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Theory of Evidence for Face Detection and Tracking

Francis Faux, Franck Luthon1

University of Pau and Adour River UPPA,
Computer Science Laboratory LIUPPA, IUT GIM Anglet, France

Abstract

This paper deals with face detection and tracking by computer vision for mul-
timedia applications. Contrary to current techniques that are based on huge
learning databases and complex algorithms to get generic face models (e.g.
active appearance models), the proposed method handles simple contextual
knowledge representative of the application background thanks to a quick
supervised initialization. The transferable belief model is used to counteract
the incompleteness of the prior model due first to a lack of exhaustiveness
of the learning stage and secondly to the subjectivity of the task of face seg-
mentation. The algorithm contains two main steps: detection and tracking.
In the detection phase, an evidential face model is estimated by merging
basic beliefs elaborated from Viola and Jones face detector and from a skin
colour detector, for the assignment of mass functions. These functions are
computed as the merging of sources in a specific nonlinear colour space. In
order to deal with colour information dependence in the fusion process, the
Denœux cautious rule is used. The pignistic probabilities stemming from the
face model guarantee the compatibility between the belief framework and the
probabilistic framework. They are the entries of a bootstrap particle filter
which yields face tracking at video rate. We show that the proper tuning of
the evidential model parameters improves the tracking performance in real-
time. Quantitative evaluation of the proposed method gives a detection rate
reaching 80%, comparable to what can be found in the literature. However
the proposed method requires only a weak initialization.
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Processing, Pattern Recognition, Computer Vision.

1. Introduction

Real time face detection and tracking in video sequences has been studied
for more than ten years by the image processing and computer vision com-
munities, owing to the multiplicity of applications: teleconferencing, CCTV,
human machine interaction, robotics. However, despite the ongoing progress
in image processing and the increasing computation speed of digital proces-
sors, the design of generic and robust algorithms is still the object of active
research. Indeed, face detection by computer is made difficult by the vari-
ability of appearance of this deformable moving object due to individual
morphological differences (nose shape, eye colour, skin colour, beard), to the
presence of visual artifacts (glasses) or occlusions, to illumination variations
on the face zone (shadow, highlight), to face expression changes that depend
on contextual (social, cultural, emotional) factors. Widely studied in human
sciences (cognitive sciences, psychology, sociology) these last points are only
partially taken into account in computer vision for face recognition or ex-
pression analysis, if not at all for face detection. Indeed, they are difficult to
model and do not easily cope with real time implementation. Moreover, the
scene background content can also disturb detection (foreground-background
similarity or background clutter).

In this paper, to handle the face specificity, a supervised learning method
is proposed, where the user selects manually a zone of the face on the first
image of the video sequence. This rapid initializing step constitutes the
learning stage which yields very simply to the prior model. It is however
related to the user subjectivity while selecting the face zone and it suffers
from incompleteness because of a lack of exhaustivity in the learning stage. In
this context, a probabilistic modelling is not relevant. Therefore the proposed
method for face modelling is based on belief functions: indeed the transferable
belief model (TBM) [1] is well suited to model partial knowledge in a complex
system. Hammal demonstrated the efficiency of TBM for the classification
of emotions and facial expressions [2], and Ramasso used this framework
successfully for human activity recognition [3].

The goal of the application is to automatically track the face of a person
placed in the field of view of a motorized pan-tilt-zoom camera (or just
a webcam). The tracking should be as robust as possible to occlusions,
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pose, scale, background and illumination changes. The proposed algorithm
takes control of the servo-camera to perform a dynamic centering of the face
location in the image plane during the whole video sequence. The algorithm
is made of two main steps: the face detection, then the tracking procedure
(Fig. 1).

Figure 1: Overview of the two-step algorithm: a) face detection by evidential modelling;
b) face tracking by particle filtering and visual servoing.

An elliptical region of interest (ROI) including the face is computed by
particle filtering, and held at the center of the image plane by visual servoing.
The context of application is limited to indoor environment, typically a lab-
oratory or an office. As regards acquisition conditions, the distance between
user and sensor ranges from approximately 50 cm to a few meters. Ordinary
lighting conditions prevail (uncontrolled illumination context), possibly in
the presence of additional light sources, like a desk lamp or the influence of
outside light entering through a window.

Section 2 presents a state of the art about face detection. Section 3 recalls
briefly the theory of belief functions. The proposed evidential face model
for face detection is detailed in section 4. The tracking with particle filter
and visual servoing of the camera are described in chapter 5. Performance
analysis of the algorithm, both qualitative and quantitative, is presented in
section 6. Finally, a discussion in section 7 concludes the paper.

2. Related works

Face detection methods can be grouped into two categories differing as
to the processing of prior information [4, 5, 6]. Nevertheless, this classifica-
tion is not exhaustive since numerous methods use mixed approaches. It is
also important to make a difference between detection methods dedicated to
still images, where complex algorithms can be used, and those dedicated to
video sequences where the computation cost is of major concern for real-time
processing.

3



Feature-based methods use as primitives physical properties of the face.
They rely on numerous heuristics for the proper choice of the data patterns
extracted from the image. The so-called low-level analysis (or early vision)
handles the information obtained directly from the properties of the pixels
such as luminance or colour [7, 8], or indirectly by mathematical computa-
tion of edges, motion or texture from pixel neighborhoods. For example,
the wavelet transform is efficient to extract face features. Colour is a key
feature because of its specific properties and its invariance w.r.t. rotation
and translation. Nevertheless skin colour is made of a large variety of hue
shades (shadowy, pale, overexposed skin) depending both on the subject and
on illumination conditions. Therefore the construction of a robust hue de-
tector requires the choice of a proper colorimetric space [9]. Anyway, the
primitives produced by low level analysis remain ambiguous. To validate the
detection, it is necessary to use additional information. The feature analysis
is based both on the knowledge of an adequate face model (prior model) and
on measurements of normalized distances and angles derived from the indi-
vidual description of face parts (eyes, nose, mouth). With this first family
of methods, processings are potentially fast as no learning base is necessary.
The methods for parameter extraction are often specific to the context at
hand, and are constructed empirically on colour, edge or motion cues.

Holistic approaches, by contrast, address the detection problem as a gen-
eral identification problem. The key-point is to compare an image with a
generic face model and to decide if there is resemblance or not. Priors about
geometrical or physiological specificities are discarded to limit the modelling
errors due to incomplete and imprecise knowledge of the face. These methods
are based on the learning of a face model from a base of examples as much
complete as possible. Linear methods of subspaces, statistical approaches
(Monte-Carlo methods), support vector machines or neural networks can be
used. An important step was done when the first holistic face detector with
real-time capacities was proposed by Viola and Jones [10]. It is based on
an automatic selection of 2D Haar filters applied to the monochrome im-
age and it uses a cascade of boosted classifiers with increasing complexity.
Some variants of this algorithm are adapted to faces with variable pose [11].
The active shape models (ASM), introduced by Cootes and Taylor [12], are
deformable models which depict the highest level of appearance of the face
features. Once initialized near a facial component, the model modifies its lo-
cal characteristics (outline, contrast) and evolves gradually in order to take
the shape of the target feature. The active appearance models (AAM) are
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an extension of the ASM by Cootes et al. [13]. The use of the third di-
mension, namely the temporal one, can lead to a real-time 3D deformable
face model varying according to morphological parameters during a video
sequence. Therefore, this second family of methods provides some flexibility
to the different contexts such as the number of faces in the scene or the type
of lighting. Nevertheless these methods are strongly dependent on the choice
and quality of the face models, and they require an important mass of data
that is sufficiently representative. Whatsoever, the learning database is of
course never exhaustive and its construction remains a full problem.

