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Invariant measure of duplicated diffusions and application to

Richardson-Romberg extrapolation

Vincent Lemaire∗, Gilles Pagès†, Fabien Panloup‡

April 8, 2013

Abstract

With a view to numerical applications we address the following question: given an
ergodic Brownian diffusion with an unique invariant measure, what are the invariant
measures of the duplicated system consisting of two trajectories? We mainly focus on
the interesting case where the two trajectories follow the same Brownian path. In this
case, we first show that uniqueness is essentially always true in the one-dimensional
case. Then, in the multidimensional case, we build some explicit counter-examples
where the uniqueness property is not satisfied and then, give explicit conditions on
the drift and diffusion coefficient functions (which can be interpreted as the negativity
of a non-infinitesimal Lyapunov exponent associated with the dynamical system) to
obtain uniqueness for invariant distribution of the duplicated system.

As a main application, we investigate the Richardson-Romberg extrapolation for
the numerical approximation of the invariant measure of the initial ergodic Brownian
diffusion.

Keywords: Invariant measure ; ergodic diffusion ; Lyapunov exponent ; Central Limit
Theorem ; Euler scheme ; Richardson-Romberg extrapolation.

AMS classification (2000): 60G10, 60J60, 65C05, 60F05.

1 Introduction and motivations

When one discretizes a stochastic (or not) differential equation (SDE) by an Euler scheme
with step h, a classical method to reduce the discretization error is the so-called Richardson-
Romberg (RR) extrapolation introduced in [TT90] for diffusion processes. Roughly speak-
ing, the idea of this method is to introduce a second Euler scheme with step h/2 and to
choose an appropriate linear combination of the two schemes to cancel the first-order
discretization error. Such an idea can be adapted to the long-time setting. More pre-
cisely, when one tries to approximate the invariant distribution of a diffusion by empirical
measures based on an Euler scheme (with decreasing step) of the diffusion, it is also pos-
sible to implement the same strategy by introducing a second Euler scheme with half-step
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(see [Lem05]). In fact, tackling the rate of convergence of such a procedure involving a
couple of Euler schemes of the same SDE leads to studying the long run behaviour of the
underlying couple of continuous processes that we will call duplicated diffusion. When the
two solutions only differ by the starting value and are driven by the same, say, Brownian
motion, the resulting coupled process is (also known as 2-point motion (terminology com-
ing from the more general theory of stochastic flows, see [BS88, Car85, Kun90]). Before
being more specific as concerns this motivation, let us now define precisely what we call a
duplicated diffusion.
Consider the following Brownian diffusion solution to the stochastic differential equation

(SDE) ≡ dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x∈ R
d, (1.1)

where b : Rd → R
d and σ : Rd → M(d, q,R) (d × q matrices with real valued entries)

are locally Lipschitz continuous with linear growth and W is a standard q-dimensional
Brownian motion defined on a filtered probability space (Ω,A,P, (Ft)t≥0) (satisfying the
usual conditions). This stochastic differential equation (SDE) has a unique strong solution
denoted Xx = (Xx

t )t≥0. Let ρ ∈ M(q, q,R) be a square matrix with transpose ρ∗ such
that Iq − ρρ∗ is non-negative as a symmetric matrix. We consider a filtered probability
space, still denoted (Ω,A,P, (Ft)t≥0) on which is defined a 2q-dimensional standard (Ft)-

Brownian motion denoted (W, W̃ ) so that W and W̃ are two independent q-dimensional
standard (Ft)-Brownian motions. Then we define W (ρ) a third standard q-dimensional
(Ft)-Brownian motions by

W (ρ) = ρ∗W +
√
Iq − ρ∗ρ W̃ ,

which clearly satisfies
〈W i,W (ρ),j〉t = ρij t, t ≥ 0

(the square root should be understood in the set of symmetric non-negative matrices).
The duplicated diffusion or “duplicated stochastic differential system” (DSDS) is then
defined by

(DSDS) ≡
{
dXt = b(Xt)dt+ σ(Xt) dWt, X0 = x1∈ R

d,

dX
(ρ)
t = b(X

(ρ)
t )dt+ σ(X

(ρ)
t ) dW

(ρ)
t , X

(ρ)
0 = x2∈ R

d.
(1.2)

Under the previous assumptions on b and σ, (1.2) has a unique (strong) solution. Then

both (Xx
t )t≥0 and (Xx1

t ,X
(ρ),x2

t )t≥0 are homogeneous Markov processes with transition

(Feller) semi-groups, denoted (Pt(x, dy))t≥0 and
(
Q

(ρ)
t ((x1, x2), (dy1, dy2))

)
t≥0

respectively,

and defined on test Borel functions f : Rd → R and g : R2d → R, by

Pt(f)(x) = Ef(Xx
t ) and Q

(ρ)
t (g)(x1, x

′
2 = E g(Xx1

t ,X
(ρ),x2

t ).

We will assume throughout the paper that the original diffusion Xx has an unique
invariant distribution denoted ν i.e. satisfying νPt = ν for every t∈ R+. The first part of
the paper is devoted is devoted to determining what measures are the invariant measures

of (Q
(ρ)
t )t≥0 (if any) depending on the correlation matrix ρ. Thus, if ρ = 0, it is clear that

ν ⊗ ν is invariant for Q(0) and if ρ = Iq so is ν∆ = ν ◦ (x 7→ (x, x))−1, but are they the
only ones? To be more precise, we want to establish easily verifiable criterions on b and
σ which ensure that ν∆ is the unique invariant distribution of (DSDS). In the sequel,
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we will denote by µ a generic invariant measure of Q(ρ). We present the problem in more
details (including references to the literature at the end of this introduction).

� Existence of an invariant distribution for (Q
(ρ)
t )t≥0. First, the family of probability

measures (µ
(ρ)
t )t>0 defined on (Rd × R

d,Bor(Rd)⊗2) by

µ
(ρ)
t =

1

t

∫ t

0
ν⊗2(dx1, dx2)Q

(ρ)
s ((x1, x2), (dy1, dy2))ds

is tight since both its marginals on R
d are equal to ν. Furthermore, the semi-group

(Q
(ρ)
t )t≥0 being Feller, one easily shows that any of its limiting distributions µ(ρ) as t→ ∞

is an invariant distribution for (Q
(ρ)
t )t≥0 such that µ(ρ)(dx×R

d) = µ(ρ)(Rd× dx) = ν(dx).
Also note that, if uniqueness fails and (Pt)t≥0 has two distinct invariant distributions ν

and ν ′, a straightforward adaptation of the above (sketch of) proof shows that (Q
(ρ)
t )t≥0

has (at least) an invariant distribution with marginals (ν, ν ′) and another with (ν ′, ν) as
marginals.

� Uniqueness of the invariant distribution of (Q
(ρ)
t )t≥0. It is clear that in full generality

the couple (X,X(ρ)) may admit several invariant distributions even if X has only one
such distribution. So is the case of a fully degenerate setting (σ ≡ 0) if the flow Φ(x, t)
of the ODE ≡ ẋ = b(x) has 0 as a unique repulsive equilibrium and a unique invariant
distribution ν on R

d\{0}. Then both distributions ν⊗2 and ν∆ (defined as above) on (Rd\
{0})2 are invariant and if ν is not reduced to a Dirac mass (think e.g. to a 2-dimensional
ODE with a limit cycle around 0) (DSDS) has at least two invariant distribution.

In the non-degenerate case (σ 6≡ 0) the situation is more involved and depends on the
correlation structure ρ between the two Brownian motions W and W (ρ). The diffusion

matrix Σ(Xx1
t ,X

(ρ),x2

t ) of the couple (Xx1 ,X(ρ),x2) at time t > 0 is given by any continuous
solution to the equation

Σ(ξ1, ξ2)Σ(ξ1, ξ2)
∗ =

[
σσ∗(ξ1) σ(ξ1)ρσ

∗(ξ2)
σ(ξ2)ρ

∗σ∗(ξ1) σσ∗(ξ2)

]

(e.g. the square root in the symmetric non-negative matrices or the Choleski transform. . . ).

First, note that if Iq − ρ∗ρ is positive definite as a symmetric matrix, it is straight-
forward that ellipticity or uniform ellipticity of σσ∗(when q ≥ d) for Xx is transferred

to Σ(Xx1
t ,X

(ρ),x2

t )Σ(Xx1
t ,X

(ρ),x2

t )∗ for the couple (Xx1 ,X(ρ),x2). Now, uniform ellipticity,
combined with standard regularity and growth/boundedness assumption on the coeffi-
cients b, σ and their partial derivatives, classically implies the existence for every t > 0
of a (strictly) positive probability density pt(x, y) for Xx

t . These additional conditions
are automatically satisfied by the “duplicated coefficients” of (DSDS). At this stage,
it is classical background that any homogeneous Markov process whose transition has a
(strictly) positive density for every t > 0 has at most one invariant distribution (if any).
Consequently, under these standard assumptions on b and σ which ensure uniqueness of
the invariant distribution ν for X, we get uniqueness for the “duplicated” diffusion process
(X,X(ρ)) as well.

The hypo-elliptic case also implies the existence of a density for Xx
t and the uniqueness

of the invariant distribution under controllability assumptions on a companion differen-
tial system of the SDE. This property can also be transferred to (DSDS), although the
proof becomes significantly less straightforward than above (see Appendix B for a precise
statement and a detailed proof).
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The second setting of interest, ρ = Iq, corresponds to W (ρ) = W so that X(ρ),x2 =
Xx2 i.e. (DSDS) is the equation of the 2-point motion in the sense of [Kun90] section
4.2, [Har81]. This 2-point motion has been extensively investigated (see [Car85]) from
an ergodic viewpoint, especially when the underlying diffusion, or more generally the
stochastic flow Φ(ω, x, t) lives on a (smooth) compact Riemannian manifold M . When
this flow is smooth enough in x, the long run behaviour of such a flow (under its steady
regime) can be classified owing to its Lyapunov spectrum. For what we are concerned
with, this classification is based on the top Lyapunov exponent defined by

λ
S
:= lim sup

t→+∞

1

t
log ‖DxΦ(x, t)‖

where ‖DxΦ(x, t)‖ denotes the operator norm of the differential (tangent) of the flow.
In this compact setting and when the top Lyapunov exponent is positive, the long run
behaviour of the two-point on M2\∆ has been deeply investigated in [BS88] (see also
[DKK04] for further results in this direction). Such assumption implies that ∆ is somewhat
repulsive.

Here, we are in fact concerned with the opposite case because, we need in some sense
that the paths cluster asymptotically either in a pathwise or in a statistical sense. When
λ

S
< 0, such clustering result has been obtained in [Car85] (see Proposition 2.3.3) in a

local form. It is shown that the “asymptotic clustering” holds with an arbitrarily high
probability, provided the starting points are close enough. However, this result seems to
be not sufficient to imply uniqueness of the invariant distribution for the two-point motion
and is still in a compact setting.

We will use a somewhat similar approach in the section devoted to the multidimensional
framework and obtain some sharp verifiable criterions on b and σ for uniqueness of the
invariant distribution of the two-point motion. In fact, we will see that, under some
conditions, these criterions can be read as the negativity, or even non-positivity, of a
non-infinitesimal Lyapunov exponent (NILS) in the neighbourhood of the diagonal (see
Section 3.4 for details).

Note that these criterions obtained in the case ρ = Iq can be easily extended to the
(last) case ρ∗ρ = Iq using that W (ρ) = ρW is still a standard B.M. (think to ρ = −1
when d = 1). For the sake of simplicity (and since it is of little interest for the practical
implementation of the Richardson-Romberg extrapolation), we will not consider this case
in the paper.

The second part of the paper is devoted to a first attempt in a long run ergodic
setting to combine the Richardson-Romberg extrapolation with a control of the variance
of this procedure (see [Pag07] in a finite horizon framework). To this end we consider
two Euler schemes with decreasing steps γn and γ̃n satisfying γ̃2n−1 = γ̃2n = γn/2 and
ρ-correlated Brownian motion increments. We show that the optimal efficiency of the
Romberg extrapolation in this framework is obtains is obtained when ρ = 0, at least when
the above uniqueness problem for ν∆ is satisfied. To support this claim we establish a
Central Limit Theorem whose variance is analyzed as a function of ρ.

The paper is organized as follows: in Section 2, we establish a one-dimensional result
which grants the uniqueness of ν∆ as an invariant distribution for (DSDS). We also
prove that the paths of the (DSDS) are asymptotically confluent (slightly extending
by a different method a result by Has’minskii in [Has80]). Section 3, is devoted to the
multidimensional framework. We first provide a simple counter-example to uniqueness and
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then provide rather general but operating criterions, all based on the behavior of the one-
dimensional Itô process |Xx1

t −Xx2
t | and closely related in spirit to the Feller classification

for one-dimensional diffusions. They can be seen as asymptotic weak confluence criterions.
Section 4 is devoted to Richardson-Romberg extrapolation for the recursive computation of
the invariant measure of a diffusion by weighted occupation measures of an Euler scheme
with decreasing step: we show how to improve the (weak) rate of convergence of the
procedure by implementing a Richardson-Romberg (RR) extrapolation involving two Euler
schemes with different steps provided ν∆ is the unique invariant distribution of the two-
point motion.

Notations. • |x| =
√
xx∗ denotes the canonical Euclidean norm of x∈ R

d (x∗ transpose
of the column vector x).
• ‖A‖ =

√
Tr(AA∗) if A ∈ M(d, q,R) and A∗ is the transpose of A (which is but the

canonical Euclidean norm on R
d2).

• ∆R2d = {(x, x), x∈ R
d} denotes the diagonal of R2d.

• S(d,R) = {S ∈ M(d, d,R), S∗ = S}, S+(d,R) the subset of S(d,R) of non-negative
matrices, S++(d,R) denotes the subset of positive definite such matrices and

√
S denotes

the unique square root of S ∈ S+(d,R) in S++(d,R) (which commutes with S). x⊗ y =
xy∗ = [xiyj]∈ M(d, d,R), x, y∈ R

d.
• If S ∈ S++(d,R), we denote by ( . | . )

S
and by | . |

S
, the induced inner product and

norm on R
d, defined by (x|y)

S
= (x|Sy) and |x|2

S
= (x|x)

S
respectively. Finally, for

A∈ M(d, d,R), we set ‖A‖2
S
= Tr(A∗SA).

• µn
(Rd)
=⇒ µ denotes the weak convergence of the sequence (µn)n≥1 of probability measures

defined on (Rd,Bor(Rd)) toward the probability measure µ.
• For every function f : R

d → R, define the Lipschitz coefficient of f by [f ]Lip =

supx 6=y
|f(x)−f(y)|

|x−y| ≤ +∞.

2 The one-dimensional case

We first show that, in the one-dimensional case d = q = 1, uniqueness of ν implies that
ν∆, as defined in the introduction, is the unique invariant distribution of the duplicated
diffusion. The main theorem of this section is Theorem 2.1 which consists of two claims.
The first one establishes this uniqueness claim using some ergodic-type arguments. Note
that we do not require that σ never vanishes. The second claim is an asymptotic pathwise
confluence property for the diffusion in its own scale, established under some slightly more
stringent assumptions involving the scale function p, see below. This second result, under
slightly less general assumptions, is originally due to Has’minskii (see [Has80], Appendix
to the English edition, Theorem 2.2, p.308). It is revisited here by different techniques,
mainly comparison results for one dimensional diffusions and ergodic arguments. Note
that uniqueness of ν∆ can always be retrieved from asymptotic confluence (see Remark
2.1).

