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11.1 Introduction

In this chapter we describe a selection of mathematical techniques and results that suggest inter-
esting links between the theory of gratings and the theory of homogenization, including a brief
introduction to the latter. By no means do we purport to imply that homogenization theory is
an exclusive method for studying gratings, neither do we hope to be exhaustive in our choice
of topics within the subject of homogenization. Our preferences here are motivated most of
all by our own latest research, and by our outlook to the future interactions between these two
subjects. We have also attempted, in what follows, to contrast the “classical” homogenization
(Section 11.1.2), which is well suited for the description of composites as we have known them
since their advent until about a decade ago, and the “non-standard” approaches, high-frequency
homogenization (Section 11.2) and high-contrast homogenization (Section 11.3), which have
been developing in close relation to the study of photonic crystals and metamaterials, which ex-
hibit properties unseen in conventional composite media, such as negative refraction allowing
for super-lensing through a flat heterogeneous lens, and cloaking, which considerably reduces
the scattering by finite size objects (invisibility) in certain frequency range. These novel electro-
magnetic paradigms have renewed the interest of physicists and applied mathematicians alike
in the theory of gratings [1].

11.1.1 Historical survey on homogenization theory

The development of theoretical physics and continuum mechanics in the second half of the 19th
and first half of the 20th century has motivated the question of justifying the macrosopic view
of physical phenomena (at the scales visible to the human eye) by “upscaling” the implied
microscopic rules for particle interaction at the atomic level through the phenomena at the
intermediate, “mesoscopic”, level (from tenths to hundreds of microns). This ambition has
led to an extensive worldwide programme of research, which is still far from being complete
as of now. Trying to give a very crude, but more or less universally applicable, approximation
of the aim of this extensive activity, one could say that it has to do with developing approaches
to averaging out in some way material properties at one level with the aim of getting a less
detailed, but almost equally precise, description of the material response. Almost every word
in the last sentence needs to be clarified already, and this is essentially the point where one
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could start giving an overview of the activities that took place during the years to follow the
great physics advances of a century ago. Here we focus on the research that has been generally
referred to as the theory of homogenization, starting from the early 1970s. Of course, even at
that point it was not, strictly speaking, the beginning of the subject, but we will use this period
as a kind of reference point in this survey.

The question that a mathematician may pose in relation to the perceived concept of “aver-
aging out” the detailed features of a heterogeneous structure in order to get a more homogeneous
description of its behaviour is the following: suppose that we have the simplest possible linear
elliptic partial differential equation (PDE) with periodic coefficients of period η > 0. What is
the asymptotic behaviour of the solutions to this PDE as η → 0? Can a boundary-value prob-
lem be written that is satisfied by the leading term in the asymptotics, no matter what the data
unrelated to material properties are? Several research groups became engaged in addressing
this question about four decades ago, most notably those led by N. S. Bakhvalov, E. De Giorgi,
J.-L. Lions, V. A. Marchenko, see [2], [3], [4], [5] for some of the key contributions of that
period. The work of these groups has immediately led to a number of different perspectives
on the apparently basic question asked above, which in part was due to the different contexts
that these research groups had had exposure to prior to dealing with the issue of averaging.
Among these are the method of multiscale asymptotic expansions (also discussed later in this
chapter), the ideas of compensated compactness (where the contribution by L. Tartar and F.
Murat [6], [7] has to be mentioned specifically), the variational method (also known as the “Γ-
convergence"). These approaches were subsequently applied to various contexts, both across
a range of mathematical setups (minimisation problems, hyperbolic equations, problems with
singular boundaries) and across a number of physical contexts (elasticity, electromagnetism,
heat conduction). Some new approaches to homogenization appeared later on, too, such as the
method of two-scale convergence by G. Nguetseng [8] and the periodic unfolding technique by
D. Cioranescu, A. Damlamian and G. Griso [9]. Established textbooks that summarise these
developments in different time periods, include, in addition to the already cited book [4], the
monographs [10], [11], [12], and more recently [13]. The area that is perhaps worth a separate
mention is that of stochastic homogenization, where some pioneering contributions were made
by S. M. Kozlov [14], G. C. Papanicolaou and S. R. S. Varadhan [15], and which has in recent
years been approached with renewed interest.

A specific area of interest within the subject of homogenization that has been rapidly de-
veloping during the last decade or so is the study of the behaviour of "non-classical" periodic
structures, which we understand here as those for which compactness of bounded-energy so-
lution sequences fails to hold as η → 0. The related mathematical research has been strongly
linked to, and indeed influenced by, the parallel development of the area of metamaterials and
their application in physics, in particular for electromagnetic phenomena. Metamaterials can
be roughly defined as those whose properties at the macroscale are affected by higher-order be-
haviour as η → 0. For example, in classical homogenization for elliptic second-order PDE one
requires the leading (“homogenised solution”) and the first-order (“corrector”) terms in the η-
power-series expansion of the solution in order to determine the macroscopic properties, which
results in a limit of the same type as the original problem, where the solution flux (“stress”
in elasticity, “induction” in electromagnetics, “current” in electric conductivity, “heat flux” in
heat conduction) depends on the solution gradient only (“strain” in elasticity, "field" in elec-
tromagnetics, “voltage” in electric conductivity, “temperature gradient” in heat condiction). If,
however, one decides for some reason, or is forced by the specific problem setup, to include
higher-order terms as well, they are likely to have to deal with an asymptotic limit of a different
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type for small η , which may, say, include second gradients of the solution in its constitutive law.
One possible reason for the need to include such unusual effects is the non-uniform (in η) ellip-
ticity of the original problems or, using the language of materials science, the high-contrast in
the material properties of the given periodic structure. Perhaps the earliest mathematical exam-
ple of such degeneration is the so-called "double-porosity model", which was first considered
by G. Allaire [16] and T. Arbogast, J. Douglas, U. Hornung [17] in the early 1990s. A detailed
analysis of the properties of double-porosity models, including their striking spectral behaviour
did not appear until the work [18] by V. V. Zhikov. We discuss the double-porosity model and
its properties in more detail in Section 11.3.

Before moving on to the next section, it is important to mention one line of research within
the homogenization area that has had a significant rôle in terms of application of mathematical
analysis to materials, namely the subject of periodic singular structures (or “multi-structures”,
see [19]). While this subject is clearly linked to the general analysis of differential operators on
singular domains (see [20]), there has been a series of works that develop specifically homog-
enization techniques for periodic structures of this kind (also referred to as “thin structures” in
this context), e.g. [21], [22]. It turns out that overall properties of such materials are similar
to those of materials with high contrast. In the same vein, it is not difficult to see that com-
pactness of bounded-energy sequences for problems on periodic thin structures does not hold
(unless the sequence in question is suitably rescaled), which leads to the need for non-classical,
higher-order, techniques in their analysis.

11.1.2 Multiple scale method: Homogenization of microstructured fibers

x1

x2

x1

x2

η η‘

Y D 1

Y*

Y2=x2/η

Ωf Ωf

Y1=x1/η

Figure 11.1: A diagram of the homogenization process: when the parameter η gets smaller (η < η ′), the number
of cells inside the fixed domain Ω f becomes larger. When η ≪ 1, Ω f is filled with a large number of small
cells, and can thus be considered as an effective (or homogenized) medium. Such a medium is usually described
by anisotropic parameters depending upon the resolution of auxiliary (“unit cell”) problems set on the rescaled
microcopic cell Y which typically contains one inclusion D.