In this paper, we help collaborate two complementary face detection
methods in a fusion process. First, among the feature-based methods, our
choice focuses on a skin colour discriminating detector. Indeed, its properties
of invariance w.r.t. motion allow to track the face whatever its pose during
the video sequence. Second, the Viola and Jones (VJ) face detector is pre-
ferred among the holistic approaches, due to its real time properties and the
availability of an open source implementation. It provides a target container
(rectangular bounding box surrounding the face) highly reliable in the case
of front-view faces. However as the authors [10] have made their classifier
public but not their training, the classifier used here has not been trained on
our data. We will see that the proposed method circumvents this point.

3. Theory of belief functions

3.1. Belief functions

The theory of belief functions also called Dempster-Shafer theory or ev-
idence theory, dates back to the 1970s. Inspired by the upper and lower
probability notions studied first by Dempster [14], then by Shafer [15], it can
be interpreted in a subjective way as a formal quantitative model of degrees
of belief [16]. This theory increases modelling flexibility and allows to solve
complex problems since: (i) it does not necessarily require complete prior
knowledge about the problem at hand, and (ii) it offers the possibility to
distribute the belief in compound hypotheses (and not only on singletons
as is the case in the probability modelling). It was successfully applied to
multisensor signals [17] and to image fusion [18, 19].

The first concept in the evidence theory is the mass function which char-
acterizes the opinion of an agent on a question or on the state of a system.
The frame of discernment, denoted by Ω, is the finite set of answers to this
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question. A mass function is an application of the 2Ω parts of Ω towards the
interval [0, 1] which satisfies: ∑

A⊆Ω

m(A) = 1. (1)

This constraint guarantees a commensurability between several mass sets.
The mass function m(A) is interpreted as the part of belief placed strictly in
A. A simple mass function, or elementary state of belief, is defined as a belief
function with a mass m so that A ⊂ Ω is set along with a weight function
w ∈ [0, 1] so that:

m(A) = 1− w, (2)

m(Ω) = w.

Denoted by m = Aw, it represents the belief put in Ω but not in A. For any
A, A1 (w = 1) is the empty simple mass function whereas A0 (w = 0) is the
categorical simple mass function.

In order to represent a complex state of belief, it is possible to build a
set formed by these independently weighted propositions. Indeed, under two
conditions recalled hereafter in section 3.2, any non dogmatic mass function
m(A) (i.e. when Ω is a focal set) may be expressed, by canonical decompo-
sition [20], as the conjunctive combination (see definition below) of simple
mass functions: m(A) = ∩©A⊂ΩA

w(A).

3.2. Combination of beliefs

The belief combination, also called revision, is involved when one has
new information, coded in the form of a belief function, to merge with ex-
isting mass functions, in order to make up a synthesis of knowledge in a
multi-source environment. Two constraints must be fulfilled: every source of
information belongs to the same frame of discernment Ω and all sources are
independent [21]. Conjunctive and disjunctive rules are the two main oper-
ators for combination. For J independent and totally reliable information
sources, whose hypotheses are defined on Ω, the result of the conjunctive
combination denoted by m∩© is:

m∩©(A) =
∑

A1∩...∩AJ=A

(
J∏
j=1

mj(A)

)
, ∀A ⊆ Ω. (3)
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This rule is commutative, associative, with the total ignorance as neutral
element and the total certainty as absorbing element. It is however not
idempotent. This rule leads generally to an unnormalized mass of conflict
(m∩©(∅) 6= 0). Dempster proposed a normalization version of this law better
known as the Dempster combination rule or orthogonal sum [14]:

m⊕(A) =
m∩©(A)

1−K
, ∀A ⊆ Ω, A 6= ∅, (4)

m⊕(∅) = 0,

with K = m∩©(∅). (5)

K reflects the conflicting mass that varies within [0, 1].
The disjunctive rule [22] replaces the intersection by the union in Eq. 3

and yields a mass denoted m∪©(A). The disjunctive rule is used when at
least one source of information is unreliable. This rule does not generate
conflict but yields less precise fusion as the focal elements of the resulting
mass functions are widened. On the contrary, the conjunctive rule is used
when all the information sources are reliable. It yields a more precise fusion
but may generate conflict.

3.3. Management of conflict

During the conjunctive combination, some combined sources may be dis-
cordant and show incompatible propositions. The mass function affected to
the empty set quantifies this conflict. Numerous combination rules were pro-
posed to solve this problem [23, 24, 25]. Florea proposed a family of adaptive
rules which advocate an intermediate solution between conjunction and dis-
junction [26]. In [27], the Florea family was extended under the name of
mixed rules family.

3.4. New combination rules

Conjunctive and disjunctive rules rely on the assumption that the com-
bined mass functions come from independent sources. However in real-world
applications, this is not always the case. To address this problem, Denœux
introduced two new rules: the cautious conjunctive rule and the bold dis-
junctive one [28, 29].

The cautious conjunctive rule, denoted by ∧©, relies on the least commit-
ment principle which states that when several belief functions are compatible
with a set of constraints, one should choose the least informative one. This
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principle means that one should not give more belief than required to an
information source: it is similar to the maximum entropy principle in the
theory of probabilities. Under the constraint that m12 is richer than m1 and
m2, the least informative mass exists, is unique and is defined as the mini-
mum (denoted by ∧) of the weight functions associated with m1 and m2. If
Aw1 and Aw2 are two simple masses, their combination by the cautious rule
is the simple mass function denoted by Aw1∧w2 so that:

w1∧©2(A) = w1(A) ∧ w2(A) ∀A ⊂ Ω, (6)

m1∧©2(A) = ∩©A⊂ΩA
w1(A)∧w2(A). (7)

A normalized version of this cautious rule denoted by ∧©∗ is defined by
replacing the conjunctive rule ∩© by the Dempster rule ⊕:

m1∧©∗2(A) =
m1∧©2(A)

1−m1∧©2(∅)
, ∀A ⊆ Ω, A 6= ∅, (8)

m1∧©∗2(∅) = 0 (9)

The bold disjunctive rule, denoted by ∨©, is the dual operator of the cautious
rule. In [30], these new rules were extended to become adaptive. The prop-
erties of the cautious and bold rules result from those of the minimum and
maximum: commutative, associative and idempotent.

3.5. Modelling of mass functions
The mass function modelling is a difficult problem with no universal so-

lution. Difficulty is increased if one wants to assign beliefs in compound
hypotheses. One can distinguish models based on distance, stemming from
pattern recognition [31, 32] where mass functions are built only from learn-
ing vectors, and the models using likelihood computation. These last ones
decompose in global methods [15, 33] and separable ones.

Separable methods build a belief function for each hypothesis Hi of the
frame of discernment. This kind of approach was first proposed by Smets
[34] then used by Appriou [35]. These models, stemming form a probabilis-
tic inspiration, rely on an initial learning for the estimation of conditional
probabilities p(xj|Hi) where xj represents an observation of the source j and
Hi is one of the hypotheses. Appriou recommends to use the model obtained
from the generalized Bayes theorem (GBT) proposed by Smets [22]:

mij({Hi}) = 0,
mij({Hi}) = dij[1−Rj.p(xj|Hi)],
mij(Ω) = 1−mij({Hi}).