Before stating the result, let us recall some definitions. We denote by M the speed

measure of the diffusion classically defined by M(dξ) =
dξ

(σ2p′)(ξ)
, where p is the scale

function defined (up to a constant) by

p(x) =

∫ x

x0

dξe
−

∫ ξ
x0

2b
σ2 (u)du, x∈ R.
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Obviously, we will consider p only when it makes sense as a finite function (so is the case
if b/σ2 is locally integrable on the real line). We are now in position to state the result.

THEOREM 2.1. Assume that b and σ are continuous functions on R being such that strong
existence, pathwise uniqueness and the Feller Markov property hold for (SDE) from any
x ∈ R. Assume furthermore that there exists λ : R+ → R+, strictly increasing, with
λ(0) = 0 and

∫
0+ λ(u)

−2du = +∞ such that for all x, y ∈ R, |σ(y) − σ(x)| ≤ λ(|x − y|).
Then, the following claims hold true.

(a) If (Xt)t≥0 admits a unique invariant distribution ν, the distribution ν∆ = ν ◦ (ξ 7→
(ξ, ξ))−1 is the unique invariant measure of the duplicated diffusion (Xx1

t ,Xx2
t )t≥0.

(b) (Has’minskii) Assume that the scale function p is well-defined as a real function on
the real line and that,

lim
x→±∞

p(x) = ±∞ and M is finite.

Then, ν = M/M(R) is the unique invariant distribution of (Xt)t≥0 and (p(Xt))t≥0 is
pathwise confluent: P-a.s., for every x1, x2∈ R, p(Xx1

t )−p(Xx2
t ) tends to 0 when t→ +∞.

REMARK 2.1. � The general assumptions on b and σ are obviously fulfilled whenever
these functions are locally Lipschitz with linear growth.

� The proofs of both claims are based on (typically one-dimensional) comparison argu-
ments. This also explains the assumption on σ which is a classical sufficient assumption
to ensure comparison of solutions, namely, if x1 ≤ x2, then X

x1
t ≤ Xx2

t for every t ≥ 0 a.s.
(see [IW77]).

� The additional assumptions made in (b) imply the uniqueness of ν (see the proof below).
The uniqueness of the invariant distribution ν∆ for the duplicated diffusion follows by
(a). However, it can also be viewed as a direct consequence of the asymptotic pathwise
confluence of p(Xxi

t ), i = 1, 2 as t → +∞. Actually, if for all x1, x2 ∈ R
d, p(Xx1

t ) −
p(Xx2

t )
t→+∞−−−−→ 0 a.s, we deduce that for any invariant distribution µ of (Xx1 ,Xx2) and

every K > 0

∫

R

(
|p(x1)− p(x2)| ∧K

)
µ(dx1, dx2) ≤ lim sup

t→+∞

1

t

∫ t

0
Eµ

(
|p(Xx1

s )− p(Xx2
s )| ∧K

)
ds = 0.

As a consequence, p(x1) = p(x2) µ(dx1, dx2)-a.s. Since p is an increasing function, it
follows that µ({(x, x), x∈ R}) = 1 and thus that µ = ν∆.

� As mentioned before, (b) slightly extends a result by Has’minkii obtained in [Has80] with
different methods and under the additional assumption that σ never vanishes (whereas we
only need the scale function p to be finite which allows e.g. for the existence of integrable
singularities of b

σ2 ). Note however that the case of an infinite speed measure M (which
corresponds to null recurrent diffusions) is also investigated in [Has80], requiring extra
non-periodicity assumptions on σ.

Proof. (a) Throughout the proof we denote by (Xx1
t ,Xx2

t ) the duplicated diffusion at time
t ≥ 0 and by (Qt((x1, x2), dy1, dy2))t≥0 its Feller Markov semi-group. The set IDSDS of
invariant distributions of (Qt)t≥0 is clearly nonempty, convex and weakly closed. Since
any such distribution µ has ν as marginals (in the sense µ(dx1×R) = µ(R×dx2) = ν), the
set IDSDS is tight and consequently weakly compact in the the topological vector space
of signed measures on (R2,Bor(R2)) equipped with the weak topology. As a consequence
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of the Krein-Millman Theorem, IDSDS admits extremal distributions and is the convex
hull of these extremal distributions.

Let µ be such an extremal distribution and consider the following three subsets of R2:

A+ = {(x1, x2), x2 > x1}, A− = {(x1, x2), x1 > x2} and A0 = {(x, x), x∈ R} = ∆R2 .

We first want to show that if µ(A+) > 0 then the conditional distribution µA
+
defined by

µA
+
= µ( .∩A+)

µ(A+)
is also an invariant distribution for (Qt)t≥0. Under the above assumptions

on b and σ, one derives from classical comparison theorems and strong pathwise uniqueness
arguments for the solutions of (SDE) (see e.g. [IW77]) that

∀ (x1, x2) ∈ cA+ = R
2 \A+, Qt((x1, x2),

cA+) = 1.

We deduce that for every (x1, x2) ∈ R
2 and t ≥ 0,

Qt((x1, x2), A
+) = P

(
(Xx1

t ,Xx2
t )∈ A+

)
= 1A+(x1, x2)P(τx1,x2 > t)

where τx1,x2 = inf{t ≥ 0,Xx2
t ≤ Xx1

t }. The second equality follows from the pathwise
uniqueness since no bifurcation can occur. Now, let µ ∈ IDSDS. Integrating the above
equality and letting t go to infinity implies

µ(A+) =

∫

A+

µ(dx1, dx2)P(τx1,x2 = +∞).

If µ(A+) > 0, then µ(dx1, x2)-a.s. P(τx1,x2 = +∞) = 1 on A+ i.e. Xx2
t > Xx1

t for every
t ≥ 0 a.s.. As a consequence, µ(dx1, dx2)-a.s., for every B ∈ B(R2d),

1(x1,x2)∈A+Qt((x1, x2), B) = 1(x1,x2)∈A+Qt((x1, x2), B ∩A+) = Qt((x1, x2), B ∩A+)

where we used again that Qt((x1, x2), A
+) = 0 if x2 ≤ x1. Then, since µ is invariant, we

deduce from an integration of the above equality that

µ(B ∩A+) =

∫

R2

Qt((x1, x2), B)1(x1,x2)∈A+µ(dx1, dx2).

It follows that if µ(A+) > 0, µA
+
is invariant.

If µ(A+) < 1, one shows likewise that µ
cA+

an invariant distribution for (Qt)t≥0 as well.
Then, if µ(A+)∈ (0, 1), then µ is a convex combination of elements of IDSDS

µ = µ(A+)µA
+
+ µ(cA+)µ

cA+

so that µ cannot be extremal. Finally µ(A+) = 0 or 1.

Assume µ(A+) = 1 so that µ = µ(. ∩ A+). This implies that X1
0 > X2

0 Pµ-a.s.. But
µ being invariant, both its marginals are ν i.e. X1

0 and X2
0 are ν-distributed. This yields

a contradiction. Indeed, let ϕ be a bounded increasing positive function. For instance,
set ϕ(u) := 1 + u√

u2+1
, u∈ R. Then, E[ϕ(X1

0 ) − ϕ(X2
0 )] > 0 since X1

0 > X2
0 Pµ-a.s. but

we also have E[ϕ(X1
0 ) − ϕ(X2

0 )] = 0 since X1
0 and X2

0 have the same distribution. This
contradiction implies that µ(A+) = 0.

One shows likewise that µ(A−) = 0 if µ is an extremal measure. Finally any extremal
distribution of IDSDS is supported by A0 = ∆R2 . Given the fact that the marginals
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of µ are ν this implies that µ = ν∆ = ν ◦ (x 7→ (x, x))−1 which in turn implies that
IDSDS = {ν∆}.
(b) Since the speed measure M is finite and σ never vanishes, the distribution ν(dξ) =
M(dξ)/M(R) is the unique invariant measure of the diffusion. Thus, by (a), we also have
the uniqueness of the invariant distribution for the duplicated diffusion.Let x1, x2∈ R. If
x1 > x2 then Xx1

t ≥ Xx2
t , still by a comparison argument, and p(Xx1

t ) ≥ p(Xx2
t ) since p is

increasing. Consequently Mx1,x2
t = p(Xx1

t )− p(Xx2
t ), t ≥ 0, is a non-negative continuous

local martingale, hence P-a.s. converging toward a finite random limit ℓx1,x2∞ ≥ 0. One
proceeds likewise when x1 < x2 (with ℓx1,x2∞ ≤ 0). When x1 = x2, Mt = ℓx1,x2∞ ≡ 0. The
aim is now to show that ℓx1,x2∞ = 0 a.s. To this end, we introduce

µt(dy1, dy2) :=
1

t

∫ t

0
Qs((x1, x2), dy1, dy2)ds, (x1, x2) ∈ R

2d

and we want to check that for every (x1, x2) ∈ R
2d, (µt(dy1, dy2))t≥1 converges weakly to

ν∆. Owing to the uniqueness of ν∆ established in (a) and to the fact that any weak limiting
distribution of (µt(dy1, dy2))t≥1 is always invariant (by construction), it is enough to prove
that (µt(dy1, dy2))t≥1 is tight. Since the tightness of a sequence of probability measures
defined on a product space is clearly equivalent to that of its first and second marginals,
it is here enough to prove the tightness of (t−1

∫ t
0 Ps(x0, dy)ds)t≥1 for any x0 ∈ R.

Let x0 ∈ R. Owing to the comparison theorems, we have for all t ≥ 0 and M ∈ R,
Pt(x0, [M,+∞)) ≤ Pt(x, [M,+∞)) if x ≥ x0 and Pt(x0, (−∞,M ]) ≤ Pt(x, (−∞,M ]) if
x0 ≥ x. Since ν is invariant and equivalent to the Lebesgue measure, we deduce that

Pt(x0, [M,+∞)) ≤ ν([M,+∞))

ν([x0,+∞))
and Pt(x0, (−∞,M)) ≤ ν((−∞,M))

ν((−∞, x0])
.

The tightness of (Pt(x0, dy))t≥1 follows (from that of ν) and we derive from what preceeds
that

∀ (x1, x2) ∈ R
2d,

1

t

∫ t

0
Qs((x1, x2), dy1, dy2)ds

(Rd)
=⇒ ν∆(dy1, dy2).

Now, note that for every L∈ N, the function g
L
: (y1, y2) 7→ |p(y1)−p(y2)|∧L is continuous

and bounded. Hence by Césaro’s Theorem, we have that

1

t

∫ t

0
Qs(gL)(x1, x2)ds =

1

t

∫ t

0
E g

L
(Xx1

s ,Xx2)ds −→ E (|ℓx1,x2
∞ | ∧ L)

whereas, by the above weak convergence of (µt(dy1, dy2))t≥1, we get

1

t

∫ t

0
Qs(gL)(x1, x2)ds −→

∫

Rd

g
L
(y1, y2)ν∆(dy1, dy2) = 0 as t→ +∞

since g
L
is identically 0 on ∆R2d . It follows, by letting L go to infinity, that

E |ℓx1,x2
∞ | = 0.

This implies ℓx1,x2∞ = 0 P-a.s. which in turn implies that

P-a.s. p(Xx1
t )− p(Xx2

t ) −→ 0 as t→ +∞.

Finally, it remains to prove that we can exchange the quantifiers, i.e. that P-a.s., p(Xx1
t )−

p(Xx2
t ) −→ 0 for every x1, x2. Assume that x1 ≥ x2. Again by the comparison theorem
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and the fact that p increases, we have 0 ≤ p(Xx1
t )−p(Xx2

t ) ≤ p(X
⌊x1⌋+1
t )−p(X⌊x2⌋

t ). This
means that we can come down to a countable set of starting points. 2

In the continuity of the second part of Theorem 2.1(b), it is natural to wonder whether a
one-dimensional diffusion is asymptotically confluent, i.e. when for all x1, x2 ∈ R, Xx1

t −
Xx2

t tends to 0 a.s as t → +∞. In the following corollary, we show that such property
holds in a quite general setting.

COROLLARY 2.1. (a) Assume the hypothesis of Theorem 2.1(b) hold. If furthermore,

σ never vanishes and lim sup
|x|→+∞

∫ x

0

b

σ2
(ξ)dξ < +∞

then, P-a.s., for every x1, x2∈ R,

Xx1
t −Xx2

t −→ 0 as t→ +∞.

(b) The above condition is in particular satisfied if there exists M > 0 such that for all

|x| > M =⇒ sign(x)b(x) ≤ 0.

Proof. (a) Under the assumptions of the theorem, p is continuously differentiable on R

and
p′(x) = e

−
∫ x
x0

2b
σ2 (u)du, x∈ R.

Then it is clear that p′inf = inf
x∈R

p′(x) > 0 iff lim sup
|x|→+∞

∫ x

x0

2b

σ2
(ξ)dξ < +∞. By the fundamental

theorem of calculus, we know that,

|Xx1
t −Xx2

t | ≤ 1

p′min

|p(Xx1
t )− p(Xx2

t )|

and the result follows from Theorem 2.1(b).

(b) Since σ never vanishes, p′′ is well-defined and for every x ∈ R, p′′(x) = −2b(x)p′(x)
σ2(x)

.

Using that p′ is positive, we deduce from the assumptions that

∃M > 0 such that

{
p′′(x) ≥ 0, x ≥M

p′′(x) ≤ 0, x ≤ −M.

Now, p′ being continuous, it follows that p′ attains a positive minimum p′min > 0.

Examples. 1. Let U be a positive a twice differentiable function such that lim
|x|→+∞

U(x) =

+∞ and consider the one-dimensional Kolmogorov equation

dXt = −U ′(Xt)dt+ σdWt

where σ > 0. Then,

lim inf
|x|→+∞

xU ′(x) >
σ2

2
=⇒ Xx

t −Xy
t

t→+∞−−−−→ 0 a.s.

Note that in particular, this result holds true even if U has several local minimas.
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2. Let σ = R → (0,+∞) be a locally Lipschitz continuous function with linear growth so
that the SDE

dXt = σ(Xt)dWt

defines a (Markov) flow (Xx
t )t≥0 of local martingales. If 1

σ ∈ L2(R,Bor(R), λ) then there

exists a unique invariant measure ν(dξ) = cσ
dξ

σ2(ξ) and (Xxi
t )t≥0, i = 1, 2 is pathwise

confluent (in the sense of Theorem 2.1(b)) since p(x) = x.
Note that the linear growth assumption cannot be significantly relaxed since a sta-

tionary process cannot be a true martingale which implies that ν has no (finite) first
moment.

3 The multidimensional case

In this section, we begin by an example of a multidimensional Brownian diffusion (Xx1 ,Xx2)
for which ν∆ (image of ν on the diagonal) is not the only one invariant distribution. Thus,
Theorem 2.1 is specific to the case d = 1 and we can not hope to get a similar result for
the general case d ≥ 2. It is of course closely related to the classification of two-point
motion on smooth compact Riemannian manifolds since the unit circle will turn out to be
a uniform attractor of the diffusion.