Let us consider a doubly periodic grating of pitch η and finite extent such as shown in
Fig.11.1. An interesting problem to look at is that of transverse electric (TE) modes— when the
magnetic field has the form (0,0,H)— propagating within a micro-structured fiber with infinite
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conducting walls. Such an eigenvalue problem is known to have a discrete spectrum: we look
for eigenfrequencies ω and associated eigenfields H such that:

(Pη) :


−

2

∑
i, j=1

∂
∂xi

(
ε−1

i j (
x
η
)
∂H(x)

∂x j

)
= ω2µ0ε0H(x) in Ω f ,

ε−1
i j (

x
η
)
∂H(x)

∂xi
n j = 0 on ∂Ω f ,

where we use the convention x = (x1,x2), ∂Ω f denotes the boundary Ω f , and n = (n1,n2) is
the normal to the boundary. Here, ε0µ0 = c−2 where c is the speed of light in vacuum and we
assume that matrix coefficients of relative permittivity εi j(y), with i, j = 1,2, are real, symmetric
(with the convention y = (y1,y2)), of period 1 (in y1 et y2) and satisfy:

M| ξξξ |2 ≥ εi j(y)ξiξ j ≥ m| ξξξ |2 , ∀ξξξ ∈ IR2 , ∀y ∈ Y = [0,1]2 , (11.1)

where | ξξξ |2 = (ξ 2
1 + ξ 2

2 ), for given strictly positive constants M and m. This condition is met
for all conventional dielectric media1.
We can recast (Pη) as follows:

− ∂
∂xi

σ i(H(x)) =
ω2

c2 H(x)

with

σ i(H(x)) = ε−1
i j

(
x
η

)
∂H(x)

∂x j
.

The multiscale method relies upon the following ansatz:

H = H0(x)+ηH1(x,y)+η2H2(x,y)+ ... (11.2)

where Hi(x,y), i = 1,2, ... is a periodic function of period Y in y.
In order to proceed with the asymptotic algorithm, one needs to rescale the differential operator
as follows

∂H
∂xi

=

(
∂H0

∂ zi
+

∂H1

∂yi

)
+η

(
∂H1

∂ zi
+

∂H2

∂yi

)
+ ... (11.3)

where ∂/∂ zi stands for the partial derivative with respect to the ith component of the macro-
scopic variable x.
It is useful to set

σ i(H) = σ i
0 +ησ i

1 +η2σ i
2 + ...

what makes (11.3) more compact.
Collecting coefficients sitting in front of the same powers of η , we obtain:

σ i
0(H) = ε−1

i j (y)
(

∂H0

∂ zi
+

∂H1

∂yi

)
1When the periodic medium is assumed to be isotropic, εi j(y) = ε(y)δi j, with the Kronecker symbol δi j = 1

if i = j and 0 otherwise. For instance, (11.1) has typically the bounds M = 13 and m = 1 in optics. One class of
problems where this condition (11.1) is violated (the bound below, to be more precise) is considered in Section
11.3 on high-contrast homogenization.
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σ i
1(H) = ε−1

i j (y)
(

∂H1

∂ zi
+

∂H2

∂yi

)
and so forth, all terms being periodic in y of period 1.
Upon inspection of problem (Pη), we gather that

−
(

1
η

∂
∂yi

+
∂

∂ zi

)(
σ i

0 +ησ i
1 + ...

)
=

ω2

c2 H(x)+ ...

so that at order η−1

(A ) : − ∂
∂yi

σ i
0 = 0 ,

and at order η0

(H ) : − ∂
∂ zi

σ i
0 −

∂
∂yi

σ i
1 =

ω2

c2 H0 .

(the equations corresponding to higher orders in η will not be used here).
Let us show that (H ) provides us with an equation (known as the homogenized equation)
associated with the macroscopic behaviour of the microstructured fiber. Its coefficients will be
obtained thanks to (A ) which is an auxiliary problem related to the microscopic scale. We will
therefore be able to compute H0 and H1 thus, in particular, the first terms of H and σ i.
In order to do so, let us introduce the mean on Y , which we denote < . >, which is an operator
acting on the function g of the variable y:

< g >=
1

| Y |

∫ ∫
Y

g(y1,y2)dy1dy2 ,

where | Y | is the area of the cell Y .
Applying the mean to both sides of (H ), we obtain:

< (H )>: − ∂
∂ zi

< σ i
0 >−<

∂
∂yi

σ i
1 >=

ω2

c2 H0 < 1 > ,

where we have used the fact that < . > commutes with ∂/∂ zi.
Moreover, invoking the divergence theorem, we observe that

<
∂

∂yi
σ i

1 >=
1

| Y |

∫ ∫
Y

∂
∂yi

σ i
1(y)dy =

1
| Y |

∫
∂Y

σ i
1(y)nids ,

where n = (n1,n2) is the unit outside normal to ∂Y of Y . This normal takes opposite values on
opposite sides of Y , hence the integral over ∂Y vanishes.
Altogether, we obtain:

< (H )>: − ∂
∂ zi

< σ i
0 >=

ω2

c2 H0 ,

which only involves the macroscopic variable x and partial derivatives ∂/∂ zi with respect to the
macroscopic variable. We now want to find a relation between < σ0 > and the gradient in x of
H0. Indeed, we have seen that

σ i
0(H) = ε−1

i j (y)
(

∂H0

∂ z j
+

∂H1

∂y j

)
,
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which from (A ) leads to

(A 1) : − ∂
∂yi

(
ε−1

i j (y)
∂H1

∂y j

)
=

(
∂H0

∂ z j

)(
∂

∂yi
ε−1

i j (y)
)

.

We can look at (A 1) as an equation for the unknown H1(x,y), periodic of period Y in y and
parametrized by x. Such an equation is solved up to an additive constant. In addition to that,
the parameter x is only involved via the factor ∂H0/∂ z j. Hence, by linearity, we can write the
solution H1(x,y) as follows:

H1(x,y) =
∂H0(x)

∂ z j
w j(y) ,

where the two functions w j(y), j = 1,2 are solutions to (A 1) corresponding to ∂H0/∂ z j(x),
j = 1,2 equal to unity with the other ones being zero, that is solutions to:

(A 2) : − ∂
∂yi

(
ε−1

i j (y)
∂wk

∂y j

)
= δ jk

(
∂

∂yi
ε−1

i j (y)
)

,

with wk(y), k = 1,2 periodic functions in y of period Y 2.
Since the functions wk(y) are known, we note that

σ0
i (x,y) = ε−1

i j (y)
(

∂H0

∂ z j
+

∂H1

∂y j

)
= ε−1

i j (y)
(

∂H0

∂ z j
+

∂H0

∂ zk

∂wk(y)
∂y j

)
,

which can be written as

σ i
0(x,y) =

(
ε−1

ik (y)+ ε−1
i j (y)

∂wk(y)
∂y j

)
∂H0(x)

∂ zk
.

Lets us now apply the mean to both sides of this equation. We obtain:

< σ i
0 > (x) = ε−1

hom,ik
∂H0(x)

∂ zk
,

which can be recast as the following homogenized problem:

(P0) :


−

2

∑
i,k=1

∂
∂xi

(
ε−1

hom,ik
∂H0(x)

∂xk

)
= ω2µ0ε0H0(x) , in Ω f ,

ε−1
hom,ik(

x
η
)
∂H0(x)

∂xi
nk = 0 ,on ∂Ω f ,

where ε−1
hom,ik denote the coefficients of the homogenized matrix of permittivity given by:

ε−1
hom,ik =

1
| Y |

∫ ∫
Y

(
ε−1

ik (y)+ ε−1
i j (y)

∂wk(y)
∂y j

)
dy . (11.4)

As an illustrative example for this homogenized problem, we consider a microstructured waveg-
uide consisting of a medium with relative permittivity ε = 1.25 with elliptic inclusions (of minor

2We note that (A 2) are two equations which merely depend upon ε−1
i j (y), that is on the microscopic properties

of the periodic medium. The two functions wk (defined up to an additive constant) can be computed once for all,
independently of Ω f .
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Figure 11.2: Potentials Vx (left) and Vy (right): The unit cell contains an elliptic inclusion of relative permittivity
(ε = 4.0+3i) with minor and major axis a = 0.3 and b = 0.4 in silica (ε = 1.25).

and major axes 0.3 cm and 0.4 cm respectively) with center to center spacing d = 0.1cm with
an infinite conducting boundary i.e. Neumann boundary conditions in the TE polarization.