(10)
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dij is a discounting coefficient which characterizes the a priori degree of
confidence in the knowldege of each distribution p(xj|Hi). It represents some
kind of metaknowledge about the representativeness degree of the learning
of each class Hi with each source j. This parameter is equal to 1 when
the densities are perfectly representative of the learning, whereas dij = 0
when the distribution of probabilities is completely underestimated. Rj is
a coefficient weighting the probabilities. It acts as a normalization factor
bounding the dynamic range: Rj ∈ [0; (maxi {p(xj|Hi)})−1]. For Rj = 0,
only the a priori source reliability is taken into account, otherwise the data
are also considered.

A comparative study of these two types of approaches (distance i.e.,
model-based and likelihood i.e., case-based [36]) shows that the performance
of these methods applied to classification problems does not differ drastically.
Thus the choice of the model remains a delicate topic. In our application, as
the method is based on a very simple, and hence incomplete learning stage,
it is relatively easier to estimate the conditional probabilities and the a pri-
ori reliability degrees, rather than the mass sets directly. Furthermore, this
model turns out to be well suited for facial analysis as one learns easily the
face class against all the other classes (here the background class only), since
a specific detector may be tuned on this class.

3.6. Transferable Belief Model

The TBM is a subjectivist interpretation, where a mass function models
the partial knowledge of the value of a variable [16, 1]. The TBM is a mental
model with two levels: the credal level and the pignistic one. The credal level
mainly includes the static part of the model representing the knowledge in
the form of mass functions, and the belief combination called revision which
corresponds to the model’s dynamic part. Decision is done at the pignistic
level that transforms the mass into probability distributions by fairly sharing
every normalized mass function. The pignistic probability denoted by BetP
is defined for all A ∈ 2Ω with A 6= ∅ as:

BetP (A) =
∑

B∈2Ω ; B 6=∅

|A ∩B|
|B|

m(B)

1−m(∅)
, with m(∅) 6= 1. (11)

Note that the computation of the pignistic probability implies a loss of infor-
mation at the transition between credal and pignistic levels, since the conflict
is dispatched among the various hypotheses.
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4. Evidential Face Model

4.1. Proposed strategy

Let us recall that the proposed algorithm consists of a face detection
stage, which serves as input for the face tracking procedure (Fig. 1). The
face modelling is based on an evidential fusion process using two families
of complementary sources: the VJ face detector (Fig. 2a) and a skin colour
discriminating detector (Fig. 2b). The fusion of colour mass sets and VJ
mass sets (Fig. 2c) gives a model representative of the face in the various
contexts of application (restricted to indoor environment).

As regards the model for skin hue, the learning stage reduces to a quick
initialization (Fig. 2e). This learning step is interesting for its simplicity, but
it is obviously not exhaustive and it suffers from incompleteness as only the
first video frame is taken into account. A classic probabilistic approach is
inefficient in this case. Therefore, the proposed method takes place within
the TBM framework, that is adequate to model the incompleteness (partial
knowledge) of a prior model. Moreover, in order to account for the depen-
dence between colour sources, we propose a variant of the Appriou fusion
process (Eq. 10) using the Denœux cautious conjunctive rule to merge the
colour mass sets.

Figure 2: Block-diagram of evidential face modelling: a) mass sets of VJ face detector
attributes; b) colour mass sets; c) fusion of VJ and colour mass sets; d) computation
of pignistic probabilities; e) initialization.
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To each pixel p, a frame of discernment is associated with two mutually
exclusive classes: Ωp = {{H1p}, {H2p}}, where {H1p} represents the face
hypothesis and {H2p} represents what is not a face (i.e., the complementary
set called the background). This limitation put on Ω, with only these two
hypotheses, reduces the complexity and thus the processing time, which is
important for real-time tracking. To simplify the notations in the following,
we will skip the index p and only write Ω, {H1} and {H2} for all the quantities
related to pixel p.

4.2. Information sources

Face skin colour is a relevant information since it allows to implement
fast algorithms that are invariant to orientation or scale changes. However,
skin colour distribution strongly depends on the lighting conditions and on
the colour space chosen [9]. To improve robustness to light changes, we
choose the LUX logarithmic colour space instead of linear colour spaces like
RGB, YCrCb or other nonlinear spaces like HSV which is more sensitive to
noise [37]. The three components of LUX space are computed from the RGB
components as follows (with M = 256):

L = (R + 1)0.3(G+ 1)0.6(B + 1)0.1 − 1

U =

{
M
2

(
R+1
L+1

)
for R < L

M − M
2

(
L+1
R+1

)
otherwise

X =

{
M
2

(
B+1
L+1

)
for B < L

M − M
2

(
L+1
B+1

)
otherwise.

(12)

L stands for the logarithmic luminance, whereas U and X are the two log-
arithmic chrominances (resp. red and blue). This nonlinear colour space
based on the logarithmic image processing transform is known for rendering
a good contrast even for low luminance [38]. Besides, since it is inspired by
biology (cf. logarithmic response of retina cells) [39], it ensures an efficient
description of hues, it is little sensitive to noise and has proved its efficiency
in colour segmentation, colour compression or colour rendering [40]. Here-
after, the three information sources denoted by sj (j = 1, 2, 3), that will be
used to model the face, are: (s1 = U, s2 = X) for the skin hue, and s3 = L
for the VJ detector.

4.3. Mass functions of the VJ face detector

In this section, we explain how to obtain the mass mv from the luma
component L (cf. Fig. 2a). The VJ face detector works on grey levels (source
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s3 = L). It generates a target container (i.e. a rectangular bounding box
around the face denoted by BB) highly reliable when the face is in front-view
or slightly from profile (Fig. 3a, b, c). However it fails in the case of important
rotation or occlusions or when it recognizes a shape-like face-artifact in the
background (Fig. 3d).

a) sequence #1 b) sequence #2 c) sequence #3 d) sequence #4

Figure 3: Bounding box produced by the VJ face detector in various sequences:
a), b), c) correct detection; d) false detection.

In order to model the VJ attribute by a belief function, a simple mass
denoted by mv(.) is assigned to each pixel p, according to its position with
respect to the bounding box and proportionally to a parameter of reliability
γ ∈ [0, 1] so that:

mv = {H1}1−γ , ∀p ∈ BB, (13)

mv = {H2}1−γ , ∀p /∈ BB. (14)

The value 1−γ stands for the uncertainty in the belief about {H1} in Eq. 13
(resp. {H2} in Eq. 14). For γ = 0 the information source is not reliable and
the maximal belief is associated to the tautology Ω. For γ = 1 the source
is reliable, the mass is maximal for the face class {H1} inside the bounding
box, and for the background class {H2} outside of BB.

4.4. Colour masses

This section togheter with the next one (section 4.5) explain how the
colour masses mc are computed from the chroma components (cf. Fig. 2b).
A classification approach is taken to build the mass sets coding the colour
information. For the current image, the following notations are used:

• {p}P1 is the set of pixels in the image, where P is the image size (typi-
cally 400× 400),
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• S is the set of source vectors of size P ×J , where J is the dimension of
the colour space. Here, one takes J = 2 since only the two chromatic
information sources s1 and s2 are used for the definition of colour masses
(cf. Fig. 2b). sj represents the colour plane j of S,

• sjp is an observation data. It is the jth component of the colour vector
associated with pixel p,

• cp is the class of pixel p (hidden primitive corresponding to one of the
two hypotheses: face or non-face).

Given a pixel p with a known observation sjp but of unknown class cp,
the problem consists in producing a belief about the current value of its class
cp without using any learning database apart from a quick initialization on
the first image.