3.1 Counterexample in 2-dimension

Roughly speaking, saying that ν∆ is the only one invariant distribution means in a sense
that Xx

t −Xy
t has a tendency to converge towards 0 when t→ +∞. Thus, the idea in the

counterexample below is to build a “turning” two-dimensional ergodic process where the
angular difference between the two coordinates does not depend on t. Such a construction
leads to a model where the distance between the two coordinates can not tend to 0 (Note
that some proofs are deferred to Appendix B). We consider the 2-dimensional SDE with

Lipschitz continuous coefficients defined by, ∀x ∈ R
2

b(x) =
(
x1{0≤|x|≤1} −

x

|x|1{|x|≥1}
)
(1− |x|)

σ(x) = ϑDiag(b(x)) +

[
0 −cx2
cx1 0,

]

where ϑ, c∈ (0,+∞) are fixed parameters.
Switching to polar coordinates Xt = (rt cosϕt, rt sinϕt), t ∈ R+, we obtain that this

SDE also reads

drt = min(rt, 1)(1 − rt)(dt+ ϑdW 1
t ), r0∈ R+ (3.3)

dϕt = c dW 2
t , ϕ0∈ [0, 2π), (3.4)

where x0 = r0(cosϕ0, sinϕ0) and W = (W 1,W 2) is a standard 2-dimensional Brownian
motion.
Standard considerations about Feller classification (see Appendix B for details) show that,
if x0 6= 0 (i.e. r0 > 0) and ϑ∈ (0,

√
2) then

rt −→ 1 as t→ +∞, (3.5)
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while it is classical background that

P-a.s. ∀ϕ0∈ R+,
1

t

∫ t

0
δ
ei(ϕ0+cW2

s )ds =⇒ λS1 as t→ +∞

where S1 denotes the unit circle of R2. Combining these two results straightforwardly
yields

∀x∈ R
2 \ {(0, 0)}, P-a.s. 1

t

∫ t

0
δXx

s
ds

(R2)
=⇒ λS1 as t→ +∞.

On the other hand, given the form of ϕt, it is clear that if x = r0e
iϕ0 and x′ = r′0e

iϕ′
0 ,

r0, r
′
0 6= 0, ϕ0, ϕ

′
0∈ [0, 2π), then

lim
t→+∞

|Xx
t −Xx′

t | = |ei(ϕ0−ϕ′
0) − 1|

which in turn implies that

lim
t→+∞

1

t

∫ t

0
|Xx

s −Xx′

s |ds = |ei(ϕ0−ϕ′
0) − 1| P-a.s.

This limit being different from 0 as soon as ϕ0 6= ϕ′
0, one derives, as a consequence, that

ν∆ cannot be the only invariant distribution. In fact, a more precise statement can be
proved.

PROPOSITION 3.1. (a) A distribution µ is invariant for the semi-group (Qt)t≥0 of the
duplicated diffusion if and only if µ has the following form:

µ = L(eiΘ, ei(Θ+V )) (3.6)

where Θ is uniformly distributed over [0, 2π] and V is a [0, 2π)-valued random variable
independent of Θ

(b) When V = 0 a.s., we retrieve ν∆ whereas, when V also has uniform distribution on
[0, 2π], we obtain ν ⊗ ν. Finally, µ is extremal in the convex set of (Qt)t≥0 invariant
distributions if and only if there exists θ0 ∈ [0, 2π) such that V = θ0 a.s.

The proof is postponed to Appendix B. However, note that the claim about extremal
invariant distributions follows from the fact that for every θ ∈ [0, 2π), (Qt)t≥0 leaves the
set Γθ := {(eiϕ, eiϕ′

) ∈ S1 × S1, ϕ
′ − ϕ ≡ θmod. 2π} stable.

REMARK 3.2. In the above counterexample, the invariant measure of (rt)t≥0 is the Dirac
measure δ1. In fact, setting again x = ε0e

iϕ0 and x′ = r′0e
iϕ′

0 and using that Xx
t −Xx′

t =

rxt

(
ei(ϕ0+W 2

t ) − ei(ϕ
′
0+W 2

t )
)
+ (rxt − rx

′

t )ei(ϕ
′
0+W 2

t ), an easy adaptation of the above proof

shows that it can be generalized to any ergodic non-negative process (rt)t≥0 solution to
an autonomous SDE and satisfying the following properties:

• Its unique invariant distribution π satisfies π(R∗
+) = 1.

• For every x, y∈ (0,+∞), rxt − ryt −→ 0 a.s. as t→ +∞.

For instance, let (Xx
t )t≥0 be an Ornstein-Uhlenbeck process satisfying the SDE dXt =

−Xtdt + σdWt,X0 = x. Set rxt = (Xx
t )

2 (this is a special case of the Cox-Ingersoll-Ross
process). The process (rxt ) clearly satisfies the first two properties. Furthermore, (Xx

t )t≥0
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satisfies a.s. for every x, y ∈ R and every t ≥ 0, |Xx
t −Xy

t | = |x − y|e−t. Then, since for
every x∈ R,

Xx
t

t
= −1

t

∫ t

0
Xx

s ds+ σ
Wt

t
→ 0 a.s. as t→ +∞,

it follows that (rxt )t≥0 also satisfies for all positive x, y, rxt − ryt −→ 0 a.s. as t → +∞
(Many other examples can be built using Corollary 2.1).
Finally, note that if µ = L(ReiΘ, Rei(Θ+V )) where R, Θ and V are independent random
variables such that the distributions of R and Θ are respectively π and the uniform dis-
tribution on [0, 2π] and V takes values in [0, 2π), then µ is an invariant distribution of the
associated duplication system.

3.2 Uniqueness of the invariant measure: (S, θ)-confluence

In the sequel of this section, we propose criterions for the uniqueness of the invariant
distribution of the duplicated system in the multidimensional case. The underlying idea
of the criterions discussed below is to analyze the coupled diffusion process (Xx1 ,Xx2)
through the squared distance process rt = |Xx1

t −Xx2
t |2

S
(where | . |

S
is an Euclidean norm

on R
d). It is somewhat similar to that of Has’minskii’s test for explosion of diffusions in

R
d or to the one proposed in Chen and Li’s work devoted to the coupling of diffusions

(see [CL89]). We begin by a general result under an assumption depending on a continuous
(non-explicit) function θ : (0,+∞) → R+. Then, more explicit criterions are derived in the
next subsections. In particular one involves a kind of bi-variate non-infinitesimal Lyapunov
exponent.

THEOREM 3.2. Assume that b is continuous, σ is Lipschitz continuous and that strong
existence, pathwise uniqueness and the Feller Markov property hold for (SDE) from any
x ∈ R

d. Assume that the set ISDE of invariant distributions of SDE is (nonempty,
convex and) weakly compact. Furthermore, assume the SDE (1.1) is asymptotically (S, θ)-
confluent in the following sense: there exists a continuous function θ : (0,+∞) → R+ such
that





(i) lim sup
u→0+

∫ 1

u

θ(w)− 1

w
dw < +∞.

(ii) ∃ S ∈ S++(d,R) such that ∀x, y ∈ R
d, x 6= y,

(b(x)− b(y)|x− y)
S
+ 1

2‖σ(x) − σ(y)‖2
S
< θ(|x− y|2

S
)
∣∣∣(σ∗(x)− σ∗(y))S(x−y)

|x−y|
S

∣∣∣
2
.

(a) Weak confluence (Uniqueness of both invariant distributions): Then, if IDSDS denotes
the set of invariant distributions of the duplicated system (DSDS), one has

ISDE =
{
ν
}

and IDSDS =
{
ν∆
}
.

keeping in mind that ν∆ = ν ◦ (x 7→ (x, x))−1.

(b) Pathwise confluence: If furthermore,

∫ 1

0
e
∫ 1
v

θ(w)
w

dwdv < +∞ and for every x ∈ R
d,

(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight, we have a.s. pathwise asymptotic confluence:

∀x1, x2∈ R
d, Xx1

t −Xx2
t −→ 0 as t→ +∞ P-a.s. (3.7)
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REMARK 3.3. � If we also assume in (a), that
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight then, so

is
(1
t

∫ t

0
Qs(x, x

′, dy, dy′)ds
)
t≥1

. Since, by construction, the weak limiting distributions of

this sequence as t→ +∞ are invariant distributions, this implies that
1

t

∫ t

0
Qs(x, x

′, dy, dy′)ds

weakly converges to ν∆ as t→ +∞. This explains the “weak confluence” terminology.

� In both statements, Assumption(ii) must be combined with an additional assumption on
θ to generate some weak or pathwise confluence properties (some easier to verify criterions
will be given in the next subsection). Since pathwise confluence implies uniqueness of the
invariant distribution for (DSDS), one can expect that the additional condition on θ of
(b) implies Assumption (i). This is true in full generality. Actually, owing to the Cauchy

criterion,
∫ 1
0 e

∫ 1
v

θ(w)
w

dwdv < +∞ implies that
∫ u

u
2
e
∫ 1
v

θ(w)
w

dwdv → 0 as u → 0+. Using that

v 7→ e
∫ 1
v

θ(w)
w

dw is non-increasing on (0, 1], it follows that ue
∫ 1
u

θ(w)
w

dw → 0+ as u → 0.

Taking the logarithm yields
∫ 1
u

θ(w)−1
w dw → −∞ and thus, Assumption (i).

� If b and σ are Lipschitz continuous, Kunita’s Stochastic flow theorem (see [Kun90],
Section 4.5) ensures in particular that, if x1 6= x2, the solutions Xx1

t and Xx2
t a.s. never

get stuck. Taking advantage of this remark slightly shortens the proof below.

� Tightness criterions of
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

for every x∈ R
d usually rely on the mean-

reversion property of the solutions of (SDE) usually established under various assumptions
involving the existence of a so-called Lyapunov function V going to infinity at infinity
and such that AV is upper-bounded and lim sup|x|→+∞AV (x) < 0 where A denotes the
infinitesimal generator of Xx (so-called Has’minskii’s criterion). Keep in mind that

AV (x) = (b|∇V )(x) +
1

2
Tr
(
σσ∗(x)D2V (x)

)

where Tr(A) stands for the trace of the matrix A.
On the other hand, a classical criterion for pathwise asymptotic confluence (a.s. at

exponential rate, see e.g. [BB92], [Lem05] and often known as asymptotic flatness) is

∀x, y∈ R
d, (b(x) − b(y)|x− y) +

1

2
‖σ(x) − σ(y)‖2 < −c|x− y|2, (c > 0),

and, as a straightforward consequence, uniqueness of the invariant distribution ν of (SDE)
(and of (DSDS) as well). Moreover, putting y = 0 in the above inequality straightfor-
wardly yields real coefficients α > 0, β ≥ 0 such that AV ≤ β − αV with V (x) = |x|2.
Hence Has’minskii criterion is fulfilled, so it it is also an existence criterion for the invariant
distribution which (S, θ)-confluence is not.

But in fact, the (S, θ)-confluence criterion turns out to be a much weaker condition to
ensure the uniqueness of the invariant distribution ν of (SDE) (and of ν∆ for (DSDS)).
This is emphasized by several operating criterions derived from this θ-confluence assump-
tion. Finally, combined with the tightness of the occupation measure of the semi-group,
it becomes a criterion for a.s. pathwise asymptotic confluence.

Proof. Step 1: Exactly like in the beginning of the proof of Theorem 2.1(a), one checks
that the set IDSDS of invariant distributions of (Qt)t≥0 is a nonempty, convex and weakly
compact subset of P(R2d). As a a consequence of the Krein-Millman theorem, IDSDS has
extremal distributions (and is their closed convex hull).
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On the other hand, it follows from strong uniqueness theorem for SDE’s that the
semi-group (Qt)t≥0 leaves stable the diagonal ∆R2d .

Let x1, x2∈ R
d, x1 6= x2. We define the stopping time

τx1,x2 := inf
{
t ≥ 0 |Xx1

t = Xx2
t

}
.

Still by a strong uniqueness argument it is clear that {τx1,x2 > t} = {Xx1
t 6= Xx2

t } so that

Qt((x1, x2),
c∆R2d) = 1c∆

R2d
(x1, x2)P(τx1,x2 > t)

and Qt((x1, x1),
c∆R2d) = 0.

Let µ∈ IDSDS be an extremal invariant measure. We have, for every t ≥ 0,

µ(c∆R2d) =

∫

c∆
R2d

µ(dx1, dx2)P(τx1,x2 > t).

Letting t go to +∞ yields

µ(c∆R2d) =

∫

c∆
R2d

µ(dx1, dx2)P(τx1,x2 = +∞)

so that, on c∆R2d , µ(dx1, dx2)-a.s., P(τx1,x2 = +∞) = 1 or equivalently the process
(Xx1 ,Xx2) lives in c∆R2d . Consequently, if µ(c∆R2d) ∈ (0, 1), both conditional measures
µ

c∆
R2d and µ∆R2d are invariant distributions for (SDSD) as well. If so,

µ = µ(c∆R2d)µ
c∆

R2d + µ(∆R2d)µ∆R2d

cannot be extremal. Consequently µ(∆R2d) = 0 or 1.

Step 2: Let µ be an extremal distribution in IDSDS and assume that µ(c∆R2d) = 1. We
will prove that this yields a contradiction under Assumptions (i) and (ii).
To this end, let us introduce the pseudo-scale C2-function fθ and its companion gθ defined
by

∀u ∈ (0,+∞), fθ(u) =

∫ u

1
e
∫ 1
ξ

θ(w)
w

dwdξ and gθ(u) = uf ′θ(u).

Note that gθ ≥ 0, that Assumption (i) reads lim supu→0+ gθ(u) < +∞ and that g′θ(u) =
f ′θ(u)(1− θ(u)). Moreover, if Assumption (ii) is fulfilled, so is the case by any continuous

function θ̃ satisfying θ̃ ≥ θ. As a consequence, we may modify θ on [1,+∞) so that θ still
satisfies (ii) and θ ≥ 1 over [2ε,+∞). Then the function gθ is nonincreasing on [2,+∞).
Consequently, without loss of generality, we may assume in the sequel of the proof that

sup
u>0

gθ(u) < +∞. (3.8)

We now define a (Lyapunov) function ϕ : c∆R2d → R by

ϕ(y1, y2) := fθ(|y1 − y2|2S).
We know from Step 1 that µ(dx1, dx2)-a.s., (X

x1
t 6= Xx2

t for every t ≥ 0) a.s.. Then, fθ
being a C2-function, we derive from Itô’s formula applied to ϕ(Xx1

t ,Xx2
t ) that µ(dx1, dx2)-

a.s.,

ϕ(Xx1
t ,Xx2

t ) = ϕ(x1, x2) +

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds

+

∫ t

0
f ′θ(|Xx1

s −Xx2
s |2

S
)
(
(σ∗(Xx1

s )− σ∗(Xx2
s ))S(Xx1

s −Xx2
s )|dWs

)

︸ ︷︷ ︸
=:Mt local martingale
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where, for every (x1, x2)∈ (Rd)2,

A(2)ϕ(x1, x2) = 2
(
(b(x1)− b(x2)|x1 − x2)S +

1

2
‖σ(x1)− σ(x2)‖2S

)
f ′θ(|x1 − x2|2S )

+ 2f ′′θ (|x1 − x2|2S )
∣∣(σ∗(x1)− σ∗(x2))S(x1 − x2)

∣∣2. (3.9)

Using that f satisfies the ODE ≡ θ(ξ)f ′θ(ξ) + ξf ′′θ (ξ) = 0, ξ ∈ (0,+∞) we deduce from
Assumption (ii) that A(2)ϕ(x1, x2) < 0 if x1 6= x2 and = 0 otherwise.

