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Consider a balanced non triangular two-color Pólya-Eggenberger urn process, assumed to be large which means that the ratio σ of the replacement matrix eigenvalues satisfies 1/2 < σ < 1. The composition vector of both discrete time and continuous time models admits a drift which is carried by the principal direction of the replacement matrix. In the second principal direction, this random vector admits also an almost sure asymptotics and a real-valued limit random variable arises, named W DT in discrete time and W CT in continous time. The paper deals with the distributions of both W . Appearing as martingale limits, known to be nonnormal, these laws remain up to now rather mysterious. Exploiting the underlying tree structure of the urn process, we show that W DT and W CT are the unique solutions of two distributional systems in some suitable spaces of integrable probability measures. These systems are natural extensions of distributional equations that already appeared in famous algorithmical problems like Quicksort analysis. Existence and unicity of the solutions of the systems are obtained by means of contracting smoothing transforms. Via the equation systems, we find upperbounds for the moments of W DT and W CT and we show that the laws of W DT and W CT are moment-determined. We also prove that their densities are not bounded at the origin.

Pólya urns provide a rich model for many situations in algorithmics. Consider an urn that contains red and black balls. Start with a finite number of red and black balls as initial composition (possibly monochromatic). At each discrete time n, draw a ball at random, notice its color, put it back into the urn and add balls according to the following rule: if the drawn ball is red, add a red balls and b black balls; if the drawn ball is black, add c red balls and d black balls. The integers a, b, c, d are assumed to be nonnegative2 . Thus, the replacement rule is described by the so-called replacement matrix R = a b c d .

"Drawing a ball at random" means choosing uniformly among the balls contained in the urn. That is why this model is related to many situations in mathematics, algorithmics or theoretical physics where a uniform choice among objects determines the evolution of a process. See Johnson and Kotz's book [START_REF] Johnson | Urn Models and Their Application[END_REF], Mahmoud's book [START_REF] Mahmoud | Pólya Urn Models[END_REF] or Flajolet et al. [START_REF] Flajolet | Some exactly solvable models of urn process theory[END_REF] for many examples.

In the present paper, the urn is assumed to be balanced, which means that the total number of balls added at each step is a constant

S = a + b = c + d.
The composition vector of the urn at time n is denoted by U DT (n) = number of red balls at time n number of black balls at time n .

Two main points of view are classically used on this random vector. The forward point of view consists in considering the composition vector sequence U DT (n) n∈N as a N 2 -valued Markov chain. The information on the successive configurations is thus concentrated in a global object: the random process, giving access to probabilistic tools like martingales, embedding in continuous time, branching processes. A vast part of the literature on Pólya urns relies on such probability tools, dealing most often with natural extensions of the model to a random replacement matrix or to an arbitrary finite number of colors. The forward point of view is particularly efficient to get results on the asymptotics of the process. See for instance Janson's seminal paper [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF] or [START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF] for an extensive state of the art on such methods.

Alternatively, a natural feature consists in using the recursive properties of the random structure through a divide and conquer principle. This is the backward point of view. Applied to generating functions, it is the base tool for analytic combinatorics methods, developed in Flajolet et al. papers [START_REF] Flajolet | Analytic urns[END_REF][START_REF] Flajolet | Some exactly solvable models of urn process theory[END_REF]. Expressed in terms of the random process, the backward approach leads to dislocation equations on limit distributions that can already be found in a wide generality in Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF]; these equations are further developed in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] for two-colo urns and in [START_REF] Chauvin | Limit distributions for multitype branching processes of m-ary search trees[END_REF][START_REF] Chauvin | Support and density of the limit m-ary search trees distribution. 23rd Intern[END_REF] for the urn related to m-ary search trees as well.

In order to state our results and also the asymptotic theorems they are based on, we first give some notations that are made more complete in Section 2. The eigenvalues of the replacement matrix R are S and the integer

m := a -c = d -b
and we denote by

σ := m S ≤ 1 
the ratio between these eigenvalues. The particular case σ = 1 is the original Pólya urn (see Pólya [START_REF] Pólya | Sur quelques points de la théorie des probabilités[END_REF]); this process has a specific well known asymptotics with a random drift. In appendix, our Section 6 is devoted to gather results on this almost sure limit and on the asymptotic Dirichlet distribution as well. When σ < 1, it is well known that the asymptotics of the process has two different behaviours, depending on the position of σ with respect to the value 1/2 (see Athreya and Karlin [START_REF] Athreya | Embedding of urn schemes into continuous time Markov branching processes and related limit theorems[END_REF] for the original result, Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF] or [START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF] for the results below). Briefly said, (i) when σ < 1 2 , the urn is called small and, except when R is triangular, the composition vector is asymptotically Gaussian3 :

U DT (n) -nv 1 √ n D -→ n→∞ G 0, Σ 2
where v 1 is a suitable eigenvector of t R relative to S and G a centered Gaussian vector with covariance matrix Σ 2 that has a simple closed form;

(ii) when 1 2 < σ < 1, the urn is called large and the composition vector has a quite different strong asymptotic form:

U DT (n) = nv 1 + n σ W DT v 2 + o (n σ ) (1)
where v 1 , v 2 are suitable (non random) eigenvectors of t R relative to the respective eigenvalues S and m, W DT is a real-valued random variable arising as the limit of a martingale, the little o being almost sure and in any L p , p ≥ 1.

Classically, like for any Markov chain, one can embed the discrete time process U DT (n) n∈Z ≥0 into continuous time. In the case of Pólya urns having a replacement matrix with nonnegative entries, this defines a two-type branching process

U CT (t) t∈R ≥0 .
A similar phase transition occurs when t tends to infinity: for small urns, the process U CT has a (random) almost sure drift and satisfies a gaussian central limit theorem (see Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF]). When the urn is large, the asymptotic behaviour of the process, when t tends to infinity, is given by

U CT (t) = e St ξv 1 (1 + o(1)) + e mt W CT v 2 (1 + o(1)) ,
where ξ is Gamma-distributed, W CT is a real-valued random variable arising as the limit of a martingale, the little o is almost sure and in any L p , p ≥ 1, the basis (v 1 , v 2 ) of deterministic vectors being the same one as in [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF]. These asymptotic results are more detailed in Section 2.

Because of the canonical link between U DT and U CT via stopping times, the two random variables W DT and W CT are related by the so-called martingale connexion as explained in Section 2.3. Consequently any information about one distribution is of interest for the other one. All along the paper, the symbol DT is used to qualify discrete-time objects while CT will refer to continuous-time ones.

In this article, we are interested by large urns. More precisely, the attention is focused on the non classical distributions in W DT and W CT when the replacement matrix R is not triangular (i.e. when bc = 0). For example, W CT is not normally distributed, which can be seen on its exponential moment generating series that has a radius of convergence equal to zero, as shown in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] (see Section 5 for more details). Because of the martingale connexion, this implies that W DT is not normal either. Our main goal is to get descriptions of these laws (density, moments, tail, . . . ). What is already known about W DT or W CT ? In [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF], the Fourier transform of W CT is "explicitely" calculated, in terms of the inverse of an abelian integral on the Fermat curve of degree m. The existence of a density with respect to the Lebesgue measure on R and the fact that W CT is supported by the whole real line are deduced from this closed form. Nevertheless, the order of magnitude of the moments and the question of the determination of the law by its moments remained open questions. The shape of the density was mysterious, too. The present paper answers to these questions in Section 5 and 2.4 respectively.