We use the COMSOL MULTIPHYSICS finite element package to solve the annex prob-
lem and we find that [εhom] from (11.4) writes as [26](

1.9296204 −1.053308310−16

−44.41744410−18 2.1127643

)
,

with < ε >Y= 2.2867255. The off diagonal terms can be neglected.
If we assume that the transverse propagating modes in the metallic waveguide have a small

propagation constant γ ≪ 1, the above mathematical model describes accurately the physics.
We show in Fig. 11.3 a comparison between two TE modes of the microstructured waveguide
and its associated anisotropic homogenized counterpart. Both eigenfrequencies and eigenfields
match well (note that we use the waveguide terminology wavenumber k =

√
ω2/c2 − γ2).

11.1.3 The case of one-dimensional gratings: Application to invisibility cloaks

There is a case of particular importance for applications in grating theory: that of a periodic
multilayered structure. Let us assume that the permittivity of this medium is ε = α in white
layers and β in yellow layers, as shown in Fig. 11.4.
Equation (A 2) takes the form:

(A 3) : − d
dy

(
ε−1(y)

dw
∂y

)
=

(
d
dy

ε−1(y)
)

,

with w(y), periodic function in y of period 1.
We deduce that

−dw
dy

= 1+Cε(y) .

Noting that
∫

Y

dw
dy

= w(1)−w(0) = 0, this leads to

∫
Y
(1+Cε(y))dy = 0 .

Since | Y |= 1, we conclude that
C =−< ε >−1 .
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Figure 11.3: Comparison between transverse electric fields T E21 and T E31 of a microstructured metallic waveg-
uide for a propagation constant γ = 0.1cm−1 (wavenumbers k = 0.7707cm−1 and k = 0.5478cm−1 respectively),
see left panel, with the T E21 and T E31 modes of the corresponding homogenized anisotropic metallic waveguide
for γ = 0.1cm−1 (k = 0.7607cm−1 and k = 0.5201cm−1, where k =

√
ω2/c2 − γ2 =

√
ω2ε0µ0 − γ2 were obtained

from the computation of eigenvalues ω of homogenized problem (P0)), see right panel.

The homogenized permittivity takes the form:

ε−1
hom =

1
| Y |

∫
Y

(
ε−1(y)+ ε−1(y)

dw(y)
dy

)
dy

=< ε−1(y)>−< ε−1(y)+C >

=< ε−1(y)>−< ε−1(y)>+<< ε(y)>−1 >=< ε(y)>−1 .

We note that if we now consider the full operator i.e. we include partial derivatives in y1 and y2,
the anisotropic homogenized permittivity takes the form:

ε−1
hom =

(
< ε(y)−1 > 0

0 < ε(y)>−1

)
,

as the only contribution for ε−1
hom,11 is 1/ | Y |

∫
Y ε−1(y)dy.

As an illustrative example of what artificial anisotropy can achieve, we propose the design of an
invisibility cloak. For this, let us assume that we have a multilayered grating with periodicity
along the radial axis. In the coordinate system (r,θ), the homogenized permittivity clearly has
the same form as above. If we want to design an invisibility cloak with an alternation of two
homogeneous isotropic layers of thicknesses dA and dB and permittivities α , β , we then need to
use the formula

1
εr

=
1

1+η

(
1
α
+

η
β

)
, εθ =

α +ηβ
1+η

,
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Figure 11.4: Schematic of homogenization process for a one-dimensional grating with homogeneous dielectric
layers of permittivity α and β in white and yellow regions. When η tends to zero the number of layers tends to
infinity, and their thicknesses vanish, in such a way that the width of the overall stack remains constant.

where η = dB/dA is the ratio of thicknesses for layers A and B and dA +dB = 1.
We now note that the coordinate transformation r′ = R1 + r R2−R1

R2
can compress a disc

r < R2 into a shell R1 < r < R2, provided that the shell is described by the following anisotropic
heterogeneous permittivity [27] εcloak (written in its diagonal basis):

εcloak
r =

(
R2

R2 −R1

)2(r′−R1

r′

)2

, εcloak
θ =

(
R2

R2 −R1

)2

, (11.5)

where R1 and R2 are the interior and the exterior radii of the cloak. Such a metamaterial can be
approximated using the formula (11.5), as first proposed in [28], which leads to the multilayered
cloak shown in Fig. 11.5.

11.2 High-frequency homogenization

Many of the features of interest in photonic crystals [44, 45], or other periodic structures, such as
all-angle negative refraction [46, 47, 48, 49] or ultrarefraction [50, 51] occur at high frequencies
where the wavelength and microstructure dimension are of similar orders. Therefore the con-
ventional low-frequency classical homogenisation clearly fails to capture the essential physics
and a different approach to distill the physics into an effective model is required. Fortunately
a high frequency homogenisation (HFH) theory as developed in [37] is capable of capturing
features such as AANR and ultra-refraction [52] for some model structures. Somewhat tan-
gentially, there is an existing literature in the analysis community on Bloch homogenisation
[53, 54, 55, 56], that is related to what we call high frequency homogenisation. There is also
a flourishing literature on developing homogenised elastic media, with frequency dependent
effective parameters, based upon periodic media [38]. There is therefore considerable inter-
est in creating effective continuum models of microstructured media that break free from the
conventional low frequency homogenisation limitations.
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Figure 11.5: Propagation of a plane wave of wavelength 7 10−7m (red in the visible spec-
trum) from the left on a multilayered cloak of inner radius R1 = 1.5 10−8m and outer ra-
dius R2 = 3 10−8m, consisting of 20 homogeneous layers of equal thickness and of respective
relative permittivities 1680.70,0.25,80.75,0.25,29.39,0.25,16.37,0.25,10.99,0.25,8.18,0.25,6.50,0.25,5.40,
0.25,4.63,0.25,4.06,0.25 in vacuum. Importantly, one layer in two has the same permittivity.

11.2.1 High Frequency Homogenization for Scalar Waves

Waves propagating through photonic crystals and metamaterials have proven to show different
effects depending on their frequency. The homogenization of a periodic material is not unique.
The effective properties of a periodic medium change depending on the vibration modes within
its cells. The dispersion diagram structure can be considered to be the identity of such a mate-
rial and provides the most important information regarding group velocities, band-gaps of dis-
allowed propagation frequency bands, Dirac cones and many other interesting effects. The goal
of a homogenization theory is to provide an effective homogeneous medium that is equivalent,
in the long scale, to the initial non-homogeneous medium composed of a short-scale periodic,
or other microscale, structure. This was achieved initially using the classical theory of homog-
enization [4, 34, 11, 35, 36] and yields an intuitively obvious result that the effective medium’s
properties consist of simple averages of the original medium’s properties. This is valid so long
as the wavelength is very large compared to the size of the cells (here we focus on periodic
media created by repeating cells). For shorter wavelengths of the order of a cell’s length a more
general theory has been developed [37] that also recovers the results of the classical homoge-
nization theory. For clarity we present high frequency homogeniaztion (HFH) by means of an
illustrative example and consider a two-dimensional lattice geometry for TE or TM polarised
electromagnetic waves. With harmonic time dependence, exp(−iΩt) (assumed understood and
henceforth suppressed), the governing equation is the scalar Helmholtz equation,