On the one hand, since µ is extremal and since the sign of A(2)ϕ is constant, we can
apply Birkhoff’s theorem and obtain:

µ(dx1, dx2)-a.s.,
1

t

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds

t→+∞−−−−→
∫

c∆
R2d

A(2)ϕdµ ∈ [−∞, 0] a.s.

In fact,
∫
c∆

R2d
A(2)ϕdµ belongs to [−∞, 0) sinceA(2)ϕ is negative on c∆R2d and µ(c∆R2d) =

1. On the other hand, using that gθ is bounded and σ is Lipschitz continuous, it follows
that (Mt)t≥0 is an L2-martingale such that

〈M〉t =
∫ t

0
gθ(|Xx1

s −Xx2
s |2

S
)2
∣∣∣(σ

∗(Xx1
s )− σ∗(Xx2

s ))

|Xx1
s −Xx2

s |
S

S(Xx1
s −Xx2

s )

|Xx1
s −Xx2

s |
S

∣∣∣
2
ds ≤ Ct Pµ-a.s.

(3.10)
where C is a deterministic positive constant so that Mt

t → 0 Pµ-a.s..
As a consequence, µ(dx1, dx2)-a.s.,

lim
t→+∞

ϕ(Xx1
t ,Xx2

t )

t
=

∫

c∆
R2d

A(2)ϕdµ < 0 a.s..

Hence, a.s., f(|Xx1
t −Xx2

t |2
S
) = ϕ(Xx1

t ,Xx2
t )

t→+∞−−−−→ −∞ a.s.
If limu→0+ fθ(u) > −∞, this yields a contradiction since fθ is increasing on R

∗
+. Otherwise

|Xx1
t −Xx2

t |2
S

t→+∞−−−−→ 0. But applying again Birkhoff’s theorem, we obtain µ(dx1, dx2)-a.s.,

∫
|y1 − y2|2Sµ(dy1, dy2) = lim

t→+∞
1

t

∫ t

0
|Xx1

t −Xx2
t |2

S
ds = 0 a.s.,

which contradicts the assumption µ(c∆R2d) = 1. Consequently, for any extremal distribu-
tion µ, we have µ(∆R2d) = 1.

We can now prove Claim (a): by Krein-Millman’s Theorem ISDS is the weak closure
of the convex hull of its extremal distributions. Consequently, the diagonal ∆R2d being
a closed subset of R2d, all invariant distributions of the duplicated system are supported
by this diagonal. For any such invariant distribution µ, both its marginals are invariant
distributions for (SDE). If (SDE) had two distinct invariant distributions ν and ν ′, we
know from the introduction that IDSDS would contain at least a distribution µ for which
the two marginals distributions are µ(. × R

d) = ν and µ(Rd × .) = ν ′ respectively. As a
consequence, such a distribution µ could not by supported by the diagonal ∆R2d . Finally,
ISDE is reduced to a singleton {ν} and IDSDS = {ν∆}.
Step 3 (Claim (b): Proof of (3.7)): Under the additional assumption on θ of (b), we
have limu→0+ fθ(u) > −∞ and thus, infu>0 fθ(u) > −∞ since fθ is increasing. Let x1,
x2 ∈ R

d. Using again that A(2)ϕ < 0 on c∆R2d where A(2)ϕ is given by (3.9). It follows
that

(
fθ(|Xx1

t −Xx2
t |2

S
)
)
t≥0

is a lower-bounded P-supermartingale. Thus, it a.s. converges
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toward Lx1,x2∞ ∈ L1(P). Using again that fθ is increasing, it follows that |Xx1
t −Xx2

t |2
S
a.s.

converges toward a finite random variable ℓx1,x2∞ = f−1
θ (Lx1,x2∞ ).

Now, using that for every x ∈ R
d,
(1
t

∫ t

0
Ps(x, dy)ds

)
t≥1

is tight, we derive that

(1
t

∫ t

0
Qs((x1, x2), (dy1, dy2))ds

)
t≥1

is tight as well. Then the uniqueness of ν∆ as an

invariant distribution of Q implies that

1

t

∫ t

0
Qs

(
(x1, x2), (dy1, dy2)

)
ds

(Rd)
=⇒ ν∆.

Now for every bounded continuous function g : Rd → R,

1

t

∫ t

0
Qs(g(|y1 − y2|2S )(x1, x2)ds =

1

t

∫ t

0
E g(|Xx1

s −Xx2
s |2

S
)ds −→ E g(ℓx1,x2

∞ )

so that

E g(ℓx1,x2
∞ ) =

∫
g(|y1 − y2|2S )ν∆(dy1, dy2) = g(0). 2

In Assumption (ii) of the previous theorem, we see that the function (x, y) 7→ |(σ∗(x)−
σ∗(y))S(x−y)| plays an important role. In the sequel, we will obtain specific results when
this function is not degenerated away from the diagonal. Such type of assumption will be
called strong or regular directional S-ellipticity assumption.

In the following proposition, we first show that when such an assumption is satis-
fied, claim (b) of the previous theorem still holds without the tightness assumption on
(1t
∫ t
0 Ps(x, dy)ds)t≥1 (although it is a not really restrictive in our framework (see the

fourth item of Remark 3.3)).

PROPOSITION 3.2. If the function θ is (0, 1]-valued and σ satisfies the following strong
directional S-ellipticity assumption away from the diagonal

∃ α0 > 0, ∀x, y∈ R
d,
∣∣(σ∗(x)− σ∗(y))S(x− y)

∣∣ ≥ α0|x− y|2, (3.11)

then the conclusion of Claim (b) in the above proposition remains true without the tightness
assumption on (1t

∫ t
0 Ps(x, dy)ds)t≥1.

Proof. First, we recall that under the assumptions of (b), we recall that (fθ(|Xx1
t −

Xx2
t |2

S
))t≥0 is a lower-bounded P-supermartingale thus convergent to an integrable ran-

dom variable and that this implies that (|Xx1
t − Xx2

t |2
S
)t≥0 is a.s. convergent to a finite

random variable ℓx1,x2∞ (since fθ is increasing). On the other hand, since −A(2)ϕ is positive
and fθ is lower-bounded, we also have that

fθ(|Xx1
t −Xx2

t |2
S
)−

∫ t

0
A(2)ϕ(Xx1

s ,Xx2
s )ds = ϕ(x1, x2) +Mt

is a lower bounded P-(local) martingale starting at a deterministic starting value, hence
converging toward an integrable random variable. Owing to the computations of (3.10)
(which hold for every starting points x1, x2), (Mt)t≥0 is in fact an L2- convergent mar-
tingale. Thus, 〈M〉∞ < +∞ and taking advantage of the expression of this bracket (see
(3.10)) and to Assumption (3.11), we derive that for every ε > 0

∫ +∞

0

(
gθ
(
|Xx1

s −Xx2
s |2

S

)2
1{|Xx1

s −X
x2
s |2

S
≥ε}ds < +∞ a.s.
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The function gθ is positive on (0,+∞) and non-decreasing since g′θ(u) = f ′θ(u)(1−θ(u)) ≥
0. This implies that, for every ε > 0,

lim inf
t→+∞

gθ
(
|Xx1

t −Xx2
t |2

S

)
1{|Xx1−Xx2 |2

S
≥ε} = 0 a.s.

Combined with the convergence of the squared norm this yields

∀ ε > 0, gθ
(
ℓx1,x2
∞

)
1{ℓx1,x2∞ ≥ε} = 0 a.s.

which finally implies ℓx1,x2∞ = 0 a.s.

3.3 Global criterions, NILS exponent

In this section and the following, we derive several corollaries of Theorem 3.2 illustrated
by different examples. For S ∈ S++(d,R), set

[b]S,+ = sup
x 6=y

(b(x)− b(y)|x− y)
S

|x− y|2
S

.

Note that if [b]S,+ < +∞ and if σ is Lipschitz continuous, strong existence, pathwise
uniqueness and the Feller Markov property hold for (SDE).

PROPOSITION 3.3. Assume [b]S,+ < +∞, σ is Lipschitz continuous and (SDE) and
ISDS is non empty and weakly compact. Let θ : (0,+∞) → R+ be a continuous function
such that Assumption (ii) of Theorem 3.2 holds. Then,

(a) If there exists ε0 > 0 such that θ(u) ≤ 1, u ∈ (0, ε0], then (SDE) (1.1) and its
duplicated system have ν and ν∆ as unique invariant distributions respectively.

(b) If furthermore for every x∈ R
d, (1t

∫ t
0 Ps(x, dy)ds)t≥1 is tight and if there exists κ > 1

and ε0∈ (0, e−
κ
2 ) such that

∀u∈ (0, ε0], θ(u) ≤
(
1 +

κ

log u

)
, (3.12)

the duplicated system of (SDE) is pathwise confluent in the sense of Theorem 3.2(b). This
condition is in particular satisfied if there exists ε0 > 0 and θ0∈ (0, 1) such that

∀u∈ (0, ε0], θ(u) ≤ θ0.

Claim (a) is obvious. For (b), one checks that
∫ 1
0 e

∫ 1
v

θ(w)
w

dwdv < +∞ as soon as
lim infu→0+ log(u)

(
θ(u)− 1

)
> 1 and the result follows.

REMARK 3.4. The simplest case where the preceding result holds is obtained when θ ≡ 0.
In this case, the (S, 0)-confluence global condition reads:

∀x, y∈ R
d, x 6= y, (b(x)− b(y)|x− y)

S
+

1

2
‖σ(x) − σ(y)‖2

S
< 0. (3.13)

In fact, this condition is also required at every (x, y), x 6= y, such that (σ∗(x)−σ∗(y))S(x−
y) = 0, whatever θ is. In the next section, we will see that when (σ∗(x)− σ∗(y))S(x− y)
never vanishes away from the diagonal, one can derive a “localized” version of the criterion
outside the diagonal.

The constant function θ ≡ 1 clearly satisfies the assumption in (a) of the above Propo-
sition. This leads us to introduce an important quantity of interest for our purpose.
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DEFINITION 3.1. The non-infinitesimal S-Lyapunov exponent (NILS) is a function on
R
2d \∆R2d defined for every x, y∈ R

d, x 6= y, by

λ
S
(x, y) =

(b(x)− b(y)|x− y)
S

|x− y|2
S

+
1

2

‖σ(x)− σ(y)‖2
S

|x− y|2
S

−
(∣∣∣(σ

∗(x)− σ∗(y))S(x− y)

|x− y|2
S

∣∣∣
2
)
.

COROLLARY 3.2. Assume b and σ are like in Proposition 3.3 and ISDE is non empty
and weakly compact.

(a) Negative NILS exponent: if

∀x, y∈ R
d, x 6= y, λ

S
(x, y) < 0,

then (SDE) and its duplicated system have ν and ν∆ as unique invariant distributions
respectively.

(b) Negative NILS exponent bounded away from 0: If furthermore (1t
∫ t
0 Ps(x, dy)ds)t≥1 is

tight for every x∈ R
d or σ satisfies (3.11) and if there exists c0 > 0 such that

∀x, y∈ R
d, x 6= y, |x− y|2

S
≤ ε0 =⇒ λ

S
(x, y) ≤ −c0 (3.14)

then the duplicated diffusion is pathwise confluent i.e.

∀x1, x2∈ R
d, Xx1

t −Xx2
t −→ 0 a.s. as t→ +∞.

Proof. (a) follows from claim (a) in the above proposition with θ ≡ 1. (b) follows from
claim (b) in the same proposition.

Note that in (b), Condition (3.14) can be replaced by the sharper following one: for all
x, y ∈ R

d, λ
S
(x, y) < 0 and there exists κ > 1 and ε0∈ (0, e−

κ
2 ) such that for all x, y ∈ R

d

such that |x− y|S ≤ ε0, λS
(x, y) ≤ κ

log(|x− y|2
S
)
.

3.4 Applications and extensions

3.4.1 Localization around the diagonal

By local we mean that the (S, θ)-confluence condition will be effective only in the neigh-
bourhood of the diagonal ∆R2d . The price to pay is a regular directional ellipticity as-
sumption on σ(x)− σ(y) in the direction S(x− y) away from the diagonal.

PROPOSITION 3.4. Assume [b]S,+ < +∞, σ is Lipschitz continuous and (SDE) admits
at least one invariant distribution ν. If there exists ε0 > 0 such that

{
(i) Directional S-ellipticity: η0 := inf

{∣∣(σ∗(x)− σ∗(y))S(x− y)
∣∣, |x− y|

S
≥ ε0

}
> 0,

(ii) Locally negative NILS exponent: ∀x, y∈ R
d, 0 < |x− y|

S
≤ ε0, λS

(x, y) < 0,

then (SDE) (1.1) and its duplicated system still have ν and ν∆ as unique invariant dis-
tributions respectively.

Proof. For every u∈ (0,+∞)

sup
|x−y|

S
=u

(b(x)− b(y)|x− y)
S
+ 1

2‖σ(x) − σ(y)‖2
S∣∣∣(σ∗(x)− σ∗(y))S x−y

|x−y|
S

∣∣∣
2
.

< θ(u)
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where

θ(u) =

{(
[b]+ + 1

2 [σ]
2
Lip

)
u4

η20
+ δ0 if u∈ [ε0,∞),

1 if u∈ (0, ε0/2)

where δ0 is a positive number. Consequently θ can be extended into a continuous function
over (0,+∞) (e.g. by an affine extension between ε0/2 and ε0) which satisfies the condition
of Proposition 3.3. 2

COROLLARY 3.3 (Smooth coefficients). Assume the functions b and σ are continuously

differentiable. Let Jb(x) =
[
∂bi
∂xj

(x)
]
1≤i,j≤d

denote the Jacobian of b at x and let ∇σ(x) =
[
∂σij

∂xk (x)
]
i,j,k

denote the gradient of σ at x. If both SJb + J∗
b S and ∇σ are Lipschitz

continuous and if ∇σ is bounded then the NILS exponent is locally negative (condition (ii)
in Proposition 3.4) as soon as

sup
x∈Rd

sup
|u|

S
=1

(
u∗ (SJb(x) + J∗

b (x)S) u+
∥∥∥(∇σ(x)|u)

∥∥∥
2

S

− 2
∣∣∣(∇σ∗(x)Su|u)

∣∣∣
2
)
< 0

where, for every v = (v1, . . . , vd)∈ R
d, (∇σ(x)|v) =

[
(∇σij(x)|v)

]
1≤i,j≤d

and ∇σ(x)v =
[

d∑

k=1

∂σij
∂xk

(x)vk

]

1≤i,j≤d

. When S = Id, this may also be written

sup
x∈Rd

sup
|u|=1

u∗


Jb(x) + J∗

b (x) +
∑

1≤i,j≤d

(∇σij(x))⊗2 − 2
[
(∇σij(x)|u)

][
(∇σ∗ij(x)|u)

]

u < 0.

We leave the computational details to the reader.

3.4.2 The case λS ≤ 0

The previous results require the NILS exponent to be (strictly) negative (at least near the
diagonal). When the invariant distribution ν of (SDE) is unique and not degenerated,
some results can be obtained when the NILS exponent is only non-positive and negative
outside of a compact set.

