N
N

N

HAL

open science

Erlang-based dimensioning for IPv4 Address+Port
translation

Florent Fourcot, Bertrand Grelot, Isabelle Kraemer, Frédéric Perrin, Patrick

Maillé, Tanguy Ropitault, Laurent Toutain

» To cite this version:

Florent Fourcot, Bertrand Grelot, Isabelle Kraemer, Frédéric Perrin, Patrick Maillé, et al.. Erlang-
based dimensioning for IPv4 Address+Port translation. ICC 2012: IEEE International Conference
on Communications, Jun 2012, Ottawa, Canada. pp.1230-1234, 10.1109/ICC.2012.6364328 . hal-
00785727

HAL Id: hal-00785727
https://hal.science/hal-00785727
Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00785727
https://hal.archives-ouvertes.fr

Erlang-based dimensioning for IPv4 Address+Port
translation

Florent Fourcot, Bertrand Grelot, Isabelle Kraemer, Frédéric Perrin
Patrick Maillé¢, Tanguy Ropitault, and Laurent Toutain
Institut Telecom; Telecom Bretagne
2, rue de la Chataigneraie CS 17607
35576 Cesson Sévigné Cedex, France
Université européenne de Bretagne
Email: {first}.{last}@telecom-bretagne.eu

Abstract—As the IPv4 address pool is being ex-
hausted, it becomes urgent to find a way to migrate
IPv4 network architectures to IPv6, or to reduce the
use of IPv4 addresses. In this paper, we discuss a
strategy known as “Address 4+ Port” translation, which
consists in several users sharing the same IPv4 address
and being distinguished by a range of port numbers.

Of critical importance for the feasibility of such a
mechanism is the knowledge of the minimum number of
ports to allocate to users so that no service degradation
is perceived. To that extent, we analyse the port con-
sumption of the most port-consuming Internet applica-
tions, web browsing, and present some aggregate port
consumption curves for the student population of our
campus. Our results suggest that a port range of 1000
ports is totally transparent to users (which would allow
to share a single IPv4 address among 64 users), while
400 ports (i.e., 150 users per address) is sufficient for
most of users. Finally, the number of users per address
could be further improved by benefiting from statistical
multiplexing, i.e., using dynamical instead of fixed port
range allocation.

Index Terms—IPv6, IPv4 address shortage, Ad-
dress+Port, NAT, dimensioning

I. INTRODUCTION

Due to the increasing number of devices connected to
the Internet, the IPv4 address pool has been exhausted
since February 2011. IPv6 implementations are already
available on operating systems such as Linux, Windows
and Mac OS so everything should be ready to migrate from
IPv4 to IPv6 hosts by using dual-stack. However, IPv6 is
not widely deployed for some reasons such as operators
(ISP) and software-designers having to invest some efforts
without immediate return, users not seeing the benefits
of TIPv6 (do they even know the existence of IP?), and
no IPv6-only killer application being available. For those
reasons, a migration process is needed to smoothly imple-
ment [Pv6 in the Internet and to allow the use of IPv4
while the Internet is not IPv6 only. Address+Port (A+P)
is viewed by providers as a way to cope with the IPv4
address shortage during that transition phase.

A+P consists in sharing the same IPv4 public address
between several users (home-gateway or hosts directly con-
nected to the Internet), each user being differentiated by

a range of TCP/UDP ports (and possibly be allocated an
IPv6 address). When a node wants to communicate with
an A+P host, a special equipment (which location may
vary depending on A+P solutions) intercepts the packet
destined to the shared IPv4 public address, examines the
IPv4 destination port-range, and forwards the packet to
the A+P host. The special equipment forwards packets to
the A+P host possibly through IP-in-IP tunnels (IPv4-in-
IPv6 or IPv4-in-IPv4 encapsulation) or Network Address
Translators (NAT). Conversely, if an A+P host wants to
communicate with a node in the Internet, it forwards the
IPv4 packet (with the source port in its port-range) to the
special equipment which decapsulates or NAT the packet
depending on the A+P solution. A+P hosts may obtain
the address of the special equipment thanks to DHCPv4 or
DHCPv6 [2]. Many strategies are studied in this direction
such as Port-Range-Router [1], 4rd [7], or Dual-Stack Lite
[3] -a NAT-based solution which could be used jointly with
A+4P-.