In the present text, we exploit the underlying tree structure of a Pólya urn. Governing both the backward and the forward points of view, it contains a richer structure than the plain composition vector process. Section 3 is devoted to highlighting this tree process and to derive decomposition properties on the laws of the composition vector at finite time. These decompositions directly lead to distributional fixed point systems ( 15) and ( 18) respectively satisfied by W DT and W CT , as stated in Theorem 5 and Theorem 6. With a slightly different approach, Knape and Neininger [START_REF] Knape | Pólya urns via the contraction method[END_REF] start from the tree decomposition of the discrete Pólya urn and establish the fixed point system [START_REF] Flajolet | Analytic urns[END_REF] with the contraction method tools developed in Neininger-Rüschendorf [START_REF] Neininger | A general limit theorem for recursive algorithms and combinatorial structures[END_REF]. This complementary point of view does not take advantage of the limit random variable W DT but applies for small and large urns together, allowing to find limit Gaussian distributions thus providing an alternative method to the embedding method used by Janson in [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF]. Sometimes called fixed point equations for the smoothing transform or just smoothing equations in the literature (Liu [23], Durrett-Liggett [START_REF] Durrett | Fixed points of the smoothing transformation[END_REF]) ), distributional equations of type

X L = A i X (i) (2) 
have given rise to considerable interest in, and literature on. For a survey, see Aldous-Bandyopadhyay [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF]. In theoretical probability, they are of relevance in connexion with branching processes (like in Liu [START_REF] Liu | Fixed points of a generalized smoothing transformation and applications to branching random walks[END_REF], Biggins-Kyprianou [START_REF] Biggins | Fixed points of the smoothing transform: The boundary case[END_REF], Alsmeyer et al [START_REF] Alsmeyer | The functional equation of the smoothing transform[END_REF]) or with Mandelbrot cascades (Mandelbrot [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF], Barral [6]). They occur in various areas of applied probability, and also on the occasion of famous problems arising in analysis of algorithms, like Quicksort (Rösler [START_REF] Rösler | A fixed point theorem for distributions[END_REF]). They are naturally linked with the analysis of recursive algorithms and data structures (Neininger-Rüschendorf [START_REF] Neininger | Analysis of algorithms by the contraction method: Additive and max-recursive sequences[END_REF], surveys in Rosler-Rüschendorf [START_REF] Rösler | The contraction method for recursive algorithms[END_REF] or Neininger-Rüschendorf [START_REF] Neininger | A survey of multivariate aspects of the contraction method[END_REF]) Most often, in Equation (2), the A i are given random variables and the X (i) are independent copies of X, independent of the A i as well. Our System [START_REF] Johnson | Urn Models and Their Application[END_REF] with unknown real-valued random variables (or distributions) X and Y is the following:

               X L = U m a+1 k=1 X (k) + S+1 k=a+2 Y (k) Y L = U m c k=1 X (k) + S+1 k=c+1 Y (k) ,
where U is uniform on [0, 1], X (k) and Y (k) are respective copies of X and Y , all being independent of each other and of U . Our System (15) for the discrete time limit W DT , slightly more complicated, is essentially of the same type. These systems can be seen as natural generalizations of equations of type (2), as set out in Neininger-Rüschendorf [START_REF] Neininger | A general limit theorem for recursive algorithms and combinatorial structures[END_REF]. Section 4 is devoted to the existence and the unicity of solutions of our systems by means of a contraction method (Theorems 7 and 8), leading to a characterization of W DT and W CT distributions. Finally, in Section 5, we take advantage of the fixed point systems again to give accurate bounds on the moments of W CT (Lemma 3). Using this lemma, we show that the laws of W DT and W CT are determined by their moments (Corollary to Theorem 9).

2 Two-color Pólya urn: definition and asymptotics

Notations and asymptotics in discrete time

Consider a two-color Pólya-Eggenberger urn random process. We adopt notations of the introduction: the replacement matrix R = a b c d is assumed to have nonnegative entries, the integers S as balance and m as second smallest eigenvalue. We assume R to be non triangular, i.e. that bc = 0; this implies that m ≤ S -1. Moreover, the paper deals with large urns which means that the ratio σ = m/S is assumed to satisfy σ > 1 2 .

We denote by v 1 and v 2 the vectors

v 1 = S (b + c) c b and v 2 = S (b + c) 1 -1 ; (3) 
they are eigenvectors of the matrix t R, respectively associated with the eigenvalues S and m.

Let also (u 1 , u 2 ) be the dual basis

u 1 (x, y) = 1 S (x + y) and u 2 (x, y) = 1 S (bx -cy); (4) 
u 1 and u 2 are eigenforms of t R, respectively associated with the eigenvalues S and m.

When the urn contains α white balls and β black balls at (discrete) time 0, the composition vector at time n ∈ N is denoted by U DT (α,β) (n). Since the urn is assumed to be large, the asymptotics of its composition vector is given by the following result.

Theorem 1 (Asymptotics of discrete time process, [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF][START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF])

Let U DT (α,β) (n)
n∈N be a large Pólya urn discrete time process. Then, when n tends to infinity,

U DT (α,β) (n) = nv 1 + n σ W DT (α,β) v 2 + o(n σ ) ( 5 
)
where v 1 and v 2 are the non random vectors defined by (3), W DT (α,β) is the real-valued random variable defined by

W DT (α,β) := lim n→+∞ 1 n σ u 2 U DT (α,β) (n) (6) 
u 2 being defined in (4), and where o( ) means almost surely and in any L p , p ≥

A proof of this result can be found in Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF] by means of embedding in continuous time. Another one that remains in discrete time is also given in [START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF]. The present paper is focused on the distribution of W DT (α,β) which appears in both proofs as the limit of a bounded martingale. One remarkable fact that does not occur for small urns (i.e. when σ ≤ 1/2) is that the distribution of W DT (α,β) actually depends on the initial composition vector (α, β). For example, its expectations turns out to be

E W DT (α,β) = Γ α+β S Γ α+β S + σ bα -cβ S . (7) 
This formula, explicitely stated in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] can be shown by elementary means or using the convergent martingale

       u 2 U DT (α,β) (n) 0≤k≤n-1 1 + σ k + α+β S        n∈N .
For more developments about this discrete martingale which is the essential tool in the discrete method for proving Theorem 1, see [START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF].

