Fractional BV spaces and first applications to scalar conservation laws - Archive ouverte HAL
Article Dans Une Revue Journal of Hyperbolic Differential Equations Année : 2014

Fractional BV spaces and first applications to scalar conservation laws

Résumé

The aim of this paper is to obtain new fine properties of entropy solutions of nonlinear scalar conservation laws. For this purpose, we study some ''fractional $BV$ spaces'' denoted $BV^s$, for $0 < s \leq 1$, introduced by Love and Young in 1937. The $BV^s(\mathbb{R})$ spaces are very closed to the critical Sobolev space $W^{s,1/s}(\mathbb{R})$. We investigate these spaces in relation with one-dimensional scalar conservation laws. $BV^s$ spaces allow to work with less regular functions than BV functions and appear to be more natural in this context. We obtain a stability result for entropy solutions with $BV^s$ initial data. Furthermore, for the first time we get the maximal $W^{s,p}$ smoothing effect conjectured by P.-L. Lions, B. Perthame and E. Tadmor for all nonlinear degenerate convex fluxes.
Fichier principal
Vignette du fichier
BGJ6light.pdf (361.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00785747 , version 1 (06-02-2013)

Identifiants

Citer

Christian Bourdarias, Marguerite Gisclon, Stéphane Junca. Fractional BV spaces and first applications to scalar conservation laws. Journal of Hyperbolic Differential Equations, 2014, 11 (4), pp.655-677. ⟨10.1142/S0219891614500209⟩. ⟨hal-00785747⟩
750 Consultations
553 Téléchargements

Altmetric

Partager

More