The goal of this paper is to verify that A+P fits to real-
life environment, and more precisely to determine some
appropriate port range spans, to maximize the number
of users sharing an address while still experiencing good
Internet performance.

The remainder of this paper is organized as follows. In
Section II we focus on a theoretical estimation of ports
needs, with a simple mathematical model. Section III
describes the algorithm of our program to simulate web
browsing, the most port-consuming Internet application.
Section IV contains our results and our analysis of the
compatibility with the mathematical model. In Section V
we provide port consumption data from Internet usage
of Telecom Bretagne students, which gives experimental
insights about the dimensioning of the user port ranges.
We highlight the sporadicity of the port consumption, sug-
gesting that dynamical port range allocations would bring
a large improvement in terms of port management. We
give some concluding remarks and suggest some directions
for future work in Section VI.

1245

II. How MANY PORTS DO I NEED?

In this section, we wish to perform an optimal dimen-
sioning of port range widths, in terms of maximizing
the number of users per address, while keeping the A+P
mechanism seamless in terms of perceived performance.
To do so, we set up a simple mathematical model.

Let us consider a single A+P user ¢ who has been
allocated a given number, say N;, of ports. The port range
is therefore sufficient if the user never needs more than
N ports for his Internet usage. We denote by A the set
of applications that are available to each user. As we will
point out in the next section, each application corresponds
to a given profile of port consumption over time; to keep
things simple we consider that the port consumption of an
application a € A is constant and given by p, during its
usage (in practice, we will take n, as the observed peak
port number of the application during our test period).

A user i can be characterized by her behavior in terms
of application use:

e we model user i launching each application a € A
(during periods when 4 is online) by independent
Poisson processes of rate A%,

o usage durations of each application are assumed inde-
pendent, with mean 1/ for each application a € A.

With that model, the probability B¢ of user i being con-
strained by the number of ports available when launching
an application a can be computed using the well-known
stochastic knapsack (an extension of Erlang B formula for
heterogeneous services): if we assume that the application
is not launched where the number of available ports is
insufficient!, then we have [8]

Zniesa HaeA pi,i/na!
ZniGS HaeA P]a,i/na! ’

Byi=1- (1)

where

o Pai = Aa,i/lha,i is the traffic generated (in number of
ports) by user ¢ with application « € A;

e n; = (Ng,i)acA represents a vector of the number of
applications n,; of each type a launched by user ¢
and still running;

« = {l’li = (na7i)aeA : ZaEA Na,iPo S Nl} is the set
of vectors n; such that no restriction with respect to
the total number of ports is perceived;

o forac A S, = {ni CPa D aca Na,iPa < Ni} is the
set of vectors n; such that an extra application a € A
could be launched with no restriction in terms of port
number being perceived.

In practice, computing directly that probability is difficult
since the sets S and S, are prohibitively large for moderate
values of N and A. However, some efficient recursive
algorithms exist [8].

1Remark that in reality the application is likely to run anyway
but only be slowed. However since we intend to dimension port ranges
such that port shortage occur with very low probability, the difference
between both models will be negligible.

Some long-term data would be needed to estimate the
parameters A\, ; and 1/, ; in order to perform an individ-
ual port range dimensioning. In other words, relation (1)
can be used to determine the minimal number N; of ports
to allocate to user ¢ such that the probability of port
shortage be sufficiently low (say, 1072 for example). We
do not consider the estimation of those individual behavior
parameters in this paper; we rather focus on estimating the
port consumption parameter p, per application, through
measurements of simulated user behavior.

To estimate the port consumption of a popular appli-
cation and the impact of user experience in case of lack
of ports, we have emulated a web browsing behavior, as
described in the next section.

III. SIMULATING A WEB BROWSING SESSION

The first issue of our measurement-based study was
to identify the most port-consuming applications. We
analyzed the traffic on a student network (see Section V),
some results being displayed in Figure 6. HTTP happens
to be the most-consuming protocol with always more
than 50% of total port consumption (and more than 90%
when users are very active), peer-to-peer coming second.
Other popular applications like Video Games and Instant
messaging need only few ports.

