(x1,x2)∈A+µ(dx1, dx2).

It follows that if µ(A+) > 0, µA
+
is invariant.

If µ(A+) < 1, one shows likewise that µ
cA+

an invariant distribution for (Qt)t≥0 as well.
Then, if µ(A+)∈ (0, 1), then µ is a convex combination of elements of IDSDS

µ = µ(A+)µA
+
+ µ(cA+)µ

cA+

so that µ cannot be extremal. Finally µ(A+) = 0 or 1.

Assume µ(A+) = 1 so that µ = µ(. ∩ A+). This implies that X1
0 > X2

0 Pµ-a.s.. But
µ being invariant, both its marginals are ν i.e. X1

0 and X2
0 are ν-distributed. This yields

a contradiction. Indeed, let ϕ be a bounded increasing positive function. For instance,
set ϕ(u) := 1 + u√

u2+1
, u∈ R. Then, E[ϕ(X1

0 ) − ϕ(X2
0 )] > 0 since X1

0 > X2
0 Pµ-a.s. but

we also have E[ϕ(X1
0 ) − ϕ(X2

0 )] = 0 since X1
0 and X2

0 have the same distribution. This
contradiction implies that µ(A+) = 0.

One shows likewise that µ(A−) = 0 if µ is an extremal measure. Finally any extremal
distribution of IDSDS is supported by A0 = ∆R2 . Given the fact that the marginals
of µ are ν this implies that µ = ν∆ = ν ◦ (x 7→ (x, x))−1 which in turn implies that
IDSDS = {ν∆}.
(b) Since the speed measure M is finite and σ never vanishes, the distribution ν(dξ) =
M(dξ)/M(R) is the unique invariant measure of the diffusion. Thus, by (a), we also have
the uniqueness of the invariant distribution for the duplicated diffusion.Let x1, x2∈ R. If
x1 > x2 then Xx1

t ≥ Xx2
t , still by a comparison argument, and p(Xx1

t ) ≥ p(Xx2
t ) since p is

increasing. Consequently Mx1,x2
t = p(Xx1

t )− p(Xx2
t ), t ≥ 0, is a non-negative continuous

local martingale, hence P-a.s. converging toward a finite random limit ℓx1,x2∞ ≥ 0. One
proceeds likewise when x1 < x2 (with ℓx1,x2∞ ≤ 0). When x1 = x2, Mt = ℓx1,x2∞ ≡ 0. The
aim is now to show that ℓx1,x2∞ = 0 a.s. To this end, we introduce

µt(dy1, dy2) :=
1

t

∫ t

0
Qs((x1, x2), dy1, dy2)ds, (x1, x2) ∈ R

d × R
d

and we want to check that for every (x1, x2) ∈ R
d×R

d, (µt(dy1, dy2))t≥1 converges weakly
to ν∆. Owing to the uniqueness of ν∆ established in (a) and to the fact that any weak
limiting distribution of (µt(dy1, dy2))t≥1 is always invariant (by construction), it is enough
to prove that (µt(dy1, dy2))t≥1 is tight. Since the tightness of a sequence of probability
measures defined on a product space is clearly equivalent to that of its first and second
marginals, it is here enough to prove the tightness of (t−1

∫ t
0 Ps(x0, dy)ds)t≥1 for any

x0 ∈ R.
Let x0 ∈ R. Owing to the comparison theorems, we have for all t ≥ 0 and M ∈ R,
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Pt(x0, [M,+∞)) ≤ Pt(x, [M,+∞)) if x ≥ x0 and Pt(x0, (−∞,M ]) ≤ Pt(x, (−∞,M ]) if
x0 ≥ x. Since ν is invariant and equivalent to the Lebesgue measure, we deduce that

Pt(x0, [M,+∞)) ≤ ν([M,+∞))

ν([x0,+∞))
and Pt(x0, (−∞,M)) ≤ ν((−∞,M))

ν((−∞, x0])
.

The tightness of (Pt(x0, dy))t≥1 follows (from that of ν) and we derive from what preceeds
that

∀ (x1, x2) ∈ R
d × R

d,
1

t

∫ t

0
Qs((x1, x2), dy1, dy2)ds

(Rd)
=⇒ ν∆(dy1, dy2).

Now, note that for every L∈ N, the function g
L
: (y1, y2) 7→ |p(y1)−p(y2)|∧L is continuous

and bounded. Hence by Césaro’s Theorem, we have that

1

t

∫ t

0
Qs(gL)(x1, x2)ds =

1

t

∫ t

0
E g

L
(Xx1

s ,Xx2)ds −→ E (|ℓx1,x2
∞ | ∧ L)

whereas, by the above weak convergence of (µt(dy1, dy2))t≥1, we get

1

t

∫ t

0
Qs(gL)(x1, x2)ds −→

∫

Rd

g
L
(y1, y2)ν∆(dy1, dy2) = 0 as t→ +∞

since g
L
is identically 0 on ∆Rd×Rd . It follows, by letting L go to infinity, that

E |ℓx1,x2
∞ | = 0.

This implies ℓx1,x2∞ = 0 P-a.s. which in turn implies that

P-a.s. p(Xx1
t )− p(Xx2

t ) −→ 0 as t→ +∞.

Finally, it remains to prove that we can exchange the quantifiers, i.e. that P-a.s., p(Xx1
t )−

p(Xx2
t ) −→ 0 for every x1, x2. Assume that x1 ≥ x2. Again by the comparison theorem

and the fact that p increases, we have 0 ≤ p(Xx1
t )−p(Xx2

t ) ≤ p(X
⌊x1⌋+1
t )−p(X⌊x2⌋

t ). This
means that we can come down to a countable set of starting points. ✷

In the continuity of the second part of Theorem 2.1(b), it is natural to wonder whether a
one-dimensional diffusion is asymptotically confluent, i.e. when for all x1, x2 ∈ R, Xx1

t −
Xx2

t tends to 0 a.s as t → +∞. In the following corollary, we show that such property
holds in a quite general setting.

COROLLARY 2.1. (a) Assume the hypothesis of Theorem 2.1(b) hold. If furthermore,

σ never vanishes and lim sup
|x|→+∞

∫ x

0

b

σ2
(ξ)dξ < +∞

then, P-a.s., for every x1, x2∈ R,

Xx1
t −Xx2

t −→ 0 as t→ +∞.

(b) The above condition is in particular satisfied if there exists M > 0 such that for all

|x| > M =⇒ sign(x)b(x) ≤ 0.

9



Proof. (a) Under the assumptions of the theorem, p is continuously differentiable on R

and
p′(x) = e

−
∫ x
x0

2b
σ2 (u)du, x∈ R.

Then it is clear that p′inf = inf
x∈R

p′(x) > 0 iff lim sup
|x|→+∞

∫ x

x0

2b

σ2
(ξ)dξ < +∞. By the fundamental

theorem of calculus, we know that,

|Xx1
t −Xx2

t | ≤ 1

p′min

|p(Xx1
t )− p(Xx2

t )|

and the result follows from Theorem 2.1(b).

(b) Since σ never vanishes, p′′ is well-defined and for every x ∈ R, p′′(x) = −2b(x)p′(x)
σ2(x)

.

Using that p′ is positive, we deduce from the assumptions that

∃M > 0 such that

{
p′′(x) ≥ 0, x ≥M

p′′(x) ≤ 0, x ≤ −M.

Now, p′ being continuous, it follows that p′ attains a positive minimum p′min > 0.

Examples. 1. Let U be a positive a twice differentiable function such that lim
|x|→+∞

U(x) =

+∞ and consider the one-dimensional Kolmogorov equation dXt = −U ′(Xt)dt+σdWt with
σ > 0. Then,

lim inf
|x|→+∞

xU ′(x) >
σ2

2
=⇒ Xx

t −Xy
t

t→+∞−−−−→ 0 a.s.

Note that in particular, this result holds true even if U has several local minimas.

2. Let σ = R → (0,+∞) be a locally Lipschitz continuous function with linear growth so
that the SDE

dXt = σ(Xt)dWt

defines a (Markov) flow (Xx
t )t≥0 of local martingales. If 1

σ ∈ L2(R,Bor(R), λ) then there

exists a unique invariant measure ν(dξ) = cσ
dξ

σ2(ξ)
and (Xxi

t )t≥0, i = 1, 2 is pathwise

confluent (in the sense of Theorem 2.1(b)) since p(x) = x. Note that the linear growth
assumption cannot be significantly relaxed since a stationary process cannot be a true
martingale which in turn implies that ν has no (finite) first moment.

3 The multidimensional case

In this section, we begin by an example of a multidimensional Brownian diffusion (Xx1 ,Xx2)
for which ν∆ (image of ν on the diagonal) is not the only one invariant distribution. Thus,
Theorem 2.1 is specific to the case d = 1 and we can not hope to get a similar result for
the general case d ≥ 2. It is of course closely related to the classification of two-point
motion on smooth compact Riemannian manifolds since the unit circle will turn out to be
a uniform attractor of the diffusion.
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3.1 Counterexample in 2-dimension

Roughly speaking, saying that ν∆ is the only one invariant distribution means in a sense
that Xx

t −Xy
t has a tendency to converge towards 0 when t→ +∞. Thus, the idea in the

counterexample below is to build a “turning” two-dimensional ergodic process where the
angular difference between the two coordinates does not depend on t. Such a construction
leads to a model where the distance between the two coordinates can not tend to 0 (Note
that some proofs are deferred to Appendix B). We consider the 2-dimensional SDE with

Lipschitz continuous coefficients defined by, ∀x ∈ R
2

b(x) =
(
x1{0≤|x|≤1} −

x

|x|1{|x|≥1}
)
(1− |x|)

σ(x) = ϑDiag(b(x)) +

[
0 −cx2
cx1 0,

]

where ϑ, c∈ (0,+∞) are fixed parameters.
Switching to polar coordinates Xt = (rt cosϕt, rt sinϕt), t ∈ R+, we obtain that this

SDE also reads

drt = min(rt, 1)(1 − rt)(dt+ ϑdW 1
t ), r0∈ R+ (3.6)

dϕt = c dW 2
t , ϕ0∈ [0, 2π), (3.7)

where x0 = r0(cosϕ0, sinϕ0) and W = (W 1,W 2) is a standard 2-dimensional Brownian
motion.
Standard considerations about Feller classification (see Appendix B for details) show that,
if x0 6= 0 (i.e. r0 > 0) and ϑ∈ (0,

√
2) then

rt −→ 1 as t→ +∞, (3.8)

while it is classical background that

P-a.s. ∀ϕ0∈ R+,
1

t

∫ t

0
δ
ei(ϕ0+cW2

s )ds =⇒ λS1 as t→ +∞

where S1 denotes the unit circle of R2. Combining these two results straightforwardly
yields

∀x∈ R
2 \ {(0, 0)}, P-a.s. 1

t

∫ t

0
δXx

s
ds

(R2)
=⇒ λS1 as t→ +∞.

On the other hand, given the form of ϕt, it is clear that if x = r0e
iϕ0 and x′ = r′0e

iϕ′
0 ,

r0, r
′
0 6= 0, ϕ0, ϕ

′
0∈ [0, 2π), then

lim
t→+∞

|Xx
t −Xx′

t | = |ei(ϕ0−ϕ′
0) − 1|

which in turn implies that

lim
t→+∞

1

t

∫ t

0
|Xx

s −Xx′

s |ds = |ei(ϕ0−ϕ′
0) − 1| P-a.s.

This limit being different from 0 as soon as ϕ0 6= ϕ′
0, one derives, as a consequence, that

ν∆ cannot be the only invariant distribution. In fact, a more precise statement can be
proved.
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PROPOSITION 3.1. (a) A distribution µ is invariant for the semi-group (Qt)t≥0 of the
duplicated diffusion if and only if µ has the following form:

µ = L(eiΘ, ei(Θ+V )) (3.9)

where Θ is uniformly distributed over [0, 2π] and V is a [0, 2π)-valued random variable
independent of Θ

(b) When V = 0 a.s., we retrieve ν∆ whereas, when V also has uniform distribution on
[0, 2π], we obtain ν ⊗ ν. Finally, µ is extremal in the convex set of (Qt)t≥0 invariant
distributions if and only if there exists θ0 ∈ [0, 2π) such that V = θ0 a.s.

The proof is postponed to Appendix B. However, note that the claim about extremal
invariant distributions follows from the fact that for every θ ∈ [0, 2π), (Qt)t≥0 leaves the
set Γθ := {(eiϕ, eiϕ′

) ∈ S1 × S1, ϕ
′ − ϕ ≡ θmod. 2π} stable.

REMARK 3.2. In the above counterexample, the invariant measure of (rt)t≥0 is the Dirac
measure δ1. In fact, setting again x = ε0e

iϕ0 and x′ = r′0e
iϕ′

0 and using that Xx
t −Xx′

t =

rxt

(
ei(ϕ0+W 2

t ) − ei(ϕ
′
0+W 2

t )
)
+ (rxt − rx

′

t )ei(ϕ
′
0+W 2

t ), an easy adaptation of the above proof

shows that it can be generalized to any ergodic non-negative process (rt)t≥0 solution to
an autonomous SDE and satisfying the following properties:

• Its unique invariant distribution π satisfies π(R∗
+) = 1.

• For every x, y∈ (0,+∞), rxt − ryt −→ 0 a.s. as t→ +∞.

For instance, let (Xx
t )t≥0 be an Ornstein-Uhlenbeck process satisfying the SDE dXt =

−Xtdt + σdWt,X0 = x. Set rxt = (Xx
t )

2 (this is a special case of the Cox-Ingersoll-Ross
process). The process (rxt ) clearly satisfies the first two properties. Furthermore, (Xx

t )t≥0

satisfies a.s. for every x, y ∈ R and every t ≥ 0, |Xx
t −Xy

t | = |x − y|e−t. Then, since for
every x∈ R,

Xx
t

t
= −1

t

∫ t

0
Xx

s ds+ σ
Wt

t
→ 0 a.s. as t→ +∞,

it follows that (rxt )t≥0 also satisfies for all positive x, y, rxt − ryt −→ 0 a.s. as t → +∞
(Many other examples can be built using Corollary 2.1).
Finally, note that if µ = L(ReiΘ, Rei(Θ+V )) where R, Θ and V are independent random
variables such that the distributions of R and Θ are respectively π and the uniform dis-
tribution on [0, 2π] and V takes values in [0, 2π), then µ is an invariant distribution of the
associated duplication system.

In connection with this counterexample we can mention a general result on the Brow-
nian flows of Harris (see [Har81],[Kun90] Theorem 4.3.2). The theorem gives conditions
on b and σ under which ν is an invariant measure of the one point motion (Xx

t )t≥0 and
ν ⊗ ν is an invariant measure of the two point motion (Xx1

t ,Xx2
t )t≥0.