The Appriou model (Eq. 10) requires the conditional likelihood of the
classes, i.e., prior models which characterize the relationship between the
component sj and the hypotheses H1 and H2. These prior models are gener-
ated during the supervised learning step when the user selects manually on
the first image of the video sequence a free-shape zone of the face including
mainly skin (Fig 4a). Hair is not considered. This selection allows to exhibit
both: (i) a prior model of the face zone including mainly skin hue (Fig. 4b),
(ii) a prior model representative of the background by considering the pixels
outside of the selected zone (Fig. 4c). Histograms are built by considering all
the colour attributes sjp inside the face zone, or outside (background). The
conditional probability densities p(sj|H1), respectively p(sj|H2), are deduced
from histograms by a simple normalization procedure (Fig. 4d, e).

a) b) c) d) e)

Figure 4: Initialization on sequence #2: a) selected area of the face on the first image
of the video sequence; b) source s1: face zone; c) source s1: background; d) density
of probability p(s1|H1); e) density of probability p(s1|H2).
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Two mass setsmijp({Hi}) (one for each class {Hi}, i ∈ {1; 2}) are assigned
to every pixel p with colour attribute sjp so that:

mijp({Hi}) = 0,
mijp({Hi}) = dij[1−Rj.p(sjp|Hi)],

mijp(Ω) = 1−mijp({Hi}).
(15)

p(sjp|Hi) is simply obtained by a look-up table (L.U.T.) addressing opera-
tion. Parameter Rj, that weighs the data model defined by the conditional
likelihoods, is set to its maximal value. For simplicity, all parameters dij
are initialized to the same value d0 = 0.9 (but we mention in the conclusion
some hints to implement a more sophisticated model). Note that one takes
d0 < 1 in order to guarantee the non dogmatic character of the mass sets
(mijp(Ω) > 0). This Appriou model exhibits two sets of complementary sim-
ple mass functions, one for each hypothesis Hi, i ∈ {1; 2} (Eq. 2 with weights
denoted by wijp) so that for any A = {Hi} and any source sjp:

wijp(A) = 1−mijp(A) from prior model p(sjp|A). (16)

Keeping in mind that all elementary quantities refer to pixel p, we will
omit the index p to simplify the notations in the rest of the paper, and write
sj, wij, mij etc. instead of sjp, wijp(.), mijp(.).

4.5. Colour fusion

4.5.1. Fusion by cautious conjunctive rule

The concept of independence means intuitively that two pieces of evidence
have been obtained in some sense by different ways [41]. Colour sources s1

and s2 (the two logarithmic hues computed from LUX space, resp. red and
blue) and hence the mass functions mij are obviously not independent as they
are computed from the same raw data (R,G,B in Eq. 12). Indeed, when R
component varies, both values of sources U and X change. To deal with
dependent sources, a solution for the fusion of beliefs consists in adopting a
conservative attitude by applying the Denœux cautious conjunctive rule.

In the case of two distinct weights belonging to the interval [0, 1], this rule
is defined by Eq. 6, here with: w1 = wi1 for red chrominance (U -component),
w2 = wi2 for blue chrominance (X-component) and A ∈ {∅, {H1}, {H2}}.
Then, the combined weight function denoted by w is computed such as
w(A) =

∧
wij(A). Finally, the colour masses mc(A) = mi1∧i2(A) assigned to

each pixel p are given by Eq. 7. These masses are normalized (Eq. 8) and
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denoted by mc∗(.) yielding for each pixel significative beliefs in each class
{Hi} (see Tab. 1).

Table 1: Denœux cautious rule : computation of colour mass sets for pixel p

A w(.) mc(.) mc∗(.)
∅ 1 [1− w({H1})][1− w({H2})] 0
{H1} min{w1j} =

∧
w1j(.) [1− w({H1})]w({H2}) mc∗({H1})

{H2} min{w2j} =
∧
w2j(.) w({H1})[1− w({H2})] mc∗({H2})

Ω w({H1})w({H2}) mc∗(Ω)

The idempotent combination rule constitutes an alternative to the classic
conjunctive rule. Because of its conjunctive property, it strengthens the
certainty during the information fusion, so that the resulting mass is more
committed than the mass functions from which it is originated. Moreover it
ensures that the recursive combination of an information with itself always
gives the same result. In that case, the independence of information sources
is not mandatory and idempotence authorizes dependence. So, a dilemma
appears between reinforcement and idempotence. In our face colour model,
a fusion operator with this idempotence property is favored.

Typical results of this procedure are shown in Fig. 5. The evidential
model classifies correctly the zones of the image whose colour corresponds to
the skin hue (face, harms). The red tee-shirt in seq. #4 is correctly detected
as background by the cautious rule. The model fails however in certain
background zones whose colour is close to skin hue.

Figure 5: Fusion results (pignistic probability BetPp(H1)) of colour sources s1 and s2
by the cautious conjunctive rule for the four sequences of Fig. 3, with Rj = Rmax

and dij = d0 = 0.9.
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4.5.2. Illustrative Example

Let us illustrate the processing with a sample case study. Table 2 shows
the weight functions wij obtained from the following conditional probabilities
p(sj|Hi): p(s1|H1) = 0.05, p(s1|H2) = 0.04, p(s2|H1) = 0.07 and p(s2|H2) =
0.01. The discounting coefficient is set to d0 = 0.9 and Rj is set to its
maximal value: R1 = R2 = 1/0.1 = 10 (by taking as reference the sample
histograms in Fig.4). The combined weight w(A) is simply the minimal value
among the four wij(A). The colour mass sets resulting from the combination
of weight function w are also given in Tab. 2.

Table 2: Example of cautious colour fusion: weights wij , combined weights w and masses
mc.

A w11(.) w12(.) w21(.) w22(.) w(.) mc(.) mc∗(.)
∅ 1 1 1 1 1 0.3645 0
{H1} 1 0.46 1 0.19 0.19 0.4455 0.701
{H2} 0.55 1 0.73 1 0.55 0.0855 0.1345

Ω 0.1045 0.1644

Let us compare with the classic Bayesian approach. The a posteriori
probability is: p(H1|s1, s2) = [p(H1)

∏
j p(sj|H1)]/[

∑
i p(Hi)

∏
j p(sj|Hi)]. If

we take p(H1) = 0.2, p(H2) = 0.8 by supposing that the face size is kept
to about 20% of the image surface thanks to the proper action of visual
tracking, then p(H1|s1, s2) = 0.2(0.05 × 0.07)/[0.2(0.05 × 0.07) + 0.8(0.04 ×
0.01)] = 0.686. If we suppose equiprobability p(H1) = 0.5, then one obtains:
p(H1|s1, s2) = 0.897. In contrary if we have p(H1) = 0.1, p(H2) = 0.9 (i.e.
the face size decreases), we get stacked in indecision (p(H1|s1, s2) ≈ 0.5).
Similarly to the maximum a posteriori criterion, the evidential decision con-
sists in choosing the hypothesis {Hi} that has the maximum mass, and thus
the maximum plausibility Pl or the maximum pignistic probability BetP .
In this example we get Pl({H1}) = mc∗({H1}) + mc∗(Ω) = 0.8655, and
Pl({H2}) = 0.299, or equivalently BetP ({H1}) = 0.783, BetP ({H2}) =
0.217): the decision is still easy to take. So that the proposed method
outperforms the Bayesian approach when the prior probability decreases
(p(H1) < 0.5).