We therefore focus here on web browsing, that in ad-
dition is more likely to be sensitive to Quality-of-service
degradation than peer-to-peer applications.

We simulated end-users browsing the web, and mea-
sured the response time as a function of the severity of
port starvation. The following procedure has been applied:

1) choose an arbitrary web page as a starting point, and

initialize an empty pool of addresses;

2) download the page, and all img, script and link

elements;

) add the target of all links to the pool of addresses;
) sleep for some time;

) select at random a new address from the pool;

6) go back to point 2.

T W

We created in this manner several surf sessions, with the
starting point set to planet.debian.org, twitter.com
and del.icio.us. These starting points were chosen be-
cause these pages have a lot of external links. In order
to get repeatable results, we launched a one-hour long
browsing session for each starting point, recording all the
pages seen. We then replayed the session, in different
environment.

The pause between two pages follows an exponential
distribution, with a mean pause time of 15 seconds.

As our concern is the response time of remote servers,
for each element we measure the time it takes to establish
a TCP connection to port 80. This enables us to alleviate
the influence of the limited bandwidth in our test lab, and
to measure only the impact of the limitation of TCP ports.

The scripts used in the experiments, along with the
resulting data, are available online [4].

1246

a

2 1

g 0.9]
5 0.8 .
— 07 |
2 06 |
»n

S 05[8
204} |
Gy

S 03} -
=]

S 02} -
8 0.1 .
Cz; | | | | | I
& 39 21 45 93 180

Time (seconds)

Fig. 1: Distribution of the connection establishment times
— 500 ports available, 3 simulated clients.

IV. EXPERIMENTAL RESULTS

A. What happens when ports are missing

Figure 1 shows how long it takes for each client to start
downloading a file. The x axis is the time since the first
SYN packet, the y axis is the proportion of connections
that receive the first byte of the element within that
time. In this figure, we used three clients, each with one
different starting point. Each client was using 15 threads
to download pages.

Each connection from a client to a remote server uses
one port on the router. However, when the connection is
closed, the port on the router is not immediately marked
as free and reusable. This is the normal behavior of TCP:
some segments may be late, in the wrong order, and thus
arrive after the FIN packet that closed the connection. As
a result, even if there are never more than 3 x 15 = 45
connections opened simultaneously, there are many more
than 45 ports used of the router. This is why, for our
experiments carried out with 500 ports, a lot of requests
that can not be satisfied, leading to a very poor user
experience (see Figure 2) .

When the router cannot give out a port to a client, it
has no way to warn it that it cannot let the connection
through. The only indication for the client that the initial
SYN was dropped is the lack of a SYN+ACK response.
From the point of view of the end-user, all she can see is a
long delay in contacting the server, without any feedback.

We see on Figure 1 that a lot of requests are satisfied
in 3 (resp. 9, 21, 45, etc.) seconds, resulting in a stair-step
distribution of connection establishment durations. These
requests correspond to connections where the 1st (resp. the
2nd, 3rd, etc.) SYN segments from the client were dropped
by the router, but the following attempt went through
and the remote server answered quickly (in less than 100
ms). Linux’ strategy for retransmitting the initial SYN
packet is an exponential back-off [5]: the retransmission

time T;, of the nth packet is T,, = (2" — 1) x 3 seconds;
we observe clearly marked stages at these periods, with an
upper bound at 180 seconds, where we give up trying to
connect to the remote host.

B. Number of failed attempts

When a web page cannot be accessed, the end-user
cannot determine whether the problem comes from a
router starving for TCP ports, or from a slow or dead
remote server. Her web surfing is just disrupted. We decide
that a web object (the HTML page itself, or an embedded
image) cannot be fetched based on the impatience of the
user. In the following, we will set the threshold after which
a request is considered a failure to 7 = 5 seconds. This is
half the time users can be expected to wait, and well above
the comfort zone [6].

Figure 2 shows the number of elements who took more
than 5, 2.9 and 170 seconds to load (or rather, the
proportion of TCP connections who took longer than this
delay to be established). 2.9 seconds is just Linux’ initial
TCP timeout, and a threshold of 170 seconds counts the
number of elements that we completely gave up trying to
fetch.