3.2 Uniqueness of the invariant measure: (S, θ)-confluence

In the sequel of this section, we propose criterions for the uniqueness of the invariant
distribution of the duplicated system in the multidimensional case. The underlying idea
of the criterions discussed below is to analyze the coupled diffusion process (Xx1 ,Xx2)
through the squared distance process rt = |Xx1

t −Xx2
t |2

S
(where we recall that for a given

positive definite matrix S, | . |
S
is the Euclidean norm on R

d induced by the scalar product

12



(x|y)
S
= (x|Sy)). It is somewhat similar to that of Has’minskii’s test for explosion of

diffusions in R
d or to the one proposed in Chen and Li’s work devoted to the coupling

of diffusions (see [CL89]). We begin by a general abstract result under an assumption
depending on a continuous function θ : (0,+∞) → R+ to be specified further on. Then,
more explicit pointwise or integrated criterions are derived in the next subsections. In
particular, one involves a kind of bi-variate non-infinitesimal Lyapunov exponent.

Let us introduce some notations. For a probability measure ν on R
d, we set

P⋆
ν,ν =

{
m ∈ P(Rd × R

d),m(dx ×R
d) = m(Rd × dy) = ν,m(∆Rd×Rd) = 0

}
.

For S ∈ S++(d,R), we also set

[b]S,+ = sup
x 6=y

(b(x)− b(y)|x− y)S
|x− y|2

S

.

Note that if [b]S,+ < +∞ and if σ is Lipschitz continuous, strong existence, pathwise
uniqueness and the Feller Markov property hold for (SDE).

For a continuous function θ : (0,+∞) → R+, we define the pseudo-scale C2-function
fθ and its companion gθ by

∀u ∈ (0,+∞), fθ(u) =

∫ u

1
e
∫ 1
ξ

θ(w)
w

dwdξ and gθ(u) = uf ′θ(u). (3.10)

Finally, for S and θ defined as above, we define the (S, θ)-confluence function Ψθ,S on
c∆R2d by

Ψθ,S(x, y) = (b(x)−b(y)|x−y)
S
+
1

2
‖σ(x)−σ(y)‖2

S
−θ(|x−y|2

S
)
∣∣∣(σ∗(x)−σ∗(y))S(x− y)

|x− y|
S

∣∣∣
2
.

Let us now state the result.

THEOREM 3.2. Let S ∈ S++(d,R). Assume that b is a continuous function such that
[b]S,+ <+∞ and σ is Lipschitz continuous. Assume that the set ISDE of invariant dis-
tributions of SDE is (nonempty, convex and) weakly compact. Furthermore, assume that
for every m ∈ P⋆

ν,ν, the following (S, θ)-confluence condition is satisfied: there exists a
continuous function θ : (0,+∞) → R+ such that





(i) lim sup
u→0+

∫ 1

u

θ(w)− 1

w
dw < +∞.

(ii)

∫

Rd×Rd

f ′θ(|x− y|2
S
)Ψθ,S(x, y)m(dx, dy) < 0.

(3.11)

(a) Weak confluence (Uniqueness of both invariant distributions): Then, if IDSDS denotes
the set of invariant distributions of the duplicated system (DSDS), one has

ISDE =
{
ν
}

and IDSDS =
{
ν∆
}

keeping in mind that ν∆ = ν ◦ (x 7→ (x, x))−1.

(b) Pathwise confluence: Let θ : (0,+∞) → R+ be a continuous function such that∫ 1

0
e
∫ 1
v

θ(w)
w

dwdv < +∞ and such that

∀x, y∈ R
d, x 6= y, Ψθ,S(x, y) < 0.
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If furthermore, for every x ∈ R
d,
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight, we have a.s. pathwise

asymptotic confluence:

∀x1, x2∈ R
d, Xx1

t −Xx2
t −→ 0 as t→ +∞ P-a.s. (3.12)

REMARK 3.3. ✄Owing to Assumption (i) and to [b]S,+ < +∞, (x, y) 7→ f ′θ(|x− y|2)Ψθ,S(x, y)
is always bounded from above on c∆Rd×Rd so that the integrals with respect to m ∈ P⋆

ν,ν

are well-defined. Also note that since f ′θ is positive, Assumption (ii) holds in particular if
there exists θ and S such that the (S, θ)-confluence function Ψθ,S is negative on c∆Rd×Rd .

✄ If we also assume in (a), that
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight then, so is
(1
t

∫ t

0
Qs(x, x

′, dy, dy′)ds
)
t≥1

.

Since, by construction, the weak limiting distributions of this sequence as t → +∞ are

invariant distributions, it follows that
1

t

∫ t

0
Qs(x, x

′, dy, dy′)ds weakly converges to ν∆ as

t→ +∞. This motivates the “weak confluence” terminology.

✄ It is natural to wonder if the assumptions for pathwise asymptotic confluence (claim
(b)) are more stringent than Assumptions (i) and (ii). The fact that Ψθ,S < 0 on R

d ×
R
d \ ∆Rd×Rd implies Assumption (ii) has already been mentioned. One can also checks

that
∫ 1
0 e

∫ 1
v

θ(w)
w

dwdv < +∞ implies Assumption (i): one first derives from the Cauchy

criterion that
∫ 1
0 e

∫ 1
v

θ(w)
w

dwdv < +∞ implies that
∫ u

u
2
e
∫ 1
v

θ(w)
w

dwdv → 0 as u → 0+. Using

that v 7→ e
∫ 1
v

θ(w)
w

dw is non-increasing on (0, 1], it follows that ue
∫ 1
u

θ(w)
w

dw → 0+ as u → 0.

Taking the logarithm yields
∫ 1
u

θ(w)−1
w dw → −∞ and thus, Assumption (i).

✄ If b and σ are Lipschitz continuous, Kunita’s Stochastic flow theorem (see [Kun90],
Section 4.5) ensures in particular that, if x1 6= x2, the solutions Xx1

t and Xx2
t a.s. never

get stuck. Taking advantage of this remark slightly shortens the proof below.

✄ Tightness criterions of
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

for every x∈ R
d usually rely on the mean-

reversion property of the solutions of (SDE) usually established under various assumptions
involving the existence of a so-called Lyapunov function V going to infinity at infinity
and such that AV is upper-bounded and lim sup|x|→+∞AV (x) < 0 where A denotes the
infinitesimal generator of Xx (so-called Has’minskii’s criterion). Keep in mind that

AV (x) = (b|∇V )(x) +
1

2
Tr
(
σσ∗(x)D2V (x)

)

where Tr(A) stands for the trace of the matrix A.
On the other hand, a classical criterion for pathwise asymptotic confluence (a.s. at

exponential rate, see e.g. [BB92], [Lem05] and often referred to as asymptotic flatness) is

∀x, y∈ R
d, (b(x)− b(y)|x− y) +

1

2
‖σ(x) − σ(y)‖2 < −c|x− y|2, c > 0, (3.13)

and, as a straightforward consequence, uniqueness of the invariant distribution ν of (SDE)
(and of (DSDS) as well). Moreover, putting y = 0 in the above inequality straightfor-
wardly yields real coefficients α > 0, β ≥ 0 such that AV ≤ β − αV with V (x) = |x|2.
Hence Has’minskii criterion is fulfilled, so it is also an existence criterion for the invari-
ant distribution. In fact, both weak and pathwise assumptions in Theorem 3.2 are much

14



weaker than (3.13) but some of the properties which hold under (3.13) are still preserved.
For instance, since the left-hand side of (3.13) corresponds to the (S, 0)-confluence func-
tion, we deduce from the criterions that if the (S, 0)-confluence function is (only) negative
on c∆Rd×Rd , uniqueness of the invariant distribution ν of (SDE) (and of ν∆ for (DSDS))
holds and, combined with the tightness of the occupation measure of the semi-group, it
becomes a criterion for a.s. pathwise asymptotic confluence.

Proof of Theorem 3.2. Step 1: Exactly like in the beginning of the proof of Theo-
rem 2.1(a), one checks that the set IDSDS of invariant distributions of (Qt)t≥0 is a
nonempty, convex and weakly compact subset of P(Rd × R

d). As a a consequence of
the Krein-Millman theorem, IDSDS has extremal distributions (and is their closed convex
hull).

On the other hand, it follows from strong uniqueness theorem for SDE’s that the
semi-group (Qt)t≥0 leaves stable the diagonal ∆Rd×Rd = {(x, x), x∈ R

d}.
Let x1, x2∈ R

d, x1 6= x2. We define the stopping time

τx1,x2 := inf
{
t ≥ 0 |Xx1

t = Xx2
t

}
.

Still by a strong uniqueness argument it is clear that {τx1,x2 > t} = {Xx1
t 6= Xx2

t } so that

Qt((x1, x2),
c∆Rd×Rd) = 1c∆

Rd×Rd
(x1, x2)P(τx1,x2 > t)

and Qt((x1, x1),
c∆Rd×Rd) = 0.

Let µ∈ IDSDS be an extremal invariant measure. We have, for every t ≥ 0,

µ(c∆Rd×Rd) =

∫

c∆
Rd×Rd

µ(dx1, dx2)P(τx1,x2 > t).

Letting t go to +∞ yields

µ(c∆Rd×Rd) =

∫

c∆
Rd×Rd

µ(dx1, dx2)P(τx1,x2 = +∞)

so that, on c∆Rd×Rd , µ(dx1, dx2)-a.s., P(τx1,x2 = +∞) = 1 or equivalently the process
(Xx1 ,Xx2) lives in c∆Rd×Rd . Consequently, if µ(c∆Rd×Rd)∈ (0, 1), both conditional mea-

sures µ
c∆

Rd×Rd and µ∆Rd×Rd are invariant distributions for (SDSD) as well. If so,

µ = µ(c∆Rd×Rd)µ
c∆

Rd×Rd + µ(∆Rd×Rd)µ
∆

Rd×Rd

cannot be extremal. Consequently µ(∆Rd×Rd) = 0 or 1.

Step 2: Let µ be an extremal distribution in IDSDS and assume that µ(c∆Rd×Rd) = 1 so
that µ ∈ P⋆

ν,ν . We will prove that this yields a contradiction under Assumptions (i) and
(ii).
Note that f ′θ and gθ defined in (3.10) are positive on (0,+∞), that Assumption (i) reads
lim supu→0+ gθ(u) < +∞ and that g′θ(u) = f ′θ(u)(1 − θ(u)). Moreover, if Assumption (ii)

is fulfilled, so is the case for any continuous function θ̃ satisfying θ̃ ≥ θ. As a consequence,
we may modify θ on [1,+∞) so that θ still satisfies (ii) and θ ≥ 1 over [2ε,+∞). Then
the function gθ is non-increasing on [2,+∞). Consequently, without loss of generality, we
may assume in the sequel of the proof that

sup
u>0

gθ(u) < +∞. (3.14)
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We now define a (Lyapunov) function ϕ : c∆Rd×Rd → R by

ϕ(y1, y2) := fθ(|y1 − y2|2S).

We know from Step 1 that µ(dx1, dx2)-a.s., (X
x1
t 6= Xx2

t for every t ≥ 0) a.s.. Then, fθ
being a C2-function, we derive from Itô’s formula applied to ϕ(Xx1

t ,Xx2
t ) that µ(dx1, dx2)-

a.s.,

ϕ(Xx1
t ,Xx2

t ) = ϕ(x1, x2) +

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds

+

∫ t

0
f ′θ(|Xx1

s −Xx2
s |2

S
)
(
(σ∗(Xx1

s )− σ∗(Xx2
s ))S(Xx1

s −Xx2
s )|dWs

)

︸ ︷︷ ︸
=:Mt local martingale

where, for every (x1, x2)∈ (Rd)2,

A(2)ϕ(x1, x2) = 2
(
(b(x1)− b(x2)|x1 − x2)S +

1

2
‖σ(x1)− σ(x2)‖2S

)
f ′θ(|x1 − x2|2S )

+ 2f ′′θ (|x1 − x2|2S)
∣∣(σ∗(x1)− σ∗(x2))S(x1 − x2)

∣∣2. (3.15)

Using that fθ is increasing and satisfies the ODE ≡ θ(ξ)f ′θ(ξ) + ξf ′′θ (ξ) = 0, ξ∈ (0,+∞),
we deduce that

A(2)ϕ(x1, x2) = 2f ′θ(|x1 − x2|2S)Ψθ,S(x1, x2)

so that

∫

Rd×Rd

A(2)ϕ(x1, x2)µ(dx1, dx2) < 0 by Assumption (ii).

On the one hand, since µ is extremal and since A(2)ϕ is bounded from above (see
Remark 3.3), we can apply Birkhoff’s theorem and obtain:

µ(dx1, dx2)-a.s.,
1

t

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds

t→+∞−−−−→
∫

c∆
Rd×Rd

A(2)ϕdµ ∈ [−∞, 0) a.s.

(3.16)
On the other hand, using that gθ is bounded and σ is Lipschitz continuous, it follows that
(Mt)t≥0 is an L2-martingale such that

〈M〉t =
∫ t

0
gθ(|Xx1

s −Xx2
s |2

S
)2
∣∣∣(σ

∗(Xx1
s )− σ∗(Xx2

s ))

|Xx1
s −Xx2

s |
S

S(Xx1
s −Xx2

s )

|Xx1
s −Xx2

s |
S

∣∣∣
2
ds ≤ Ct Pµ-a.s.

(3.17)
where C is a deterministic positive constant so that Mt

t → 0 Pµ-a.s..
As a consequence, µ(dx1, dx2)-a.s.,

lim
t→+∞

ϕ(Xx1
t ,Xx2

t )

t
=

∫

c∆
Rd×Rd

A(2)ϕdµ < 0 a.s..

Hence, a.s., f(|Xx1
t −Xx2

t |2
S
) = ϕ(Xx1

t ,Xx2
t )

t→+∞−−−−→ −∞ a.s.
If limu→0+ fθ(u) > −∞, this yields a contradiction since fθ is increasing on R

∗
+. Otherwise

|Xx1
t −Xx2

t |2
S

t→+∞−−−−→ 0. But applying again Birkhoff’s theorem, we obtain µ(dx1, dx2)-a.s.,

∫
|y1 − y2|2Sµ(dy1, dy2) = lim

t→+∞
1

t

∫ t

0
|Xx1

t −Xx2
t |2

S
ds = 0 a.s.,
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which contradicts the assumption µ(c∆Rd×Rd) = 1. Consequently, for any extremal invari-
ant distribution µ, we have µ(∆Rd×Rd) = 1.

We can now prove Claim (a): by Krein-Millman’s Theorem ISDS is the weak closure of
the convex hull of its extremal distributions. Consequently, the diagonal ∆Rd×Rd being a
closed subset of Rd×R

d, all invariant distributions of the duplicated system are supported
by this diagonal. For any such invariant distribution µ, both its marginals are invariant
distributions for (SDE). If (SDE) had two distinct invariant distributions ν and ν ′, we
know from the introduction that IDSDS would contain at least a distribution µ for which
the two marginals distributions are µ(. × R

d) = ν and µ(Rd × .) = ν ′ respectively. As
a consequence, such a distribution µ could not by supported by the diagonal ∆Rd×Rd .
Finally, ISDE is reduced to a singleton {ν} and IDSDS = {ν∆}.
Step 3 (Claim (b): Proof of (3.12)): Under the additional assumption on θ of (b),
we have limu→0+ fθ(u) > −∞ and thus, infu>0 fθ(u) > −∞ since fθ is increasing. Let x1,
x2∈ R

d. Using again that A(2)ϕ < 0 on c∆Rd×Rd where A(2)ϕ is given by (3.15). It follows
that

(
fθ(|Xx1

t −Xx2
t |2

S
)
)
t≥0

is a lower-bounded P-supermartingale. Thus, it a.s. converges

toward Lx1,x2∞ ∈ L1(P). Using again that fθ is increasing, it follows that |Xx1
t −Xx2

t |2
S
a.s.

converges toward a finite random variable ℓx1,x2∞ = f−1
θ (Lx1,x2∞ ).