4.5.3. Colour fusion by compromise rule

In a previous work [42], another version of Appriou’s model is used allow-
ing to obtain colour masses from only one conditional probability (p(sj|H1)),
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coupled with a fusion strategy which consists in an adaptive compromise rule
varying between the min (∧) and the max (∨) and denoted by ∧∨. In the
case of two weights w1 and w2 belonging to the interval [0, 1], this rule is
defined by:

w1 ∧∨ 2(A) = (1− η) min {w1(A), w2(A)}+ ηmax {w1(A), w2(A)} (17)

where A ∈ {∅, {H1}, {H2}}. For η = 0 we get the min used in the cautious
conjunctive rule, whereas for η = 1 we get the max operator close to the
disjunctive rule. Then the masses mc(A) are given by (instead of Eq. 7):

mc(A) = m1∧∨2(A) = ∩©A⊂ΩA
w1(A) ∧∨ w2(A). (18)

Typical results of this adaptive procedure are shown in Fig. 6. The fusion
quality varies as a function of parameter η. By raising the value of η, the
weight w1∧∨2(.) = w1(.)∧∨w2(.) assigned to pixel p is increased according to
the difference between w1 and w2, except of course when w1 = w2. On Fig. 6,
the neck is poorly detected for η = 0 (i.e. with cautious rule) whereas for
η = 1 the face is correctly detected. The counterpart of this improvement is
a highlighting of certain background zones whose colour is close to the skin
hue. An empirical optimum of the modelling is reached for a setting such
as η ≈ 0.5. So, the use of the compromise operator influences the colour
model quality. In the present paper, only the limiting case: η = 0 will be
considered.

η = 0 η = 0.33 η = 0.66 η = 1

Figure 6: Fusion results (pignistic probability BetPp(H1)) of colour sources s1 and s2
by the compromise operator for four values of η on sequence #1

Note that the value of parameter η can be learned or estimated accurately
online through the computation of the covariance or coherence of the colour
sources. Note also that the compromise operator ∧∨ is commutative but not
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associative (which could be a handicap if one wants to fuse three sources or
more, and make colour-ordered fusion). Nevertheless it gives good results
when one learns only the face class H1 (i.e. with a simplistic Appriou model)
and when the Florea adaptive rule is used instead of the conjunctive rule
used here for final fusion of VJ and colours (Fig. 2c). Another variant of
contextual fusion with three zones was also proposed in [43]. Some results
about these variants will be compared in section 6.2.

4.6. Global fusion of colour and VJ mass sets by conjunctive rule
In this section, we describe the fusion of colour masses mc with VJ-masses

mv (cf. Fig. 2c). On one hand, the colour model faithfully shows the skin
hue but is not able to differentiate the face colour from that of an arm or a
hand for example. On the other hand, the VJ face detector detects a front-
view face with a high reliability as it validates the presence of eyes, nose
and mouth in the bounding box but may fail in the case of rotated faces
or background artifacts. As the informative content of these two sources is
complementary, it seems interesting to make them collaborate in order to
synthetize a more robust face model. Since these two pieces of information
are elaborated from the same image raw data, the question to address before
implementing a proper fusion is to know whether they are dependent or not.
For that purpose, a simple test is presented here: the merging of these two
sources is compared using resp. the cautious rule (Fig. 7a) and the classic
conjunctive rule (Fig. 7b, Eq. 3).

For γ < 0.75 the cautious rule favours the colour masses as colour weights
are lower than the VJ ones. The VJ information has little influence for
low values of γ, and the fusion process is inefficient in that case. On the
contrary using the classic conjunctive rule, the VJ information is taken into
account as soon as γ > 0. The background is toned down proportionally to
this parameter, and the effect of the bounding box is more apparent. The
certainty on the face class is more strengthened with the classic conjunctive
rule. One can induce from this simplistic test that the VJ information is
relatively independent from the colour sources (even if this is not a formal
proof of independence). This seems coherent as the VJ bounding box has
been computed using 2D Haar filters on the L component, i.e., a means
really different from the one used to computed colour cues U and X.

Therefore, the colour and the VJ mass functions are combined using the
classic conjunctive rule (Eq.3) so that:

m(A) = mc∗ ∩©v(A). (19)
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a)

b)
γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

Figure 7: Fusion results of colours and VJ mass functions on sequence #4 for five values
of γ: a) by the cautious conjunctive rule (with η = 0); b) by the classic conjunctive rule.

A problem occurs when the VJ detector recognizes a face-like artifact in
the background (Fig. 3d) with a high reliability (γ ≥ 0.5). In this case,
skin colour (mc∗({H1}) < 0.5) and VJ mass functions disagree inside the
bounding box BB. This yields an important conflict inside BB. In order to
limit this risk of false detection, we dynamically discount the initial value γ0

of parameter γ by considering the global conflict inside the bounding box so
that (cf. feedback loop in Fig. 2):

γt = γ0 for t = 0, (20)

γt = γ0(1−KBB) for t > 0, with KBB =
1

NBB

∑
p∈BB

Kp (21)

Kp = mc∗({H2})×γt,∀p ∈ BB is the conflict between colour and VJ elemen-
tary masses at pixel level, NBB is the number of pixels inside the bounding
box and KBB denotes the average conflict. The mass m resulting from the
conjunctive combination of mc∗ and mv with the implementation of this dis-
counting strategy on γ is detailed in Tab. 3.

4.7. Computation of the pignistic probabilities

This section describes the final step of the face modelling (Fig. 2d) to
get pignistic probabilities. The transformation of the mass functions m into
the probabilistic framework is necessary for the tracking operated by particle
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Table 3: Fusion of mc∗ and mv by the conjunctive rule as a function of the pixel position
(inside or outside the bounding box)

A m for p ∈ BB m for p /∈ BB
∅ mc∗({H2}) · γt mc∗({H1}) · γt
{H1} mc∗({H1}) +mc∗(Ω) · γt mc∗({H1}) · (1− γt)
{H2} mc∗({H2}) · (1− γt) mc∗({H2}) +mc∗(Ω) · γt

Ω mc∗(Ω) · (1− γt) mc∗(Ω) · (1− γt)

filter (section 5.1). The pignistic probability BetPp(.) associated with the
face class is:

BetPp({H1}) = m({H1}) +m(Ω)/2, (22)

so

{
BetPp({H1}) = mc∗({H1}) +

(
1+γt

2

)
mc∗(Ω), ∀p ∈ BB

BetPp({H1}) = (1− γt)
[
mc∗({H1}) + 1

2
mc∗(Ω)

]
, ∀p /∈ BB (23)

Since BetPp belongs to [0, 1], it is multiplied by 255 in order to display a
legible grey level image of this probability (like in Fig. 5).

Tab. 4 summarizes the evidential face model behaviour when the pixel
hue is either close to that of the face (mc∗({H1}) → 1), really different
(mc∗({H2}) → 1) or in between (mc∗({H2}) → 0.5), according to the VJ
detector reliability parameter γ and to the colour uncertainty mc∗(Ω).

The performance of the evidential model depends both on the colour
model quality and on the VJ face detector reliability (Fig. 7). Face is correctly
detected if both γ ≥ 0.5 and mc∗({H1}) +mc∗(Ω) ≥ 0.5. A too low value of
γ (γ < 0.5) limits the influence of the VJ face detector and finally reduces
the evidential model to a simple skin colour detector. A too high value of γ
(γ > 0.9) can be counter-productive when the VJ detector fails and focuses
on an artifact with colour close to skin hue. Therefore we recommend to
initialize the γ value such as 0.7 ≤ γ0 ≤ 0.9. Note that when the VJ face
detector is in default, i.e. when it does not deliver any bounding box, γ is
set to zero.