The approach in analytic combinatorics makes easy to compute the probability generating function of the number of (say) red balls in the urn at finite time, by iteration of some

(α, β) = (1, 0) (α, β) = (1, 1) (α, β) = (0, 1)
Figure 1: starting from initial composition (α, β), exact distribution of the number of red balls after n = 300 drawings, centered around its mean and divided by n σ .

suitable partial differential operator. The treatment of Pólya urns by analytic combinatorics is due to P. Flajolet and his co-authors and can be found in [START_REF] Flajolet | Analytic urns[END_REF]. Figure 1 is the exact distribution of the (normalized) number of red balls after 300 drawings, centered around its expectation. The computations have been managed using Maple and concern the (large) urn with replacement matrix R = 18 2 3 17 and respective initial compositions (1, 0), [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF][START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF] and (0, 1). Some direct first observations can be made on these pictures. For example, one gets an illustration of the decomposition formula [START_REF] Dudley | Real Analysis and Probability[END_REF] which states that the distribution of U (1,1) is decomposed as a weighted convolution of U (1,0) 's and U (0,1) 's.

Embedding in continuous time

Classically, the discrete time process is embedded in a continuous time multitype branching process; the idea of embedding discrete urn models in continuous time branching processes goes back at least to Athreya and Karlin [START_REF] Athreya | Embedding of urn schemes into continuous time Markov branching processes and related limit theorems[END_REF] and a description is given in Athreya and Ney [START_REF] Athreya | Branching Processes[END_REF], Section 9. The method has been revisited and developed by Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF] and we summarize hereunder the results obtained in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF].

We define the continuous time Markov branching process

U CT (α,β) (t) t∈R ≥0
as being the embedded process of

U DT (α,β) (n) n∈N . It starts from the same initial condi- tion U CT (α,β) (0) = U DT (α,β) (0) = (α, β)
; at any moment, each ball is equipped with an Exp(1)-distributed4 random clock, all the clocks being independent. When the clock of a white ball rings, a white balls and b black balls are added in the urn; when the ringing clock belongs to a black ball, one adds c white balls and d black balls, so that the replacement rules are the same as in the discrete time urn process.

The important benefit of considering such a process comes from the independence of the subtrees in the branching process. In the continuous-time urn process, each ball reproduces independently from the other balls. The asymptotics of this process is given by the following theorem.

Theorem 2 (Asymptotics of continuous time process, [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF][START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF])

Let U DT (α,β) (t) t≥0
be a large Pólya urn continuous time process. Then, when t tends to infinity,

U CT (α,β) (t) = e St ξv 1 (1 + o(1)) + e mt W CT (α,β) v 2 (1 + o(1)) , (8) 
where v 1 , v 2 , u 1 , u 2 are defined in (3) and (4), ξ and W CT (α,β) are real-valued random variables defined by

ξ = lim t→+∞ e -St u 1 U CT (t) , W CT (α,β) = lim t→+∞ e -mt u 2 U CT (α,β) (t) ,
all the convergences are almost sure and in any L p -space, p ≥ 1. Furthermore, ξ is Gamma α+β S distributed.

Here again, the distribution of W CT depends on the initial composition of the urn. For exemple, its expectation is

E W CT (α,β) = bα -cβ S . (9) 
as can be seen from the continuous-time martingale

e -mt u 2 U DT (α,β) (t) t≥0 .
Some properties of W CT are already known. For example, it is supported by the whole real line R and admits a density. Moreover, this density is increasing on R <0 , decreasing on R >0 and is not bounded in the neighbourhood of the origin. Note that it is not an even function since W CT is not centered. Finally, the characteristic function of W CT (i.e. its Fourier transform) is infinitely differentiable but not analytic at the origin: the domain of analyticity of E exp zW CT is of the form C \ L + L -where L + and L -are halflines contained in R, one of them being bordered at the the origin. In particular, the exponential moment generating series of W CT has a radius of convergence equal to zero, due to a ramification and a divergent series phenomenon as well. All these properties are shown in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF], based on the expression of this characteristic function in terms of the inverse of an abelian integral on the Fermat curve x m + y m + z m = 0.

Connexion discrete time/continuous time

As in any embedding into continuous time of a Markov chain, the discrete time process and the continuous time one are connected by

U CT (τ n ) n∈N = U DT (n) n∈N where 0 = τ 0 < τ 1 < • • • < τ n < • • •
are the jumping times of the continuous process. These random times are independent of the positions U CT (τ n ). The embedding for urn processes is widely studied in Janson [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF].

It is detailed in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] in the special case of two-color Pólya urns. A dual formulation of this connexion is

U CT (t) t∈R ≥0 = U DT (n(t)) t∈R ≥0
where n(t) := inf{n ≥ 0, τ n ≥ t} is the number of drawings in the urn before time t. After projection and normalization, these equalities provide two dual connexions between the limit variables W DT (α,β) and W CT (α,β) :

W CT (α,β) L = ξ σ • W DT (α,β) and W DT (α,β) L = ξ -σ • W CT (α,β) (10) 
where ξ and the W (α,β) 's are independent in both equalities, ξ being Gamma α+β S distributed.

Shape of densities

The observations made in Section 2.1 on Figure 1 can be seen as a first approximation of the shape of the density of W DT (α,β) . If such a density exists! It is indeed the case: as shown in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF], the law of W CT (α,β) turns out to be absolutely continuous with regards to Lebesgue measure on R. The same property is deduced for W DT (α,β) from the martingale connexion Formula (10).

Theorem 3 The densites of W DT (α,β) and W DT (α,β) are infinitely differentiable on R \ {0}, increasing on ]-∞, 0[, decreasing on ]0, +∞[. Furthermore, if f denotes any of these densities, there exists a positive constant C f such that

f (x) ≥ C f |x| 1-1 m
in a neighbourhood of the origin.

Proof. The properties are shown in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] in continuous time (Proposition 7.2 and its proof). We deduce the results in discrete time from connexion Formula [START_REF] Chauvin | Limit distributions for multitype branching processes of m-ary search trees[END_REF]. Let f CT (resp. f DT ) denote the density of X CT := W CT (1,0) (resp. X DT := W DT (1,0) ). These laws are related by the connexion X DT L = ξ -σ X CT where ξ is Gamma(1/S)-distributed and independent of X CT . Consequently, for any bounded nonnegative function ϕ,

Eϕ X DT = 1 Γ 1 S R +∞ 0 ϕ t -σ x t 1 S -1 e -t f CT (x)dxdt = 1 Γ 1 S R ϕ(y) +∞ 0 f CT (yt σ )t σ+ 1 S -1 e -t dt dy.
Consequently, almost everywhere,

f DT (y) = 1 Γ 1 S +∞ 0 f CT (yt σ )t σ+ 1 S -1 e -t dt.
We know from [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] that there exists a positive constant C f such that for any x ∈ [-1, 1],

x = 0 =⇒ f CT (x) ≥ C f |x| 1-1 m .
When 0 < |y| ≤ 1, split the integral above into two parts depending whether |y| t σ < 1 or not; this implies that

f DT (y) ≥ C f Γ 1 S |y| -1 σ 0 (|y| t σ ) 1 m -1 t σ+ 1 S -1 e -t dt = C f Γ 1 S C(y) |y| 1 m -1 with C(y) = |y| -1 σ 0 t 2 S -1 e -t dt. Since C satisfies 0 < C(1) ≤ C(y) ≤ Γ(2/S) for any nonzero y ∈ [-1, 1]
, the result is shown.