Now, using that for every x ∈ R
d,
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight, we derive that

(1
t

∫ t

0
Qs((x1, x2), (dy1, dy2))ds

)
t≥1

is tight as well. Then the uniqueness of ν∆ as an

invariant distribution of Q implies that

1

t

∫ t

0
Qs

(
(x1, x2), (dy1, dy2)

)
ds

(Rd)
=⇒ ν∆.

Now for every bounded continuous function g : Rd → R,

1

t

∫ t

0
Qs(g(|y1 − y2|2S )(x1, x2)ds =

1

t

∫ t

0
E g(|Xx1

s −Xx2
s |2

S
)ds −→ E g(ℓx1,x2

∞ )

so that

E g(ℓx1,x2
∞ ) =

∫
g(|y1 − y2|2S )ν∆(dy1, dy2) = g(0). ✷

In Assumption (ii) of the previous theorem, we see that the function (x, y) 7→ |(σ∗(x)−
σ∗(y))S(x−y)| plays an important role. In the sequel, we will obtain specific results when
this function is not degenerated away from the diagonal. Such type of assumption will be
called strong or regular directional S-ellipticity assumption.

In the following proposition, we first show that when such an assumption is satis-
fied, claim (b) of the previous theorem still holds without the tightness assumption on(
1
t

∫ t
0 Ps(x, dy)ds

)
t≥1

(although it is not really restrictive in our framework (see the fourth

item of Remark 3.3)).

PROPOSITION 3.2. If the function θ is (0, 1]-valued and σ satisfies the following strong
directional S-ellipticity assumption away from the diagonal

∃ α0 > 0, ∀x, y∈ R
d,
∣∣(σ∗(x)− σ∗(y))S(x− y)

∣∣ ≥ α0|x− y|2, (3.18)

then the conclusion of Claim (b) in the above proposition remains true without the tightness
assumption on (1t

∫ t
0 Ps(x, dy)ds)t≥1.
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Proof. First, we recall that under the assumptions of (b), we recall that (fθ(|Xx1
t −

Xx2
t |2

S
))t≥0 is a lower-bounded P-supermartingale thus convergent to an integrable ran-

dom variable and that this implies that (|Xx1
t − Xx2

t |2
S
)t≥0 is a.s. convergent to a finite

random variable ℓx1,x2∞ (since fθ is increasing). On the other hand, since −A(2)ϕ is positive
and fθ is lower-bounded, we also have that

fθ(|Xx1
t −Xx2

t |2
S
)−

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds = ϕ(x1, x2) +Mt

is a lower bounded P-(local) martingale starting at a deterministic starting value, hence
converging toward an integrable random variable. Owing to the computations of (3.17)
(which hold for every starting points x1, x2), (Mt)t≥0 is in fact an L2- convergent mar-
tingale. Thus, 〈M〉∞ < +∞ and taking advantage of the expression of this bracket (see
(3.17)) and to Assumption (3.18), we derive that for every ε > 0

∫ +∞

0

(
gθ
(
|Xx1

s −Xx2
s |2

S

)2
1{|Xx1

s −X
x2
s |2

S
≥ε}ds < +∞ a.s.

The function gθ is positive on (0,+∞) and non-decreasing since g′θ(u) = f ′θ(u)(1−θ(u)) ≥
0. This implies that, for every ε > 0,

lim inf
t→+∞

gθ
(
|Xx1

t −Xx2
t |2

S

)
1{|Xx1−Xx2 |2

S
≥ε} = 0 a.s.

Combined with the convergence of the squared norm this yields

∀ ε > 0, gθ
(
ℓx1,x2
∞

)
1{ℓx1,x2∞ ≥ε} = 0 a.s.

which finally implies ℓx1,x2∞ = 0 a.s.

3.3 Global criterions, NILS exponent

In this section and the following, we derive several corollaries of Theorem 3.2 illustrated
by different examples.

PROPOSITION 3.3. Let S ∈ S++(d,R). Assume [b]S,+ < +∞, σ is Lipschitz continuous
and ISDS is non empty and weakly compact. Then,

(a) If Assumption (ii) of Theorem 3.2 holds with some continuous functions θ : (0,+∞) →
R+ satisfying: there exists ε0 > 0 such that θ(u) ≤ 1, u∈ (0, ε0], then (SDE) (1.1) and
its duplicated system have ν and ν∆ as unique invariant distributions respectively.

(b) If for every x ∈ R
d, (1t

∫ t
0 Ps(x, dy)ds)t≥1 is tight and if Ψθ,S < 0 on ∆c

Rd×Rd with a

continuous function θ : (0,+∞) → R+ satisfying: there exists κ > 1 and ε0 ∈ (0, e−
κ
2 )

such that
∀u∈ (0, ε0], θ(u) ≤

(
1 +

κ

log u

)
, (3.19)

then the duplicated system of (SDE) is pathwise confluent in the sense of Theorem 3.2(b).
This condition is in particular satisfied if there exists ε0 > 0 and θ0∈ (0, 1) such that

∀u∈ (0, ε0], θ(u) ≤ θ0.

Proof. Claim (a) is obvious. As for (b), one checks that
∫ 1
0 e

∫ 1
v

θ(w)
w

dwdv < +∞ as soon as
lim infu→0+ log(u)

(
θ(u)− 1

)
> 1 and the result follows.
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REMARK 3.4. The simplest case where the preceding result holds is obtained when θ ≡ 0.
In this case, the weak confluence referred to as (S, 0)-confluence in what follows, condition
reads:

∀m∈ P⋆
ν,ν ,

∫

Rd×Rd

(b(x)− b(y)|x− y)
S
+

1

2
‖σ(x)− σ(y)‖2

S
m(dx, dy) < 0 (3.20)

and claim (b) holds as soon as the integrated function is negative on c∆Rd×Rd .

At this stage, it is important for practical applications to note that the constant func-
tion θ ≡ 1 satisfies the assumption in (a) of the above Proposition. This leads us to
introduce an important quantity of interest for our purpose.

DEFINITION 3.1. The non-infinitesimal S-Lyapunov (NILS) exponent is a function on
R
d × R

d \∆Rd×Rd defined for every x, y∈ R
d, x 6= y, by

Λ
S
(x, y) =

(b(x)− b(y)|x− y)
S

|x− y|2
S

+
1

2

‖σ(x)− σ(y)‖2
S

|x− y|2
S

−
(∣∣∣ (σ

∗(x)− σ∗(y))S(x− y)

|x− y|2
S

∣∣∣
2
)
.

COROLLARY 3.2. Assume b and σ are like in Proposition 3.3 and ISDE is non empty
and weakly compact.

(a) Negative Integrated NILS exponent: if

∀m ∈ P⋆
ν,ν ,

∫

Rd

Λ
S
(x, y)m(dx, dy) < 0, (3.21)

then (SDE) and its duplicated system have ν and ν∆ as unique invariant distributions
respectively.

(b) Negative NILS exponent bounded away from 0: If furthermore
(
1
t

∫ t
0 Ps(x, dy)ds

)
t≥1

is tight for every x∈ Rd or σ satisfies (3.18) and if there exists c0 > 0 such that

∀x, y∈ R
d, x 6= y, |x− y|2

S
≤ ε0 =⇒ ΛS(x, y) ≤ −c0 (3.22)

then the duplicated diffusion is pathwise confluent i.e.

∀x1, x2∈ R
d, Xx1

t −Xx2
t −→ 0 a.s. as t→ +∞.

Proof. (a) follows from claim (a) in the above proposition with θ ≡ 1 since ufθ(u) ≡ 1
on (0,+∞) so that A(2)ϕ(x, y) = 2Λ

S
(x, y) in the proof of Theorem 3.2. (b) follows from

claim (b) in the same proposition.

REMARK 3.5. ✄ It is obvious that (3.21) is satisfied, i.e. the integrated NILS (INILS)
exponent is negative for every m∈ P⋆

ν,ν , as soon as the NILS exponent itself is negative
on c∆Rd×Rd . This pointwise negativity may appear as the only checkable condition for
practical applications, but so is not the case and we will see in the next subsections that
we can devise criterions when ΛS is not negative everywhere.

✄ Let us assume that ν ⊗ ν ∈ P⋆
ν,ν (for instance, so is the case if ν is atomless) and that

b and σ are such that for all x 6= y, for all t ≥ 0, P(Xx
t 6= Xy

t ) = 1 (see the fourth
item of Remark 3.3 for comments on this topic). Then, for each t > 0, one easily checks

that the probability measure µ
(0)
t defined in (1.4) belongs to P⋆

ν,ν . Furthermore, if (3.21)

holds, (µ
(0)
t )t≥1 converges weakly to ν∆ since this family is weakly compact (see the first
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item of Remark 3.3) and ν∆ is its only possible limiting distribution. On the other hand,
the function Λ

S
being continuous and upper-bounded on c∆Rd×Rd , can be extended on

the diagonal into a lower semi-continuous (l.s.c.) function on R
d × R

d (with values in
R ∪ {−∞}). Let Λ

S
denote its l.s.c. envelope. Temporarily assume that b and σ are

Lipschitz continuous so that Λ
S
is bounded. Then applying Fatou’s Lemma in distribution

to Λ
S
, it follows from (3.21) that

∫
Λ

S
(x, x)ν(dx) =

∫
Λ

S
(x, y)ν∆(dx, dy) ≤ lim inf

t→+∞

∫
Λ

S
(x, y)µ

(0)
t (dx, dy) ≤ 0. (3.23)

The interesting point is that the left-hand side of (3.23) is an integral with respect to ν
and can be seen as a necessary condition for the criterion (3.21). In fact the result still
holds if [b]S,+ <+∞ mutatis mutandis and there exists a continuous function ℓ ∈ L1(ν)
such that

∀x, y∈ R
d × R

d, Λ−
S
(x, y) ≤ ℓ(x) + ℓ(y) (3.24)

(where, for a function f , f± = max(±f, 0)).
Furthermore, when b and σ are continuously differentiable, one derives from a Laplace-

Taylor expansion (integral remainder) that Λ
S
(x, x) reads for every x∈ R

d:

Λ
S
(x, x) =

1

2
inf

|u|
S
=1

(
u∗ (SJb(x) + J∗

b (x)S) u+
∥∥∥(∇σ(x)|u)

∥∥∥
2

S

− 2
∣∣∣(∇σ∗(x)Su|u)

∣∣∣
2
)
.

(3.25)
Thus, (3.23) can be read as a checkable necessary condition for the criterion (3.21). We
will come back on this condition in Subsection 3.6.

✄ In (b), Condition (3.22) can be replaced by the sharper: for all x, y ∈ R
d, Λ

S
(x, y) < 0

and there exists κ > 1 and ε0∈ (0, e−
κ
2 ) such that for all x, y ∈ R

d such that |x− y|S ≤ ε0,

Λ
S
(x, y) ≤ κ

log(|x− y|2
S
)
.

When the coefficients are smooth enough, the negativity of Λ
S
can be ensured by the

following criterion:

COROLLARY 3.3 (Smooth coefficients). Assume the functions b and σ are continuously

differentiable. Let Jb(x) =
[
∂bi
∂xj

(x)
]
1≤i,j≤d

denote the Jacobian of b at x and let ∇σ(x) =
[
∂σij

∂xk (x)
]
i,j,k

denote the gradient of σ at x. If both SJb + J∗
b S and ∇σ are Lipschitz

continuous and if ∇σ is bounded then Λ
S
(x, y) ≤ −c0 on c∆Rd×Rd if

sup
x∈Rd

sup
|u|

S
=1

(
u∗ (SJb(x) + J∗

b (x)S) u+
∥∥∥(∇σ(x)|u)

∥∥∥
2

S

− 2
∣∣∣(∇σ∗(x)Su|u)

∣∣∣
2
)
< 0

where, for every v = (v1, . . . , vd)∈ R
d, (∇σ(x)|v) =

[
(∇σij(x)|v)

]
1≤i,j≤d

and ∇σ(x)v =
[

d∑

k=1

∂σij
∂xk

(x)vk

]

1≤i,j≤d

. When S = Id, this may also be written

sup
x∈Rd

sup
|u|=1


u∗

(
(Jb + J∗

b )(x) +
∑

i,j

(∇σij(x))⊗2 − 2
[
(∇σij(x)|u)

][
(∇σ∗ij(x)|u)

])
u


 < 0.

The proof is again an easy consequence of the Laplace-Taylor formula. Computational
details are left to the reader.
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3.4 Applications and extensions

3.4.1 Localization around the diagonal

By local we mean that the confluence condition will be effective only in the neighbourhood
of the diagonal ∆Rd×Rd . The price to pay is a regular directional ellipticity assumption on
σ(x)− σ(y) in the direction S(x− y) away from the diagonal.

PROPOSITION 3.4. Assume [b]S,+ < +∞, σ is Lipschitz continuous and (SDE) admits
at least one invariant distribution ν. If there exists ε0 > 0 such that




(i) Directional S-ellipticity: η0 := inf
{∣∣(σ∗(x)− σ∗(y))S(x− y)

∣∣, |x− y|
S
≥ ε0

}
> 0,

(ii) Locally negative INILS exponent: ∀m∈ P⋆
ν,ν ,

∫

|x−y|
S
≤ε0

Λ
S
(x, y)m(dx, dy) < 0,

then (SDE) (1.1) and its duplicated system still have ν and ν∆ as unique invariant dis-
tributions respectively.

Proof. Owing to (i), we have for every u∈ (ε0,+∞):

sup
|x−y|

S
=u

(b(x)− b(y)|x− y)
S
+ 1

2‖σ(x) − σ(y)‖2
S∣∣∣(σ∗(x)− σ∗(y))S x−y

|x−y|
S

∣∣∣
2
.

≤
(
[b]+ +

1

2
[σ]2Lip

)u4
η20
.

For every ε′0 > ε0, let θε′0 : (0,+∞) → R+ denote the continuous function defined by

θε′0(u) =





(
[b]S,+ + 1

2 [σ]
2
Lip

)
u4

η20
if u∈ (ε′0,∞),

1 if u∈ (0, ε0],

1 + θε′0(ε
′
0)

t−ε0
ε′0−ε0

if u∈ (ε0, ε
′
0).

Since θε′0(u) = 1 in the neighbourhood of 0, Assumption (i) of Theorem 3.2 is satisfied.
For Assumption (ii), one first deduces from the construction and to the first assumption
that,

∀ ε′0 > ε0, ∀x, y such that |x− y| ≥ ε′0, Ψθε′
0
,S(x, y) ≤ 0.