5. Probabilistic face tracking

This section describes the second part of the processing, namely the face
tracking procedure (cf. Fig. 1b) that takes place after the face model de-
tection. Face tracking is defined as the process of estimation of the shape,
appearance, position and orientation parameters of one (or more) face along
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Table 4: Outputs of the evidential model: fusion of colour masses mc∗(.) and VJ face
detector reliability γ.

mc∗(.) VJ mc∗(Ω) BetPp({H1}) decision
{H1} {H2} γ p ∈ BB p /∈ BB p ∈ BB p /∈ BB

0 0 0 {H2} {H2}
0 1 0.5 0 0 0 {H2} {H2}

1 0 0 {H2} {H2}
0 0.5 0.5 indecisive indecisive

0.5 0.5 0.5 0 0.5 0.25 indecisive {H2}
1 0.5 0 indecisive {H2}
0 1 1 {H1} {H1}

1 0 0.5 0 1 0.5 {H1} indecisive
1 1 0 {H1} {H2}
0 0.5 0.5 indecisive indecisive

0 0 0.5 1 0.75 0.25 {H1} {H2}
1 1 0 {H1} {H2}
0 0.25 0.25 {H2} {H2}

0 0.5 0.5 0.5 0.375 0.125 {H2} {H2}
1 0.5 0 indecisive {H2}
0 0.75 0.75 {H1} {H1}

0.5 0 0.5 0.5 0.875 0.375 {H1} {H2}
1 1 0 {H1} {H2}
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time. The goal is to obtain in real-time the trajectory of the target (or tracked
object) in the video stream [44]. Tracking techniques can be grouped into
three categories, some of them already mentioned in section 2 about de-
tection: (i) first, low level methods achieve tracking by performing colour
segmentation, e.g., mean-shift [45], background substraction in the case of
uniform or stationary background, or optical flow estimation; (ii) second,
snakes or AAM track the face by template matching [46, 47]; (iii) finally,
filtering methods perform a temporal tracking by predicting the future state
(localization) of a dynamic system (the target) using past measurements.
Kalman filtering is employed for Gaussian uni-modal models whereas par-
ticle filter is widely used for nonlinear models, non-Gaussian processes [48].
Klein [49] implements an efficient approach for several visual tracking situa-
tions which combines disrupted sources using contextual information brought
by a particle filter. An extension of Bayesian particle filters to the Dempster-
Shafer theory is proposed in [50]. The algorithm presents an original solution
to the problem of multi-camera people tracking in indoor environments.

In our application context, the face is a deformable object placed rela-
tively close to the camera, whose egomotion is unpredictable with frequent
direction changes. The scene is a priori cluttered with a varying background
due to camera mobility. Therefore we have chosen a probabilistic tracking
method by a bootstrap particle filter as this technique is efficient for objects
with nonlinear trajectory and as it takes into account the temporal redun-
dancy between frames. The goal is to estimate the parameters of a state
vector denoted by Xt which represents the cinematics of the target, i.e. the
face at time t. The outer contour of the face is approximated by an ellipse
with centre (xct , yct), main axis ht, minor axis lt and orientation θt. These
parameters are grouped into the state vector Xt = [xct , yct , ht, lt, θt]. The
particle filtering applies a recursive Bayesian filter to several hypothetical
face locations, and merges these hypotheses according to their likelihood,
conditionally to the predicted state.

The observation used as input for the particle filter is Yt = BetP , i.e.,
an image whose high-value pixels indicate the presence of the face at time t.
Knowing these observations Yt allows to recover the a posteriori probabilities:
the particle filter estimates the posterior conditional probability distribution
p(Xt|Y1:t) under the form of a linear combination of weighted Dirac masses

called particles. A particle Λ
(n)
t = {λ(n)

t , ω
(n)
t } represents an hypothesis on

the state of the target. λ
(n)
t denotes position and ω

(n)
t denotes weight assigned
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to the nth particle at time t. The a posteriori law is approximated by:

p(Xt|Y1:t) ≈
N∑
n=1

ω
(n)
t δ

λ
(n)
t
. (24)

Let us recall that the evidential face model constitutes the entry to the
tracking filter (Fig. 1). The tracking algorithm begins classically with an
initialization step (Fig. 8e). The zone of the face selected manually by the
user during the learning stage is used to intialize the parameters of Xt. Then
the algorithm is organized according to two main successive stages depicted
in Fig. 8f and 8g: (i) first, the coordinates of the centre of the state vector
(xct , yct) are estimated by particle filtering (section 5.1); (ii) then, the ellipse
size and orientation (ht, lt, θt) are estimated by a second particle filtering
(section 5.2). If necessary, a resampling operation [51] is triggered inbetween
(Fig. 8h): it occurs when the informative content associated with the particle
estimating the the state vector position is lower than a preset threshold value
NRthresh (typ. set to 10000 for an image size of 400×400, which is about 5%

of image size). In that case, all the weights are equally reset to: ω
(n)
t = 1/N ,

where 50 ≤ N ≤ 100 is the number of particles. Then, one draws randomly
new positions of the face by propagating particles following a uniform law
UX . When a particle finds a face zone again, the filter converges after a few
iterations, which ensures tracking to resume.

Figure 8: Block-diagram of the tracking algorithm by particle filtering.
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5.1. Estimation of the ellipse centre

The state vector is reduced here to Xt = [xct , yct ]. A simple dynamic
model inspired by the work of Pérez [52] randomly distributes the centers of
the particles in the image so that:

p(X̃t|Xt−1) = (1− ν)N (X̃t|Xt−1,Σ) + νUX̃(X̃t) (25)

where N (.|µ,Σ) is a normal Gaussian law with average µ and covariance
Σ. The diagonal matrix Σ = diag(σxct , σyct ) = diag(5, 5) sets the a priori
constraints: it gives the variances imposed to the position components of
the state vector. The coefficient ν weights the uniform distribution: 0 ≤
ν ≤ 1. It accounts for the rare erratic face movements acting as jumps
in the video sequence. It also helps the algorithm resume tracking after a
momentary period of partial or total occlusion. This uniform component is
heuristically set to ν = 0.1 so that the majority of particles (90%) remains
around the centre predicted at time t − 1. It ensures some inertia in the
particle distribution along time. A too high value of ν is counter-productive
in presence of multiple or erratic blobs in the frame. Indeed the risk of
multiple jumps is increased, that can cause filter instability.

In Fig. 9a, the influence of the Gaussian distribution is characterized
by the concentration of most particles around the centre estimated from
the previous image. We see the influence of parameter ν as a few isolated
particles spread over other regions in the image background.

After the particle prediction, the filter evaluates the adequacy of Yt mea-
sured in the predicted ellipse X̃

(n)
t with the face model data to compute the

likelihood p(Yt|X̃t). The level of adequacy is expressed by the quadratic sum
of pignistic probabilities BetPp({H1}) contained inside the ellipse. Hence the

estimated weight of each particle Λ
(n)
t is given by:

ω̃
(n)
t =

∑
p∈X̃(n)

t

[BetPp({H1})]2. (26)

The adequacy criterion is the maximum likelihood. It selects the most
significant ellipse and its centre defines the position components of the state
vector (Fig. 9b).

The nonlinearity (quadratic sum) used to compute the weight ω̃
(n)
t favours

particles containing pignistic probabilities of high values. The transformation
of the mass set into pignistic probabilities (Eq. 23) ensures the compatibil-
ity with the probabilistic framework of the particle filter (the compound
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hypothesis Ω does not appear any more). The mutual exclusion principle
which stipulates that two hypotheses must be antagonist is respected. This
is the justification of the pignistic probability choice as the output of the face
model.