∇2u+Ω2u = 0, (11.6)

where u represent EZ and HZ , for TM and TE polarised electromagnetic waves respectively, and
Ω2 = n2ω2/c2. In our example the cells are square and each square cell of length 2l contains
a circular hole and the filled part of the cell has constant non-dimensionalized properties. The
boundary conditions on the hole’s surface, namely the boundary ∂S2, depend on the polarisa-
tion and are taken to be either of Dirichlet or Neumann type. This approach assumes infinite
conducting boundaries which is a good approximation for micro-waves. We adopt a multiscale
approach where l is the small length scale and L is a large length scale and we set η = l/L ≪ 1
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Figure 11.6: Panel (a) An infinite square array of split ring resonators with the elementary cell shown as the
dashed line inner square. Panel (b) shows the irreducible Brillouin zone, in wavenumber space, used for square
arrays in perfectly periodic media based around the elementary cell shown of length 2l (l = 1 in (b)). Figure
reproduced from Proceedings of the Royal Society [40].

to be the ratio of these scales. The two length scales let us introduce the following two indepen-
dent spatial variables, ξi = xi/l and Xi = xi/L. The cell’s reference coordinate system is then
−1 < ξ < 1. By introducing the new variables in equation (11.6) we obtain,

u(X,ξξξ ),ξiξi +Ω2u(X,ξξξ )+2ηu(X,ξξξ ),ξiXi +η2u(X,ξξξ ),XiXi = 0. (11.7)

We now pose an ansatz for the field and the frequency,

u(X,ξξξ ) = u0(X,ξξξ )+ηu1(X,ξξξ )+η2u2(X,ξξξ )+ . . . ,

Ω2 = Ω2
0 +ηΩ2

1 +η2Ω2
2 + . . . (11.8)

In this expansion we set Ω0 to be the frequency of standing waves that occur in the perfectly pe-
riodic setting. By substituting equations (11.8) into equation (11.7) and grouping equal powers
of ε through to second order, we obtain a hierarchy of three ordered equations:

u0,ξiξi +Ω2
0u0 = 0, (11.9)

u1,ξiξi +Ω2
0u1 =−2u0,ξiXi −Ω2

1u0, (11.10)

u2,ξiξi +Ω2
0u2 =−u0,XiXi −2u1,ξiXi −Ω2

1u1 −Ω2
2u0. (11.11)

These equations are solved as in [40, 37] and hence the description is brief.
The asymptotic expansions are taken about the standing wave frequencies that occur at

the corners of the irreducible Brillouin zone depicted in Fig. 11.6. It should be noted that not
all structured cells will have the usual symmetries of a square, as in Fig. 11.6(a) where there
is no reflexion symmetry from the diagonals. As a consequence the usual triangular region
ΓXM does not always represent the irreducible Brillouin zone and the square region ΓMXN
should be used instead. Also paths that cross the irreducible Brillouin zone have proven to yield
interesting effects namely along the path MX ′ for large circular holes [39].
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The subsequent asymptotic development considers small perturbations about the points
Γ, X and M so that the boundary conditions of u on the outer boundaries of the cell, namely
∂S1, read,

u|ξi=1 =±u|ξi=−1 and u,ξi|ξi=1 =±u,ξi|ξi=−1, (11.12)

where the +,− stand for periodic and anti-periodic conditions respectively: the standing waves
occur when these conditions are met. The conditions on ∂S2 are either of Dirichlet or Neumann
type. The theory that follows is similar for both boundary condition cases, but the latter one
is illustrated herein. Neumann boudary condition on the hole’s surface or equivalently electro-
magnetic waves in TE polarization yield,

∂u
∂n

= u,xini|∂S2 = 0. (11.13)

which in terms of the two-scales and ui(X,ξξξ ) become

U0,ξini = 0, (U0 f0,Xi +u1,ξi)ni = 0, (u1,Xi +u2,ξi)ni = 0. (11.14)

The solution of the leading order equation is by introducing the following separation of variables
u0 = f0(X)U0(ξξξ ;Ω0). It is obvious that f0(X), which represents the behaviour of the solution
in the long scale, is not set by the leading order equation and the resulting eigenvalue problem is
solved on the short-scale for Ω0 and U0 representing the standing wave frequencies and the as-
sociated cell’s vibration modes respectively. To solve the first order equation (11.10) we take the
integral over the cell of the product of equation (11.10) with U0 minus the product of equation
(11.9) with u1/ f0 and this yields Ω1 = 0. It then follows to solve for u1(X,ξξξ ) = f0,Xi(X)U1i(ξξξ )
where the vector U1 is found as in [40]. By invoking a similar solvability condition for the
second order equation we obtain a second order PDE for f0(X),

Ti j f0,XiX j +Ω2
2 f0 = 0 where,

Ti j =
ti j∫ ∫

SU2
0 dS

for i, j = 1,2 (11.15)

entirely on the long scale with the coefficients Ti j containing all the information of the cell’s
dynamical response and the tensor ti j represents dynamical averages of the properties of the
medium. For Neumann boundary conditions on ∂S2 its formulation reads,

tii =
∫ ∫

S
U2

0 dS+
∫ ∫

S
(U1i,ξiU0 −U1iU0,ξi)dS for i = 1 or 2, (11.16)

ti j =
∫ ∫

S
(U1 j,ξiU0 −U1 jU0,ξi)dS for i ̸= j. (11.17)

Note that there is no summation over repeated indexes for tii. The tensor depends on the bound-
ary conditions of the holes and has a different form if Dirichlet type conditions are applied on
∂S2.

The PDE for f0 has several uses, and can be verified by re-creating asymptotically the
dispersion curves for a perfect lattice system. One important result of equation (11.15) is its
use in the expansion of Ω namely in equation (11.8). In order to obtain Ω2 as a function of
the Bloch wavenumbers we use the Bloch boundary conditions on the cell to solve for f0(X) =
exp(iκ jX j/η), where κ j = K j − d j with d j = 0,π/2,−π/2 depending on the location in the
Brillouin zone. The asymptotic dispersion relation now reads,

Ω ∼ Ω0 +
Ti j

2Ω0
κiκ j. (11.18)
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Figure 11.7: The dispersion diagram for a doubly periodic array of square cells with circular inclusions, of radius
0.4, free at their inner boundaries shown for the irreducible Brillouin zone of Fig. 11.6. The dispersion curves
are shown in solid lines and the asymptotic solutions from the high frequency homogenization theory are shown in
dashed lines. Figure reproduced from Proceedings of the Royal Society [40].

Equation (11.18) yields the behaviour of the dispersion curves asymptotically around the stand-
ing wave frequencies that are naturally located at the edge points of the Brillouin zone. Fig.
11.8 illustrates the asymptotic dispersion curves for the first six dispersion bands of a square
cell geometry with circular holes.

An assumption in the development of equation (11.18) is that the standing wave frequen-
cies are isolated. But one can clearly see in Fig. 11.7 that this is not the case for third standing
wave frequency at point Γ as well as for the second standing wave frequency at point X . A small
alteration to the theory [40] enables the computation of the dispersion curves at such points by
setting,

u0 = f (l)0 (X)U (l)
0 (ξξξ ;Ω0) (11.19)

where we sum over the repeated superscripts (l). Proceeding as before, we multiply equation
(11.10) by U (m)

0 , substract u1((U
(m)
0,ξi

)ξi +Ω2
0U (m)

0 ) then integrate over the cell to obtain,(
∂

∂X j
A jml +Ω2

1Bml

)
f̂ (l)0 = 0, for m = 1,2, . . . , p (11.20)

Ω1 is not necessarily zero, and

A jml =
∫ ∫

S
(U (m)

0 U (l)
0,ξ j

−U (m)
0,ξ j

U (l)
0 )dS, Bml =

∫ ∫
U (l)

0 U (m)
0 dS. (11.21)
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There is now a system of coupled partial differential equations for the f (l)0 and, provided
Ω1 ̸= 0, the leading order behaviour of the dispersion curves near the Ω0 is now linear (these
then form Dirac cones).