Using that θε′0(u) = 1 on (0, ε0], it follows that for all m ∈ P⋆
ν,ν ,

∫

Rd×Rd

f ′θ(|x− y|2
S
)Ψθε′

0
,S(x, y)m(dx, dy) ≤

∫

|x−y|≤ε0

Λ
S
(x, y)m(dx, dy) + I2(ε

′
0)

where

I2(ε
′
0) =

∫

ε0<|x−y|<ε′0

f ′θ(|x− y|2
S
)Ψθε′

0
,S(x, y)m(dx, dy).

Since the integrated function is bounded from above on {(x, y), ε0 < |x − y| < ε′0}, we
deduce that

I2(ε
′
0) ≤ C m(ε0 < |x− y| < ε′0)

ε′0→ε0−−−−→ 0.

By the second assumption of this proposition, it follows that there exists ε′0 > ε0 such that
∫

Rd×Rd

f ′θ(|x− y|2
S
)Ψθε′

0
,S(x, y)m(dx, dy) < 0

so that Assumption (ii) of Theorem 3.2 holds. This completes the proof.
✷
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3.4.2 Local criterion on compact sets

As mentioned in Remark 3.4, Theorem 3.2 can be applied under the (S, 0)-confluence
condition (3.20). This condition is in particular satisfied when

∀x, y∈ R
d, x 6= y, (b(x)− b(y)|x− y)

S
+

1

2
‖σ(x) − σ(y)‖2

S
< 0.

One asset of this more stringent assumption is that it can be localized in two ways:
first in the neighbourhood of the diagonal like in the above local criterions, but also on
compacts sets of Rd ×R

d. This naturally leads to a criterion based on the differentials of
b and σ when they exist.

PROPOSITION 3.5 (Criterion on compact sets). (a) Let S ∈ S++(d,R) such that for every
R > 0, there exists δR > 0 such that ∀x, y∈ B|.|

S
(0;R),

0 < |x− y|
S
≤ δR =⇒ (b(x)− b(y)|x− y)

S
+

1

2
‖σ(x) − σ(y)‖2

S
< 0. (3.26)

Then the diffusion is asymptotically (S, 0)-confluent.

(b) If b and σ are continuously differentiable, then (3.26) holds as soon as

(AC)diff ≡ ∀x∈ R
d, SJb(x) + J∗

b (x)S +
√
S
∑

i,j

(∇σij(x))⊗2
√
S < 0 in S(d,R).

Proof. (a) Let x, y∈ R
d such that x 6= y. Set R = max(|x|S , |y|S ) and

x0 = x, xi = x+
i

N
(y − x), i = 1, . . . , N − 1, xN = y

where |y − x|
S
< NδR. Then for every i∈ {1, . . . , N}, |xi|S ≤ R and |xi − xi−1|S ≤ δR.

Then

‖σ(x) − σ(y)‖2
S

=
∥∥∥

N∑

i=1

σ(xi)− σ(xi−1)
∥∥∥
2

S

≤ N
N∑

i=1

‖σ(xi)− σ(xi−1)‖2S

< −2N

N∑

i=1

(b(xi)− b(xi−1)|xi − xi−1)S = −2

N∑

i=1

(
b(xi)− b(xi−1)|y − x

)
S

< −2(b(y)− b(x)|y − x)
S
.

(b) First, we prove the result when S = Id. We note that, for every continuously
differentiable function g : R

d → R, g(y) − g(x) =
∫ 1
0

(
∇g(x + t(y − x))|y − x

)
dt =∫ 1

0 (y − x)∗∇g(x+ t(y − x))dt so that

(
b(y)−b(x)|y−x

)
=

∫ 1

0
(y−x)∗Jb(x+t(y−x)

)
(y−x)dt =

∫ 1

0
(y−x)∗J∗

b (x+t(y−x)
)
(y−x)dt

and

‖σ(y) − σ(x)‖2 =

d∑

i,j=1

(∫ 1

0

(
∇σij(x+ t(y − x))|y − x

)
dt

)2

.
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By Schwarz’s Inequality and the fact that (u|v)2 = u∗v⊗2u, we deduce

(
b(y)− b(x)|y − x

)
+

1

2
‖σ(y)−σ(x)‖2 ≤ 1

2

∫ 1

0

(
(y − x)∗(Jb + J∗

b )(x+ t(y − x))(y − x)

+
1

2

∑

ij

(y − x)∗
(
∇σij(x+ t(y − x))

)⊗2
(y − x)

)
dt.

This completes the proof when S = Id. This extends to general matrix S ∈ S++(d,R)
using that ‖σ(y)−σ(x)‖2

S
= ‖(

√
Sσ)(y)−(

√
Sσ)(x)‖2 and the fact that (Au)⊗2 = Au⊗2A∗

with A =
√
S. ✷

3.4.3 The case Λ
S
≤ 0

As mentioned before, the main field of applications of Corollary 3.2 seems to be the case
Λ

S
< 0 out of the diagonal ∆Rd×Rd . In the two next sections, our objective is to state

some results when this condition is not fulfilled. We begin by a simple application of
Corollary 3.2 where the NILS exponent is only non-positive and negative outside of a
compact set.

PROPOSITION 3.6. Assume [b]S,+ < +∞, σ is Lipschitz continuous and (SDE) has a
unique invariant distribution ν whose support is not compact. Then, uniqueness for ν∆
holds true as soon as

∀x, y ∈ R
d, Λ

S
(x, y) ≤ 0 and ∃R > 0 s.t. max(|x|

S
, |y|

S
) > R =⇒ Λ

S
(x, y) < 0.

(3.27)

Proof. Since the support of ν is not compact, we have for everym ∈ P⋆
ν,ν : m

(
{max(|x|

S
, |y|

S
) >

R}
)
≥ ν({|x|

S
> R}) > 0. It follows from the assumption that

∀m ∈ P⋆
ν,ν ,

∫
Λ

S
(x, y)m(dx, dy) ≤

∫
Λ

S
(x, y)1{max(|x|

S
,|y|

S
)>R}m(dx, dy) < 0

and we deduce the result from Corollary 3.2.

REMARK 3.6. ✄ In the particular case where σ is constant, Condition (3.27) becomes a
monotony condition on b (decrease with respect to (.|.)

S
at infinity), namely:

∀x, y ∈ R
d, x 6= y (b(x)− b(y)|x− y)S ≤ 0,

and ∃R > 0 s.t. max(|x|S , |y|S ) > R =⇒ (b(x)− b(y)|x− y)S < 0.

This means that b is S-non-increasing on R
d, S-decreasing outside B|.|

S
(0;R)2. For in-

stance, if b = −∇U , the above assumption holds if U is convex and (only) strictly convex
outside of a compact set.

✄ Note that when ∇U is only increasing outside B|.|
S
(0;R) but possibly with no specific

monotony on B|.|
S
(0;R), it is still possible to find some diffusion coefficients σ such that

the SDE dXt = −∇U(Xt)dt+σ(Xt)dWt remains weakly or pathwise confluent. We refer to
the next subsection for models with such stochastically stabilizing diffusive components.

✄ Finally, note that the above condition (3.27) can be also localized around the diagonal
under the directional S-ellipticity assumption. To be more precise, when ν is unique and
its support is not compact, Proposition 3.6 still holds if Assumption (ii) is “localized”
into:

(ii)loc ≡ for every x, y ∈ R
d such that 0 < |x− y| ≤ ε0, ΛS

(x, y) ≤ 0.
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3.4.4 Λ
S
possibly positive on some areas of Rd × R

d

In the continuity of the previous section, we try to explore some multidimensional settings
where ΛS can be positive in some parts of the space. More precisely, we focus here on
gradient systems with constant noise whose potential U is not convex in all the space (see
[Tea08] for other confluence results on this type of model with the “random attractor”
viewpoint). For such dynamical systems, we obtain a criterion below that we next apply
to super-quadratic non-convex potentials. Then, we will come back to this problem in
section 3.5.3 where we focus on the particular example U(x) = (|x|2 − 1)2, case for which
we are able to obtain a sharper result.

PROPOSITION 3.7 (Gradient system). Let U : Rd → R+ be a locally Lipschitz, differen-
tiable function satisfying

0 < lim inf
|x|→+∞

U(x)

|x|γ < lim sup
|x|→+∞

U(x)

|x|γ < +∞ for a positive γ. Then, the Brownian diffusion

dXx
t = −∇U(Xx

t )dt+ σdWt, X
x
0 = x,

where σ > 0 and W is a standard Brownian motion on R
d, satisfies a strong existence-

uniqueness property with unique invariant distribution νσ(dx) = Cσe
− 2U(x)

σ2 dx.

Furthermore assume that its NILS exponent satisfies

∀x, y∈ R
d, Λ

Id
(x, y) ≤ β − α

2

(
|x|a + |y|a

)
where β ∈ R, α, a > 0 (3.28)

then there exists σc > 0 such that, for every σ > σc, the related (DSDS) system
(2-point motion) is weakly confluent.

Proof. The strong existence-uniqueness is classical background. The form of the invariant
distribution νσ as well. Then by Fatou’s Lemma and the asymptotic upper-bound, there
exists A > 0 such that

lim inf
σ→+∞

∫

Rd

|u|ae−
2U(σ2/γu)

σ2 du ≥
∫

Rd

|u|ae−A|u|γdu > 0.

On the other hand, note that

∫

Rd

|x|ae−
2U(x)

σ2 dx = σ
d
2
+ 2a

γ

∫

Rd

|u|ae−
2U(σ2/γu)

σ2 du.

Owing to the asymptotic lower bound for U at infinity and the (reverse) Fatou’s Lemma,
there exists a real number B > 0 such that

lim sup
σ→+∞

∫

Rd

e−
2U(σ2/γu)

σ2 du ≤
∫

Rd

e−B|u|γdu < +∞.

As a consequence lim inf
σ→+∞

νσ
(
|x|a

)
= +∞. For any distribution m ∈ P(Rd × R

d) with

marginal νσ and assigning no weight to the diagonal, one has
∫

Rd×Rd\∆
Rd×Rd

ΛId(x, y)m(dx, dy) ≤ β − ανσ
(
|x|a

)
< 0

as soon as σ is large enough to ensure that νσ
(
|x|a

)
≥ β

α .
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REMARK 3.7. We may assume without loss of generality that argminRdU = {U = 0} ⊂
{∇U = 0} so that νσ

Rd

=⇒ ν0 = Unif({U = 0}) as σ → 0. Hence, from a practical point
of view, the fact that the critical σc can be taken as 0 seems a reasonable conjecture if
β − αν0

(
|x|a1{U(x)=0}

)
≤ 0. Thus, in Section 3.5.3, we prove that it holds true for the

potential fonction U(x) = (|x|2 − 1)2.

COROLLARY 3.4. Assume that U : Rd → R+ is defined by U(x) = C|x|2p + ε(x) where
p > 1, C > 0 and ε is a C1-function such that ∇ε is Lipschitz continuous. Then, there
exists σc > 0 such that, for every σ > σc, the (DSDS) related to the gradient system
dXt = −∇U(Xt)dt+ σdWt is weakly confluent.

Proof. Using that for every x ∈ R
d (even if x = 0 with an obvious extension by continuity),

D2(|x|2p) = 2p|x|2(p−1)

(
2(p− 1)

x⊗2

|x|2 + Id

)
≥ 2p|x|2(p−1)Id in S+(d,R),

we deduce that for every x 6= y,

(
∇(|x|2p)−∇(|y|2p)|x− y

)

|x− y|2 ≥ 2p

∫ 1

0
|y + t(x− y)|2(p−1)dt.

If p ≥ 2, we deduce from Jensen’s inequality that

∫ 1

0
|y + t(x− y)|2(p−1)dt ≥

(∫ 1

0
|y + t(x− y)|2dt

)p−1

≥
(
1

6
(|x|2 + |y|2)

)p−1

≥
(
1

6

)p−1 (
|x|2(p−1) + |y|2(p−1)

)

where in the last inequality, we used again that p− 1 ≥ 1. It follows that

Λ
Id
(x, y) ≤ [ε]1 − αp(|x|2(p−1) + |y|2(p−1))

where [ε]1 denotes the Lipschitz constant of ε and αp > 0. The previous result then applies
in this case.

When p ∈ (1, 2), we deduce from the elementary inequality ||u|ρ − |v|ρ| ≤ |u− v|ρ for
0 < ρ < 1 that ∫ 1

0
|y + t(x− y)|2(p−1)dt ≥ αp

(
|x|2(p−1) + |y|2(p−1)

)

with αp > 0 and the result follows likewise.

3.5 Examples

3.5.1 An example of confluent diffusion with increasing drift

Assume that σ : Rd → M(d, d,R) is defined by σ(x) = x⊗ λ+ σ0 where σ0∈ M(d, d,R)
and λ : Rd → R

d is a bounded Lipschitz function (such that σ is Lipschitz too). If there
exists ρ∈ (0, 12) such that

lim sup
|x|→+∞

(b(x)|x) − ρ|x|2|λ(x)|2

(1 + |x|2)ρ+ 1
2

= −∞ (3.29)
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then the diffusion (1.1) has at least one invariant distribution ν. Thus, if

[b]0+ = sup
x 6=0

(b(x)− b(0)|x)
|x|2 6= +∞,

the above condition is satisfied as soon as

lim inf
|x|→+∞

|λ(x)|2 > 2[b]0+.

The key is to introduce the Lyapunov function V (x) = (a + |x|2)ρ+ 1
2 . Using that ‖(σ −

σ0)(x)‖2 = |(σ − σ0)∗(x) x
|x| |2 = |λ(x)|2|x|2, we deduce that

1

2
‖σ(x)‖2 − (ρ+

1

2
)
∣∣∣σ∗(x) x|x|

∣∣∣
2
= −ρ|λ(x)|2|x|2 +O(1)

and it follows that lim sup|x|→+∞AV (x) = −∞ if (3.29) is fulfilled (where A denotes the
infinitesimal generator of (1.1)).

If the function λ is constant, the diffusion is asymptotically pathwise confluent (so that
ν is unique for (1.1) and the duplicated system has ν∆ as unique invariant distribution)
as soon as there exists ε0 > 0 satisfying

|x− y| ≤ ε0 =⇒ (b(x)− b(y)|x− y)− 1

2
|λ|2|x− y|2 < 0. (3.30)

This is a consequence of Proposition 3.4 applied with S = Id (the directional ellipticity
assumption (i) is clearly true since |(σ∗(x)− σ∗(y))(x− y)| = |λ|.|x− y|2). If b is smooth
this condition is satisfied as soon as, for every x∈ R

d, 1
2(Jb + J∗

b )(x) <
1
2 |λ|2Id in S(d,R)

(Jb(x) denotes the Jacobian matrix of b).