5.2. Estimation of size and pose

The size and pose components at time t are predicted by running again
the particle filter with the same dynamic model as given by Eq. 25, but with
the state vector reduced to Xt = [ht, lt, θt] (as particles are now propagated
according to size and pose only, around the center (xct , yct) estimated pre-
viously in section 5.1) and with the parameter setting ν = 0. Indeed it is
not relevant to take erratic variations of the size and pose parameters of the
state vector into account. Fig. 9c illustrates the distribution of the different
predicted ellipses around the centre xct , yct .

a) b) c) d) e)

Figure 9: Sequence #2: a) particles during the centre estimation stage (N = 50);
b) position filtering result; c) particles during the size and pose estimation step;
d) measured ellipse (observation); e) ellipse filtering result.

For the correction step, the following observation is used: the pignistic
probabilities stemming from the evidential model are first binarised using
a simple thresholding technique. Then a morphomathematical operation of
image filling is applied to this image in order to exhibit a shape (in grey
on Fig. 9d) around the center (xct , yct), whose contour is extracted. Finally
an elliptic approximation of this contour based on a least squares fitting
method [53] yields a measured ellipse, which constitues the new observation

(in red on Figure 9d) whose parameters are denoted by X̂t =
[
ĥt, l̂t, θ̂t

]
. The

correction step evaluates the importance weight ω̃
(n)
t as inversely proportional

to the Euclidian distance between the predicted ellipse and the measured one
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(Eq. 27).

ω̃
(n)
t = p

(
Y

(n)
t |X̃

(n)
t

)
∝ 1

(ĥt − hnt )2 + (l̂t − lnt )2 + (θ̂t − θnt )2
(27)

At last, the maximum likelihood criterion selects the most significant parti-
cle: among all the predicted ellipses around the previoulsy estimated center
(Fig 9c) the algorithm selects the one (Fig. 9e) whose size and pose are closest
to the observation (measured ellipse in red on Fig. 9d). Note that maximal
values of variance Σmax = diag(σht , σlt , σθt) = diag(5, 5, 0.1) imposed in the
model ensure that particles deviate little from the state vector components
estimated at time t− 1.

5.3. Visual servoing

The visual servoing controls the three degrees of freedom (panoramic,
tilt, zoom) of the PTZ camera (Fig. 10). The purpose is to keep the face in
the center of the image plane, and this with a reasonable size (approximately
10% of the image size). The tracking (task of centering) and the zoom control
(scaling) strategies are elaborated by a classic approach [54].

Figure 10: Visual servoing scheme: X∗
t = [0, 0, 120, 100, 0] is the servoing command

and Xt is the state vector coming from the particle filter.

Fig. 11 shows the visual servoing behavior. On image im15 the face is
located on the left side of the field of view. The joint action of panoramic
motion and zoom focuses the face in the center of the image plane in image
im18. From image im20 to im24, the operator moves backward (and hence
gets smaller). Then, the control of the zoom and the vertical movement of
the camera (tilt) allow to refocus the face in the center of the image with the
desired size (image 29).
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im15 im18 im20 im24 im26 im29

Figure 11: Tracking results with visual servoing of the camera in position (pan and tilt)
and control of the zoom (for sequence #8).

6. Performance analysis

Performance evaluation of tracking systems is mandatory. However this
requires both the definition of quantitative criteria like precision, robustness
or execution time, and the availability of a ground truth (GT), that is, a set
of data coding the real positions of the face image by image. However the
task of obtaining the GT by a human expertise is relatively subjective and
tedious. Here, we consider the face present in the image when a sufficient
part of its skin is visible. Hair is not taken into account. Faces can be viewed
full-frontal but also from aside (Fig. 3). During a total occlusion, the face is
supposed to be missing.

6.1. Qualitative evaluation

The algorithm behaviour is illustrated with two sequences: (i) in the
presence of total or partial occlusion and pose variations with sequence #1
registered in our laboratory, (ii) in the presence of pose changes, lighting
and background variations, disruptive elements (the operator removes then
puts his glasses back again) with complex sequence David Indoor used in
numerous recent articles [55].

In sequence #1 (Fig. 12), the Viola and Jones masses increase the in-
formative content in the face zone on images im57 and im73: the pignistic
probabilities are most significant (white pixels in Fig. 12b) on the face zone
where colour and VJ attributes are fused, but not on other skin colour regions
(arms, hands, or neck). No bounding box is delivered by the VJ detector in
the case of images im60, im66, im69, so that γt = 0 is set in the evidential
model since only colour information is valid. Therefore, in the presence of
total occlusion (im66), the resulting ellipse lies on the hand of the user. The
uniform component (ν = 0.1) of the particle filter dynamic model (Eq. 25)
ensures a correct repositioning when a candidate particle locates again on
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im57 im60 im66 im69 im73 im80

a

b

c

d

Figure 12: Face tracking for sequence #1: a) Bounding box (in red) supplied by the VJ
face detector; b) Pignistic probability stemming from the face model; c) Particle filter
particles during the centre estimation step of Xt; d) Ellipse resulting from particle filter.

im202 im300 im351 im465 im598 im604

a

b

Figure 13: Results of tracking on sequence David Indoor: a) evidential fusion (pignistic
probability BetPp(H1)); b) ellipse positioning.
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the face zone (im73). The VJ information may degrade the tracking quality
when the VJ detector focuses on a face-like artifact (frame im80). An impor-
tant conflict (KBB = 0.7) is measured inside the VJ bounding box. Then the
adjustment of parameter γt (γt → 0.24 as γ0 = 0.8) favours more the colour
information and the resulting ellipse correctly lies on the face.

In the sequence of Fig. 13, the learning stage is set up on an underexposed
frame (im200), but not on the first frame of the video sequence as usually.
Indeed the complete absence of lighting on this first frame precludes the
exhibition of a prior model representative of the skin colour.

On frames im202 and im300, the pignistic probabilities are most significant
in the face zone where colour and VJ attributes are fused. As the person
leaves the under-exposed hall (frame im351) tracking remains efficient: no
updating of the evidential model is necessary even if the illumination con-
ditions have changed. As the face is in profile in frame im465, no bounding
box is delivered by the VJ detector and only colour information is consid-
ered (γt = 0). When hands are in contact with the face in frame im598, the
estimations of center and pose remain correct. When the hands go away
from the face, they are not tracked any longer (frame im604). This shows
the robustness of the proposed method: the presence of disruptive elements
alters weakly pose and size estimation and only slighty perturbs the tracking
in position.

6.2. Quantitative evaluation

In order to quantify the tracking performances in various contexts on
statistically significant data, we have manually segmented (i.e. cut-out) the
face in 1,400 images of 7 video sequences registered in our laboratory (giving
the ground truth GT at a rate of 1 image per second, which is appropriate for
the application), and in 500 images of the David Indoor benchmark sequence
[55].

Additional sequences complement those already presented in Fig. 12 and
Fig. 13: in sequence #2 another person moves in the background (Fig. 3b);
in sequence #3 a woman with red make-up rotates on her chair (Fig. 3c); in
sequence #4 the person dressed with a reddish tee-shirt is in front-view and
removes his glasses (Fig. 3d); in sequence #5 a black person goes away from
the camera; in sequence #6 a person moves his head near the camera and in
sequence #7 a person rotates on his chair and removes his glasses.

Pixels located inside the cut-out face represent the ground truth (GT ).
The tracking algorithm delivers an ellipse denoted by ROI (region of interest)
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derived from the particle filter. True positive pixels (TP ) belong to the
intersection: TP = GT ∩ ROI, whereas false positives (FP ) lay outside of
GT : FP = ROI ∩GT .