For the perfect lattice, we set f (l)0 = f̂ (l)0 exp(iκ jX j/η) and obtain the following index
equations,

(i
κ j

η
A jml +Ω2

1Bml) f̂ (l)0 = 0, for m = 1,2, ...,p (11.22)

The system of equation (11.22) can be written simply as,

CF̂0 = 0, (11.23)

with Cll = Ω2
1Bll and Cml = iκ jA jml/η for l ̸= m. One must then solve for Ω2

1 =±√αi jκiκ j/η
when the determinant of C vanishes and insert the result in,

Ω ∼ Ω0 ±
1

2Ω0

√
αi jκiκ j. (11.24)

If the Ω1 are zero one must go to the next order.

11.2.1.1 Repeated eigenvalues: quadratic asymptotics

If Ω1 is zero, u1 = f (l)0,Xk
U (l)

1k
(we again sum over all repeated (l) superscripts) and we advance

to second order using (11.11). Taking the difference between the product of equation (11.11)
with U (m)

0 and u2(U0,ξiξi +Ω2
0U0) and then integrating over the elementary cell gives

f (l)0,XiXi

∫ ∫
SU (m)

0 U (l)
0 dS+ f (l)0,XkX j

∫ ∫
S(U

(m)
0 U (l)

1k,ξ j
−U (m)

0,ξ j
U (l)

1k
)dS

+Ω2
2 f (l)0

∫ ∫
SU (m)

0 U (l)
0 dS = 0, for m = 1,2, ..., p (11.25)

as a system of coupled PDEs. The above equation is presented more neatly as

f (l)0,XiXi
Aml + f (l)0,XkX j

Dk jml +Ω2
2 f0Bml = 0, for m = 1,2, ..., p. (11.26)

For the Bloch wave setting, using f (l)0 (X) = f̂ (l)0 exp(iκ jX j/η) we obtain the following system,(
−κiκi

η2 Aml −
κkκ j

η2 Dk jml +Ω2
2Bml

)
f̂ (l)0 = 0, for m = 1,2, ..., p (11.27)

and this determines the asymptotic dispersion curves.

11.2.1.2 The classical long wave zero frequency limit

The current theory simplifies if one enters the classical long wave, low frequency limit where
Ω2 ∼ O(ε2) as U0 becomes uniform, and without loss of generality is set to be unity, over the
elementary cell. The final equation is again (11.15) where the tensor ti j simplifies to

tii =
∫ ∫

S
dS+

∫ ∫
S
U1i,ξidS, ti j =

∫ ∫
S
U1 j,ξidS for i ̸= j (11.28)

(with no summation over repeated suffices in this equation) and Ti j = ti j/
∫ ∫

S dS.
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Figure 11.8: The dispersion diagrams for a doubly periodic array of square cells with split ring inclusions, free at
their inner boundaries shown for the irreducible Brillouin zone of Fig. 11.6. The dispersion curves are shown in
solid lines and the asymptotic solutions from the high frequency homogenization theory are shown in dashed lines.
Figure reproduced from Proceedings of the Royal Society [40].

11.2.2 Illustrations for Tranverse Electric Polarized Waves

Let us now turn to some illustrative examples. We present in Fig. 11.8 the TE polarization
waves for three types of SRR’s (Split Ring Resonator’s). Equation (11.15) represents the wave
propagation in the effective medium. It is noticable that the Ti j coefficients depend on the stand-
ing wave frequency and that T11 is not necessarily equal to T22 in order to yield an anisotropic
effective medium for each separate frequency. Near some of the standing wave frequencies the
anisotropy effects are very pronounced and well explained by the no longer elliptic equation
(11.15).

In the above equations U1i is a solution of,

U1 j,ξiξi = 0, (11.29)

with boundary conditions ( f0,Xi +u1,ξi)ni = 0 on the hole boundary. If the medium is homoge-
neous as it is in the illustrative examples herein, equation (11.29) is the same as that for U0, but
with different boundary conditions. The specific boundary conditions for U1 j are

U1 j,ξini =−n j for j = 1,2, (11.30)

where ni represent the normal vector components to the hole’s surface. The role of U1 is to
ensure Neumann boundary conditions hold and the tensor contains simple averages of inverse
permittivity and permeability supplemented by the correction term which takes into account the
boundary conditions at ∂S2. Equation (11.28) is the classical expression for the homogenised
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Figure 11.9: Cloaking in square arrays of SRRs with four holes: A source at frequency Ω = 2.8, located in
the center of a square metamaterial consisting of 64 SRRs shaped as in Fig. 11.8(b) produces a wave pattern
reminiscent of (a) concentric spherical field, (b) cloaking of a rectangular inclusion inside a slab of a metamaterial
consisting of 38 SRRs and (c) scattering of a plane wave from the same rectangular hole as the previous panel. (d)
Zoom in dispersion diagram of Fig. 11.8(b). Panels (e), (f) and (g) present isofrequency plots of the respective the
lower, middle and upper modes of the Dirac point. Figure reproduced from Proceedings of the Royal Society [40].

coefficient in a scalar wave equation with constant material properties; (11.29) is the well-
known annex problem of electrostatic type set on a periodic cell, see [4, 11], and also holds
for the homogenised vector Maxwell’s system, where U1 now has three components and i, j =
1,2,3 [41, 42, 43].

11.2.2.1 Cloaking in metamaterials

SRRs with 4 holes are now used and the dispersion diagrams are in Fig. 11.8 (b). The flat band
along the MΓ path is interesting for the fifth mode and we choose to illustrate cloaking effects
that occur here. In Fig. 11.9(a), we set an harmonic source at the corresponding frequency
Ω = 2.8 in an 8× 8 array of SRRs and observe a wave pattern of concentric spherical modes.
As can be seen in Figs. 11.9(b) and 11.9(c) a plane wave propagating at frequency Ω = 2.8
demonstrates perfect transmission through a slab composed of 38 SRRs but also cloaking of a
rectangular inclusion where no scattering is seen before or after the metamaterial slab. Panel (d)
of Fig. 11.9 shows the location in the band structure that is responsible for this effect. Note that
the frequency of excitation is just below the Dirac cone point located at Ω = 2.835 where the
group velocity is negative but also constant near that location of the Brillouin zone illustrated
through an isofrequency plot of lower mode of the Dirac point in Fig. 11.9(e). In constrast with
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the isotropic features of panel (e), those of panels (f) and (g) show ultra-flattened isofrequency
contours that relate to ultra-refraction, a regime more prone to omni-directivity than cloaking.
The asymptotic system of equations (11.20) describing the effective medium at the Dirac point
can be uncoupled to yield one same equation for all f ( j)

0 ’s,

f ( j)
0,XiXi

+0.7191Ω4
1 f (3)0 = 0 (11.31)

After some further analysis, the PDE for f (2)0 is responsible for the effects at the frequency
chosen Ω = 2.8.