3.5.2 Baxendale’s model

Let Ξt = (Xt, Yt) be the unique strong solution to the 2-dimensional SDE

dXt =
(
a− σ2

2

)
Xtdt− (σYt − θ

X
)dWt

dYt =
(
b− σ2

2

)
Ytdt+ (σXt + θ

Y
)dWt

where W is scalar standard Brownian motion, a, b, σ are real numbers satisfying

ab < 0, a+ b < 0, σ >

√
2ab

a+ b
.

and θ
X
, θ

Y
∈ R. When θ

X
= θ

Y
= 0, this system is known as Baxendale’s system

(see e.g. [KP92]). Its stochastic stability has been extensively investigated in connection
with its Lyapunov exponent. Then set

λ = λ(σ) =
b− a+

√
(b− a)2 + σ4

σ2
∈ (0, 1) and α = σ2 − (a+ b)−

√
(a− b)2 + σ4 > 0.

and | . |λ = | . |S with S = Diag(1, λ). Itô’s Lemma implies

d|Ξt|2λ =
(
− α|Ξt|2λ + θX (θX − 2σYt) + λθY (θY + 2σXt)

)
dt+Θ(Ξt)dWt
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where Θ(x, y) = 2
(
(λ − 1)σxy + λθ

Y
x + θ

X
y
)
. It is clear that there exists β ∈ R+ such

that
|θ

X
(θ

X
− 2σy) + λθ

Y
(θ

Y
+ 2σx)| ≤ β(|(x, y)|λ + 1).

Then using that |ξ|λ ≤ 1
2α + α

2 |ξ|2λ and setting β′ = β + 1
2α , we derive that

d|Ξt|2λ ≤ β′ − α

2
|Ξt|2λdt+Θ(Ξt)dWt

where θ(ξ) ≤ C|ξ|λ. Hence, the function V (ξ) = |ξ|2λ is a Lyapunov function for the system
since AV ≤ β′ − α

2V . As a consequence there exists at least one invariant distribution ν

for the system and any such distribution satisfies ν(V ) ≤ 2β′

α .

At this stage we can compute the non-infinitesimal S-Lyapunov exponent of the du-
plicated system. Tedious although elementary computations show that, for every ξ =
(x, y), ξ′ = (x′, y′)∈ R

2,

Λ
S
(ξ, ξ′) = −α

2
− (λ− 1)2σ2

(x− x′)2(y − y′)2

|ξ − ξ′|4λ
< 0.

REMARK 3.8. Adapting results from [Bax91] obtained for diffusions on compact man-
ifolds, one easily derive another type of criterion for weak confluence. Namely, if the
diffusion (Xx

t )t≥0 (1-point motion) has a unique invariant distribution ν with support Rd

and if Xx
t

L−→ ν as t→ +∞ for every x∈ R
d and if no nonempty closed connected subset C

of Rd×R
d \∆Rd×Rd is left stable by the 2-point motion (Xx1

t ,Xx2
t )t≥0 ((x1, x2)∈ C), then

the 2-point motion is weakly confluent with invariant distribution ν∆ = ν ◦(x 7→ (x, x))−1.
However, although more intuitive this criterion seems not to be tractable compared to the
above criterions based on the NILS exponent.

3.5.3 An example of gradient system with a non- convex potential

Let U : Rd → R+ be defined by U(x) = (|x|2−1)2

4 , x ∈ R
d. Applying Corollary 3.4 with

p = 2 and ε(x) = 1
4(1 − 2x2), one deduces that there exists σc > 0 such that for every

σ > σc, the 2-point motion related to dXx
t = −∇U(Xx

t )dt+ σdWt is weakly confluent. In
fact, for this function, we obtain the weak confluence for every σ > 0.

PROPOSITION 3.8. Let U : Rd → R+ be defined by U(x) = (|x|2−1)2

4 . Then, for every
σ > 0, the (DSDS) related to the Brownian diffusion dXx

t = −∇U(Xx
t )dt+σdWt is weakly

confluent.

Proof. Elementary computations show that, for every x, y∈ R
d,

Λ
Id
(x, y) = 1− 1

2

((
|x|2 + |y|2

)
+

(x+ y|x− y)2

|x− y|2
)
≤ 1− 1

2

(
|x|2 + |y|2

)

so that for every m ∈ P⋆
ν,ν ,

∫
Λ

Id
(x, y)m(dx, dy) < 1− 1

2

(∫
|x|2νσ(dx) +

∫
|y|2νσ(dy)

)
=

1

Zσ

∫
(1−|x|2)e−

2U(x)

σ2 dx

(3.31)
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with Zσ =

∫

Rd

e−
2U(x)

σ2 dx. By Corollary 3.2(a), it is now enough to prove that

∫

Rd

(1− |x|2)e−
2U(x)

σ2 (dx) < 0.

Thanks to a change of variable,
∫

Rd

(1− |x|2)e−
2U(x)

σ2 dx = Vol(Sd−1)

∫ +∞

0
(1− r2)rd−1e−

(r2−1)2

2σ2 dr

where Vol(Sd−1) denotes the hyper-volume of the d−1-dimensional Euclidean ball. When
d = 2, it follows that

∫ +∞

0
(1− r2)re−

(r2−1)2

2σ2 dr =
σ2

2

[
e−

(r2−1)2

2σ2

]+∞

0

=
σ2e−

1
σ2

2
< 0.

When d > 2, note that (1− r2)rd−1 ≤ (1− r2)r for every r ∈ [0,+∞) so that
∫ +∞

0
(1− r2)rd−1e−

(r2−1)2

2σ2 dr =

∫ +∞

0
(1− r2)re−

(r2−1)2

2σ2 dr < 0.

This completes the proof.

3.6 Weak confluence: toward an optimal transport viewpoint

As a conclusion of this first part of the paper, let us note that the question of the negativity
of the Integrated NILS exponent on the set of probabilities m∈ P⋆

ν,ν is connected with an
optimal transport problem (see e.g. [Vil09] for a background on this topic).

Let us be more precise. Assume that ΛS satisfies (3.24) and let Λ̄S : Rd × R
d → R

denote its upper semi-continuous (u.s.c.) envelope. If [b]S,+ < +∞ and σ is Lipschitz
continuous, Λ̄

S
is [−∞, Cb,σ]-valued where Cb,σ is a real constant (note that when b and

σ are continuously differentiable, the extension on the diagonal has an explicit form ob-
tained by replacing the infimum by a supremum in (3.25)). If we slightly strengthen our
criterion (3.21) – negativity of the the INILS exponent on P⋆

ν,ν – by also asking that∫
Rd Λ̄S

(x, x)ν(dx) < 0 (1) and if we denote by Pν,ν(R
d×R

d) the (convex) set of distri-
butions on R

d×R
d with marginals ν on R

d, one checks that the more stringent resulting
criterion reads

∀m∈ Pν,ν(R
d × R

d),

∫

Rd×Rd

Λ̄S (x, y)m(dx, dy) < 0.

Owing to the weak compactness of Pν,ν(R
d×R

d) and to the (weak) u.s.c. of the mapping
m 7→

∫
Rd×Rd Λ̄S

(x, y)m(dx, dy), the above criterion is equivalent to

max

{∫

Rd×Rd

Λ̄
S
(x, y)m(dx, dy), m∈ Pν,ν(R

d × R
d)

}
< 0.

Thanks to the Kantorovich duality Theorem and the symmetry of Λ̄
S
, this criterion is in

turn equivalent to

inf

{∫

Rd

ϕdν, ϕ∈ L1(ν), ϕ(x)+ϕ(y) ≥ Λ̄S (x, y), (x, y)∈ R
d × R

d

}
< 0.

1to be compared to the necessary condition (3.23).
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Note that this last formulation of the problem is well-posed since it only involves the
marginal invariant distribution ν. For instance, it could be the starting point to devising
numerical methods for testing the weak confluence of the diffusion.

Note that the argument derived from (3.31) can be viewed as a duality-type argument
applied with ϕ(x) = 1

2 (1− |x|2) and, more generally, so is the case for the criterion (3.28)
in Proposition 3.7.

4 Application to the Richardson-Romberg extrapolation for

the approximation of invariant distributions

As an application, we investigate in this section the Richardson-Romberg (RR) extrapo-
lation for the approximation of invariant measures. Roughly speaking, the aim of a RR
method is generally to improve the order of convergence of an algorithm based on an
discretization scheme by cancelling the first order error term induced by the time dis-
cretization of the underlying process. However, to be efficient, such a method must be
implemented with a control of its variance. We will see that in this context, this control is
strongly linked to the uniqueness of the invariant distribution of the duplicated diffusion.

4.1 Setting and Background

4.1.1 Recursive computation of the invariant distribution of a diffusion: the

original procedure

Following [LP02] and a series of papers cited in the introduction, we consider here a
sequence of empirical measures (νηn(ω, dx))n≥1 built as follows: let (γn)n≥1 denote a non-
increasing sequence of positive step parameters satisfying

γn
n→+∞−−−−−→ 0 and Γn =

n∑

k=1

γk
n→+∞−−−−−→ +∞.

We denote by (X̄n)n≥0 the Euler scheme with step sequence (γn)n≥1 defined by X̄0 = x ∈
R
d and

X̄n+1 = X̄n + γn+1b(X̄n) +
√
γn+1σ(X̄n)Un+1

where (Un)n≥1 is a sequence of i.i.d. centered R
q-valued random vectors such that ΣU1 = Iq

defined on a probability space (Ω,A,P). The sequence of weighted empirical measures
(νηn(ω, dx))n≥1 is then defined for every n ≥ 1, by

νηn(ω, f) =
1

Hn

n∑

k=1

ηkδX̄k−1(ω)

where δa denotes the Dirac mass at a∈ R
d and (ηk)k≥1 is a sequence of positive weights

such that Hn =
∑n

k=1 ηk
n→+∞−−−−−→ +∞. When ηk = γk which corresponds to the genuine

case, we will only write νn(ω, dx) instead of νγn(ω, dx). For this sequence, we recall in
Proposition 4.9 below in a synthesized form the main convergence results (including rates)
of the sequence (νηn(ω, dx)) to the invariant distribution ν of (Xt). In this way, we introduce
two assumptions:
(Sa) : (a > 0) There exists a positive C2-function V : Rd → R with

lim
|x|→+∞

V (x) = +∞, |∇V |2 ≤ CV, and sup
x∈Rd

‖D2V (x)‖ < +∞
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such that there exist some positive constants Cb, β and α such that:

(i) |b|2 ≤ CbV
a, Tr(σσ∗)(x) = o(V a(x)) as |x| → +∞ (ii) (∇V |b) ≤ β − αV a.

This Lyapunov-type assumption is sufficient to ensure the long-time stability of the Euler
sheme (in a sense made precise below) as soon as a ∈ (0, 1]. Note that the convergence
can be obtained under a less restrictive mean-reverting assumption including the case
a = 0 (see [Pan06]). The second assumption below is fundamental to establish the rate
of convergence of (νηn(ω, f)) to ν(f) for a fixed smooth enough function f : Rd → R: we
assume that f has a smooth solution to the Poisson equation (see [PV01] for results on
this topic).

(C(f ,k)): There exists a Ck-function g : Rd → R solution to f − ν(f) = Ag such that f , g
and its partial derivatives up to k are dominated by V r (r ≥ 0): |f | ≤ CV r and for every

α = (α1, . . . , αd)∈ N
d with |α| := α1 + · · · + αd ∈ {0, . . . , k}, |∂|α|

x
α1
i1

,...,x
αd
id

g| ≤ CV r.

Before recalling the results on (νn(ω, dx)), let us introduce further notations. We set

∀ r∈ N, Γ(r)
n =

n∑

k=1

γrk

and for a smooth enough function h : Rd → R and an integer r ≥ 2, we write:

D(r)h(x) y1 ⊗ · · · ⊗ yr =
∑

(i1,...,ir)∈{1,...,d}r
∂rxi1

,...,xir
h(x)yi11 . . . y

ir
r .

PROPOSITION 4.9. Assume (Sa) holds for an a ∈ (0, 1] and U1 ∈ ∩p>0L
p(P). Assume

that (ηk/γk) is a non-increasing sequence. Then,

(i) For every non-increasing sequence (θn)n≥1 such that
∑

n≥1 θnγn < +∞ and for every
r>0,

∑
n≥1 θnγnE[V

r(X̄n)] < +∞.

(ii) For every r>0, supn≥1 ν
η
n(ω, V r) < +∞ a.s. In particular, (νηn(ω, dx))n≥1 is a.s. tight.

(iii) Every weak limit of (νηn(ω, dx))n≥1 is an invariant distribution for (Xt)t≥0. Further-

more, if (SDE) has a unique invariant distribution, say ν, then νηn(ω, f)
n→+∞−−−−−→ ν(f) a.s.

for every ν-a.s continuous function f such that |f | ≤ CV r for an r > 0.

(iv) (Rate of convergence when ηk = γk): Assume that ν is unique and that E[U⊗3
1 ] = 0.

Let k ≥ 1 such that f : Rd → R satisfies (C(f ,k)). Then,

• If k = 4 and Γ
(2)
n√
Γn

n→+∞−−−−−→ 0,

√
Γn (νn(ω, f)− ν(f))

(R)
=⇒ N

(
0;

∫

Rd

|σ∗∇g|2dν
)

as n→ +∞.

• If k = 5 and Γ
(2)
n√
Γn

n→+∞−−−−−→ β̃ ∈ (0,+∞],

✄

√
Γn

(
νn(ω, f)− ν(f)

)
(R)
=⇒ N

(
β̃ m(1)

g ;

∫

Rd

|σ∗∇g|2dν
)

as n→ +∞ if β̃ ∈ (0,+∞),

✄
Γn

Γ
(2)
n

(νn(ω, f)− ν(f))
a.s.−→ m(1)

g as n→ +∞ if β̃ = +∞

where m(1)
g =

∫

Rd

ϕ1dν with

ϕ1(x) =
1

2
D2g(x)b(x)⊗2 +

1

2
E[D3g(x)b(x)(σ(x)U1)

⊗2] +
1

24
E[D4g(x)(σ(x)U1)

⊗4]. (4.32)
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The first three claims part (i), (ii) and (iii) of the theorem follow from [LP03] whereas
the (iv) is derived from [LP02] (see Theorem 10) and [Lem05] (see Theorem V.3), in which
the rate of convergence is established for a wide family of weights (ηk).

Applying (iv) to polynomial steps of the following form: γn = Cn−µ, µ ∈ (0, 1], we
observe that the optimal (weak) rate is n−1/3 and is attained for µ = 1/3. Then

β̃ =
√
6C

3
2 and

√
Γn ∼

√
3C/2 n

1
3 .

so that

n
1
3

(
νn(ω, f)− ν(f)

)
(R)
=⇒ N

(
2C m(1)

g ;
2

3C

∫

Rd

|σ∗∇g|2dν
)
.

This corresponds to the case where the rate of convergence of the underlying diffu-
sion toward its steady regime (

√
Γn corresponding to

√
t in the continuous time setting,

see [Bha82] for the CLT for the diffusion itself) and the discretization error are of the same
order. From a practical point of view it seems clear that a balance should be made be-
tween the asymptotic bias and the asymptotic variance to specify the constant C. Under
slightly more stringent assumptions we prove that the L2–norm of the error νn(ω, f)−ν(f)
satisfies

‖νn(ω, f)− ν(f)‖L2 ∼ n−
1
3

√
4C2(m

(1)
g )2 +

2

3C

∫

Rd

|σ∗∇g|2dν.