Decomposition properties

This section emphasizes the underlying tree structure of the urn process. This obvious vision is indeed the key in the following two decompositions: first, we reduce the study of W (α,β) to the study of W (1,0) and W (0,1) , called later on X and Y respectively, to lighten the notations. Second, in Section 3.2, we exploit a "divide-and-conquer" property to deduce a system of fixed point equations on X and Y . The reasoning is detailed in discrete time. It is much more straightforward in continuous time, since the decomposition is contained inside the branching property. Detailed in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF], the continuous case is briefly recalled in Section 3.3. The natural question "is it possible to deduce the DT-system from the CT-system and conversely" is adressed in Section 3.4.

Tree structure in discrete time

In this section dealing with the discrete time process, we skip the index DT when no confusion is possible.

Let us make precise the tree structure of the urn process: a forest (T n ) grows at each drawing from the urn. At time 0 the forest is reduced to α red nodes and β black nodes, which are the roots of the forest trees. At time n, each leaf in the forest represents a ball in the urn. When a leaf is chosen (a ball is drawn), it becomes an internal node and gives birth to (a +1) red leaves and b black leaves, or c red leaves and (d + 1) black leaves, according to the color of the chosen leaf.

The dynamics of the urn process was described saying "at each time n, a ball is uniformly chosen in the urn". It becomes "a leaf is uniformly chosen among the leaves of the forest". This forest therefore appears as a non binary colored generalization of a binary search tree.

For example, take the following urn with R = 6 1 2 5 as replacement matrix (it is a large urn) and start from α = 3 red balls and β = 2 black balls. Below is a possible configuration after 3 drawings.

Initial red balls are numbered from 1 to α and initial black balls from (α + 1) to (α + β).

The following figure represents the forest coming from these initial balls.

α β

For any n ≥ 0 and k ∈ {1, . . . , α + β}, denote by D k (n) the number of leaves of the k-th tree in the forest at time n. Thus, at time n, the number of drawings in the k-th tree is D k (n)-1 S . This numbers represents the time inside this k-th tree. Remember that the balls of the whole urn are uniformly drawn at any time and notice that at each drawing in the k-th tree, D k (n) increases by S: the random vector D(n) = (D 1 (n), . . . , D α+β (n)) has exactly the same distribution as the composition vector at time n of an (α + β)-color Pólya urn process having SI α+β as replacement matrix and (1, . . . , 1) as initial composition vector. Gathering these arguments, the distribution of U (α,β) (n) can be described the following way: consider simultaneously (i) an original (α + β)-color urn process D = (D 1 , . . . , D α+β ) having SI α+β as matrix replacement and (1, . . . , 1) as initial condition;

(ii) for any k ∈ {1, . . . , α}, an urn process U (k)

(1,0) having R as replacement matrix and (1, 0) as initial condition; (iii) for any k ∈ {α + 1, . . . , α + β}, an urn process U (k) (0,1) having R as replacement matrix and (0, 1) as initial condition, all these processes being independent of each other. Then, the process U (α,β) = U (α,β) (n) n has the same distribution as the process defined by the sum of the

U (k) (1,0) and of the U (k) (0,1) at respective times D k (n)-1

S

. In other words, for any n ≥ 0,

U (α,β) (n) L = α k=1 U (k) (1,0) D k (n)-1 S + α+β k=α+1 U (k) (0,1) D k (n)-1 S (11) 
where the U

(1,0) and the U (k) (0,1) are respective copies of the random vector processes U (1,0) and U (0,1) , all being independent of each other and of D.

The following claim is a direct consequence of Proposition 2 in Section 6. Claim When n goes off to infinity, 1 nS (D 1 (n), . . . , D α+β (n)) converges almost surely to a Dirichlet 1 S , . . . , 1 S -distributed random vector, denoted by Z = (Z 1 , . . . , Z α+β ).

Notice that for any k, D k (n) tends almost surely to +∞ when n tends to infinity. Starting from Equation [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF], dividing by n σ , taking the image by the second projection u 2 (notations of Section 2.1) and passing to the (almost sure) limit n → ∞ thanks to Theorem 1, one obtains the following theorem.

Theorem 4 For any (α, β) ∈ N 2 \ (0, 0), let W (α,β) be the limit distribution of a large twocolor discrete time Pólya urn process with ratio σ and initial condition (α, β). Then,

W (α,β) L = α k=1 Z σ k W (k) (1,0) + α+β k=α+1 Z σ k W (k) (0,1) (12) 
where (i) Z = (Z 1 , . . . , Z α+β ) is a Dirichlet distributed random vector, with parameters ( 1 S , . . . , 1 S );

(ii) the W (k)
(1,0) and the W (k) (0,1) are respective copies of W (1,0) and W (0,1) , all being independent of each other and of Z.

Notice that any Z k is Beta( 1 S , α+β-1 S
)-distributed (see Section 6).

Discrete time fixed point equation

Theorem 4 shows that the limit distribution of a large urn process starting with any initial composition can be written as a function of two "elementary" particular laws, namely the laws of W DT (1,0) and W DT (0,1) . The present section gives a characterisation of these two distributions by means of a fixed point equation. Let (U (n)) n≥0 be a two-color Pólya urn process, with all the notations of Section 2.1. In order to simplify the notations, denote

           X := W DT (1,0) = lim n→+∞ u 2 U (1,0) (n) n σ Y := W DT (0,1) = lim n→+∞ u 2 U (0,1) (n) n σ (13) 
Focus now on the study of U (1,0) (n). At time 1 the composition of the urn is deterministic: there are (a + 1) red balls and b black balls. Exactly like in Section 3.1, the tree structure of the urn appears, with a forest starting from (a + 1) red balls and b black balls. In the same example with replacement matrix R = 6 1 2 5 , this fact is illustrated by the following figure:

For any n ≥ 1, denote by J k (n) the number of leaves at time n of the k-th subtree. Then, at time n, the number of drawings in the k-th subtree is J k (n)-1 S so that, as in Section 3.1, one gets the equation in distribution

U (1,0) (n) L = a+1 k=1 U (k) (1,0) J k (n)-1 S + S+1 k=a+2 U (k) (0,1) J k (n)-1 S (14) 
where the U

(1,0) and the U (k) (0,1) are respective copies of the random vector processes U (1,0) and U (0,1) , all being independent of each other and of the J k 's. Besides, the random vector (J 1 (n), . . . , J S+1 (n)) is exactly distributed like the composition vector at time (n -1) of an (S + 1)-color Pólya urn process having SI S+1 as replacement matrix and (1, . . . , 1) as initial composition vector, so that, by Proposition 2 in Section 6,

1 nS J 1 (n), . . . , J S+1 (n) -→ n→∞ V = (V 1 , . . . , V S+1 )
almost surely, the random vector V being Dirichlet 1 S , . . . , 1 S -distributed. Like in Section 3.1, divide Equation ( 14) by n σ , take the image by the second projection u 2 and pass to the limit n → ∞ using Theorem 1. This leads to the following theorem.