11.2.2.2 Lensing via AANR and St Andrew’s cross in metamaterials

We observe all-angle-negative-refraction effect in metamaterials with SRRs with 8 holes. The
dispersion curves in Fig. 11.8(c) are interesting, as the second curve displays the hallmark of
an optical band for a photonic crystal (it has a negative group velocity around the Γ point).
However, this band is the upper edge of a low frequency stop band induced by the resonance
of a SRR, whereas the optical band of a PC results from multiple scattering, which thus arises
at higher frequencies. We are therefore in presence of a periodic structure behaving somewhat
as a composite intermediate between a metamaterial and a photonic crystal. One of the most
topical subjects in photonics is the so-called all-angle-negative- refraction (AANR), which was
first described in [46]. AANR allows one to focus light emitted by a point, onto an image,
even through a flat lens, provided that certain conditions for AANR are met, such as convex
isofrequency contours shrinking with frequency about a point in the Brillouin zone [49]. In Fig.
11.10, we show such an effect for a perfectly conducting photonic crystal (PC) in Fig. 11.10(a).
In order to achieve AANR, we choose a frequency on the first dispersion curve (acoustic band)
in Fig. 11.8(c), and we take its intersection with the light line Ω =| κ | along the XΓ path. This
means that we achieve negative group velocity for waves propagating along the XΓ direction
of the array, hence the rotation by an angle π/4 of every cell within the PC in panel (b) of Fig.
11.10. This is a standard trick in optics that has the effect of moving the origin of the light-line
dispersion to X as, relative to the PC, the Bloch wavenumber is along XΓ. This then creates
optical effects due to the interaction of the light-line with the acoustic branch, this would be
absent if Γ were the light-line origin.

The anisotropy of the effective material is reflected from coefficients T11 = −5.53 and
T22 = 0.2946. The same frequency of the first band is reachable at point N of the Brillouin
zone. By symmetry of the crystal, we would have T11 = 0.2946 and T22 =−5.53. The resultant
propagating waves would come from the superposition of the two effective media described
above. Fig. 11.10(b) illustrates this anisotropy as the source wave only propagates at the pre-
scribed directions.

11.2.3 Kirchoff Love Plates

HFH is by no means limited to the Helmholtz operator. HFH is here applied to flexural waves
in two dimensions [59] for which the governing equation is a fourth order equation

∇4u−Ω2u = 0; (11.32)

assuming constant material parameters. Such a thin plate can be subject to point, or line, con-
straints and these are common place in structural engineering.
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Figure 11.10: Lensing via AANR and St Andrew’s cross in square arrays of SRRs with eight holes: (a) A line
source at frequency Ω = 1.1375 located above a rectangular metamaterial consisting of of 90 SRRs as in Fig.
11.8(c) displays an image underneath (lensing); (b) A line source at frequency Ω = 1.25 located inside a square
metamaterial consisting of 49 SRRs as in Fig. 11.8(c) displays the dynamically induced anisotropy of the effective
medium; (c) Zoom in dispersion diagram of Fig. 11.8(c). Note that each cell in the arrays in (a) and (b) has been
rotated through an angle π/4. Figure reproduced from Proceedings of the Royal Society [40].
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Figure 11.11: For the two dimensional example we show the geometry of the doubly periodic simply supported
plate (the dots represent the simple supports) in panel (a) with the elementary cell shown by the dotted lines and
in (b) the irreducible Brillouin zone with the lettering for wavenumber positions shown. Figure reproduced from
Proceedings of the Royal Society [59].
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Figure 11.12: The dispersion diagram for a doubly periodic array of point simple supports shown for the irre-
ducible Brillouin zone of Fig. 11.11. The figure shows the dispersion curves as solid lines. As dashed lines, the
asymptotic solutions from the high frequency homogenization theory are shown. Figure reproduced from Proceed-
ings of the Royal Society [59]

In two dimensions, only a few examples of constrained plates are available in the liter-
ature: a grillage of line constraints as in [60] that is effectively two coupled one dimensional
problems, a periodic line array of point supports [61] raises the possibility of Rayleigh-Bloch
modes and for doubly periodic point supports there are exact solutions by [62] (simply sup-
ported points) and by [63] (clamped points); the simply supported case is accessible via Fourier
series and we choose this as an illustrative example that is of interest in its own right; it is shown
in figure 11.11(a). In particular the simply supported plate has a zero-frequency stop-band and
a non-trivial dispersion diagram. It is worth noting that classical homogenization is of no use
in this setting with a zero frequency stop band. Naturally waves passing through periodically
constrained plates have many similarities with those of photonics in optics.

We consider a double periodic array of points at x1 = 2n1, x2 = 2n2 where u = 0 (with the
first and second derivatives continuous) and so the elementary cell is one in |x1| < 1, |x2| < 1
with u = 0 at the origin (see Figure 11.11); Floquet-Bloch conditions are applied at the edges
of the cell.

Applying Bloch’s theorem and Fourier series the displacement is readily found [62] as

u(x) = exp(iκκκ ·x) ∑
n1,n2

exp(−iπN ·x)
[(κ1 −πn1)2 +(κ2 −πn2)2]2 −Ω2 , (11.33)

where N = (n1,n2), and enforcing the condition at the origin gives the dispersion relation

D(κ1,κ2,Ω) = ∑
n1,n2

1
[(πn1 −κ1)2 +(πn2 −κ2)2]2 −Ω2 = 0, (11.34)
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In this two dimensional example a Bloch wavenumber vector κκκ = (κ1,κ2) is used and
the dispersion relation can be characterised completely by considering the irreducible Brillouin
zone ΓXM shown in figure 11.11.

The dispersion diagram is shown in figure 11.12; The singularities of the summand in
equation (11.34) correspond to solutions within the cell satisfying the Bloch conditions at the
edges, in some cases these singular solutions also satisfy the conditions at the support and are
therefore true solutions to the problem, a similar situation occurs in the clamped case considered
using multipoles in [63]. Solid lines in figure 11.12 label curves that are branches of the disper-
sion relation, notable features are the zero-frequency stop-band and also crossings of branches
at the edges of the Brillouin zone. Branches of the dispersion relation that touch the edges of
the Brillouin zone singly fall into two categories, those with multiple modes emerging at a same
standing wave frequency (such as the lowest branch touching the left handside of the figure at
M) and those that are completely alone (such as the second lowest branch on the left at M).

The HFH theory can again be employed to find an effective PDE entirely upon the long-
scale that describes the behaviour local to the standing wave frequencies and the details are in
[59], the asymptotics from the effective PDE are shown in Fig. 11.12 as the dashed lines.

11.3 High-contrast homogenization

Periodic media offer a convenient tool in achieving control of electromagnetic waves, due to
their relative simplicity from the point of view of the manufacturing process, and due to the
possibility of using the Floquet-Bloch decomposition for the analysis of the spectrum of the
wave equation in such media. The latter issue has received a considerable amount of inter-
est in the mathematical community, in particular from the perspective of the inverse problem:
how to achieve a given spectrum and/or density of states for the wave operator with periodic
coefficients by designing an appropriate periodic structure? While the Floquet-Bloch decom-
position provides a transparent procedure for answering the direct question, it does not yield a
straightforward way of addressing the inverse question posed above.

One possibility for circumventing the difficulties associated with the inverse problem is
by viewing the given periodic structure as a high-contrast one, if this is possible under the val-
ues of the material parameters used. The idea of considering high-contrast composites within
the context of homogenization appeared first in the work by Allaire [16], which discussed the
application of the two-scale convergence technique (Nguetseng [8]) to classical homogeniza-
tion. A more detailed analysis of high-contrast composites, along with the derivation of an
explicit formula for the related spectrum, was carried out in a major study by Zhikov [18]. One
of the obvious advantages in using high-contrast composites, or viewing a given composite as
a high-contrast one, is in the mere existence of such formula for the spectrum. In the present
section we focus on the results of the analysis of Zhikov, and on some more recent results for
one-dimensional, layered, high-contrast periodic structures.