PROPOSITION 3.5. Assume [b]S,+ < +∞, σ is Lipschitz continuous and (SDE) has a
unique invariant distribution ν whose support is not compact. Then, uniqueness for ν∆
holds true as soon as

∀x, y ∈ R
d, λ

S
(x, y) ≤ 0 and ∃R > 0 s.t. max(|x|

S
, |y|

S
) > R =⇒ λ

S
(x, y) < 0. (3.15)

Proof. Let µ be an extremal (hence ergodic) distribution µ for the duplicated system such
that µ(c∆Rd) = 1 like in the proof of Step 2 of Theorem 3.2. Following this proof with
θ = 1 (so that ϕ(x1, x2) = log(|x1 − x2|2)), we still have by the ergodic theorem that

Pµ-a.s.
1

t
log |Xx1

t −Xx2
t |2 −→ cµ :=

∫

R2d

λ
S
(x1, x2)µ(dx1, dx2).

If cµ < 0 then both components are pathwise confluent, which implies following the proof
of the theorem, that µ(∆R2d) = 1. Consequently cµ = 0 and then µ({λ

S
= 0}) = 1
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since λ
S
is non-positive. Which in turn implies that µ is compactly supported owing to

the assumption made on the NILS exponent. On the other hand ν being unique, both
marginals of µ are equal to ν. Hence the contradiction since the support of ν is not
compact.

REMARK 3.5. • In the particular case where σ is constant, Condition (3.15) becomes a
monotony condition on b (decrease with respect to (.|.)

S
at infinity), namely:

∀x, y ∈ R
d, x 6= y (b(x)− b(y)|x− y)S ≤ 0,

and ∃R > 0 s.t. max(|x|
S
, |y|

S
) > R =⇒ (b(x)− b(y)|x− y)S < 0.

This means that b is S-non-increasing on R
d, S-decreasing outside B|.|

S
(0;R)2. For in-

stance, if b = −∇U , the above assumption holds if U is convex and (only) strictly convex
outside of a compact set.

• Note that when ∇U is only increasing outside B|.|
S
(0;R) but possibly with no specific

monotony on B|.|
S
(0;R), it is still possible to find some diffusion coefficients σ such that

the SDE dXt = −∇U(Xt)dt+σ(Xt)dWt remains weakly or pathwise confluent. We refer to
the next subsection for models with such stochastically stabilizing diffusive components.

• Finally, note that the above condition (3.15) can be also localized around the diagonal
under the directional S-ellipticity assumption. To be more precise, when ν is unique and
its support is not compact, Proposition 3.5 still holds if Assumption (ii) is “localized”
into:

(ii)loc ≡ for every x, y ∈ R
d such that 0 < |x− y| ≤ ε0, λS(x, y) ≤ 0.

3.4.3 Local criterion on compact sets

As mentioned before, the diffusion is asymptotically (S, 0)-confluent (i.e. (S, θ)-confluent
in the sense of Theorem 3.2 with θ ≡ 0), if there exists S ∈ S++(d,R) such that (3.13)
holds. One asset of this more stringent assumption is that it can be localized in two ways:
first in the neighbourhood of the diagonal like in the above local criterions, but also on
compacts sets of R2d. This naturally leads to a criterion based on the differentials of b
and σ when they exist.

PROPOSITION 3.6 (Criterion on compact sets). (a) Let S ∈ S++(d,R) such that for every
R > 0, there exists δR > 0 such that ∀x, y∈ B|.|

S
(0;R),

0 < |x− y|
S
≤ δR =⇒ (b(x)− b(y)|x− y)

S
+

1

2
‖σ(x) − σ(y)‖2

S
< 0. (3.16)

Then the diffusion is asymptotically (S, 0)-confluent.
(b) If b and σ are continuously differentiable, then (3.16) holds as soon as

(AC)diff ≡ ∀x∈ R
d, SJb(x) + J∗

b (x)S +
√
S
∑

i,j

(∇σij(x))⊗2
√
S < 0 in S(d,R).

Proof. (a) Let x, y∈ R
d such that x 6= y. Set R = max(|x|

S
, |y|

S
) and

x0 = x, xi = x+
i

N
(y − x), i = 1, . . . , N − 1, xN = y
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where |y − x|
S
< NδR. Then for every i∈ {1, . . . , N}, |xi|S ≤ R and |xi − xi−1|S ≤ δR.

Then

‖σ(x) − σ(y)‖2
S

=
∥∥∥

N∑

i=1

σ(xi)− σ(xi−1)
∥∥∥
2

S

≤ N

N∑

i=1

‖σ(xi)− σ(xi−1)‖2S

< −2N
N∑

i=1

(b(xi)− b(xi−1)|xi − xi−1)S = −2
N∑

i=1

(
b(xi)− b(xi−1)|y − x

)
S

< −2(b(y)− b(x)|y − x)
S
.

(b) First, we prove the result when S = Id. We note that, for every continuously
differentiable function g : R

d → R, g(y) − g(x) =
∫ 1
0

(
∇g(x + t(y − x))|y − x

)
dt =∫ 1

0 (y − x)∗∇g(x+ t(y − x))dt so that

(
b(y)−b(x)|y−x

)
=

∫ 1

0
(y−x)∗Jb(x+t(y−x)

)
(y−x)dt =

∫ 1

0
(y−x)∗J∗

b (x+t(y−x)
)
(y−x)dt

and

‖σ(y) − σ(x)‖2 =

d∑

i,j=1

(∫ 1

0

(
∇σij(x+ t(y − x))|y − x

)
dt

)2

.

By Schwarz’s Inequality and the fact that (u|v)2 = u∗v⊗2u, we deduce

(
b(y)− b(x)|y − x

)
+

1

2
‖σ(y)−σ(x)‖2 ≤ 1

2

∫ 1

0

(
(y − x)∗(Jb + J∗

b )(x+ t(y − x))(y − x)

+
1

2

∑

ij

(y − x)∗
(
∇σij(x+ t(y − x))

)⊗2
(y − x)

)
dt.

This competes the proof when S = Id. This extends to general matrix S∈ S++(d,R) using
that ‖σ(y)−σ(x)‖2

S
= ‖(

√
Sσ)(y)− (

√
Sσ)(x)‖2 and the fact that (Au)⊗2 = Au⊗2A∗ with

A =
√
S. 2

3.5 Examples

3.5.1 An example of confluent diffusion with increasing drift

Assume that σ : Rd → M(d, d,R) is defined by σ(x) = x⊗ λ+ σ0 where σ0∈ M(d, d,R)
and λ : Rd → R

d is a bounded Lipschitz function (such that σ is Lipschitz too). If there
exists ρ∈ (0, 12) such that

lim sup
|x|→+∞

(b(x)|x) − ρ|x|2|λ(x)|2

(1 + |x|2)ρ+ 1
2

= −∞ (3.17)

then the diffusion (1.1) has at least one invariant distribution ν. Thus, if

[b]0+ = sup
x 6=0

(b(x)− b(0)|x)
|x|2 6= +∞,

the above condition is satisfied as soon as

lim inf
|x|→+∞

|λ(x)|2 > 2[b]0+.
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The key is to introduce the Lyapunov function V (x) = (a + |x|2)ρ+ 1
2 . Using that ‖(σ −

σ0)(x)‖2 = |(σ − σ0)∗(x) x
|x| |2 = |λ(x)|2|x|2, we deduce that

1

2
‖σ(x)‖2 − (ρ+

1

2
)
∣∣∣σ∗(x) x|x|

∣∣∣
2
= −ρ|λ(x)|2|x|2 +O(1)

and it follows that lim sup|x|→+∞AV (x) = −∞ if (3.17) is fulfilled (where A denotes the
infinitesimal generator of (1.1)).

If the function λ is constant, the diffusion is asymptotically pathwise confluent (so that
ν is unique for (1.1) and the duplicated system has ν∆ as unique invariant distribution)
as soon as there exists ε0 > 0 satisfying

|x− y| ≤ ε0 =⇒ (b(x)− b(y)|x− y)− 1

2
|λ|2|x− y|2 < 0. (3.18)

This is a consequence of Proposition 3.4 applied with S = Id (the directional ellipticity
assumption (i) is clearly true since |(σ∗(x)− σ∗(y))(x− y)| = |λ|.|x− y|2). If b is smooth
this condition is satisfied as soon as, for every x∈ R

d, 1
2(Jb + J∗

b )(x) <
1
2 |λ|2Id in S(d,R)

(Jb(x) denotes the Jacobian matrix of b).

3.5.2 Baxendale’s model

Let Ξt = (Xt, Yt) be the unique strong solution to the 2-dimensional SDE

dXt =
(
a− σ2

2

)
Xtdt− (σYt − θ

X
)dWt

dYt =
(
b− σ2

2

)
Ytdt+ (σXt + θ

Y
)dWt

where W is scalar standard Brownian motion, a, b, σ are real numbers satisfying

ab < 0, a+ b < 0, σ >

√
2ab

a+ b
.

and θ
X
, θ

Y
∈ R. When θ

X
= θ

Y
= 0, this system is known as Baxendale’s system

(see e.g. [KP92]). Its stochastic stability has been extensively investigated in connection
with its Lyapunov exponent. Then set

λ = λ(σ) =
b− a+

√
(b− a)2 + σ4

σ2
∈ (0, 1) and α = σ2 − (a+ b)−

√
(a− b)2 + σ4 > 0.

and | . |λ = | . |
S
with S = Diag(1, λ). Itô’s Lemma implies

d|Ξt|2λ =
(
− α|Ξt|2λ + θ

X
(θ

X
− 2σYt) + λθ

Y
(θ

Y
+ 2σXt)

)
dt+Θ(Ξt)dWt

where Θ(x, y) = 2
(
(λ − 1)σxy + λθ

Y
x + θ

X
y
)
. It is clear that there exists β ∈ R+ such

that
|θ

X
(θ

X
− 2σy) + λθ

Y
(θ

Y
+ 2σx)| ≤ β|(x, y)|λ.

Then using that |ξ|λ ≤ 1
2α + α

2 |ξ|2λ and setting β′ = β + 1
2α , we derive that

d|Ξt|2λ ≤ β′ − α

2
|Ξt|2λdt+Θ(Ξt)dWt
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where θ(ξ) ≤ C|ξ|λ. Hence, the function V (ξ) = |ξ|2λ is a Lyapunov function for the system
since AV ≤ β′ − α

2V . As a consequence there exists at least one invariant distribution ν

for the system and any such distribution satisfies ν(V ) ≤ 2β′

α .

At this stage we can compute the non-infinitesimal S-Lyapunov exponent of the du-
plicated system. Tedious although elementary computations show that, for every ξ =
(x, y), ξ′ = (x′, y′)∈ R

2,

λ
S
(ξ, ξ′) = −α

2
− (λ− 1)2σ2

(x− x′)2(y − y′)2

|ξ − ξ′|4λ
< 0.

4 Application to the Richardson-Romberg extrapolation for

the approximation of invariant distributions

As an application, we investigate in this section the Richardson-Romberg (RR) extrapo-
lation for the approximation of invariant measures. Roughly speaking, the aim of a RR
method is generally to improve the order of convergence of an algorithm based on an
discretization scheme by cancelling the first order error term induced by the time dis-
cretization of the underlying process. However, to be efficient, such a method must be
implemented with a control of its variance. We will see that in this context, this control is
strongly linked to the uniqueness of the invariant distribution of the duplicated diffusion.

4.1 Setting and Background

4.1.1 Recursive computation of the invariant distribution of a diffusion: the

original procedure

Following [LP02] and a series of papers cited in the introduction, we consider here a
sequence of empirical measures (νηn(ω, dx))n≥1 built as follows: let (γn)n≥1 denote a non-
increasing sequence of positive step parameters satisfying

γn
n→+∞−−−−−→ 0 and Γn =

n∑

k=1

γk
n→+∞−−−−−→ +∞.

We denote by (X̄n)n≥0 the Euler scheme with step sequence (γn)n≥1 defined by X̄0 = x∈
R
d and

X̄n+1 = X̄n + γn+1b(X̄n) +
√
γn+1σ(X̄n)Un+1

where (Un)n≥1 is a sequence of i.i.d. centered R
q-valued random vectors such that ΣU1 = Iq

defined on a probability space (Ω,A,P). The sequence of weighted empirical measures
(νηn(ω, dx))n≥1 is then defined for every n ≥ 1, by

νηn(ω, f) =
1

Hn

n∑

k=1

ηkδX̄k−1(ω)

where δa denotes the Dirac mass at a∈ R
d and (ηk)k≥1 is a sequence of positive weights

such that Hn =
∑n

k=1 ηk
n→+∞−−−−−→ +∞. When ηk = γk which corresponds to the genuine

case, we will only write νn(ω, dx) instead of νγn(ω, dx). For this sequence, we recall in
Proposition 4.7 below in a synthesized form the main convergence results (including rates)
of the sequence (νηn(ω, dx)) to the invariant distribution ν of (Xt). In this way, we introduce
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two assumptions:
(Sa) : (a > 0) There exists a positive C2-function V : Rd → R with

lim
|x|→+∞

V (x) = +∞, |∇V |2 ≤ CV, and sup
x∈Rd

‖D2V (x)‖ < +∞

such that there exist some positive constants Cb, β and α such that:

(i) |b|2 ≤ CbV
a, Tr(σσ∗)(x) = o(V a(x)) as |x| → +∞ (ii) (∇V |b) ≤ β − αV a.

This Lyapunov-type assumption is sufficient to ensure the long-time stability of the Euler
sheme (in a sense made precise below) as soon as a ∈ (0, 1]. Note that the convergence
can be obtained under a less restrictive mean-reverting assumption including the case
a = 0 (see [Pan06]). The second assumption below is fundamental to establish the rate
of convergence of (νηn(ω, f)) to ν(f) for a fixed smooth enough function f : Rd → R: we
assume that f has a smooth solution to the Poisson equation (see [PV01] for results on
this topic).

(C(f ,k)): There exists a Ck-function g : Rd → R solution to f − ν(f) = Ag such that f , g
and its partial derivatives up to k are dominated by V r (r ≥ 0): |f | ≤ CV r and for every

α = (α1, . . . , αd)∈ N
d with |α| := α1 + · · · + αd ∈ {0, . . . , k}, |∂|α|

x
α1
i1

,...,x
αd
id

g| ≤ CV r.

Before recalling the results on (νn(ω, dx)), let us introduce further notations. We set

∀ r∈ N, Γ(r)
n =

n∑

k=1

γrk

and for a smooth enough function h : Rd → R and an integer r ≥ 2, we write:

D(r)h(x) y1 ⊗ · · · ⊗ yr =
∑

(i1,...,ir)∈{1,...,d}r
∂rxi1

,...,xir
h(x)yi11 . . . y

ir
r .

PROPOSITION 4.7. Assume (Sa) holds for an a ∈ (0, 1] and U1 ∈ ∩p>0L
p(P). Assume

that (ηk/γk) is a non-increasing sequence. Then,

(i) For every non-increasing sequence (θn)n≥1 such that
∑

n≥1 θnγn < +∞ and for every
r>0,

∑
n≥1 θnγnE[V

r(X̄n)] < +∞.

(ii) For every r>0, supn≥1 ν
η
n(ω, V r) < +∞ a.s. In particular, (νηn(ω, dx))n≥1 is a.s. tight.

(iii) Every weak limit of (νηn(ω, dx))n≥1 is an invariant distribution for (Xt)t≥0. Further-

more, if (SDE) has a unique invariant distribution, say ν, then νηn(ω, f)
n→+∞−−−−−→ ν(f) a.s.

for every ν-a.s continuous function f such that |f | ≤ CV r for an r > 0.