An optimisation with respect to C gives the optimal choice C =
(
12

∫
Rd

|σ∗∇g|2dν
(m

(1)
g )2

) 1
3
.

When µ ∈ (0, 1/3), the step sequence decreases too slowly and the error induced by
the time discretization error becomes prominent. That is why we propose below to use an
RR extrapolation in order to cancel the first-order term in the time discretization error:

in practice this amount to killing the bias m
(1)
g in order to extend the range of application

of the rate
√
Γn (which corresponds to the standard weak rate

√
t in Bhattacharia’s CLT )

to “slower steps”.

4.1.2 The Richardson-Romberg extrapolated algorithm

As mentioned before, the starting idea is to introduce a second Euler scheme with step
sequence (γ̃n)n≥1 defined by

∀n ≥ 1, γ̃2n−1 = γ̃2n =
γn
2
.

As concerns the white noise of both schemes, our aim is to make them consistent in
absolute time and correlated (with correlation matrix ρ satisfying Iq − ρ∗ρ ∈ S+(d,R)).
To achieve that we proceed as follows.

Let (Zn)n≥1 be a sequence of i.i.d. Rq-valued random vectors lying in ∩p>0L
p(P) and

satisfying
EZ1 = 0, ΣZ1 = Iq, E[Z⊗3

1 ] = E[Z⊗5
1 ] = 0.

Then we devise from this sequence the white noise sequence (Un)n≥1 of the “original”
Euler scheme with step (γn)n≥1by setting

∀n ≥ 1, Un =
1√
2
(Z2n−1 + Z2n) . (4.33)
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The white noise sequence for the second Euler scheme (with step (γ̃n)n≥1), denoted
Z(ρ) is defined as follows:

Z(ρ)
n = ρ∗Zn + T (ρ)Vn, n ≥ 1, (4.34)

where (Vn)n≥1 is also a sequence of i.i.d. centered random variables in R
q with moments

of any order satisfying ΣV1 = Iq and E[V ⊗3
1 ] = E[V ⊗5

1 ] = 0, independent of (Zn)n≥1 and
Tq(ρ) is a solution to the equation

Tq(ρ)Tq(ρ)
∗ = Iq − ρ∗ρ∈ S+(d,R).

(Tq(ρ) can be chosen either as the commuting symmetric square root of Iq − ρ∗ρ or its

Choleski transform). Note that (Z
(ρ)
n )n≥1 is built in so that it satisfies

Σ
Z

(ρ)
n

= Iq and Cov(Zn, Z
(ρ)
n ) = ρ.

Then the Euler scheme with step γ̃n and consistent ρ-correlated white noise (Z
(ρ)
n )n≥1,

denoted (Ȳ
(ρ)
n )n≥1 from now on, is defined by:

Ȳ
(ρ)
n+1 = Ȳ (ρ)

n + γ̃nb(Ȳ
(ρ)
n ) +

√
γ̃nσ(Ȳ

(ρ)
n )Z

(ρ)
n+1, n ≥ 1, Ȳ0 = y.

Also note that (X̄n, Ȳ
(ρ)
2n ) is an Euler scheme at time Γn of the duplicated diffusion

(Xt,X
(ρ)
t )t≥0.

For numerical purpose, one usually specifies the independent i.i.d. sequences (Zn)n≥1

and (Vn)n≥1 as normally distributed so that they can be considered as the normalized

increments of two independent Brownian motions W and W̃ i.e.

Zn =
WΓ̃n

−WΓ̃n−1√
γ̃n

and Vn =
W̃Γ̃n

− W̃Γ̃n−1√
γ̃n

, n ≥ 1.

Note that in this case, (Un) is also a sequence of N (0, Iq)-random variables. This implies
in particular that

E[U⊗4
1 ] = E[Z⊗4

1 ] and E[U⊗6
1 ] = E[Z⊗6

1 ]. (4.35)

Since these properties simplify the result, we will assume them in the sequel of this section
(see Remark 4.9 for extensions).

We denote (ν
η,(ρ)
n (ω, dx))n≥1 the sequence of empirical measures related to (Ȳ

(ρ)
n (ω))n≥1

(in which the weights are adapted accordingly: η1/2, η1/2, η2/2, η2/2, η3/2, . . . ). The em-

pirical measure (ν̄
η,(ρ)
n (ω, dx))n≥1 associated to the Richardson-Romberg extrapolation is

defined by

νη,(ρ)n (ω, f) =
1

Hn

n∑

k=1

ηk
2

(
f(Ȳ

(ρ)
2(k−1)

(ω)) + f(Ȳ
(ρ)
2k−1(ω))

)

ν̄η,(ρ)n (ω, f) = (2νη,(ρ)n − νηn(ω, f))

=
1

Hn

n∑

k=1

ηk

(
f(Ȳ

(ρ)
2(k−1)(ω)) + f(Ȳ

(ρ)
2k−1(ω))− f(X̄k(ω))

)
.

Under the assumptions of Proposition 4.9, it is clear that ν̄
η,(ρ)
n (ω, dx)

n→+∞−−−−−→ ν(dx)
a.s..

32



Thus, in the next section, we propose to evaluate the effects of the Richardson-Romberg
extrapolation on the rate of convergence of the procedure and to explain why the unique-
ness of the invariant distribution of the duplicated diffusion plays an important role in
this problem.

4.2 Rate of convergence of the extrapolated procedure

Throughout this section we assume that ηk = γk and so we will write νn, ν
(ρ)
n and ν̄

(ρ)
n in-

stead of νηn, ν
η,(ρ)
n and ν̄

η,(ρ)
n respectively. We also set (D3gi,.,.)

d
i=1 = D2(∇.)g in order that

the notation Tr(σ∗D2(∇.)gσ) stands for the vector of Rd defined by Tr(σ∗D2(∇.)gσ) =
(Tr(σ∗D2(∂xig)σ))

d
i=1. For a fixed matrix ρ, the main result about the RR extrapolation

is Theorem 4.3 below. At this stage, we do not discuss the choice of the correlation ρ in
this result. This point is tackled in Proposition 4.10 in which we will see that the optimal
choice to reduce the asymptotic variance is atteined with ρ = Iq as soon as ν∆ is the
unique invariant distribution of the associated duplicated diffusion. This emphasizes the
importance of the question of the uniqueness of the invariant distribution in this pathologic
case studied in the previous part of the paper.

THEOREM 4.3. Assume (Sa) holds for an a ∈ (0, 1]. Assume that (Xt,X
(ρ)
t )t≥0 admits

a unique invariant distribution µ(ρ) (with marginals ν). Let f : Rd → R be a function
satisfying (C(f ,7)) and such that ϕ1 defined by (4.32) satisfies (C(ϕ1,5)) with a solution
to the Poisson equation denoted by gϕ1 . Then,

• If Γ
(3)
n√
Γn

n→+∞−−−−−→ 0,
√

Γn

(
ν(ρ)n (ω, f)− ν(f)

)
n→+∞
=⇒ N

(
0; σ̂2ρ

)

where

σ̂2ρ = 5

∫

Rd

|σ∗∇g|2dν − 4

∫

Rd×Rd

(
(σ∗∇g)(x)|ρ(σ∗∇g)(y)

)
µ(ρ)(dx, dy). (4.36)

• If Γ
(3)
n√
Γn

n→+∞−−−−−→ β̃ ∈ (0,+∞], then

√
Γn

(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
β̃ m(2)

g ; σ̂2ρ
)

as n→ +∞ if β̃ ∈ (0,+∞),

Γn

Γ
(3)
n

(ν(ρ)n (ω, f)− ν(f))
P−→ m(2)

g as n→ +∞ if β̃ = +∞,

where m(2)
g =

1

2

(
mgϕ1

+

∫

Rd

ϕ2dν

)
with

ϕ2(x) =

6∑

k=3

C
2(k−3)
k

k!
E
[
Dkg(x)b(x)⊗(6−k)(σ(x)U1)

⊗2(k−3)
]
. (4.37)

REMARK 4.9. ✄ We recall that the result is stated under the assumption that the in-
crements are normally distributed or more precisely under Assumption (4.35). When this

additional assumption fails (think for instance to Z1 ∼
(
1
2(δ−1 + δ1)

)⊗q
), the result is

remains true except for the value of m
(2)
g which becomes more complicated since it also

depends on E[Z⊗ℓ
1 ], ℓ = 4 and 6).

✄ This result extends readily to general weights sequences (ηn)n≥1.Some technical condi-
tions appear on the choice of weights but these conditions are natural and not restrictive
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(see [Lem05]). In particular we can always consider the choice ηn = 1 for which we obtain

the following result: if Γ
(2)
n√
Γ
(−1)
n

n→+∞−−−−−→ β̃ ∈ (0,+∞), then

n√
Γ
(−1)
n

(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
β̃ m(2)

g ; σ̂2ρ
)

as n→ +∞.

✄ Polynomial steps. Let γn = Cn−µ, µ∈ (0, 1]. If µ > 1
3 , Γ

(3)
n → Γ

(3)
∞ < +∞ so that

Γ
(3)
n√
Γn

→ 0 as n→ +∞. If µ < 1
3 ,

Γ
(3)
n√
Γn

≍ n
1−5µ

2 (and if µ = 1
3 ,

Γ
(3)
n√
Γn

≍ logn√
n
). Consequently

Γ
(3)
n√
Γn

→ 0 ⇐⇒ µ >
1

5
,
Γ
(3)
n√
Γn

→ +∞ ⇐⇒ µ <
1

5
and

Γ
(3)
n√
Γn

→ β̃∈ (0,+∞) ⇐⇒ µ =
1

5
.

When µ = 1
5 , β̃ = C

5
2

√
5 and

√
Γn ∼

√
5C
2 n

2
5 .

As a consequence, if γn = ηn = Cn−
1
5 ,

n
2
5

(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
2C2m(2)

g ;
4

5

σ̂2ρ
C

)
.

We switch from a weak rate n
1
3 to n

2
5 i.e. a “gain” of n

1
15 (see figure below). The second

noticeable fact is that the bias is now significantly more sensitive to the constant C than

in the standard setting. If we minimize the L2–norm of the error ν
(ρ)
n (ω, f) − ν(f) we

obtain the optimal choice of C as a function of both bias and standard deviation, precisely

C =
(

σ̂2
ρ

20(m
(2)
q )2

) 1
5
.
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4.2.1 Optimal choice of ρ and uniqueness of µ(Id)

PROPOSITION 4.10. Let ρ be an admissible correlation matrix i.e. such that ρ∗ρ ≤ Iq.
Assume that the duplicated diffusion (X,X(ρ)) has a unique invariant distribution µ(ρ) (so
that if ρ = Iq, µ

(Iq) = ν∆).

(a) σ̂2ρ ≥
∫

Rd

|σ∗∇g|2dν.

(b) If ρ = 0 then σ̂2ρ = 5

∫

Rd

|σ∗∇g|2dν.

(c) If ρ = Iq, σ̂
2
ρ =

∫

Rd

|σ∗∇g|2dν.

Proof. Claims (b) and (c) being obvious thanks to (4.36), we only prove (a). Keeping
in mind that both marginals µ(ρ)(Rd × dy) and µ(ρ)(dx × R

d) are equal to ν, one derives
thanks to Schwarz’s Inequality (once on R

d and once on L2(µ)) from the expression (4.36)
of the asymptotic variance σ̂2ρ that

σ̂2ρ ≥ 5

∫

Rd

|σ∗∇g|2dν − 4

[∫

Rd×Rd

|σ∗∇g|2(x)µ(ρ)(dx, dy)
] 1

2
[∫

Rd×Rd

|ρσ∗∇g|2(y)µ(ρ)(dx, dy)
] 1

2

= 5

∫

Rd

|σ∗∇g|2dν − 4

[∫

Rd

|σ∗∇g|2(x)ν(dx)
] 1

2
[∫

Rd

|ρσ∗∇g|2(y)ν(dy)
] 1

2

≥ 5

∫

Rd

|σ∗∇g|2dν − 4

∫

Rd

|σ∗∇g|2dν =

∫

Rd

|σ∗∇g|2dν

where we used in the last inequality that |ρu|2 ≤ |u|2.
The previous result says that the structural asymptotic variance of the RR estimator
is always greater than that of the standard estimator but can be equal if the Brownian
motions are equal. This condition is in fact almost necessary. Actually, thanks to the
Pythagorean identity,

σ2ρ = 5

∫

Rd

|σ∗∇g|2dν + 2

∫

Rd×Rd

|σ∗∇g(x)− ρσ∗∇g(y)|2µ(ρ)(dx, dy)

− 2

∫

Rd×Rd

|σ∗∇g(x)|2ν(dx)− 2

∫

Rd×Rd

|ρσ∗∇g(y)|2ν(dy).

Then, since ρ∗ρ ≤ Iq, a necessary condition to obtain σ2ρ =
∫
Rd |σ∗∇g|2dν is

|ρσ∗∇g(y)| = |σ∗∇g(y)| ν(dy)-a.e.

When ρ∗ρ < Iq, this equality can not hold except if σ∗∇g(y) = 0 ν(dy)-a.e.

4.3 Proof of Theorem 4.3

4.3.1 Preliminaries

Without loss of generality, we assume that f satisfies ν(f) = 0 so that f = Ag under

(C(f ,k)). We denote by γ(r) the sequence defined by γ
(r)
k = γrk.
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LEMMA 4.1. Assume that f satisfies (C(f ,7)) and denote by g the solution to the Poisson
equation Ag = f . Then,

Γnν̄
(ρ)
n (ω, f) = 2

(
g(Ȳ2n)−g(Ȳ0)

)
−
(
g(X̄n)−g(X̄0)

)
−

n∑

k=1

√
γk
(√

2∆M
(2)
k −∆M

(1)
k

)
(4.38)

− E1
n − E2

n +Nn +Rn (4.39)

where

∆M
(1)
k = (∇g(X̄k−1)|σ(X̄k−1)Uk),

∆M
(2)
k = (∇g(Ȳ2(k−1))|σ(Ȳ2(k−1))Z2k−1) + (∇g(Ȳ2k−1)|σ(Ȳ2k−1Z2k),

E1
n = 2

n∑

k=1

(γk
2

)2 (
ϕ1(Ȳ2(k−1)) + E[ϕ1(Ȳ2k−1)|Fk−1]

)
−

n∑

k=1

γ2kϕ1(X̄k−1),

E2
n = 2

n∑

k=1

(γk
2

)3 (
ϕ2(Ȳ2(k−1)) + E[ϕ2(Ȳ2k−1)|Fk−1]

)
−

n∑

k=1

γ3kϕ2(X̄k−1)

with ϕ1 and ϕ2 defined by (4.32) and (4.37),

(Nn) is defined by

Nn =

n∑

k=1

2
(
∆N(Ȳ2(k−1), Z2k−1,

γk
2
) + ∆N(Ȳ2k−1, Z2k,

γk
2
)
)
−∆N(X̄k−1, Z2k−1,

γk
2
)

where ∆N(x,U, γ) = H(x,U, γ) − Ex[H(x,U, γ)] and

H(x,U, γ) =
γ

2
D2g(x)(σ(x)U)⊗2 +

1

6

2∑

ℓ=0

C3−ℓ
3 γ

ℓ+3
2 D3g(x)b(x)⊗ℓ(σ(x)U)⊗(3−ℓ)

+
1

24

1∑

ℓ=0

γ
ℓ+4
2 C4−ℓ

4 D4g(x)b(x)⊗ℓ(σ(x)U)⊗(4−ℓ) + γ3
6∑

ℓ=4

C6−ℓ
ℓ

ℓ!
Dℓg(x)b(x)⊗(6−ℓ)(σ(x)U)⊗

ℓ
2 .