In order to get an as short as possible approach to the high-contrast theory, we consider
the equation of electromagnetic wave propagation in the transverse electric (TE) polarisation,
when the magnetic field has the form (0,0,H), in the presence of sources with spatial density
f (x) :

−div(εη)−1 (x/η)∇H(x) = ω2H(x)+ f (x), x ∈ Ω ⊂ R2, (11.35)

where we normalise the speed of light c to 1 for simplicity, which amounts to taking ε0µ0 = 1 in
section 11.3, and where the magnetic permeability is assumed to be equal to unity throughout
the medium (i.e. µ = µ0), and the function f (x) is assumed to vanish outside some set that
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has positive distance to the boundary of Ω. The inverse dielectric permittivity tensor (εη)−1(y)
is assumed in this section, for simplicity, to be a scalar, taking values ηγ I and I, respectively,
on [0,1]2-periodic open sets F0 and F1, such that F0 ∪F1 = R2. Here γ is a positive exponent
representing a “contrast” between material properties of the two components of the structure
that occupy the regions F0 and F1. In what follows we also assume that F0 ∩ [0,1]2 has a finite
distance to the boundary of the unit cell [0,1]2, so that the “soft” component F0 consists of
disjoint “inclusions”, spaced [0,1]2-periodically from each other, while the “stiff” component F1
is a connected subset of R2. The matrix εη represents the dielectric permittivity of the medium
at a given point, however the analysis and conclusions of this section are equally applicable to
acoustic wave propagation, which is the context we borrow the terms “soft” and “stiff” from.
The assumed relation between the values of dielectric permittivity εη (in acoustics, between the
“stiffnesses” ) on the two components of the structure is close to the setting of what has been
described as “arrow fibres” in the physics literature on electromagnetics, see e.g [64].

A simple dimensional analysis shows that if ω ∼ 1 then the soft inclusions are in reso-
nance with the overall field if and only if γ = 2, which is the case we focus on henceforth.

The above equation (11.35) describes the wave profile for a TE-wave in the cylindrical
domain Ω×R domain, and it is therefore supplied with the Neumann condition ∂H/∂n = 0 3

on the boundary of the domain and with the Sommerfeld radiation condition ∂H/∂ |x|− iωH =
o(|x|−1) as |x| → ∞.

In line with the previous sections, we apply the method of two-scale asymptotic expan-
sions to the above problem, seeking the solution H = H(x1,x2) = H(x) in the form (see also
(11.2 in Section 11.1.2)

H(x) = H0(x,x/η)+ηH1(x,x/η)+η2H2(x,x/η)+ ..., (11.36)

where the functions involved are [0,1]2-periodic with respect to the “fast” variable y = x/η .
Substituting the expansion (11.36) into the equation (11.35) and rearranging the terms in the
resulting expression in such a way that terms with equal powers of η are grouped together, we
obtain a sequence of recurrence relations for the functions Hk, k = 0,1, ..., from which they are
obtained sequentially. The first three of these equations can be transformed to the following
system of equations for the leading-order term H(0)(x,y) = u(x)+ v(x,y), x ∈ Ω, y ∈ [0,1]2 :

−divε−1
hom∇u(x) = ω2

(
u(x)+

∫
F0∩[0,1]2

v(x,y)dy
)
+ f (x), x ∈ Ω, (11.37)

−∆yv(x,y) = ω2(u(x)+ v(x,y)
)
+ f (x), y ∈ F0 ∩ [0,1]2, v(x,y) = 0, y ∈ F1 ∩ [0,1]2.

(11.38)
These equations are supplemented by the boundary conditions for the function u, of the same
kind as in the problems with finite η . For the sake of simplifying the analysis, we assume
that those inclusions that overlap with the boundary of Ω are substituted by the “main”, “stiff”
material, where (εη)−1 = I.

In the equation (11.37), the matrix εhom is the classical homogenization matrix for the
perforated medium εF1, see Section above. However, the properties of the system (11.37)–
(11.38) are rather different to those for the perforated-medium homogenised limit, described by

3Neumann boundary conditions i.e. infinite conducting walls is a good model for metals in microwaves, but
much less so in the visible range of frequencies wherein absorption by metals need be taken into account. Note
also that in the TM polarization case, when the electric field takes the form (0,0,E), our analysis applies mutatis
mutandis by interchanging the roles of ε and µ , H and E, and Neumann boundary conditions by Dirichlet ones.



11.22 Gratings: Theory and Numeric Applications, 2012

the equation −divε−1
hom∇u(x) = ω2u(x)+ f (x). As we shall see next, the two-scale structure of

(11.37)–(11.38) means that the description of the spectra of the problems (11.35) in the limit as
η → 0 diverges dramatically from the usual moderate-contrast scenario.

The true value of the above limiting procedure is revealed by the statement of the conver-
gence, as η → 0, of the spectra of the original problems to the spectrum of the limit problem
described above, see [18] and by observing that the spectrum of the system (11.37)–(11.37) is
evaluated easily as follows. We write an eigenfunction expansion for v(x,y) as a function of
y ∈ F0 ∩ [0,1]2 :

v(x,y) =
∞

∑
k=0

ck(x)ψk(y), (11.39)

where ψk are the (real-valued) eigenfunctions of the Dirichlet problem −∆ψk = λkψk, y ∈ F1 ∩
[0,1]2, arranged in the order of increasing eigenvalues λk, k = 0,1, ... and orthonormalised ac-
cording to the conditions

∫
F0∩[0,1]2 |ψk(y)|2dy = 1, k = 0,1, ..., and

∫
F0∩[0,1]2 ψk(y)ψl(y)dy = 0,

k ̸= l, k, l = 0,1, ... Substituting (11.39) into (11.38), we find the values for the coefficients ck,
which yield an explicit expression for v(x,y) in terms of the function u(x) :

v(x,y) =
(
ω2u(x)+ f (x)

) ∞

∑
k=0

(∫
F0∩[0,1]2

ψk(y)dy
)
(λk −ω2)−1ψk(y).

Finally, using the last expression in the first equation in (11.37) yields an equation for the
function u only:

−divε−1
hom∇u(x) = β (ω2)

(
u(x)+ω−2 f (x)), x ∈ Ω, (11.40)

where the function β , which first appeared in the work [18], is given by

β (ω2) = ω2
(

1+ω2
∞

∑
k=0

(∫
F0∩[0,1]2

ψk(y)dy
)2

(λk −ω2)−1
)
. (11.41)

Figure 11.13: The plot of the function β describing the spectrum of the problem (11.37)–(11.38) subject to the
boundary conditions. The stop bands for the problem in the whole space R2 are indicated by the red intervals of
the horizontal axis. The spectra of the problems (11.35) considered in the whole space converge, as η → 0, to the
closure of the complement of the union of the red intervals in the positive semiaxis.
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The equation (11.40) is supplemented by appropriate boundary conditions and/or condi-
tions at infinity, which are inherited from the η-dependent family, i.e. the Neumann condition
at the boundary points x ∈ ∂Ω and the radiation condition when |x| → ∞. Clearly, the spec-
trum of this limit problem consists of those values of ω2 for which β (ω2) is in the spectrum of
the operator generated by the differential expression −divε−1

hom∇ subject to the same boundary
conditions. For example, for the problem in the whole space R2 (describing the behaviour of
TE-waves in a 3D periodic structure that is invariant in one specified direction) this procedure
results in a band-gap spectrum shown in Fig. 11.13. The end points of each pass band are
found by a simple analysis of the formula (11.41): the right ends of each pass band are given by
those eigenvalues λk of the Dirichlet Laplacian on the inclusion F0 ∩ [0,1]2 that possess at least
one eigenfunction with non-zero integral over F0 ∩ [0,1]2 (otherwise the corresponding term in
(11.41) vanishes), while the left ends of the pass bands are given by solutions to the polynomial
equation of infinite order β (ω2) = 0. These points have a physical interpretation as eigenvalues
of the so-called electrostatic problem on the inclusion, see [23].