(iv) (Rate of convergence when ηk = γk): Assume that ν is unique and that E[U⊗3
1 ] = 0.

Let k ≥ 1 such that f : Rd → R satisfies (C(f ,k)). Then,

• If k = 4 and Γ
(2)
n√
Γn

n→+∞−−−−−→ 0,

√
Γn (νn(ω, f)− ν(f))

(R)
=⇒ N

(
0;

∫
|σ∗∇g|2dν

)
as n→ +∞.

• If k = 5 and Γ
(2)
n√
Γn

n→+∞−−−−−→ β̃ ∈ (0,+∞],

�

√
Γn

(
νn(ω, f)− ν(f)

)
(R)
=⇒ N

(
β̃ m(1)

g ;

∫
|σ∗∇g|2dν

)
as n→ +∞ if β̃ ∈ (0,+∞),

�
Γn

Γ
(2)
n

(νn(ω, f)− ν(f))
a.s.−→ m(1)

g as n→ +∞ if β̃ = +∞
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where m(1)
g =

∫

Rd

ϕ1dν with

ϕ1(x) =
1

2
D2g(x)b(x)⊗2 +

1

2
E[D3g(x)b(x)(σ(x)U1)

⊗2] +
1

24
E[D4g(x)(σ(x)U1)

⊗4]. (4.19)

The first three claims part (i), (ii) and (iii) of the theorem follow from [LP03] whereas
the (iv) is derived from [LP02] (see Theorem 10) and [Lem05] (see Theorem V.3), in which
the rate of convergence is established for a wide family of weights (ηk).

Applying (iv) to polynomial steps of the following form: γn = Cn−µ, µ ∈ (0, 1], we
observe that the optimal (weak) rate is n−1/3 and is attained for µ = 1/3. Then

β̃ =
√
6C

3
2 and

√
Γn ∼

√
3C/2 n

1
3 .

so that

n
1
3

(
νn(ω, f)− ν(f)

)
(R)
=⇒ N

(
2C m(1)

g ;
2

3C

∫
|σ∗∇g|2dν

)
.

This corresponds to the case where the rate of convergence of the underlying diffu-
sion toward its steady regime (

√
Γn corresponding to

√
t in the continuous time setting,

see [Bha82] for the CLT for the diffusion itself) and the discretization error are of the same
order. From a practical point of view it seems clear that a balance should be made be-
tween the asymptotic bias and the asymptotic variance to specify the constant C. Under
slightly more stringent assumptions we prove that the L2–norm of the error νn(ω, f)−ν(f)
satisfies

‖νn(ω, f)− ν(f)‖L2 ∼ n−
1
3

√
4C2(m

(1)
g )2 +

2

3C

∫
|σ∗∇g|2dν.

An optimisation with respect to C gives the optimal choice C =
(
12

∫
Rd

|σ∗∇g|2dν
(m

(1)
g )2

) 1
3
.

When µ ∈ (0, 1/3), the step sequence decreases too slowly and the error induced by
the time discretization error becomes prominent. That is why we propose below to use an
RR extrapolation in order to cancel the first-order term in the time discretization error:

in practice this amount to killing the bias m
(1)
g in order to extend the range of application

of the rate
√
Γn (which corresponds to the standard weak rate

√
t in Bhattacharia’s CLT )

to “slower steps”.

4.1.2 The Richardson-Romberg extrapolated algorithm

As mentioned before, the starting idea is to introduce a second Euler scheme with step
sequence (γ̃n)n≥1 defined by

∀n ≥ 1, γ̃2(n−1) = γ̃2n =
γn
2
.

As concerns the white noise of both schemes, our aim is to make them consistent in
absolute time and correlated (with correlation matrix ρ satisfying Iq − ρ∗ρ ∈ S+(d,R)).
To achieve that we proceed as follows.

Let (Zn)n≥1 be a sequence of i.i.d. Rq-valued random vectors lying in ∩p>0L
p(P) and

satisfying
EZ1 = 0, ΣZ1 = Iq, E[Z⊗3

1 ] = E[Z⊗5
1 ] = 0.
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Then we devise from this sequence the white noise sequence (Un)n≥1 of the “original”
Euler scheme with step (γn)n≥1by setting

∀n ≥ 1, Un =
1√
2
(Z2n−1 + Z2n) . (4.20)

The white noise sequence for the second Euler scheme (with step (γ̃n)n≥1), denoted
Z(ρ) is defined as follows:

Z(ρ)
n = ρ∗Zn + T (ρ)Vn, n ≥ 1, (4.21)

where (Vn)n≥1 is also a sequence of i.i.d. centered random variables in R
q with moments

of any order satisfying ΣV1 = Iq and E[V ⊗3
1 ] = E[V ⊗5

1 ] = 0, independent of (Zn)n≥1 and
Tq(ρ) is a solution to the equation

Tq(ρ)Tq(ρ)
∗ = Iq − ρ∗ρ∈ S+(d,R).

(Tq(ρ) can be chosen either as the commuting symmetric square root of Iq − ρ∗ρ or its

Choleski transform). Note that (Z
(ρ)
n )n≥1 is built in so that it satisfies

Σ
Z

(ρ)
n

= Iq and Cov(Zn, Z
(ρ)
n ) = ρ.

Then the Euler scheme with step γ̃n and consistent ρ-correlated white noise (Z
(ρ)
n )n≥1,

denoted (Ȳ
(ρ)
n )n≥1 from now on, is defined by:

Ȳ
(ρ)
n+1 = Ȳ (ρ)

n + γ̃nb(Ȳ
(ρ)
n ) +

√
γ̃nσ(Ȳ

(ρ)
n )Z

(ρ)
n+1, n ≥ 1, Ȳ0 = y.

Also note that (X̄n, Ȳ
(ρ)
2n ) is an Euler scheme at time Γn of the duplicated diffusion

(Xt,X
(ρ)
t )t≥0.

For numerical purpose, one usually specifies the independent i.i.d. sequences (Zn)n≥1

and (Vn)n≥1 as normally distributed so that they can be considered as the normalized

increments of two independent Brownian motions W and W̃ i.e.

Zn =
WΓ̃n

−WΓ̃n−1√
γ̃n

and Vn =
W̃Γ̃n

− W̃Γ̃n−1√
γ̃n

, n ≥ 1.

Note that in this case, (Un) is also a sequence of N (0, Iq)-random variables. This implies
in particular that

E[U⊗4
1 ] = E[Z⊗4

1 ] and E[U⊗6
1 ] = E[Z⊗6

1 ]. (4.22)

Since these properties simplify the result, we will assume them in the sequel of this section
(see Remark 4.6 for extensions).

We denote (ν
η,(ρ)
n (ω, dx))n≥1 the sequence of empirical measures related to (Ȳ

(ρ)
n (ω))n≥1

(in which the weights are adapted accordingly: η1/2, η1/2, η2/2, η2/2, η3/2, . . . ). The em-

pirical measure (ν̄
η,(ρ)
n (ω, dx))n≥1 associated to the Richardson-Romberg extrapolation is

defined by

νη,(ρ)n (ω, f) =
1

Hn

n∑

k=1

ηk
2

(
f(Ȳ

(ρ)
2(k−1)(ω)) + f(Ȳ

(ρ)
2k−1(ω))

)

ν̄η,(ρ)n (ω, f) = (2νη,(ρ)n − νηn(ω, f))

=
1

Hn

n∑

k=1

ηk

(
f(Ȳ

(ρ)
2(k−1)(ω)) + f(Ȳ

(ρ)
2k−1(ω))− f(X̄k(ω))

)
.
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Under the assumptions of Proposition 4.7, it is clear that ν̄
η,(ρ)
n (ω, dx)

n→+∞−−−−−→ ν(dx)
a.s..
Thus, in the next section, we propose to evaluate the effects of the Richardson-Romberg
extrapolation on the rate of convergence of the procedure and to explain why the unique-
ness of the invariant distribution of the duplicated diffusion plays an important role in
this problem.

4.2 Rate of convergence of the extrapolated procedure

Throughout this section we assume that ηk = γk and so we will write νn, ν
(ρ)
n and ν̄

(ρ)
n in-

stead of νηn, ν
η,(ρ)
n and ν̄

η,(ρ)
n respectively. We also set (D3gi,.,.)

d
i=1 = D2(∇.)g in order that

the notation Tr(σ∗D2(∇.)gσ) stands for the vector of Rd defined by Tr(σ∗D2(∇.)gσ) =
(Tr(σ∗D2(∂xi

g)σ))di=1. For a fixed matrix ρ, the main result about the RR extrapolation
is Theorem 4.3 below. At this stage, we do not discuss the choice of the correlation ρ in
this result. This point is tackled in Proposition 4.8 in which we will see that the optimal
choice to reduce the asymptotic variance is atteined with ρ = Iq as soon as ν∆ is the
unique invariant distribution of the associated duplicated diffusion. This emphasizes the
importance of the question of the uniqueness of the invariant distribution in this pathologic
case studied in the previous part of the paper.

THEOREM 4.3. Assume (Sa) holds for an a ∈ (0, 1]. Assume that (Xt,X
(ρ)
t )t≥0 admits

a unique invariant distribution µ(ρ) (with marginals ν). Let f : Rd → R be a function
satisfying (C(f ,7)) and such that ϕ1 defined by (4.19) satisfies (C(ϕ1,5)) with a solution
to the Poisson equation denoted by gϕ1 . Then,

• If Γ
(3)
n√
Γn

n→+∞−−−−−→ 0,
√

Γn

(
ν(ρ)n (ω, f)− ν(f)

)
n→+∞
=⇒ N

(
0; σ̂2ρ

)

where

σ̂2ρ = 5

∫

Rd

|σ∗∇g|2dν − 4

∫

R2d

(
(σ∗∇g)(x)|ρ(σ∗∇g)(y)

)
µ(ρ)(dx, dy). (4.23)

• If Γ
(3)
n√
Γn

n→+∞−−−−−→ β̃ ∈ (0,+∞], then

√
Γn

(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
β̃ m(2)

g ; σ̂2ρ
)

as n→ +∞ if β̃ ∈ (0,+∞),

Γn

Γ
(3)
n

(ν(ρ)n (ω, f)− ν(f))
P−→ m(2)

g as n→ +∞ if β̃ = +∞,

where m(2)
g =

1

2

(
mgϕ1

+

∫

Rd

ϕ2dν

)
with

ϕ2(x) =

6∑

k=3

C
2(k−3)
k

k!
E
[
Dkg(x)b(x)⊗(6−k)(σ(x)U1)

⊗2(k−3)
]
. (4.24)

REMARK 4.6. � We recall that the result is stated under the assumption that the in-
crements are normally distributed or more precisely under Assumption (4.22). When this

additional assumption fails (think for instance to Z1 ∼
(
1
2(δ−1 + δ1)

)⊗q
), the result is

remains true except for the value of m
(2)
g which becomes more complicated since it also

depends on E[Z⊗ℓ
1 ], ℓ = 4 and 6).
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� This result extends readily to general weights sequences (ηn)n≥1.Some technical condi-
tions appear on the choice of weights but these conditions are natural and not restrictive
(see [Lem05]). In particular we can always consider the choice ηn = 1 for which we obtain

the following result: if Γ
(2)
n√
Γ
(−1)
n

n→+∞−−−−−→ β̃ ∈ (0,+∞), then

n√
Γ
(−1)
n

(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
β̃ m(2)

g ; σ̂2ρ
)

as n→ +∞.

� Polynomial steps. Let γn = Cn−µ, µ∈ (0, 1]. If µ > 1
3 , Γ

(3)
n → Γ

(3)
∞ < +∞ so that

Γ
(3)
n√
Γn

→ 0 as n→ +∞. If µ < 1
3 ,

Γ
(3)
n√
Γn

≍ n
1−5µ

2 (and if µ = 1
3 ,

Γ
(3)
n√
Γn

≍ logn√
n
). Consequently

Γ
(3)
n√
Γn

→ 0 ⇐⇒ µ >
1

5
,
Γ
(3)
n√
Γn

→ +∞ ⇐⇒ µ <
1

5
and

Γ
(3)
n√
Γn

→ β̃∈ (0,+∞) ⇐⇒ µ =
1

5
.

When µ = 1
5 , β̃ = C

5
2

√
5 and

√
Γn ∼

√
5C
2 n

2
5 .

As a consequence, if γn = ηn = Cn−
1
5 ,

n
2
5
(
ν(ρ)n (ω, f)− ν(f)

) (R)
=⇒ N

(
2C2m(2)

g ;
4

5

σ̂2ρ
C

)
.

We switch from a weak rate n
1
3 to n

2
5 i.e. a “gain” of n

1
15 (see figure below). The second

noticeable fact is that the bias is now significantly more sensitive to the constant C than

in the standard setting. If we minimize the L2–norm of the error ν
(ρ)
n (ω, f) − ν(f) we

obtain the optimal choice of C as a function of both bias and standard deviation, precisely

C =
(

σ̂2
ρ

20(m
(2)
q )2

) 1
5
.
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4.2.1 Optimal choice of ρ and uniqueness of µ(Id)

PROPOSITION 4.8. Let ρ be an admissible correlation matrix i.e. such that ρ∗ρ ≤ Iq.
Assume that the duplicated diffusion (X,X(ρ)) has a unique invariant distribution µ(ρ) (so
that if ρ = Iq, µ

(Iq) = ν∆).

(a) σ̂2ρ ≥
∫

Rd

|σ∗∇g|2dν.

(b) If ρ = 0 then σ̂2ρ = 5

∫

Rd

|σ∗∇g|2dν.

(c) If ρ = Iq, σ̂
2
ρ =

∫

Rd

|σ∗∇g|2dν.

Proof. Claims (b) and (c) being obvious thanks to (4.23), we only prove (a). Keeping in
mind that both marginals µ(ρ)(Rd × dy) and µ(ρ)(dx × (Rd) are equal to ν, one derives
thanks to Schwarz’s Inequality (once on R

d and once on L2(µ)) from the expression (4.23)
of the asymptotic variance σ̂2ρ that

σ̂2ρ ≥ 5

∫

Rd

|σ∗∇g|2dν − 4

[∫

R2d

|σ∗∇g|2(x)µ(ρ)(dx, dy)
] 1

2
[∫

R2d

|ρσ∗∇g|2(y)µ(ρ)(dx, dy)
] 1

2

= 5

∫

Rd

|σ∗∇g|2dν − 4

[∫

Rd

|σ∗∇g|2(x)ν(dx)
] 1

2
[∫

Rd

|ρσ∗∇g|2(y)ν(dy)
] 1

2

≥ 5

∫

Rd

|σ∗∇g|2dν − 4

∫

Rd

|σ∗∇g|2dν =

∫

Rd

|σ∗∇g|2dν

where we used in the last inequality that |ρu|2 ≤ |u|2.
The previous result says that the structural asymptotic variance of the RR estimator
is always greater than that of the standard estimator but can be equal if the Brownian
motions are equal. This condition is in fact almost necessary. Actually, thanks to the
Pythagorean identity,

σ2ρ = 5

∫

Rd

|σ∗∇g|2dν + 2

∫

R2d

|σ∗∇g(x)− ρσ∗∇g(y)|2µ(ρ)(dx, dy)

− 2

∫

R2d

|σ∗∇g(x)|2ν(dx)− 2

∫

R2d

|ρσ∗∇g(y)|2ν(dy).