Two measures are used to quantify the tracking performance, namely the
Precision and the Recall defined as follows:

Precision =
|TP |
|ROI|

Recall =
|TP |
|GT |

. (28)

Precision is the probability that a pixel detected as a face pixel is actually
a face pixel: it is computed as the ratio of the correct measures (TP ) on
all measures taken (ROI = TP ∪ FP ). Recall is the probability that a
face pixel is detected: it is computed as the ratio between correct measures
and the whole ground truth (as GT = TP ∪ FN). False negative pixels
(FN) belong to the intersection: FN = ROI ∩ GT . Precision and Recall
are computed individually on every image. They are then averaged on each
sequence to precisely exhibit the influence of the parameters in every context,
and finally on all the data to assess the global performance of the proposed
method. From these measurements, the ROC curves (Receiver Operating
Characteristics) are built with coordinates x = (1−Precision) and y = Recall,
drawn for various values of the influence parameters. The point of the curves
closest to the ideal point (x = 0; y = 1) corresponds to the best setting of the
parameter value. This study gives the sensibility of the method to the VJ
detector reliability parameter γ and to the compromise parameter η (section
4.5.3).

Three ROC curves are displayed in Fig. 14. The curve “all data” shows
the global tracking performances resulting from the whole dataset whereas
the curve “seq.#1(cautious rule)” shows only results from data-subset of
sequence #1. The curve “seq.#1(compromise rule)” displays the best per-
formances obtained with the approach presented in section 4.5.3.

The curve “all data” indicates that when colour information only is used
(i.e., γ = 0), the global tracking quality is poor (Precision ≈ 0.57, Recall ≈
0.82). Tracking is notably improved by a weak contribution of the VJ de-
tector and the best performances are reached for γ ≈ 0.3 (Precision ≈ 0.63,
Recall ≈ 0.72). When γ increases (γ > 0.6), the VJ information plays a
major role in the evidential face model. Precision is quasi-constant (≈ 0.73)
while Recall is poor and little varies (∈ [0.53; 0.56]).

The point drawn for the adaptive parameter γ = γt shows the tracking
performances obtained when the discounting factor by feedback is imple-
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Figure 14: ROC curves: “all data” resulting from the whole dataset (with γ ∈ [0, 1]
and with γ = γt); “seq.#1(cautious rule)” resulting from the data-subset of sequence #1
with γ ∈ [0, 1]; “seq.#1(compromise rule)” resulting from the data-subset of sequence #1
for the approach presented in section 4.5.3 (with γ = 0.1 and η ∈ [0, 1])

a) b)

Figure 15: Tracking results (centre location error) on the sequence David Indoor, with:
a) the proposed method b) various algorithms according to Babenko [55].
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mented (Eq. 21). This dynamic setting of γ leads to a performance opti-
mization (Precision ≈ 0.79, Recall ≈ 0.67).

For sequence #1 where the face is often in profile or hidden, the colour
masses are more relevant than the VJ ones. Two approaches are compared:
(i) the method (in section 4.5.3) that uses a scant Appriou model (only
one prior model p(sj|H1)) and a compromise rule to merge the colour mass
functions in the face evidential model, (ii) the more complex model in current
work that uses a rigorous Appriou model and the cautious rule to fuse the
colour mass functions. For the first model, the optimal performances are
reached when γ = 0.1 and for a value of the compromise parameter correctly
adjusted, i.e., η ≈ 0.65 (Fig 14, seq.#1 compromise rule). So, a joint action
of compromise on the colour masses and moderation on the VJ masses leads
to performance optimization (Precision and Recall ≈ 75%). The second
model improves the optimal performances of the first one (Fig 14 seq. #1
cautious rule) for 0 < γ < 0.4 (Precision and Recall ≈ 80%). Results are
comparable to those of standard classifiers whose detection rate reaches 70
to 80% [56].

This comparative study shows that the best performances are reached
with the complex evidential face model. It is also more robust w.r.t. context
variations. However the searching of more simplicity can be profitable: (i)
the settings are made easier because of the low number of parameters, (ii)
the computation cost is reduced what is useful for real time applications.
Satisfactory performances are reached with the simplest method for a partic-
ular sequence with a parameter setting adapted to the application context.
So this simple algorithm could be preferred when the background and the
lighting conditions vary in a limited way during the video sequence.

Another important evaluation criterion for the assessment of the algo-
rithm performance is the center location error denoted by:

ε =
√

(xGTt − xct)2 + (yGTt − yct)2,

where xGTt , yGTt are the coordinates of the face gravity centre given by the
ground truth (GT ), whereas xct , yct are the center location coordinates of the
detected ellipse (ROI).

With a location error lower than εmax = 30 pixels during the majority
of the sequence (Fig. 15a), our algorithm exceeds the performances of the
best algorithm (MILTrack) evaluated in [55] (Fig. 15b). Our approach fails
locally on the images 380 to 430, i.e., when our algorithm positions on an
artifact.
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In Tab. 5, the mean location error εmean and the standard deviation Σmean

are estimated on the whole set of images for: (i) each sequence, (ii) all
sequences (all data). The average localisation error is of 23 pixels with a
standard deviation of 36 pixels. These performances are of the same order
as those presented in the literature about face tracking by particle filter.
The average localisation error during the tracking is of 22.4 pixels with the
Condensation algorithm and of 16.3 pixels with the adaptive particle filter
APF [57].

Table 5: Mean location error and standard deviation of: sequences #1 to #7, the sequence
David Indoor and the whole set of images

Seq #1 #2 #3 #4 #5 #6 #7 Dav Ind all data
Mean 24 17 56 17 11 13 32 15 23
Std 36 12 61 19 4 30 47 11 36

As regards the computation cost, the processing time is ≈ 1s/image for
an image of size 400 × 400 with a Pentium 4, CPU 2.4 GHz and 500 Mo of
RAM memory. The computation simplicity makes this method usable in a
real-time video (even if it is not the case in our actual prototype developed
with Matlab and LabVIEW to make simulations easier).

7. Discussion

This paper has presented an original method both for face detection based
on an evidential modelling and for face tracking with a classical bootstrap
particle filter technique. Our previous theorical contribution was to propose
a compromise operator in the colour fusion process. Here we adopt another
strategy which takes the background class H2 in addition to face class H1 into
account. Concerning the face tracking application, Precision and Recall rates
may reach 80% with an adequate parameter setting, but noteworthy without
having to build a huge learning database, which is the originality of our
approach. The computation simplicity makes this method usable in a real-
time video. Our results show a robustness improvement of the dynamic fusion
thanks to idempotent combination rules which limit the belief contraction.
By setting jointly the adaptive parameter values of the evidential model and
the particle filter, we show that it is possible to finely tune the tracking
behaviour.
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The statistical results of section 6.2 confirm the qualitative observations
reported in section 6.1. In the current work, the optimal setting of param-
eter values (γ = 0.3) is deduced from the averaging of experimental results.
Consequently, this study poorly estimates the setting of the parameter for
a transient variation of context on a part of the video sequence (but it still
works). A time-dynamic adjustment of parameters is required to improve
the tracking robustness (as done for γ in Eq. 21).

As future works, the dynamic setting of the algorithm parameters is un-
der investigation. Besides, distinct values for parameter γ could be canvassed
(γ1 6= γ2) and also various values for parameters dij. Indeed, a priori knowl-
edge about the acquisition could be used for that purpose: red is maybe
more relevant than blue (⇒ di1 > di2). Moreover, the learning of the face
class H1 is certainly more accurate than the learning of the non-face class H2

(⇒ d1j > d2j). The bounding box may be more reliable for the face model
than for non-face model (⇒ γ1 > γ2). The mass function modelling could
also be improved by using a rough learning on the ground truth in the first
image at initialisation, to estimate the rates TP , FP , TN , FN and then
maximize the beliefs.
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