Finally, if (Sa) holds, the sequence (Rn)n≥1 satisfies the following property: there exists
r > 0 such that, a.s., for every n ≥ 1,

E[|∆Rn||Fn−1] ≤ Cγ
7
2
n

(
V r(X̄n−1) + V r(Ȳ2(n−1)) + V r(Ȳ2n−1)

)
(4.40)

where ∆Rn = Rn −Rn−1.

REMARK 4.10. The above decomposition is built as follows: the second term of (4.38)
is the main martingale component of the decomposition whereas En,1 contains the first
order discretization error. Thanks to the Richardson-Romberg extrapolation, En,1 is in
fact negligible when n → +∞. When the step sequence decreases fast (Theorem4.3(i)),
the rate of convergence is ruled by the main martingale component. In Theorem 4.3(ii),
the rate is ruled by En,1 and En,2. Finally, Nn contains all the negligible martingale terms.
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Proof. Owing to (C(f ,7)), to the Taylor formula and to the fact that E[D2(x)(σ(x)U1)
⊗2] =

Tr(σ∗(x)D2g(x)σ(x)), we have

g(X̄k) = g(X̄k−1) + γkAg(X̄k−1) +
√
γk∆Mk,1 (4.41)

+
1

2

(
D2(X̄k−1)(σ(X̄k−1)Uk)

⊗2 − E[D2(X̄k−1)(σ(X̄k−1)Uk)
⊗2|Fk−1]

)
(4.42)

+
5∑

l=3

Dlg(X̄k−1)
(
γkb(X̄k−1) +

√
γkσ(X̄k−1)Uk

)⊗l
(4.43)

+D7g(ξk)
(
γkb(X̄k−1) +

√
γkσ(X̄k−1)Uk

)⊗7
(4.44)

where ξk ∈ [X̄k−1, X̄k]. The fact that |∇V |2 ≤ CV implies that
√
V is a Lipschitz con-

tinuous function with Lipschitz constant denoted by [
√
V ]Lip. Then, setting ‖D7g(x)‖ =

sup|α|=7 |∂αg(x)| and using Assumption (C(f ,7)), we have

‖D7g(ξk)‖ ≤ C(
√
V (ξk))

2r ≤ C(
√
V (X̄k−1) + [

√
V ]Lip|∆X̄k|)2r (4.45)

where ∆X̄k = γkb(X̄k−1) +
√
γkσ(X̄k−1)Uk. Then, owing to the elementary inequality

|a + b|p ≤ cp(|a|p + |b|p) and to Assumption (Sa), it follows that there exists r > 0 such
that

E[|∆Rn||Fk−1] ≤ Cγ
7
2
k V

r(X̄k−1).

Then we plug this control into the above Taylor expansion and to compensate the terms
of (4.43) when necessary. An appropriate (tedious) grouping of the terms yields:

γkAg(X̄k−1) = g(X̄k)− g(X̄k−1)−
√
γk∆Mk,1

− γ2kϕ1(X̄k−1)− γ3kϕ2(X̄k−1)−∆N(X̄k−1, Uk, γk)−∆Rn

whereRn,2 satisfies (4.40). Making the same development forAg(Ȳ2(k−1)) and forAg(Ȳ2k−1)
and summing over n yield the announced result.

LEMMA 4.2. Let a ∈ (0, 1] such that (Sa) holds. Assume that (Xt,X
(ρ)
t )t≥0 admits a

unique invariant distribution µ(ρ). Let g be a C1-function such that |∇g| ≤ CV r where
r∈ R+. Then,

1√
Γn

n∑

k=1

√
γk(

√
2∆M

(2)
k −∆M

(1)
k )

n→+∞
=⇒ σ̂2ρ.

Proof. Let {ξk,n, k = 1, . . . , n, n ≥ 1}be the triangular array of (Fk)-martingale increments
defined by

ξk,n =

√
γk
Γn

(
√
2∆M

(2)
k −∆M

(1)
k ).

Let us show that
n∑

k=1

E[|ξk,n|2|Fk−1]
n→+∞−−−−−→ σ̂2ρ.

First, using that ΣU1 = Iq, we obtain that for every k ≥ 1,

E[|∆M (1)
k |2|Fk−1] = |σ∗∇g(X̄k−1)|2.
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Since x 7→ |σ∗∇g|2(x) is a continuous function such that |σ∗∇g|2 ≤ CV r for a positive r,
it follows from Proposition (4.9) that

1

Γn

n∑

k=1

γkE[|∆M (1)
k |2|Fk−1]

→+∞−−−−→
∫

Rd

|σ∗∇g|2(x)ν(dx). (4.46)

Similarly,

E[|∆M (2)
k |2|Fk−1] = |σ∗∇g(Ȳ2(k−1))|2 + E[|σ∗∇g(Ȳ2k−1)|2|Fk−1].

It follows that

1

Γn

n∑

k=1

γkE[|∆M (2)
k |2|Fk−1] = 2ν(ρ)n (ω, |σ∗∇g|2)− 1

Γn

n∑

k=1

ζk (4.47)

where (ζk) is a sequence of (Fk)-martingale increments defined by

ζk = γk
(
|σ∗∇g(Ȳ2k−1)|2 − E[|σ∗∇g(Ȳ2k−1)|2|Fk−1]

)
.

Using that |σ∗∇g|2 ≤ CV r for a positive real number r, we obtain by similar arguments to
those used in (4.45) that E[|ζk|2|Fk−1] ≤ CV 2r(Ȳ2(k−1)). We derive from Proposition 4.9(i)

applied with θk = 1
Γ2
k
that

+∞∑

k=1

E[

∣∣∣∣
ζk
Γk

∣∣∣∣
2

|Fk−1] ≤ Cγ1

+∞∑

k=1

γk
Γ2
k

V 2r(Ȳ2(k−1)) < +∞

since
∑

k≥1

γk
Γ2
k

≤ 1 +

+∞∑

k=2

∫ Γk

Γk−1

ds

s2
≤ 1 +

∫ +∞

Γ1

ds

s2
< +∞.

As a consequence (
∑n

k=1
ζk
Γk

)n≥1 is a convergent martingale and the Kronecker Lemma

then implies that 1
Γn

∑n
k=1 ζk

n→+∞−−−−−→ 0 a.s. Thus, we deduce from (4.47) combined with
Proposition 4.9 that

1

Γn

n∑

k=1

γkE[|∆M (2)
k |2|Fk−1]

n→+∞−−−−−→ 2ν(|σ∗∇g|2) a.s. (4.48)

Finally, we have to manage the cross-product: keeping in mind the construction of the
noises of the Euler schemes (see (4.33) and (4.34), we have:

√
2E[∆M

(1)
k ∆Mk,2|Fk−1] = ((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2(k−1)))

+ ((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))− γ−1
k ζ

(2)
k

where

ζ
(2)
k = γk

(
((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))− E[((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))|Fk−1]

)

so that
1

Γn

n∑

k=1

√
2E[∆M

(1)
k ∆Mk,2|Fk−1] = µ(1)n (ψ) + µ(2)n (ψ)− 1

Γn

n∑

k=1

ζ
(2)
k (4.49)
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where ψ : R2d → R is defined by ψ(x, y) = (σ∗∇g(x)|ρ(σ∗∇g)(y)) and for every Borel
function f : R2d → R,

µ(1)n (f) =
1

Γn

n∑

k=1

γkf(X̄k−1, Ȳ2(k−1)) and µ(2)n (f) =
1

Γn

n∑

k=1

γkf(X̄k−1, Ȳ2k−1).

By straightforward adaptations of the proof of Proposition 4.9, we can show that if

(Xt,X
(ρ)
t ) has a unique invariant distribution µ(ρ) then, for every continuous function

f such that f ≤ CV r with r > 0,

µ(i)n (ω, f)
n→+∞−−−−−→ µ(ρ)(f) a.s. with i = 1, 2.

As a consequence, µ
(1)
n (ψ) + µ

(2)
n (ψ)

n→+∞−−−−−→ 2µ(ψ) a.s. Finally, by martingale arguments

similar to those used for (ζk), one checks that Γ
−1
n

∑n
k=1 ζ

(2)
k

n→+∞−−−−−→ 0 a.s. Thus, by (4.46),
(4.48) and (4.49), we obtain that

n∑

k=1

E[|ξk,n|2|Fk−1]
n→+∞−−−−−→ 5ν(|σ∗∇g|2)− 4µ(ψ) = σ̂2ρ.

Then, the result follows from the CLT for arrays of martingale increments provided that
a Lindeberg-type condition is satisfied (see [HH80], Corollary 3.1). To be precise, it is
enough to prove that there exists δ > 0 such that

n∑

k=1

E[|ξk,n|2+δ|Fk−1]
n→+∞−−−−−→ 0 a.s. (4.50)

Using Assumption (Sa) and the fact |∇g| ≤ CV r (r > 0), one can check that there exists
r > 0 such that

E[|ξk,n|2+δ|Fk−1] ≤ C
γ1+δ
k

Γ1+δ
n

(
V r(X̄k−1) + V r(Ȳ2k−1) + V r(Ȳ2(k−1))

)
.

Thus,
n∑

k=1

E[|ξk,n|2+δ|Fk−1] ≤ C
Γ
(1+δ)
n

Γ1+δ
n

(
νγ

(1+δ)

n (V r) + νγ
(1+δ),(ρ)

n (V r)
)
.

Checking easily that Γ
(1+δ)
n

Γ1+δ
n

n→+∞−−−−−→ 0, (4.50) follows from Proposition 4.9(ii).

LEMMA 4.3. Let a ∈ (0, 1] such that (Sa) holds. Assume that (Xt) admits a unique

invariant distribution ν. Assume (C(f ,k)) and that Γ
(3)
n

n→+∞−−−−−→ +∞. Then,
(i) If ϕ1 defined by (4.32) satisfies (C(ϕ1,5)) then,

1

Γ
(3)
n

En,1 →+∞−−−−→ −1

2
m(1)

gϕ1
a.s.

(ii) If the derivatives of g up to order 6 are continuous and dominated by V r (with r > 0),

1

Γ
(3)
n

En,2 →+∞−−−−→ −1

2
ν(ϕ2) a.s.
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Proof. (i) Writing

2
n∑

k=1

(γk
2

)2 (
ϕ1(Ȳ2(k−1)) + E[ϕ1(Ȳ2k−1)|Fk−1]

)
=

n∑

k=1

γ2k
2

(
ϕ1(Ȳ2(k−1)) + ϕ1(Ȳ2k−1)

)
+

n∑

k=1

γ2k
2
∆Tk

with ∆Tk being a martingale increment defined by ∆Tk = E[ϕ1(Ȳ2k−1)|Fk−1]−ϕ1(Ȳ2k−1),
one obtains that

En,1 = Γ(2)
n

[
(νγ

(2),(ρ)
n − ν)(ϕ1)− (νγ

(2)

n − ν)(ϕ1)
]
+

n∑

k=1

γ2k
2
∆Tk.

Applying Theorem V.3 of [Lem05] (which is an extension of Proposition 4.9(iv) to general
weights) with ηk = γ2k and q∗ = 4, we obtain that

Γ
(2)
n

Γ
(3)
n

(νγ
(2)

n − ν)(ϕ1)
n→+∞−−−−−→ mgϕ1

∈ R in probability.

Similarly, applying this result to the Euler scheme with half-step, we have:

Γ
(2)
n

Γ
(3)
n

[(νγ
(2),(ρ)

n −ν)(ϕ1)] =
1

2

Γ
(2)
n∑n

k=1 γ
2
k .

γk
2

[(νγ
(2),(ρ)

n −ν)(ϕ1)]
n→+∞−−−−−→ 1

2
mgϕ1

∈ R in probability.

Thus, it remains to show that the martingale term is negligible. We set θk =
γ3
k

Γ
(3)2

k

. Using

that (γk) is non-increasing, one checks that (θn) is non-increasing and that
∑
θkγk < +∞.

Since |ϕ1| ≤ CV r with r > 0, it follows from Proposition 4.9 that

∑

k≥1

γ4k

(Γ
(3)
k )2

E[|ϕ1|2(Ȳ2k−1)] < +∞.

This implies that the martingale
∑ γ2

k

Γ
(3)
k

∆Tk is a.s. convergent so that the Kronecker lemma

yields 1

Γ
(3)
n

∑n
k=1 γ

2
k∆Tk

n→+∞−−−−−→ 0 a.s.. The first assertion follows.

(ii) Remark that

En,2 =
1

2
νγ

(3),(ρ)
n − νγ

(3)

n (ω,ϕ2) +

n∑

k=1

γ3k
4
Tk.

Under the assumptions, ϕ2 is continuous and dominated by V r with a positive r. Then,

since Γ
(3)
n

n→+∞−−−−−→ +∞, (ν
γ(3),(ρ)
n (ϕ2))n≥1 and (νγ

(3)

n (ω,ϕ2))n≥1 converge to ν(ϕ2). With
some similar arguments as previously, one checks that the martingale term is negligible
and the second assertion follows.

4.3.2 Proof of Theorem 4.3

For the sake of simplicity, we choose to give the proof of Theorem 4.3 only when Γ
(3)
n

n→+∞−−−−−→
+∞. Note that if γn = Cn−µ, this corresponds to µ ≤ 1/3, i.e. the case where the Romberg
extrapolation really increases the rate of convergence (see Remark 4.9).

By the decomposition of Lemma 4.1 and the convergences established in Lemmas 4.2
and 4.3, one checks that it is now enough to prove the following points:

Θn

Γn

(
2
(
g(Ȳ2n)− g(Ȳ0

)
− (g(X̄n)− X̄0)

) P−→ 0 as n→ +∞, (4.51)
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Θn

Γn
Nn

P−→ 0 and
Θn

Γn
Rn

P−→ 0 as n→ +∞ (4.52)

with Θn =
√
Γn ∨ Γn

Γ
(3)
n

.

For (4.51), the result is obvious when g is bounded. Otherwise, we use Lemma 3 of
[LP03] which implies in particular that for every p > 0, E[V p(X̄n)] ≤ CpΓn. By Jensen’s
inequality, this implies that for every r > 0 and α ∈ (0, 1], there exists a constant C > 0
such that

∀n ≥ 1, E[V r(X̄n)] ≤
(
E[V

r
α (X̄n)]

)α ≤ Cα
r
α
Γα
n.