Then, since ρ∗ρ ≤ Iq, a necessary condition to obtain σ2ρ =
∫
Rd |σ∗∇g|2dν is

|ρσ∗∇g(y)| = |σ∗∇g(y)| ν(dy)-a.e.

When ρ∗ρ < Iq, this equality can not hold except if σ∗∇g(y) = 0 ν(dy)-a.e.

4.3 Proof of Theorem 4.3

4.3.1 Preliminaries

Without loss of generality, we assume that f satisfies ν(f) = 0 so that f = Ag under

(C(f ,k)). We denote by γ(r) the sequence defined by γ
(r)
k = γrk.
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LEMMA 4.1. Assume that f satisfies (C(f ,7)) and denote by g the solution to the Poisson
equation Ag = f . Then,

Γnν̄
(ρ)
n (ω, f) = 2

(
g(Ȳ2n)−g(Ȳ0)

)
−
(
g(X̄n)−g(X̄0)

)
−

n∑

k=1

√
γk
(√

2∆M
(2)
k −∆M

(1)
k

)
(4.25)

− E1
n − E2

n +Nn +Rn (4.26)

where

∆M
(1)
k = (∇g(X̄k−1)|σ(X̄k−1)Uk),

∆M
(2)
k = (∇g(Ȳ2(k−1))|σ(Ȳ2(k−1))Z2k−1) + (∇g(Ȳ2k−1)|σ(Ȳ2k−1Z2k),

E1
n = 2

n∑

k=1

(γk
2

)2 (
ϕ1(Ȳ2(k−1)) + E[ϕ1(Ȳ2k−1)|Fk−1]

)
−

n∑

k=1

γ2kϕ1(X̄k−1),

E2
n = 2

n∑

k=1

(γk
2

)3 (
ϕ2(Ȳ2(k−1)) + E[ϕ2(Ȳ2k−1)|Fk−1]

)
−

n∑

k=1

γ3kϕ2(X̄k−1)

with ϕ1 and ϕ2 defined by (4.19) and (4.24),

(Nn) is defined by

Nn =

n∑

k=1

2
(
∆N(Ȳ2(k−1), Z2k−1,

γk
2
) + ∆N(Ȳ2k−1, Z2k,

γk
2
)
)
−∆N(X̄k−1, Z2k−1,

γk
2
)

where ∆N(x,U, γ) = H(x,U, γ) − Ex[H(x,U, γ)] and

H(x,U, γ) =
γ

2
D2g(x)(σ(x)U)⊗2 +

1

6

2∑

ℓ=0

C3−ℓ
3 γ

ℓ+3
2 D3g(x)b(x)⊗ℓ(σ(x)U)⊗(3−ℓ)

+
1

24

1∑

ℓ=0

γ
ℓ+4
2 C4−ℓ

4 D4g(x)b(x)⊗ℓ(σ(x)U)⊗(4−ℓ) + γ3
6∑

ℓ=4

C6−ℓ
ℓ

ℓ!
Dℓg(x)b(x)⊗(6−ℓ)(σ(x)U)⊗

ℓ
2 .

Finally, if (Sa) holds, the sequence (Rn)n≥1 satisfies the following property: there exists
r > 0 such that, a.s., for every n ≥ 1,

E[|∆Rn||Fn−1] ≤ Cγ
7
2
n

(
V r(X̄n−1) + V r(Ȳ2(n−1)) + V r(Ȳ2n−1)

)
(4.27)

where ∆Rn = Rn −Rn−1.

REMARK 4.7. The above decomposition is built as follows: the second term of (4.25)
is the main martingale component of the decomposition whereas En,1 contains the first
order discretization error. Thanks to the Richardson-Romberg extrapolation, En,1 is in
fact negligible when n → +∞. When the step sequence decreases fast (Theorem4.3(i)),
the rate of convergence is ruled by the main martingale component. In Theorem 4.3(ii),
the rate is ruled by En,1 and En,2. Finally, Nn contains all the negligible martingale terms.
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Proof. Owing to (C(f ,7)), to the Taylor formula and to the fact that E[D2(x)(σ(x)U1)
⊗2] =

Tr(σ∗(x)D2g(x)σ(x)), we have

g(X̄k) = g(X̄k−1) + γkAg(X̄k−1) +
√
γk∆Mk,1 (4.28)

+
1

2

(
D2(X̄k−1)(σ(X̄k−1)Uk)

⊗2 − E[D2(X̄k−1)(σ(X̄k−1)Uk)
⊗2|Fk−1]

)
(4.29)

+
5∑

l=3

Dlg(X̄k−1)
(
γkb(X̄k−1) +

√
γkσ(X̄k−1)Uk

)⊗l
(4.30)

+D7g(ξk)
(
γkb(X̄k−1) +

√
γkσ(X̄k−1)Uk

)⊗7
(4.31)

where ξk ∈ [X̄k−1, X̄k]. The fact that |∇V |2 ≤ CV implies that
√
V is a Lipschitz con-

tinuous function with Lipschitz constant denoted by [
√
V ]Lip. Then, setting ‖D7g(x)‖ =

sup|α|=7 |∂αg(x)| and using Assumption (C(f ,7)), we have

‖D7g(ξk)‖ ≤ C(
√
V (ξk))

2r ≤ C(
√
V (X̄k−1) + [

√
V ]Lip|∆X̄k|)2r (4.32)

where ∆X̄k = γkb(X̄k−1) +
√
γkσ(X̄k−1)Uk. Then, owing to the elementary inequality

|a + b|p ≤ cp(|a|p + |b|p) and to Assumption (Sa), it follows that there exists r > 0 such
that

E[|∆Rn||Fk−1] ≤ Cγ
7
2
k V

r(X̄k−1).

Then we plug this control into the above Taylor expansion and to compensate the terms
of (4.30) when necessary. An appropriate (tedious) grouping of the terms yields:

γkAg(X̄k−1) = g(X̄k)− g(X̄k−1)−
√
γk∆Mk,1

− γ2kϕ1(X̄k−1)− γ3kϕ2(X̄k−1)−∆N(X̄k−1, Uk, γk)−∆Rn

whereRn,2 satisfies (4.27). Making the same development forAg(Ȳ2(k−1)) and forAg(Ȳ2k−1)
and summing over n yield the announced result.

LEMMA 4.2. Let a ∈ (0, 1] such that (Sa) holds. Assume that (Xt,X
(ρ)
t )t≥0 admits a

unique invariant distribution µ(ρ). Let g be a C1-function such that |∇g| ≤ CV r where
r∈ R+. Then,

1√
Γn

n∑

k=1

√
γk(

√
2∆M

(2)
k −∆M

(1)
k )

n→+∞
=⇒ σ̂2ρ.

Proof. Let {ξk,n, k = 1, . . . , n, n ≥ 1}be the triangular array of (Fk)-martingale increments
defined by

ξk,n =

√
γk
Γn

(
√
2∆M

(2)
k −∆M

(1)
k ).

Let us show that
n∑

k=1

E[|ξk,n|2|Fk−1]
n→+∞−−−−−→ σ̂2ρ.

First, using that ΣU1 = Iq, we obtain that for every k ≥ 1,

E[|∆M (1)
k |2|Fk−1] = |σ∗∇g(X̄k−1)|2.
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Since x 7→ |σ∗∇g|2(x) is a continuous function such that |σ∗∇g|2 ≤ CV r for a positive r,
it follows from Proposition (4.7) that

1

Γn

n∑

k=1

γkE[|∆M (1)
k |2|Fk−1]

→+∞−−−−→
∫

|σ∗∇g|2(x)ν(dx). (4.33)

Similarly,

E[|∆M (2)
k |2|Fk−1] = |σ∗∇g(Ȳ2(k−1))|2 + E[|σ∗∇g(Ȳ2k−1)|2|Fk−1].

It follows that

1

Γn

n∑

k=1

γkE[|∆M (2)
k |2|Fk−1] = 2ν(ρ)n (ω, |σ∗∇g|2)− 1

Γn

n∑

k=1

ζk (4.34)

where (ζk) is a sequence of (Fk)-martingale increments defined by

ζk = γk
(
|σ∗∇g(Ȳ2k−1)|2 − E[|σ∗∇g(Ȳ2k−1)|2|Fk−1]

)
.

Using that |σ∗∇g|2 ≤ CV r for a positive real number r, we obtain by similar arguments to
those used in (4.32) that E[|ζk|2|Fk−1] ≤ CV 2r(Ȳ2(k−1)). We derive from Proposition 4.7(i)

applied with θk = 1
Γ2
k

that

+∞∑

k=1

E[

∣∣∣∣
ζk
Γk

∣∣∣∣
2

|Fk−1] ≤ Cγ1

+∞∑

k=1

γk
Γ2
k

V 2r(Ȳ2(k−1)) < +∞

since
∑

k≥1

γk
Γ2
k

≤ 1 +

+∞∑

k=2

∫ Γk

Γk−1

ds

s2
≤ 1 +

∫ +∞

Γ1

ds

s2
< +∞.

As a consequence (
∑n

k=1
ζk
Γk

)n≥1 is a convergent martingale and the Kronecker Lemma

then implies that 1
Γn

∑n
k=1 ζk

n→+∞−−−−−→ 0 a.s. Thus, we deduce from (4.34) combined with
Proposition 4.7 that

1

Γn

n∑

k=1

γkE[|∆M (2)
k |2|Fk−1]

n→+∞−−−−−→ 2ν(|σ∗∇g|2) a.s. (4.35)

Finally, we have to manage the cross-product: keeping in mind the construction of the
noises of the Euler schemes (see (4.20) and (4.21), we have:

√
2E[∆M

(1)
k ∆Mk,2|Fk−1] = ((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2(k−1)))

+ ((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))− γ−1
k ζ

(2)
k

where

ζ
(2)
k = γk

(
((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))− E[((σ∗∇g)(X̄k−1)|ρ(σ∗∇g)(Ȳ2k−1))|Fk−1]

)

so that
1

Γn

n∑

k=1

√
2E[∆M

(1)
k ∆Mk,2|Fk−1] = µ(1)n (ψ) + µ(2)n (ψ)− 1

Γn

n∑

k=1

ζ
(2)
k (4.36)
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where ψ : R2d → R is defined by ψ(x, y) = (σ∗∇g(x)|ρ(σ∗∇g)(y)) and for every Borel
function f : R2d → R,

µ(1)n (f) =
1

Γn

n∑

k=1

γkf(X̄k−1, Ȳ2(k−1)) and µ(2)n (f) =
1

Γn

n∑

k=1

γkf(X̄k−1, Ȳ2k−1).

By straightforward adaptations of the proof of Proposition 4.7, we can show that if

(Xt,X
(ρ)
t ) has a unique invariant distribution µ(ρ) then, for every continuous function

f such that f ≤ CV r with r > 0,

µ(i)n (ω, f)
n→+∞−−−−−→ µ(ρ)(f) a.s. with i = 1, 2.

As a consequence, µ
(1)
n (ψ) + µ

(2)
n (ψ)

n→+∞−−−−−→ 2µ(ψ) a.s. Finally, by martingale arguments

similar to those used for (ζk), one checks that Γ
−1
n

∑n
k=1 ζ

(2)
k

n→+∞−−−−−→ 0 a.s. Thus, by (4.33),
(4.35) and (4.36), we obtain that

n∑

k=1

E[|ξk,n|2|Fk−1]
n→+∞−−−−−→ 5ν(|σ∗∇g|2)− 4µ(ψ) = σ̂2ρ.

Then, the result follows from the CLT for arrays of martingale increments provided that
a Lindeberg-type condition is satisfied (see [HH80], Corollary 3.1). To be precise, it is
enough to prove that there exists δ > 0 such that

n∑

k=1

E[|ξk,n|2+δ|Fk−1]
n→+∞−−−−−→ 0 a.s. (4.37)

Using Assumption (Sa) and the fact |∇g| ≤ CV r (r > 0), one can check that there exists
r > 0 such that

E[|ξk,n|2+δ|Fk−1] ≤ C
γ1+δ
k

Γ1+δ
n

(
V r(X̄k−1) + V r(Ȳ2k−1) + V r(Ȳ2(k−1))

)
.

Thus,
n∑

k=1

E[|ξk,n|2+δ|Fk−1] ≤ C
Γ
(1+δ)
n

Γ1+δ
n

(
νγ

(1+δ)

n (V r) + νγ
(1+δ),(ρ)

n (V r)
)
.

Checking easily that Γ
(1+δ)
n

Γ1+δ
n

n→+∞−−−−−→ 0, (4.37) follows from Proposition 4.7(ii).

LEMMA 4.3. Let a ∈ (0, 1] such that (Sa) holds. Assume that (Xt) admits a unique

invariant distribution ν. Assume (C(f ,k)) and that Γ
(3)
n

n→+∞−−−−−→ +∞. Then,
(i) If ϕ1 defined by (4.19) satisfies (C(ϕ1,5)) then,

1

Γ
(3)
n

En,1 →+∞−−−−→ −1

2
m(1)

gϕ1
a.s.

(ii) If the derivatives of g up to order 6 are continuous and dominated by V r (with r > 0),

1

Γ
(3)
n

En,2 →+∞−−−−→ −1

2
ν(ϕ2) a.s.
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Proof. (i) Writing

2
n∑

k=1

(γk
2

)2 (
ϕ1(Ȳ2(k−1)) + E[ϕ1(Ȳ2k−1)|Fk−1]

)
=

n∑

k=1

γ2k
2

(
ϕ1(Ȳ2(k−1)) + ϕ1(Ȳ2k−1)

)
+

n∑

k=1

γ2k
2
∆Tk

with ∆Tk being a martingale increment defined by ∆Tk = E[ϕ1(Ȳ2k−1)|Fk−1]−ϕ1(Ȳ2k−1),
one obtains that

En,1 = Γ(2)
n

[
(νγ

(2),(ρ)
n − ν)(ϕ1)− (νγ

(2)

n − ν)(ϕ1)
]
+

n∑

k=1

γ2k
2
∆Tk.

Applying Theorem V.3 of [Lem05] (which is an extension of Proposition 4.7(iv) to general
weights) with ηk = γ2k and q∗ = 4, we obtain that

Γ
(2)
n

Γ
(3)
n

(νγ
(2)

n − ν)(ϕ1)
n→+∞−−−−−→ mgϕ1

∈ R in probability.

Similarly, applying this result to the Euler scheme with half-step, we have:

Γ
(2)
n

Γ
(3)
n

[(νγ
(2),(ρ)

n −ν)(ϕ1)] =
1

2

Γ
(2)
n∑n

k=1 γ
2
k .

γk
2

[(νγ
(2),(ρ)

n −ν)(ϕ1)]
n→+∞−−−−−→ 1

2
mgϕ1

∈ R in probability.

Thus, it remains to show that the martingale term is negligible. We set θk =
γ3
k

Γ
(3)2

k

. Using

that (γk) is non-increasing, one checks that (θn) is non-increasing and that
∑
θkγk < +∞.

Since |ϕ1| ≤ CV r with r > 0, it follows from Proposition 4.7 that

∑

k≥1

γ4k

(Γ
(3)
k )2

E[|ϕ1|2(Ȳ2k−1)] < +∞.

This implies that the martingale
∑ γ2

k

Γ
(3)
k

∆Tk is a.s. convergent so that the Kronecker lemma

yields 1

Γ
(3)
n

∑n
k=1 γ

2
k∆Tk

n→+∞−−−−−→ 0 a.s.. The first assertion follows.