Theorem 5 As defined just above by [START_REF] Durrett | Fixed points of the smoothing transformation[END_REF], let X and Y be the elementary limit laws of a large two-color discrete time Pólya urn process with replacement matrix a b c d , balance

S = a + b = c + d and ratio σ > 1 2 .
Then, X and Y satisfy the distributional equations system

               X L = a+1 k=1 V σ k X (k) + S+1 k=a+2 V σ k Y (k) Y L = c k=1 V σ k X (k) + S+1 k=c+1 V σ k Y (k) (15) 
where (i) V = (V 1 , . . . , V S+1 ) is a Dirichlet distributed random vector, with parameters ( 1 S , . . . , 1 S ); (ii) the X (k) and the Y (k) are respective copies of X and Y , all being independent of each other and of V .

Notice that any V k is distributed like a random variable U S , U being uniformly distributed on [0, 1]. Equivalently, V σ k is distributed like U m (notations of Section 2.1).

Decomposition properties in continuous time

Remember that U CT (t) t is a continuous time branching process. Thanks to the branching property, the decomposition properties of this process are somehow automatic. First,

U CT (α,β) (t) = [α] U CT (1,0) (t) + [β] U CT (0,1) (t)
, where the notation [n]X means the sum of n independant random variables having the same distribution as X. Consequently, passing to the limit when t → +∞ after normalization and projection yields

W CT (α,β) = [α] W CT (1,0) + [β] W CT (0,1) . (16) 
This convolution formula expresses how the limit law W CT is decomposed in terms of elementary limit laws W CT (1,0) and W CT (0,1) . It corresponds to the discrete time decomposition shown in Theorem 4. Now start from one red ball or from one black ball, and apply again the branching property at the first splitting time. As before, define X CT and Y CT by

     X CT := W CT (1,0) = lim t→+∞ e -mt u 2 U CT (1,0) (t) , Y CT := W CT (0,1) = lim t→+∞ e -mt u 2 U CT (0,1) (t) . (17) 
Then, with the above Theorem 2, one gets the following result. , as defined just above by [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF]. Then, X and Y satisfy the distributional equations system

               X L = U m a+1 k=1 X (k) + S+1 k=a+2 Y (k) Y L = U m c k=1 X (k) + S+1 k=c+1 Y (k) , ( 18 
)
where U is uniform on [0, 1], where X, X (k) and Y , Y (k) are respective copies of X CT and Y CT , all being independent of each other and of U .

Remark 1 As mentioned above, it is shown in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] that X CT (and Y CT ) admit densities. The proof is based on the computation of the Fourier transform of X CT in terms of the inverse of an abelian integral on a Fermat curve. This method is specific to 2-color urn processes. Theorems 5 and 6 give a new way of proving this fact by means of techniques that can be adapted from Liu's method (see [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF] for example). This alternative method provides a perspective (adressed in a forthcoming paper): it can be applied to show that the limit laws of d-color large urns admit densities as well.

Connexion between continuous-time and discrete-time systems

In Section 2.3, we described the connexion between the limit laws of large urns in discrete and continuous time, called the martingale connexion. It was seen as a consequence of the embedding into continuous time of the initial discrete time Markov chain defining the urn process. In this paragraph, we show how the solutions of fixed point systems ( 15) and ( 18) are related. Since these systems characterize the urn limit laws (as proved in Section 4), this provides an alternative point of view on the martingale connexion.

Proposition 1 (i) Let X and Y be solutions of (15) and let ξ be an independent Gammadistributed random variable with parameter 1 S . Then, ξ σ X and ξ σ Y are solutions of (18). (ii) Conversely, let X and Y be solutions of (18) and let ξ be an independent Gammadistributed random variable with parameter 1 S . Then, ξ -σ X and ξ -σ Y are solutions of [START_REF] Flajolet | Analytic urns[END_REF]. The assertions of Proposition 1 are particular cases of the following Lemma which is an elementary result in probability theory.

Lemma 1 Consider the two following distributional equations with unknown real-valued random variables X, X 1 , . . . , X S+1 . 1-Equation D:

X L = 1≤k≤S+1 V σ k X k where V = (V 1 , . . . , V S+1
) is a Dirichlet-distributed random vector with parameter 1 S , . . . , 1 S . 2-Equation C:

X L = V σ 1≤k≤S+1 X k
where V is a Beta-distributed random variable with parameter 1 S , 1 (in other words, V 1/S is uniformly distributed on [0, 1]).

Let X, X 1 , . . . , X S+1 be real-valued random variables.

(i) If X, X 1 , . . . , X S+1 satisfy Equation D and if ξ, ξ 1 , . . . , ξ S+1 are i.i.d. Gamma 1 Sdistributed random variables, then ξ σ X, ξ σ 1 X 1 , . . . , ξ σ S+1 X S+1 satisfy Equation C. (ii) Conversely, if X, X 1 , . . . , X S+1 satisfy Equation C and if ξ, ξ 1 , . . . , ξ S+1 are i.i.d. Gamma 1 Sdistributed random variables, then ξ -σ X, ξ -σ 1 X 1 , . . . , ξ -σ S+1 X S+1 satisfy Equation D.

Proof. (i) Suppose that

X L = 1≤k≤S+1 V σ k X k .
Since a Dirichlet random vector can be seen as independent Gamma-distributed random variables conditioned to have a sum equal to 1 (see Section 6), one can write

ξ σ X L = ξ σ 1≤k≤S+1 ξ k ξ 1 + • • • + ξ S+1 σ X k L = ξ σ (ξ 1 + • • • + ξ S+1 ) σ 1≤k≤S+1 ξ σ k X k . Since ξ 1 + • • • + ξ S+1 is Gamma 1 + 1 S -distributed, the quotient ξ σ (ξ 1 +•••+ξ S+1 ) is Beta 1 S , 1 
distributed, leading to the result. The reciprocal result (ii), of the same vein, is left to the reader.

Smoothing transforms

This section is devoted to the existence and the unicity of solutions of the distributional systems [START_REF] Flajolet | Analytic urns[END_REF] and [START_REF] Johnson | Urn Models and Their Application[END_REF]. By Proposition 1 just above, it is sufficient to deal with only one of them. Notice that existence and unicity of solutions of the discrete-time system (15) could be deduced from the general result in Neininger-Rüschendorf [START_REF] Neininger | A general limit theorem for recursive algorithms and combinatorial structures[END_REF], nevertheless we give hereunder a rapid and autonomous proof of Theorem 7, in order to make explicit the contraction method in the case of large Pólya urn. The proof is reminiscent of the one in Fill-Kapur [START_REF] Fill | The space requirement of m-ary search trees: distributional asymptotics for m ≥ 27[END_REF]. When A is a real number, let M 2 (A) be the space of probability distributions on R that have A as expectation and a finite second moment, endowed with a complete metric space structure by the Wasserstein distance. Note first that when X and Y are solutions of ( 15) or ( 18) that have respectively B and C as expectations, then cB + bC = 0 (elementary computation). In Theorems 7 and 8, we prove that when B and C are two real numbers that satisfy cB + bC = 0, the systems ( 15) and ( 18) both have a unique solution in the product metric space M 2 (B) × M 2 (C). To do so, we use the Banach contraction method. Since (EX, EY ) is proportional to (b, -c) in both continuous time and discrete time urn processes (Formulae ( 7) and ( 9)), this result shows that the systems (15) and ( 18) characterize the limit distributions W DT (1,0) and W DT (0,1) on one hand, W CT (1,0) and W CT (0,1) on the other hand.