As in the case of classical, moderate-contrast, periodic media, the fact of spectral conver-
gence offers significant computational advantages over tackling the equations (11.35) directly:
as η → 0 the latter becomes increasingly demanding, while the former requires a single numer-
ical procedure that serves all η once the homogenised matrix εhom and several eigenvalues λk
are calculated. A significant new feature, however, as compared to the classical case, is the fact
of an infinite set of stop bands opening in the limit as η →, which are easily controlled by the
explicit description of the band endpoints. This immediately yields a host of applications of
the above results for the design of band-gap devices with prescribed behaviour in the frequency
interval of interest.

The theorem on spectral convergence for problems described by the equation (11.35) is
proved in [18] under the assumption of connectedness of the domain F1 occupied by the “stiff”
component, via a variant of the extension procedure from F1 to the whole of R2 for function
sequences whose energy scales as η−2 (or, equivalently, finite-energy sequences for the oper-
ator prior to the rescaling x/η = y). In the more recent works [24], [25], this assumption is
dropped in a theorem about spectral convergence for a general class of high-contrast operators,
via a version of the two-scale asymptotic analysis akin to (11.36), for the Floquet-Bloch com-
ponents of the resolvent of the original family of operators following the re-scaling x/η = y. In
particular, in [24] a one-dimensional high-contrast model is analysed, which in 3D corresponds
to a stack of dielectric layers aligned perpendicular to the direction of the magnetic field. Here
the procedure described above for the 2D grating fails to yield a satisfactory limit description as
η → 0, i.e. a description where the spectra of problems for finite η converge to the spectrum of
the limit problem described by the system (11.37)–(11.38) as η → 0. A more refined analysis
of the structure of the related η-dependent family results in a statement of convergence to the
set described by the inequalities

−1 ≤ 1
2
(α −β +1)

√
λ sin

(√
λ (α −β )

)
+ cos

(√
λ (α −β )

)
≤ 1. (11.42)

where α and β denote the end-points of the inclusion in the unit cell, i.e. F0∩ [0,1]2 = (α ,β )×
[0,1].

Similarly to the spectrum of the 2D high-contrast problem, described by the function β ,
the limit spectrum of the 1D problem has a band-gap structure, shown in Fig. 11.14, however
the description of the location of the bands is different in that it is no longer obtained from
the inequality β > 0, where β is the 1D analogue of (11.41). Importantly, the asymptotic
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behaviour of the density of states function as η → 0 is also very different in the two cases.
One can show that the family of resolvents for the problems (11.35) converges, up to a suitable
unitary transformation, to the resolvent of a certain operator whose spectrum is given exactly
by (11.42), see [25]. The rate of convergence is rigorously shown to be O(η), as is anticipated
by the expansion (11.36).

Figure 11.14: The square root of the limit spectrum for a 1D high-contrast periodic stack, in TE polarisation.
The oscillating solid line is the graph of the function f (ω) = cos(ω/2)−ω sin(ω/2)/4 in (11.42) with α = 1/4,
β = 3/4. The square root of the spectrum is the union of the intervals indicated by bold lines.

The above 1D result is generalised to the case of an oblique incidence of an electromag-
netic wave on the same 3D layered structure. Suppose that x2 is the coordinate across the stack.
Then, assuming for simplicity that the wave vector (κ,0,0) is parallel to the direction x1, it can
be shown that all three components of the magnetic field are non-vanishing, with the magnetic
component H = H3 satisfying the equation

−
(
(εη)−1(x/η)H ′(x)

)′
=
(

ω2 − (εη)−1(x/η)κ2
)

H(x),

subject to the same boundary conditions as before. The modified limit spectrum for this family
is given by those ω2 for which (cf. (11.42))

−1 ≤ 1
2
(α −β +1)

(
ω − κ2

ω

)
sin

(√
λ (α −β )

)
+ cos

(√
λ (α −β )

)
≤ 1, ω > 0, (11.43)

where, as before, α and β describe the “soft" inclusion layer in the unit cell, see [24]. The
set of ω described by the inequalities (11.43) is similar to that shown in Figure 11.14, the only
significant difference between the two cases being a low-frequency gap opening near ω = 0 for
(11.43).
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Figure 11.15: Superlens application of grating: (a) A time harmonic source at frequency 0.473 displays an image
through a square array of square inclusions; (b) Effective magnetism versus frequency using (11.44) for square
inclusions of relative permittivity 100 with sidelength a = 0.5d in matrix of relative permittivity 1 (grating pitch
d = 0.1); Negative values of the effective magnetism are in the frequency region [0.432,0.534].

11.4 Conclusion and further applications of grating theory

To conclude this chapter, we would like to stress that advances in homogenization theory over
the past forty years have been fuelled by research in composites [36]. The philosophy of the ne-
cessity for rigour expressed by Lord Rayleigh in 1892 concerning the Lorentz-Lorenz equations
(also known as Maxwell-Garnett formulae) can be viewed as the foundation act of homogeniza-
tion: ‘In the application of our results to the electric theory of light we contemplate a medium
interrupted by spherical, or cylindrical, obstacles, whose inductive capacity is different from
that of the undisturbed medium. On the other hand, the magnetic constant is supposed to re-
tain its value unbroken. This being so, the kinetic energy of the electric currents for the same
total flux is the same as if there were no obstacles, at least if we regard the wavelength as in-
finitely great.’ In this paper, John William Strutt, the third Lord Rayleigh [29], was able to
solve Laplace’s equation in two dimensions for rectangular arrays of cylinders, and in three-
dimensions for cubic lattices of spheres. The original proof of Lord Rayleigh suffered from
a conditionally convergent sum in order to compute the dipolar field in the array. Many au-
thors in the theoretical physics and applied mathematics communities proposed extensions of
Rayleigh’s method to avoid this drawback. Another limit of Rayleigh’s algorithm is that it does
not hold when the volume fraction of inclusions increases. So-called multipole methods have
been developed in conjunction with lattice sums in order to overcome such obstacles, see e.g.
[30] for a comprehensive review of these methods. In parallel to these developments, the quasi-
static limit for gratings has been the subject of intensive research, one might cite [31] and [32]
for important contributions in the 1980s, and [33] for a comprehensive review of the modern
theory of gratings, including a close inspection of homogenization limit.

Interestingly, in the pure mathematics community, Zhikov’s work on high-contrast ho-
mogenization [18] has had important applications in metamaterials, with the interpretation of
his homogenized equations in terms of effective magnetism first put forward by O’Brien and
Pendry [65], and then by Bouchitté and Felbacq [66], although these authors did not seem to
be aware at that time of Zhikov’s seminal paper [18]. In order to grasp the physical importance
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of (11.40)-(11.41), we consider the case of square inclusions of sidelength a = d/2, where d
is the pitch of a bi-periodic grating. The eigenfunctions are ψnm(y) = 2sin(nπy1)sin(nπy2) in
(11.41) and the corresponding eigenvalues are k2

nm = π2(n2 +m2). The right-hand side in the
homogenized equation (11.40) can then be interpreted in terms of effective magnetism:

µhom(k) = 1+
64a2

π4 ∑
(n,m)odd

k2

n2m2(k2
nm/a2 − k2)

. (11.44)

This function can be computed numerically for instance with Matlab and demonstrates that
negative values can be achieved for µhom near resonances, see Fig. 11.15(b). This allows for
superlensing via negative refraction, as shown in Fig. 11.15(a).

Finally, we would like to point out that high-order homogenization techniques [67] sug-
gest that most gratings display some artificial magnetism and chirality when the wavelength is
no longer much larger than the periodicity [68]. We hope we have convinced the reader that
there is a whole new range of physical effects in gratings which classical, high-frequency and
high-contrast homogenization theories can capture.
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