Thus, since the same property holds for the (Ȳn) and since |g| ≤ CV r with r > 0, (4.52)
follows taking α ∈ (0, 1/2).

For the first assertion of (4.52), we use a martingale argument. We denote by {πk,n, k =
1, . . . , n, n ≥ 1} the triangular array of (Fk)-martingale increments defined by

πk,n =
∆Nk√
Γn

.

Then, in order to prove the convergence in probability of (Nn/
√
Γn) to 0, we use the CLT

for martingale increments which says that, since a Lindeberg-type condition holds (we do
not prove this point, see Proof of Lemma 4.2 for a similar argument), it is enough to show
that

n∑

k=1

E[|πk,n|2|Fk−1]
n→+∞−−−−−→ 0 a.s. (4.53)

Under the assumptions on g and on the coefficients, one checks that there exists r > 0
such that

n∑

k=1

E[|πk,n|2|Fk−1] ≤ C
1

Γn

n∑

k=1

γ2k
(
V r(X̄k−1) + V r(Ȳ2(k−1)) + V r(Ȳ2k−1)

)
.

By Proposition 4.9, supn≥1

(
νn(ω, V

r) + ν
(ρ)
n (ω, V r)

)
< +∞. Assertion (4.53) follows.

As concerns Rn, it follows from a martingale argument that

1

Γ
(3)
n

n∑

k=1

(∆Rk − E[∆Rk|Fk−1])
P−→ 0 as n→ +∞.

Now, since supn≥1

(
νγ

3

n (ω, V r) + ν
γ3,(ρ)
n (ω, V r)

)
< +∞ a.s. and since γn

n→+∞−−−−−→ 0, we

deduce that
1

Γ
(3)
n

n∑

k=1

E[∆Rk|Fk−1]
P−→ 0.

The last assertion follows.
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A Hypo-ellipticity of the correlated duplicated system

It is a well-known fact that, for a Markov process, the strong Feller property combined
with some irreducibility of the transitions implies uniqueness of the invariant distribution
(see e.g. [DPZ96], Theorem 4.2.1). For a diffusion process with smooth coefficients, such
properties hold if it satisfies the hypoelliptic Hörmander assumption (see [Hör67, Hör85])
and if the deterministic system related to the stochastic differential system (written in the
Stratanovich sense) is controllable. In fact, both properties can be transferred from the
original SDE to the duplicated system so that its invariant distribution is also unique.
The main result of this section is Proposition A.11. Before, we need to introduce some
Hörmander-type notations. First, written in a Stratonovich way, X is a solution to

dXt = A0(Xt)dt+

q∑

j=1

Aj(Xt) ◦ dW j
t (A.54)

where A0, . . . Aq are vectors fields on R
d defined by2:

A0(x) =

d∑

i=1


bi(x)−

1

2

∑

l,j

σl,j(x)∂xjσi,l(x)


 ∂xi

and for every j ∈ {1, . . . , q}:

Aj(x) =

d∑

i=1

σi,j(x)∂xi .

For the sake of simplicity, we assume that b and σ are C∞ on R
d with bounded derivatives.

We will also assume the following Hörmander condition at each point: there exists N ∈ N
∗

such that ∀x∈ R
d,

dim (Span {A1(x), A2(x), . . . , Aq(x), L. B. of length ≤ N of the Aj(x)’s , 0 ≤ j ≤ q}) = d
(A.55)

where “L.B.” stands for Lie Brackets. The above assumptions imply that for every t > 0
and x∈ R

d, Pt(x, .) admits a density pt(x, .) w.r.t. the Lebesgue measure and that (x, y) 7→
pt(x, y) is C∞ on R

d × R
d (see e.g. [Cat92], Theorem 2.9). In particular, x 7→ Pt(x, .) is a

strong Feller semi-group. Assume also that the control system (associated with (A.54))

ẋ(u) = A0(x
(u)) +

q∑

j=1

Aq(x
(u))uj , (A.56)

is approximatively-controllable:

There exists T > 0 such that for every ε > 0, x1, x2 ∈ R
d, there exists u ∈ L2([0, T ],Rd)

such that (x(u)(t)) solution to (A.56) satisfies x(0) = x1 and |x(T )− x2| ≤ ε.

(A.57)

Under Assumptions (A.55) and (A.57), the diffusion has a unique invariant distribution
ν. Actually, the controllability assumption combined with the Support Theorem implies

2With a standard abuse of notation, we identify the vectors fields and the associated differential oper-
ators.
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that for every non-empty open set O, for every x ∈ R
d, PT (x,O) > 0. The semi-group

(Pt) is then irreducible. Owing to the strong Feller property, it follows classically that (Pt)
admits a unique invariant distribution (see e.g. [DPZ96], Proposition 4.1.1. and Theorem
4.2.1.).
Furthemore, ν is absolutely continuous with respect to the Lebesgue measure on R

d and its
topological support is Rd (since for every open set O of Rd, ν(O) =

∫
PT (x, 0)ν(dx) > 0).

Let us now consider the duplicated diffusion (Xt,X
(ρ)
t ). Setting Z

(ρ)
t = (Xt,X

(ρ)
t ) and

using the preceding notations, (1.3) can be written:

dZ
(ρ)
t = Ã0(Z

(ρ)
t )dt+

q∑

j=1

Ãj(Z
(ρ)
t )dW j

t +

q∑

j=1

Ãd+j(Z
(ρ)
t )dW̃ j

t

where Ã0(z) = (A0(x), A0(y))
T (with A0(y) =

∑d
i=1

[
bi(y)− 1

2

∑
l,j σl,j(y)∂yjσi,l(y)

]
∂yi

and z = (x, y)), W̃ is a d-dimensional Brownian Motion independent of W such that

W (ρ) = ρ∗W + (Iq − ρ∗ρ)
1
2 W̃ and for every j ∈ {1, . . . , q},

Ãj(z) = Aj(x) +A
(ρ)
j (y) and, Ãq+j(z) = A

((Iq−ρ∗ρ)
1
2 )

j (y) (A.58)

where for a for a q × q matrix B, A
(B)
j (y) =

∑d
i=1(σ(y)B)i,j∂yi . Then, the following

property holds.

PROPOSITION A.11. Let ρ ∈ Mq,q(R) such that ρ∗ρ < Iq. Assume that b and σ are C∞

on R
d with bounded derivatives. Assume (A.55) and (A.57). Then, uniqueness holds for

the invariant distribution ν(ρ) of the duplicated diffusion (Xt,X
(ρ)
t ). Furthermore, if ν(ρ)

exists, then ν(ρ) has a density p(ρ) (w.r.t. λ2d) which is a.s. positive.

Proof. First, let us check the Hörmander conditions for (Xt,X
(ρ)
t )t≥0. Setting S = (Iq −

ρ∗ρ)
1
2 , standard computations yield

∀j ∈ {1, . . . , q}, Ãq+j(z) =

q∑

l=1

Sl,jAl(y).

Since S is invertible, we deduce that {Al(y), l = 1, . . . , q} belongs to Span{Ãq+j(z), j =
1, . . . , q}. Similarly, checking that for every j ∈ {1, . . . , q},

[Ã0(z), Ãq+j(z)] = [A0(y), A
(S)
j (y)] =

q∑

l=1

Sl,j[A0(y), Al(y)]

one deduces from the invertibility of S that {[A0(y), Al(y)], l = 1, . . . , q} is included in
Span{[Ã0(z), Ãq+j(z)], j = 1, . . . , q}. Owing to (A.55), it follows that Span{∂y1 , . . . , ∂yd}
is included in

V = Span
{
Ã1(z), Ã2(z), . . . , Ãq(z), Lie Brackets of length≤ N of the Ãj(z)’s , 0 ≤ j ≤ q

}
.

Now, let us show that Span{∂x1 , . . . , ∂xd
} is included in V . Since Span{∂y1 , . . . , ∂yd} is

included in V , it is clear that for every x∈ R
d, Aj(x) = A

(ρ)
j (y) − Ãj(z) also belongs to

V . Since
[Ã0(z), Ãj(z)] = [A0(x), Aj(x)] + [A0(y), A

(ρ)
j (y)],
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[A0(x), Aj(x)] has the same property. Using again (A.55), we deduce that Span{∂x1 , . . . , ∂xd
}

is included in V and thus that dim(V ) = 2d. As a consequence, for every z ∈ R
d × R

d

and t > 0, Q
(ρ)
t (z, .) admits a density qt(z, .) w.r.t. λ2d such that (z, z′) 7→ qt(z, z

′) is C∞

on R
d ×R

d × R
d × R

d.
In order to obtain uniqueness for the invariant distribution, it remains to show that
there exists T > 0 such that for every z ∈ R

d × R
d, for every non-empty open set O

of Rd × Rd, QT (z,O) > 0. Owing to (A.57), it is clear that for every z1 = (x1, y1)
and z2 = (x2, y2), for every ε > 0, there exist u and ũ ∈ L2([0, T ],Rd) such that
z(t) = (x(u)(t), x(ũ)(t)), where x(u) and x(ũ) are solutions to (A.56) starting from x1
and y1, satisfies |z(T ) − z2| ≤ ε. Furthermore, since S is invertible, we can assume that
ũ = ρu+Sω with ω ∈ L2([0, T ],Rd). Then, the support Theorem can be applied to obtain
that for every z1, z2, ε QT (z1, B(z2,

ε
2) > 0 and thus to conclude that for every z ∈ R

d×R
d

and every non-empty open set O, QT (z,O) > 0.

B Additional proofs about the two-dimensional counterex-

ample

Proof of (3.8): For the sake of completeness, we show that rt → 1 a.s. as soon as r0 > 0.
First, note that uniqueness holds for the solution of the SDE (3.6) since the coefficients
are Lipschitz continuous. In particular, (r1t ) defined a.s. by r

1
t = 1 for every t ≥ 0 is the

unique solution starting from r0 = 1. Owing to the strong Markov property, this implies
that if τ1 := inf{t ≥ 0, rt = 1}, then rt = 1 on {τ ≤ t}. The same property holds at 0.
We deduce that (rt)t≥0 lives in [1,+∞) if r0 > 1 and in [0, 1] if r0 ∈ [0, 1]. Moreover, if
r0 > 1, we have d(rt − 1) = −(rt − 1)(dt + ϑdWt) so that

rt − 1 = e−(1+ϑ2

2
)t+ϑWt .

It follows that limt→+∞ rt = 1 since limt→+∞
Wt
t = 0 a.s.. Now, if r0 ∈ [0, 1], we have

drt = rt(1− rt)(dt+ ϑdWt).

Thus, (rt) is a [0, 1]-valued submartingale. In particular, rt converges a.s. to a [0, 1]-valued
random variable r∞. Since

∀t ≥ 0, E[rt] = r0 + E

(∫ t

0
rs(1− rs)ds

)
,

it follows that E[
∫ +∞
0 rs(1− rs)ds] which in turn implies that

∫ +∞
0 rs(1− rs)ds < +∞ a.s.

As a consequence lim inft→+∞ rt(1 − rt) = 0 a.s.. The process (rt) being a.s. convergent
to r∞, it follows that r∞ ∈ {0, 1} a.s.. It remains to prove that P(r∞ = 0) = 0. Denote
by p the scale function of (rt) null at r = 1/2. For every r ∈ (0, 1),

p(r) =

∫ r

1
2

e
−

∫ ξ
1
2

2
ϑ2u(1−u)

du
dξ =

∫ r

1
2

(
1− ξ

ξ

) 2
ϑ2

dξ.

As a consequence, if ϑ ∈ (0,
√
2], limr→+∞ p(r) = +∞. This means that 0 is a repulsive

point and that, as a consequence (see e.g. [KT81], Lemma 6.1 p. 228),

∀b ∈ (0, 1) P( lim
a→0+

τa < τb) := lim
a→0+

P(τa < τb) = 0
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where τa = inf{t ≥ 0 | rt = a}, y∈ [0, 1]. We deduce that P(r∞ = 0) = 0. This completes
the proof. ✷

Proof of (3.9): We want to prove that µ is invariant for (Xx
t ,X

x′

t ) if and only if µ can
be represented by (3.9). First, since the unique invariant distribution of (Xx

t ) is λS1 , it
is clear that µ = L(eiΘ0 , ei(Θ0+V0)) where Θ0 has uniform distribution on [0, 2π] and V0 is
a random variable with values in [0, 2π). One can check that if V0 is independent of Θ0,
µ is invariant. Thus, it remains to prove that it is a necessary condition or equivalently
that K(θ, dv) := L(eiV0 |eiΘ0 = eiθ) does not depend on θ. Denote by (eiΘt , ei(Θt+Vt)) the
(stationary) duplicated diffusion starting from (eiΘ0 , ei(Θ0+V0)). Since µ is invariant, we
have for every t ≥ 0

L(eiVt |eiΘt = eiθ) = K(θ, dv)

but thanks to the construction, for every t ≥ 0, Θt = Θ0 +Wt and Vt = V0 (the angular
difference between the two coordinates does not change) so that

L(eiVt |eiΘt = eiθ) =

∫
K(θ′, dv)ρt(θ, dθ

′)

where ρt(θ, dθ
′) = L(ei(θ+Wt)). But ρt(θ, dθ

′) converges weakly to λS1 when t → +∞.
From the two previous equations it follows that K(θ, dv) does not depend on θ since
∀θ ≥ 0, K(θ, dv) =

∫
K(θ′, dv)λS1(dθ

′). ✷
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Curie (Paris 6, France), 2006.

[PV01] E. Pardoux and A. Yu. Veretennikov. On the Poisson equation and diffusion approxi-
mation. I. Ann. Probab., 29(3):1061–1085, 2001.

[Tea08] O.M. Tearne. Collapse of attractors for ODEs under small random perturbations. Probab.
Theory Related Fields, 141(1-2):1–18, 2008.

[TT90] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.

[Vil09] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
2009. Old and new.

46


	Introduction and motivations
	The one-dimensional case
	The multidimensional case
	Counterexample in 2-dimension
	Uniqueness of the invariant measure: (S,)-confluence
	Global criterions, NILS exponent
	Applications and extensions
	Localization around the diagonal
	Local criterion on compact sets
	The case S0
	S possibly positive on some areas of RdRd 

	Examples
	An example of confluent diffusion with increasing drift
	Baxendale's model
	An example of gradient system with a non- convex potential

	Weak confluence: toward an optimal transport viewpoint

	Application to the Richardson-Romberg extrapolation for the approximation of invariant distributions
	Setting and Background
	Recursive computation of the invariant distribution of a diffusion: the original procedure 
	The Richardson-Romberg extrapolated algorithm

	Rate of convergence of the extrapolated procedure
	Optimal choice of  and uniqueness of (Id)

	Proof of Theorem 4.3
	Preliminaries
	Proof of Theorem 4.3


	Hypo-ellipticity of the correlated duplicated system
	Additional proofs about the two-dimensional counterexample