(ii) Remark that

En,2 =
1

2
νγ

(3),(ρ)
n − νγ

(3)

n (ω,ϕ2) +

n∑

k=1

γ3k
4
Tk.

Under the assumptions, ϕ2 is continuous and dominated by V r with a positive r. Then,

since Γ
(3)
n

n→+∞−−−−−→ +∞, (ν
γ(3),(ρ)
n (ϕ2))n≥1 and (νγ

(3)

n (ω,ϕ2))n≥1 converge to ν(ϕ2). With
some similar arguments as previously, one checks that the martingale term is negligible
and the second assertion follows.

4.3.2 Proof of Theorem 4.3

For the sake of simplicity, we choose to give the proof of Theorem 4.3 only when Γ
(3)
n

n→+∞−−−−−→
+∞. Note that if γn = Cn−µ, this corresponds to µ ≤ 1/3, i.e. the case where the Romberg
extrapolation really increases the rate of convergence (see Remark 4.6).

By the decomposition of Lemma 4.1 and the convergences established in Lemmas 4.2
and 4.3, one checks that it is now enough to prove the following points:

Θn

Γn

(
2
(
g(Ȳ2n)− g(Ȳ0

)
− (g(X̄n)− X̄0)

) P−→ 0 as n→ +∞, (4.38)
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Θn

Γn
Nn

P−→ 0 and
Θn

Γn
Rn

P−→ 0 as n→ +∞ (4.39)

with Θn =
√
Γn ∨ Γn

Γ
(3)
n

.

For (4.38), the result is obvious when g is bounded. Otherwise, we use Lemma 3 of
[LP03] which implies in particular that for every p > 0, E[V p(X̄n)] ≤ CpΓn. By Jensen’s
inequality, this implies that for every r > 0 and α ∈ (0, 1], there exists a constant C > 0
such that

∀n ≥ 1, E[V r(X̄n)] ≤
(
E[V

r
α (X̄n)]

)α ≤ Cα
r
α
Γα
n.

Thus, since the same property holds for the (Ȳn) and since |g| ≤ CV r with r > 0, (4.39)
follows taking α ∈ (0, 1/2).

For the first assertion of (4.39), we use a martingale argument. We denote by {πk,n, k =
1, . . . , n, n ≥ 1} the triangular array of (Fk)-martingale increments defined by

πk,n =
∆Nk√
Γn

.

Then, in order to prove the convergence in probability of (Nn/
√
Γn) to 0, we use the CLT

for martingale increments which says that, since a Lindeberg-type condition holds (we do
not prove this point, see Proof of Lemma 4.2 for a similar argument), it is enough to show
that

n∑

k=1

E[|πk,n|2|Fk−1]
n→+∞−−−−−→ 0 a.s. (4.40)

Under the assumptions on g and on the coefficients, one checks that there exists r > 0
such that

n∑

k=1

E[|πk,n|2|Fk−1] ≤ C
1

Γn

n∑

k=1

γ2k
(
V r(X̄k−1) + V r(Ȳ2(k−1)) + V r(Ȳ2k−1)

)
.

By Proposition 4.7, supn≥1

(
νn(ω, V

r) + ν
(ρ)
n (ω, V r)

)
< +∞. Assertion (4.40) follows.

As concerns Rn, it follows from a martingale argument that

1

Γ
(3)
n

n∑

k=1

(∆Rk − E[∆Rk|Fk−1])
P−→ 0 as n→ +∞.

Now, since supn≥1

(
νγ

3

n (ω, V r) + ν
γ3,(ρ)
n (ω, V r)

)
< +∞ a.s. and since γn

n→+∞−−−−−→ 0, we

deduce that
1

Γ
(3)
n

n∑

k=1

E[∆Rk|Fk−1]
P−→ 0.

The last assertion follows.
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A Hypo-ellipticity of the correlated duplicated system

It is a well-known fact that, for a Markov process, the strong Feller property combined
with some irreducibility of the transitions implies uniqueness of the invariant distribution
(see e.g. [DPZ96], Theorem 4.2.1). For a diffusion process with smooth coefficients, such
properties hold if it satisfies the hypoelliptic Hörmander assumption (see [Hör67, Hör85])
and if the deterministic system related to the stochastic differential system (written in the
Stratanovich sense) is controllable. In fact, both properties can be transferred from the
original SDE to the duplicated system so that its invariant distribution is also unique.
The main result of this section is Proposition A.9. Before, we need to introduce some
Hörmander-type notations. First, written in a Stratonovich way, X is a solution to

dXt = A0(Xt)dt+

q∑

j=1

Aj(Xt) ◦ dW j
t (A.41)

where A0, . . . Aq are vectors fields on R
d defined by1:

A0(x) =

d∑

i=1


bi(x)−

1

2

∑

l,j

σl,j(x)∂xj
σi,l(x)


 ∂xi

and for every j ∈ {1, . . . , q}:

Aj(x) =

d∑

i=1

σi,j(x)∂xi
.

For the sake of simplicity, we assume that b and σ are C∞ on R
d with bounded derivatives.

We will also assume the following Hörmander condition at each point: there exists N ∈ N
∗

such that ∀x∈ R
d,

dim (Span {A1(x), A2(x), . . . , Aq(x), L. B. of length ≤ N of the Aj(x)’s , 0 ≤ j ≤ q}) = d
(A.42)

where “L.B.” stands for Lie Brackets. The above assumptions imply that for every t > 0
and x∈ R

d, Pt(x, .) admits a density pt(x, .) w.r.t. the Lebesgue measure and that (x, y) 7→
pt(x, y) is C∞ on R

d × R
d (see e.g. [Cat92], Theorem 2.9). In particular, x 7→ Pt(x, .) is a

strong Feller semi-group. Assume also that the control system (associated with (A.41))

ẋ(u) = A0(x
(u)) +

q∑

j=1

Aq(x
(u))uj , (A.43)

is approximatively-controllable:

There exists T > 0 such that for every ε > 0, x1, x2 ∈ R
d, there exists u ∈ L2([0, T ],Rd)

such that (x(u)(t)) solution to (A.43) satisfies x(0) = x1 and |x(T )− x2| ≤ ε.

(A.44)

Under Assumptions (A.42) and (A.44), the diffusion has a unique invariant distribution
ν. Actually, the controllability assumption combined with the Support Theorem implies

1With a standard abuse of notation, we identify the vectors fields and the associated differential oper-

ators.
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that for every non-empty open set O, for every x ∈ R
d, PT (x,O) > 0. The semi-group

(Pt) is then irreducible. Owing to the strong Feller property, it follows classically that (Pt)
admits a unique invariant distribution (see e.g. [DPZ96], Proposition 4.1.1. and Theorem
4.2.1.).
Furthemore, ν is absolutely continuous with respect to the Lebesgue measure on R

d and its
topological support is Rd (since for every open set O of Rd, ν(O) =

∫
PT (x, 0)ν(dx) > 0).

Let us now consider the duplicated diffusion (Xt,X
(ρ)
t ). Setting Z

(ρ)
t = (Xt,X

(ρ)
t ) and

using the preceding notations, (1.2) can be written:

dZ
(ρ)
t = Ã0(Z

(ρ)
t )dt+

q∑

j=1

Ãj(Z
(ρ)
t )dW j

t +

q∑

j=1

Ãd+j(Z
(ρ)
t )dW̃ j

t

where Ã0(z) = (A0(x), A0(y))
T (with A0(y) =

∑d
i=1

[
bi(y)− 1

2

∑
l,j σl,j(y)∂yjσi,l(y)

]
∂yi

and z = (x, y)), W̃ is a d-dimensional Brownian Motion independent of W such that

W (ρ) = ρ∗W + (Iq − ρ∗ρ)
1
2 W̃ and for every j ∈ {1, . . . , q},

Ãj(z) = Aj(x) +A
(ρ)
j (y) and, Ãq+j(z) = A

((Iq−ρ∗ρ)
1
2 )

j (y) (A.45)

where for a for a q × q matrix B, A
(B)
j (y) =

∑d
i=1(σ(y)B)i,j∂yi . Then, the following

property holds.

PROPOSITION A.9. Let ρ ∈ Mq,q(R) such that ρ∗ρ < Iq. Assume that b and σ are C∞

on R
d with bounded derivatives. Assume (A.42) and (A.44). Then, uniqueness holds for

the invariant distribution ν(ρ) of the duplicated diffusion (Xt,X
(ρ)
t ). Furthermore, if ν(ρ)

exists, then ν(ρ) has a density p(ρ) (w.r.t. λ2d) which is a.s. positive.

Proof. First, let us check the Hörmander conditions for (Xt,X
(ρ)
t )t≥0. Setting S = (Iq −

ρ∗ρ)
1
2 , standard computations yield

∀j ∈ {1, . . . , q}, Ãq+j(z) =

q∑

l=1

Sl,jAl(y).

Since S is invertible, we deduce that {Al(y), l = 1, . . . , q} belongs to Span{Ãq+j(z), j =
1, . . . , q}. Similarly, checking that for every j ∈ {1, . . . , q},

[Ã0(z), Ãq+j(z)] = [A0(y), A
(S)
j (y)] =

q∑

l=1

Sl,j[A0(y), Al(y)]

one deduces from the invertibility of S that {[A0(y), Al(y)], l = 1, . . . , q} is included in
Span{[Ã0(z), Ãq+j(z)], j = 1, . . . , q}. Owing to (A.42), it follows that Span{∂y1 , . . . , ∂yd}
is included in

V = Span
{
Ã1(z), Ã2(z), . . . , Ãq(z), Lie Brackets of length≤ N of the Ãj(z)’s , 0 ≤ j ≤ q

}
.

Now, let us show that Span{∂x1 , . . . , ∂xd
} is included in V . Since Span{∂y1 , . . . , ∂yd} is

included in V , it is clear that for every x∈ R
d, Aj(x) = A

(ρ)
j (y) − Ãj(z) also belongs to

V . Since
[Ã0(z), Ãj(z)] = [A0(x), Aj(x)] + [A0(y), A

(ρ)
j (y)],
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[A0(x), Aj(x)] has the same property. Using again (A.42), we deduce that Span{∂x1 , . . . , ∂xd
}

is included in V and thus that dim(V ) = 2d. As a consequence, for every z ∈ R
2d and

t > 0, Q
(ρ)
t (z, .) admits a density qt(z, .) w.r.t. λ2d such that (z, z′) 7→ qt(z, z

′) is C∞ on
R
2d × R

2d.
In order to obtain uniqueness for the invariant distribution, it remains to show that there
exists T > 0 such that for every z ∈ R

2d, for every non-empty open set O of R
2d,

QT (z,O) > 0. Owing to (A.44), it is clear that for every z1 = (x1, y1) and z2 = (x2, y2),
for every ε > 0, there exist u and ũ ∈ L2([0, T ],Rd) such that z(t) = (x(u)(t), x(ũ)(t)),
where x(u) and x(ũ) are solutions to (A.43) starting from x1 and y1, satisfies |z(T ) −
z2| ≤ ε. Furthermore, since S is invertible, we can assume that ũ = ρu + Sω with
ω ∈ L2([0, T ],Rd). Then, the support Theorem can be applied to obtain that for ev-
ery z1, z2, ε QT (z1, B(z2,

ε
2) > 0 and thus to conclude that for every z ∈ R

2d and every
non-empty open set O, QT (z,O) > 0.

B Additional proofs about the two-dimensional counterex-

ample

Proof of (3.5): For the sake of completeness, we show that rt → 1 a.s. as soon as r0 > 0.
First, note that uniqueness holds for the solution of the SDE (3.3) since the coefficients
are Lipschitz continuous. In particular, (r1t ) defined a.s. by r

1
t = 1 for every t ≥ 0 is the

unique solution starting from r0 = 1. Owing to the strong Markov property, this implies
that if τ1 := inf{t ≥ 0, rt = 1}, then rt = 1 on {τ ≤ t}. The same property holds at 0.
We deduce that (rt)t≥0 lives in [1,+∞) if r0 > 1 and in [0, 1] if r0 ∈ [0, 1]. Moreover, if
r0 > 1, we have d(rt − 1) = −(rt − 1)(dt + ϑdWt) so that

rt − 1 = e−(1+ϑ2

2
)t+ϑWt .

It follows that limt→+∞ rt = 1 since limt→+∞
Wt

t = 0 a.s.. Now, if r0 ∈ [0, 1], we have

drt = rt(1− rt)(dt+ ϑdWt).

Thus, (rt) is a [0, 1]-valued submartingale. In particular, rt converges a.s. to a [0, 1]-valued
random variable r∞. Since

∀t ≥ 0, E[rt] = r0 + E

(∫ t

0
rs(1− rs)ds

)
,

it follows that E[
∫ +∞
0 rs(1− rs)ds] which in turn implies that

∫ +∞
0 rs(1− rs)ds < +∞ a.s.

As a consequence lim inft→+∞ rt(1 − rt) = 0 a.s.. The process (rt) being a.s. convergent
to r∞, it follows that r∞ ∈ {0, 1} a.s.. It remains to prove that P(r∞ = 0) = 0. Denote
by p the scale function of (rt) null at r = 1/2. For every r ∈ (0, 1),

p(r) =

∫ r

1
2

e
−

∫ ξ
1
2

2
ϑ2u(1−u)

du
dξ =

∫ r

1
2

(
1− ξ

ξ

) 2
ϑ2

dξ.

As a consequence, if ϑ ∈ (0,
√
2], limr→+∞ p(r) = +∞. This means that 0 is a repulsive

point and that, as a consequence (see e.g. [KT81], Lemma 6.1 p. 228),

∀b ∈ (0, 1) P( lim
a→0+

τa < τb) := lim
a→0+

P(τa < τb) = 0
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where τa = inf{t ≥ 0 | rt = a}, y∈ [0, 1]. We deduce that P(r∞ = 0) = 0. This completes
the proof. 2

Proof of (3.6): We want to prove that µ is invariant for (Xx
t ,X

x′

t ) if and only if µ can
be represented by (3.6). First, since the unique invariant distribution of (Xx

t ) is λS1 , it
is clear that µ = L(eiΘ0 , ei(Θ0+V0)) where Θ0 has uniform distribution on [0, 2π] and V0 is
a random variable with values in [0, 2π). One can check that if V0 is independent of Θ0,
µ is invariant. Thus, it remains to prove that it is a necessary condition or equivalently
that K(θ, dv) := L(eiV0 |eiΘ0 = eiθ) does not depend on θ. Denote by (eiΘt , ei(Θt+Vt)) the
(stationary) duplicated diffusion starting from (eiΘ0 , ei(Θ0+V0)). Since µ is invariant, we
have for every t ≥ 0

L(eiVt |eiΘt = eiθ) = K(θ, dv)

but thanks to the construction, for every t ≥ 0, Θt = Θ0 +Wt and Vt = V0 (the angular
difference between the two coordinates does not change) so that

L(eiVt |eiΘt = eiθ) =

∫
K(θ′, dv)ρt(θ, dθ

′)

where ρt(θ, dθ
′) = L(ei(θ+Wt)). But ρt(θ, dθ

′) converges weakly to λS1 when t → +∞.
From the two previous equations it follows that K(θ, dv) does not depend on θ since
∀θ ≥ 0, K(θ, dv) =

∫
K(θ′, dv)λS1(dθ

′). 2
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