The Wasserstein distance

Let A ∈ R. The Wasserstein distance on M 2 (A) is defined as follows:

d W (µ 1 , µ 2 ) = min (X 1 ,X 2 ) E (X 1 -X 2 ) 2 1/2
where the minimum is taken over random vectors (X 1 , X 2 ) on R 2 having respective marginal distributions µ 1 and µ 2 ; the minimum is attained by the Kantorovich-Rubinstein Theorem. With this distance, M 2 (A) is a complete metric space (see for instance Dudley [START_REF] Dudley | Real Analysis and Probability[END_REF]). Let (B, C) ∈ R 2 . The product space M 2 (B) × M 2 (C) is equipped with the product metric, defined (for example) by the distance

d (µ 1 , ν 1 ) , (µ 2 , ν 2 ) = max d W (µ 1 , µ 2 ) , d W (ν 1 , ν 2 ) .
Of course, this product remains a complete metric space.

Contraction method in discrete time

Let us recall the fixed point system (15) satisfied by (X DT , Y DT ), the elementary limits of a large two-color discrete time Pólya urn process:

               X L = a+1 k=1 V σ k X (k) + S+1 k=a+2 V σ k Y (k) Y L = c k=1 V σ k X (k) + S+1 k=c+1 V σ k Y (k) .
Let M 2 be the space of square-integrable probability measures on R. When (B, C) ∈ R 2 , let K 1 be the function defined on M 2 (B) × M 2 (C) by:

K 1 : M 2 (B) × M 2 (C) -→ M 2 (µ, ν) -→ L a+1 k=1 V σ k X (k) + S+1 k=a+2 V σ k Y (k)
where X (1) , . . . , X (a+1) are µ-distributed random variables,

Y (a+2) , . . . , Y (S+1) are ν-distributed random variables, V = (V 1 , . . . , V S+1
) is a Dirichlet-distributed random vector with parameter 1 S , . . . , 1 S , the X (k) , Y (k) and V being all independent of each other. Similarly, let K 2 be defined by

K 2 : M 2 (B) × M 2 (C) -→ M 2 (µ, ν) -→ L c k=1 V σ k X (k) + S+1 k=c+1 V σ k Y (k) . A simple computation shows that if (µ, ν) ∈ M 2 (B) × M 2 (C), then EK 1 (µ, ν) = (a + 1)B + bC m + 1
and

EK 2 (µ, ν) = cB + (d + 1)C m + 1 ,
so that, since m = a -c = d -b, the relation cB + bC = 0 is a sufficient and necessary condition for the product function (

K 1 , K 2 ) to range M 2 (B) × M 2 (C) into itself.
Lemma 2 Let B and C be real numbers that satisfy cB + bC = 0. Then, the smoothing transform

K : M 2 (B) × M 2 (C) -→ M 2 (B) × M 2 (C) (µ, ν) -→ K 1 (µ, ν), K 2 (µ, ν) is S+1 2m+1 -Lipschitz.
In particular, it is a contraction.

Theorem 7 (i) When B and C are real numbers that satisfy cB + bC = 0, System (15) has a unique solution in M 2 (B) × M 2 (C).

(ii) The pair X DT , Y DT is the unique solution of the distributional System (

as expectation and a finite second moment.

Theorem 7 is a direct consequence of Lemma 2 and of Banach's fixed point theorem.

Proof of Lemma 2. Let (µ 1 , ν 1 ) and (µ 2 , ν 2 ) in M 2 (B)×M 2 (C). Let V = (V 1 , . . . , V S+1 ) be a Dirichlet random vector with parameter 1 S , . . . , 1 S . Let X

1 , . . . , X be ν 2 -distributed random variables, all of them being independent and independent of V . Then,

1 be µ 1 -distributed random variables, Y (a+2) 1 , . . . , Y (S+1) 1 be ν 1 -distributed random variables, X (a+1) 
d W K 1 (µ 1 , ν 1 ) , K 1 (µ 2 , ν 2 ) 2 ≤ a+1 k=1 V σ k X (k) 1 -X (k) 2 + S+1 k=a+2 V σ k Y (k) 1 -Y (k) 2 2 2 = Var a+1 k=1 V σ k X (k) 1 -X (k) 2 + S+1 k=a+2 V σ k Y (k) 1 -Y (k) 2 = E Var a+1 k=1 V σ k X (k) 1 -X (k) 2 + S+1 k=a+2 V σ k Y (k) 1 -Y (k) 2 V + Var E a+1 k=1 V σ k X (k) 1 -X (k) 2 + S+1 k=a+2 V σ k Y (k) 1 -Y (k) 2 V thanks to the law of total variance. Since V = (V 1 , . . . , V S+1 ) is independent of the X (k) j and of the Y (k) j , one gets d W K 1 (µ 1 , ν 1 ) , K 1 (µ 2 , ν 2 ) 2 ≤ a+1 k=1 EV 2σ k Var X (k) 1 -X (k) 2 + S+1 k=a+2 EV 2σ k Var Y (k) 1 -Y (k) 2 ≤ Var X (1) 1 -X (1) 2 
a+1 k=1 EV 2σ k + Var Y (1) 1 -Y (1) 2 S+1 k=a+2 EV 2σ k = a + 1 2m + 1 X (1) 1 -X (1) 2 2 2 
+ b 2m + 1 Y (1) 1 -Y (1) 2 2 2 
.

Since the inequality holds for any random variables X

1 , X

2 , Y

and Y

(1) 2

having respective distributions µ 1 , µ 2 , ν 1 and ν 2 , this leads to

d W K 1 (µ 1 , ν 1 ) , K 1 (µ 2 , ν 2 ) 2 ≤ a + 1 2m + 1 d W (µ 1 , µ 2 ) 2 + b 2m + 1 d W (ν 1 , ν 2 ) 2 ≤ S + 1 2m + 1 d (µ 1 , ν 1 ) , (µ 2 , ν 2 ) 2 .
A very similar computation shows that

d W K 2 (µ 1 , ν 1 ) , K 2 (µ 2 , ν 2 ) 2 ≤ S + 1 2m + 1 d (µ 1 , ν 1 ) , (µ 2 , ν 2 ) 2 ,
so that, finally,

d K (µ 1 , ν 1 ) , K (µ 2 , ν 2 ) 2 ≤ S + 1 2m + 1 d (µ 1 , ν 1 ) , (µ 2 , ν 2 )
2 making the proof complete. Note that the assumption σ = m S > 1 2 guarantees that the Lipschitz constant is in ]0, 1[.