—e— 29
= 5 |
—— 170

40

30

20

10

RS

|
%OO 500 600 700 800

Proportion of failed requests (in %)

1,000 1,500

Number of available ports

Fig. 2: Proportion of failed connections (7 = 2.9, 5, and
170 seconds).

We see that the three curves have a very similar shape.
In all cases, the proportion of failed connections start to
increase sharply as soon as the number of available ports
goes under 1000 ports for 3 clients. It means that as soon
as the pressure for the attribution of ports is strong enough
to cause the router to drop even a few SYN segments, any
small increase in the demand of ports will have a strong
impact on the user experience and on the failure rate.

C. Number of retries for establishing a TCP connection

As seen above, Linux uses deterministic, discrete time-
outs when waiting for a SYN+ACK answer to its first
SYN. This enables us to easily determine the number of
attempts the client had to made to open a TCP connec-
tion, by matching the time needed against discrete stages.

1247

100

X

& 90

g 80

g

]

5 70

ks —e— 300 ports
g 60 —m— 500 ports
"g —<— 700 ports
= 50 —— 800 ports
& —«— 1000 ports

40 | | |
1 2 3 4 5 6

Number of attempts

Fig. 3: Distribution of the number of attempts per con-
nection (3 clients).

When a connection is established in less than 3 seconds,
then it means the first SYN segment went through the
router and reached the remote server; between 3 seconds
and 9 seconds means the first SYN segment was dropped,
but the second try was successful; and so forth.

As before, the client gives up after 180 seconds, i.e.,
at most 6 SYN segments are sent before considering the
remote server unreachable.

Figure 3 shows the proportion of TCP connections
which needed a certain number of attempts to be estab-
lished. For instance, we can see that when more than
1000 ports are available, 95% of TCP connections can be
established on the first try, and about 2% could not be
established at all.

D. Impact of the simulation on the dimensioning

Our simulation helps to understand what happens if an
user has not enough ports for web browsing, the most
popular internet application. We can change some param-
eters like the number of clients and the pause between two
pages to simulate different user profiles (heavy user, low
traffic user, etc), in order to estimate the p, parameter of
Section II for those users.

To consider a larger granularity of the port dimensioning
problem, the next section describes a study on the flow of
an Internet gateway, that aggregates the traffic of several
hundreds of users.

V. GLOBAL PORT CONSUMPTION OF INTERNET USERS
A. Context of the study

The behavior of a group of users in our student resi-
dences has been studied. We expect that population (en-
gineering graduate students in information technologies)
to make a heavy use of telecommunication resources, and
to possibly provide a fairly good estimate of the traffic we
might observe in the upcoming years.

We observed the student traffic of the Brest campus
of Telecom Bretagne, representing around 600 computers

connected (some students have more than one computer).
The connectivity is limited: IPv6 and IPv4 are allowed,
users cannot send any DNS request outside (they have to
use the internal resolver, that uses the global Internet link;
we show the traffic on our statistics); download is limited
to 20GB per day per user. All users share the same NATed
IP address. All TCP ports are allowed and there is no
applicative filter.

B. Individual user port consumption

We performed individual port consumption studies for
campus students. The data highlighted a strong hetero-
geneity in the usages, that translates in very different
needs in terms of ports. With in mind a static port
range allocation, we plot in Figure 4 the repartition of
the maximum (over a 24-hour period) number of ports
simultaneously used, among the population.

60 |- :
®
2
=
B
=1
S
B 20 .
o
2
[al

0 I I I I
0-199 200399 400 - 599 > 600

Maximum number of ports used

Fig. 4: Repartition of maximum port (TCP and UDP)
usage among Brest campus students.

Those results suggest that port ranges of less than
600 ports would be sufficient for most users, while very
few would need (temporarily) more than 600 ports. Our
analysis shows that the port consumption is very sporadic:
periods with very large port usage are rare. To have a
better idea of the consumption users, we plot in Figure 5
the time during which users need more than 100, 200, 400,
600 and 1000 ports over a week.

Remark that if 10% of users need more than 600 ports at
least once in the week, only 4% need them more than a cu-
mulated 15 minutes over the week. As a result, allocating
600 ports to those users would be enough for a seamless
A+P mechanism with a very good user experience. With
1000 ports, it will be completely transparent for most
users.