Contraction method in continuous time

In continuous time, the laws of X CT and Y CT are solutions of the following system (cf. ( 18)):

               X L = U m a+1 k=1 X (k) + S+1 k=a+2 Y (k) Y L = U m c k=1 X (k) + S+1 k=c+1 Y (k) ,
The following theorem, which is the continuous time version of Theorem 7, can be proved by two different ways. One can combine Theorem 7 with the connexion established in Proposition 1. Alternatively, one can adapt the arguments of Theorem 7 to make a direct proof. Details are left to the reader. Theorem 8 (i) When B and C are real numbers that satisfy cB + bC = 0, System [START_REF] Johnson | Urn Models and Their Application[END_REF] has a unique solution in M 2 (B) × M 2 (C).

(ii) The pair X CT , Y CT is the unique solution of the distributional System (18) having b S , -c S as expectation and a finite second moment.

Moments

This section is devoted to the asymptotics of the moments of the limit variables W DT and W CT . We shall see that they are big but not too much. Observe first that the connexion [START_REF] Chauvin | Limit distributions for multitype branching processes of m-ary search trees[END_REF] allows us to study only one of the two cases among discrete or continuous case. We chose to focus on the continuous case, since the fixed point equation system is slightly easier to deal with. Let us recall here system [START_REF] Johnson | Urn Models and Their Application[END_REF].

               X L = U m a+1 k=1 X (k) + S+1 k=a+2 Y (k) Y L = U m c k=1 X (k) + S+1 k=c+1 Y (k) ,
where U is uniform on [0, 1], where X, X (k) and Y , Y (k) are respective copies of X CT and Y CT , all being independent of each other and of U .

Up to now, what is known about the size of these moments is contained in [START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF] where it is proved that the radius of convergence of the Laplace series of a non trivial square integrable solution of ( 18) is equal to zero. Consequently, by the Hadamard formula for the radius of convergence, lim sup

p E|X| p p! 1 p = +∞.
In otherwords, for any constant C, for p large enough,

C p ≤ E|X| p p! .
The following lemma gives an upperbound for E|X| p p! . It is the argument leading to Theorem 9 where it is proved that the law of X is determined by its moments. or also

(mp -a)E|X| p ≤ bE|Y | p + p 1 +•••+p S+1 =p p j ≤p-1 p! p 1 ! . . . p S+1 ! E|X| p 1 . . . E|X| p a+1 E|Y | p a+2 . . . E|Y | p S+1 .
An analog inequality holds for E|Y | p , leading to the system

                   (mp -a)u p ≤ bv p + p 1 +•••+p S+1 =p p j ≤p-1 u p 1 . . . u p a+1 v p a+2 . . . v p S+1 ϕ(p 1 ) . . . ϕ(p S+1 ) ϕ(p) (mp -d)v p ≤ cu p + p 1 +•••+p S+1 =p p j ≤p-1 u p 1 . . . u pc v p c+1 . . . v p S+1 ϕ(p 1 ) . . . ϕ(p S+1 ) ϕ(p) . (19) 
Since the eigenvalues of the matrix R = a b c d are m and S and since 2m > S (the urn is assumed to be large), all matrices mpI 2 -R (p ≥ 2) are invertible so that System [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] implies by induction on p that solutions X and Y of System (18) admit absolute moments of all orders as soon as they are integrable. Let p 0 be the smallest positive integer such that for any p ≥ p 0 ,

m(p -1) (mp -a)(mp -d) -bc 1 + 8 log (p + 2) S+1 ≤ 1.
Such a p 0 exists since the left handside goes to 0 when p goes to +∞. Denote

A := max 1≤q≤p 0 (u q ) 1 q , (v q ) 1 q . Using log(1 -u) ≤ -u for all u < 1 leads to Φ(p) ≤ p 1 +•••+p S+1 =p p j ≤p-1 1 - p -p 1 (p + 2) log (p + 2) p 1 • • • 1 - p -p S+1 (p + 2) log (p + 2) p S+1
which can be written with an exponential to get, using again log(1 -u) ≤ -u: and the lemma holds.

Φ(p) ≤ p 1 +•••+p S+1 =p p j ≤p-1 exp - p 2 (p + 2) log (p + 2) S+1 j=1 p j p 1 - p j p Let ψ p (x) := exp - p 2 (p + 2) log (p + 2) x(1 -x) , so that Φ(p) ≤ p 1 +•••+p S+1 =p p j ≤p
The upperbound on the moments, obtained in Lemma 3 leads to the following theorem.

Theorem 9 Let X and Y be integrable solutions of any fixed point equation [START_REF] Flajolet | Analytic urns[END_REF] or [START_REF] Johnson | Urn Models and Their Application[END_REF].

Then, X and Y admit absolute moments of all orders p ≥ 1 and the probability distributions of |X|, |Y |, X and Y are determined by their moments.

Proof. By Lemma 3, if X and Y are integrable solutions of (18), they admit moments of all orders and, when p is large enough,

(E|X| p ) -1 p ≥ C (p!) -1 p log p . (21) 
Besides, by Stirling's formula, when p tends to infinity, (p!) -1 p log p ∼ e p log p which is the general term of a Bertrand divergent series. The Carleman's criterion applies, implying that X and Y are moment determined. If X and Y are integrable solutions of ( 15) and if ξ is an independent Gamma 1 S -distributed random variable, then, thanks to Proposition 1, ξX and ξY are integrable solutions of (18) so that they both satisfy Carleman's criterion. This implies that X and Y are moment determined as well.

Corollary 1 For any initial composition (α, β), the limit laws W DT (α,β) and W CT (α,β) of a large Pólya urn process are determined by their moments.

Proof. For elementary initial compositions (1, 0) or (0, 1), the result is a direct consequence of Theorems 7, 8 and 9. For a general initial composition (α, β) in continuous time, notice that decomposition Formula (16) implies that

||W CT (α,β) || p ≤ α||W CT (1,0) || p + β||W CT (0,1) || p .
Since W CT (1,0) and W CT (0,1) satisfy ( 21), W CT (α,β) satisfies Carleman's criterion; it is thus determined by its moments. The same arguments hold in discrete time, using decomposition Formula (12).

Appendix: Pólya urns and Dirichlet distribution

In this section, we deal with results that belong to the "folklore": they are not new neither very difficult, but are nowhere properly gathered, to the best of our knowledge. Proposition 2 goes back to Athreya [START_REF] Athreya | On a characteristic property of Pólya's urn[END_REF] with different names and a different proof. It is partially given in Blackwell and Kendall [START_REF] Blackwell | The Martin boundary for Pólya's urn and an application to stochastic population growth[END_REF] for S = 1 and starting from one ball of each color. The moment method is evocated in Johnson and Kotz book [START_REF] Johnson | Urn Models and Their Application[END_REF]. We detail here a proof to make our paper self-contained.

Dirichlet distributions

This section gathers some well known facts on Dirichlet distributions. Besides, we fix notations we use in the sequel. Besides, expanding real polynomials X p = X p 1 1 . . . X p d d in the basis (Γ p ) p∈N d , one gets formulae X p = S |p| Γ p +

k∈N d |k|≤|p|-1 a p,k Γ k (X)
where the a p,k are rational numbers. Consequently, when n tends to infinity, one gets the asymptotics

E J n α + nS p = Γ α S Γ α S + |p| Γ p (P 0 ) 1 + O 1 n .
which implies that, for any p ∈ N d ,

E (V p ) = Γ α S Γ α S + |p| d k=1 Γ α k S + p k Γ α k S . (23) 
Note that this proves the convergence of the martingale in L t for all t ≥ 1. Since a Dirichlet distribution is determined by its moments, this shows that the law of V is a Dirichlet distribution with parameters α 1 S , . . . , α d S .
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Theorem 6 (

 6 [START_REF] Janson | Functional limit theorem for multitype branching processes and generalized Pólya urns[END_REF][START_REF] Chauvin | Limit distributions for large Pólya urns[END_REF]) Let X = X CT and Y = Y CT be the elementary limit laws of a large two-color continuous time Pólya urn process with replacement matrix a b c d , balance S = a + b = c + d and ratio σ > 1 2

x k = 1 .x ν k - 1 k

 11 Let d ≥ 2 be a natural integer. Let Σ be the (d -1)-dimensional simplexΣ = (x 1 , . . . x d ) ∈ [0, 1] d , d k=1The following formula is a generalization of the definition of Euler's Bêta function: let (ν 1 , . . . , ν d ) be positive real numbers. Then,Σ d k=1 x ν k -1 k dΣ (x 1 , . . . , x d ) = Γ(ν 1 ) . . . Γ(ν d ) Γ(ν 1 + • • • + ν d ) (22)where dΣ denotes the positive measure on the simplex Σ, defined byf (x 1 , . . . , x d ) dΣ (x 1 , . . . , x d ) = f x 1 , . . . , x d-1 , 1 -d-1 k=1 x k 1 1 {x∈[0,1] d-1 , d-1 k=1 x k ≤1} dx 1 . . . dx d-1 for any continuous function f defined on Σ.By means of this formula, one defines usually the Dirichlet distribution with parameters (ν 1 , . . . , ν d ), denoted by Dirichlet (ν 1 , . . . , ν d ), whose density on Σ is given byΓ(ν 1 + • • • + ν d ) Γ(ν 1 ) . . . Γ(ν d ) d k=1 dΣ (x 1 , . . . , x d ) .In particular, if D = (D 1 , . . . , D d ) is a d-dimensional random vector which is Dirichletdistributed with parameters (ν 1 , . . . , ν d ), then, for any p = (p 1 , . . . , p d ) ∈ N d , the (joint) moment of order p of D isE (D p ) = E (D p 1 1 . . . D p d d k + p k ) Γ (ν k ) where ν = d k=1 ν k and |p| = d k=1 p k . Finally, a computation of same kind shows that the [0, 1]-valued random variable D k , which is the k-th marginal distribution of D, is Beta (ν k , ν -ν k )-distributed i.e. admits the density 1 B (ν k , ν -ν k ) t ν k -1 (1 -t) ν-ν k -1 1 1 [0,1] dt.Note that computing asymptotics of such moments when p tends to infinity by Stirling's formula leads to show that a Dirichlet distribution is determined by its moments. An alternative description of a Dirichlet distribution can be made by considering a sequence (G 1 , . . . , G d ) of Gamma-distributed random variables conditioned to the relation d k=1 G k = 1.

6. 2 Proposition 2 Remark 2 •

 222 Original/diagonal Pólya urns Let d ≥ 2 and S ≥ 1 be integers. Let also (α 1 , . . . , α d ) ∈ N d \ {0}. Let (P n ) n≥0 be the d-color Pólya urn random process having SI d as replacement matrix and (α 1 , . . . , α d ) as initial composition. Then, almost surely and in any L t , t ≥ 1, is a d-dimensional Dirichlet-distributed random vector, with parameters( α 1 S , . . . , α d S ). For any k ∈ {1, . . . , d}, the k-th coordinate of V is Beta α k S , j =k α j S -distributed.Proof. We give here a short autonomous proof. Denote α = d k=1 α k ≥ 1. Conditional expectation at time n + 1 writesE (P n+1 |F n ) = α + (n + 1)S α + nS P n so that Pn α+nS n≥0 is a [0, 1] d -valued convergent martingale with mean (α 1 /α, . . . , α d /α); let V be its limit. If f is any function defined on R d , E (f (P n+1 ) |F n ) = I + Φ α + nS (f ) (P n )whereΦ(f )(v) = d k=1 v k f (v + Se k ) -f (v) (e k is the k-th vector in R d canonical basis and v = d k=1 v k e k ).In particular, as can be straightforwardly checked, if p = (p 1 , . . . , p d ) ∈ N d and |p| = d k=1 p k , the functionΓ p (v) = d k=1 Γ v k S + p k Γ v k S , defined on R d ,is an eigenfunction of the operator Φ, associated with the eigenvalue |p|S. Consequently, after a direct induction, for any p ∈ N d , E (Γ p (P n )Γ p (P 0 ) so that, when n tends to infinity, by Stirling's formula, E (Γ p (P n )) = n |p] • Γ α S Γ α S + |p| • Γ p (P 0 ) • 1 + O 1 n .

  Lemma 3 If X and Y are integrable solutions of (18), they admit absolute moments of all orders p ≥ 1 and the sequences E|X| p p! log p p ! . . . p S+1 ! E|X| p 1 . . . E|X| p a+1 E|Y | p a+2 . . . E|Y | p S+1

	Proof. Let ϕ(p) := log p (p + 2) and define
				u p :=	E|X| p p!ϕ(p)	and v p :=	E|Y | p p!ϕ(p)	.
						1	1
	We show by induction on p ≥ 1 that E|X| p p!ϕ(p)	p and E|Y | p p!ϕ(p)	p are finite and define bounded
	sequences. Notice that a similar technique is used in Kahane-Peyrière [19]. Take the power
	p in the first equation notice that EU mp =	1 mp + 1	, and isolate the two extreme terms. One
	gets (remember S + 1 = a + 1 + b)
	E|X| p ≤	1 mp + 1	(a + 1)E|X| p + bE|Y | p
		+	p 1 +•••+p S+1 =p	p 1	p!
			p j ≤p-1	
						1 p	and	E|Y | p p! log p p

One admits classically negative values for a and d, together with arithmetical conditions on c and b. Nevertheless, the paper deals with so-called large urns, for which this never happens.

The case σ = 1/2 is similar to this one, the normalisation being √ n log n instead of √ n.

For any positive real a, Exp(a) denotes the exponential distribution with parameter a.

p are bounded.
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Assume by induction on p ≥ p 0 + 1 that for every q ≤ p -1, (u q ) 1 q ≤ A and (v q ) 1 q ≤ A. Then,

and the same inequality for v p as well. Admit for a while the following lemma.

Lemma 4 For every p ≥ 2, Φ(p) ≤ 1 + 8 log (p + 2)

S+1

.

Consequently

S+1

.

By definition of p 0 , this implies that (u p ) 1 p ≤ A and the recurrence holds.

Proof of Lemma 4. The definitions of ϕ and Φ imply directly that .