The burstiness of port usage suggests that a lot could be
won by benefiting from statistical multiplexing, i.e., from
the fact that not all users need a large number of ports at
the same time. To exploit that aspect, we would need to
implement dynamical port range allocation, adapting the
port range of each user to her needs over time.

1248

Proportion of users over N ports

20 40 60 80 100 120

Cumulated time (minutes)

Fig. 5: Accumulated time over which users need more than
N ports (for one week, TCP and UDP traffic).

C. Global port consumption on Telecom Bretagne student
residences (500 students)

Statistics on the IPv4 Internet gateway of the Brest
campus are given in Figure 6. Remark that the 500
students never use more than 15000 TCP ports at a time,
thus a perfect dynamical Address+Port scheme should
allow them all to share the same IPv4 address.

104

T T T T
Total TCP
HTTP(S)

Port consumption

Time (seconds) 10

Fig. 6: 24 hours of observed port consumption on the
Telecom Bretagne student network.

VI. CONCLUSION

This paper investigates the feasibility of A+P trans-
lation in terms of quality of service, with significant
multiplexing gains. Our results suggest that a port-range
of 1000 ports would be transparent for end-users, while
permitting to assign the same public IPv4 address to 64
customers. In the context of the IPv4-to-IPv6 transition,
keeping an IPv4 address plan on the end user’s network
guarantees that the system will work with non-IPv6-
compliant operating systems. The whole system remains
transparent for the users, and the Internet provider can

migrate freely to an IPv6 network core. Then two address
plans could be developed, so that IPv4 could get along
with IPv6. As soon as the end user supports IPv6 on
every equipment, the Internet provider would be free to
stop the IPv4 tunneling and could guarantee a full IPv6
connectivity. A+P solutions therefore seem well-suited for
an IPv6 smooth transition.

An interesting direction for future work could be to
characterize some typical behavior of users (in terms of
frequency and duration of application usage) in order
to optimally dimension the port range for each user,
through a more fine-grained use of the Erlang B law or
its extensions (stochastic knapsack). Notice however that
typical ISP clients often use a gateway, the gateway being
the device with the shared IPv4 public address. As a
result, the port range size has to be adapted depending
on the number of users connected to the gateway. Again,
the dimensioning laws can be applied, by aggregating the
traffic characteristics of the users involved.

We moreover remarked that port consumption is very
sporadic and depends highly on users behavior. Therefore
future works for A+P systems should study dynamical
port allocation in order to benefit from statistical multi-
plexing. We should in particular focus on finding solutions
for:

o transport port range allocation/change demands,

e secure port range allocation exchange to prevent
Denial of Services attacks (i.e., a malicious node
occupying all ports).

ACKNOWLEDGMENTS

This work has been funded by a Cisco research grant.
We also want to thank Rémi Després for his expertise and
advice regarding the A+P mechanisms.

REFERENCES

[1] M. Boucadair, IPv4 connectivity access in the context of IPvj
address exhaustion: Port range based IP architecture, draft-
boucadair-port-range-02.txt, June 2009.

[2] R.Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Car-
ney, Dynamic Host Configuration Protocol for IPv6 (DHCPv6),
RFC 3315 (Proposed Standard), July 2003, Updated by RFCs
4361, 5494.

[3] A.Durand, Dual-stack lite broadband deployments following ipv/
exhaustion, draft-ietf-softwire-dual-stack-lite-04.txt, March 2010.

[4] I. Kraemer and F. Perrin, surf.pl and resurf-socket.pl, 2011,
http://svn.fperrin.net/v6fication/crawler.

[5] D. Lukowski et al.,
retransmits timed out(), August
http://kernel.org.

[6] J. Nielsen, Response time limits, 1993, http://www.useit.com/
papers/responsetime.html.

[7] Després R., Matsushima S., Murakami T., and Troan O., IPvj
residual deployment across IPv6-service networks (4rd) - ISP-
NAT’s made optional, draft-despres-intarea-4rd-01.txt, March
2011.

[8] K.W. Ross, Multiservice loss models for broadband telecommuni-
cation networks, Springer, February 1997.

net/tcp_timer.c:
2009, Linux kernel.

1249

