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Chapter 6

Spherical harmonic Lattice Sums for Gratings

Brian Stout

Institut Fresnel,Marseille, France
brian.stout@fresnel.fr

6.1 Introduction to particulate gratings

Lattice sums of spherical harmonic functions are well suited for modeling gratings composed
of periodic arrays of identical discrete particles, henceforth referred to as particulate gratings
(cf. fig. (6.1)). By discrete particles, we mean that the particles have a physical boundary such
that there exists a region between the individual particles that is governed by the host material’s
constitutive relations. This feature makes particulate gratings somewhat different from most
of the other diffraction grating problems studied in this book which are usually characterized
by a substrate and a superstrate with distinct constitutive parameters. The techniques of this
chapter can be extended to include the effects of a nearby planar interface,[26, 27, 28] but such
considerations complicate the problem somewhat and this chapter therefore concentrates on
substrate-free particulate gratings.

Figure 6.1: Particulate grating with lattice vectors aaa and bbb.

Theoretical analysis of the particulate grating problem can draw on both single-particle
scattering theory and techniques originally developed for solid state physics. The solid state
analogy is clear from the similarity of this problem to the scattering of waves by crystal lattices,
particularly in the “muffin tin” approximation[25]. Summations of the spherical harmonic fields
scattered by the (infinite) number of particles in the lattice involve semi-convergent series and
will generally go under the name of “lattice sums”. By lattice sum, we mean sums of the form

mailto:brian.stout@fresnel.fr
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∑Λ Φ
(
rrr j
)

where Λ refers to the ensemble of points, rrr j, in a periodic lattice, and Φ is a given
function.

Lattice sums have applications in many fields and their study dates back to the 19th cen-
tury treating conditionally convergent sums of solutions to the Laplace equations (most notably
in the Madelund constant of ionic crystals). Nevertheless, they were not always recognized
as a specific branch of study, and their derivations tended to be scattered throughout the liter-
ature. This situation is changing however with the appearance of extensive reviews in recent
years[15, 16, 19, 20]. Furthermore, another monograph, dedicated entirely to lattice sums, is
appearing at the same time as this one.[3]

As developed in detail in the aforementioned monograph, the study of the (scale invari-
ant) Laplace equation lattice sums have generated a number of important analytic results. The
grating problem on the other hand involves propagating waves and consequently requires lattice
sums of Helmholtz-type solutions. Although there are fewer fully analytic results for the (scale
dependent) Helmholtz lattice sums than for the Laplace equation case, analytic manipulations
remain essential for regularizing and accelerating a numerical analysis.

In solid-state physics, Helmholtz (i.e. Schrödinger) equation lattice sums are a key aspect
of the Korringa-Kohn-Rostoker (KKR) methods for band-structure calculations in crystals.[22,
14, 13] In KKR theory, lattice sums intervene in the calculation of the “structure constants” of
the lattice Green function and their regularization generally goes under the name of Ewald sum
techniques. The Ewald sum method is quite intricate, but its basic principle can be viewed as
separating a semi-convergent sum into slowly and rapidly convergent parts and then to transform
the slowly convergent part into reciprocal space via the Poisson sum formula where it becomes
a rapidly convergent series.

Although Ewald sum methods are proven to be quite efficient for most of the prob-
lems encountered in solid state physics, there utility has been repeatedly criticized for grating-
type applications (requiring numerically unwieldy evaluations of incomplete Gamma functions
with negative real arguments[32], poor numerical properties for high multipole orders or large
wavenumber, k ). A number of authors have consequently looked for alternative lattice sum
techniques since the pioneering work of Kerker over 30 years ago. In this chapter, we simply
discuss and compare some of our preferred methods in the appendices. Our emphasis will in-
stead be placed on painting a complete gratings-picture analysis capable of describing both near
and far-field phenomenon in particulate gratings.

The matrix elements of the Ω propagation matrix introduced in section 6.3.3 correspond
to the “structure constants” of a KKR theory. More precisely, due to the differences between
the Schrödinger equation and Maxwell’s propagation equation, the Ω matrix elements can be
written as a superposition of the KKR structure constants. In both KKR and particulate grating
theory, one desires to calculate the lattice Green function. A fundamental method choice in this
chapter is to use the language of T-matrices. Notably, we will see that the quasi-periodic Green
function can be expressed as a lattice sum of multiple-scattering T-matrices. The multiple-
scattering T-matrices themselves are calculated in terms of the single-particle T-matrices, and
the Ω matrix.

The T-matrix manipulations are carried out on a basis set of solutions to the Helmholtz
equation, which we generally refer to as partial waves, (PWs), also commonly referred to as
spherical wave functions (SWFs). This T-matrix approach is also generally adopted in the KKR
calculations[22], but in the light scattering community, the terminology “T-matrix method” is
often considered to be synonymous with extended boundary condition technique (also called
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Null-field methods), but the T-matrix is a general theoretical construct that relates the field
incident on a particle to the field scattered by the particle. As such, it can be seen as providing
a complete solution to the single-particle scattering problem. In practice, the T-matrix can be
generated by a wide variety of techniques including DDA, method of moments, and fictitious
source techniques.

The T-matrix of an individual particle depends on the shape and the constitutive parame-
ters of the particles, both of which can be quite arbitrary as long as the particle response is linear
(including anisotropic constitutive parameters, magnetic permeability contrast etc.). However,
since the T-matrix can be viewed as being the complete solution of a 1-body problem, its deter-
mination can be viewed as being separate from the grating problem. In this chapter, we simplify
the T-matrix part of the problem by considering only isotropic spherical scatterers. The T-matrix
of such scatterers is diagonal in the partial wave basis with its elements being determined an-
alytically from Mie theory. We insist however, that for particulate gratings composed of more
exotic scatterers, it generally suffices to insert the appropriate T-matrix to obtain the response of
lattices composed of such scatterers. We refer the interested to reader to reviews of the T-matrix
methods.[17, 18]

The methods developed in this chapter can be adapted to the study gratings composed
of periodic infinite cylinders. However, there are fundamental differences in the mathematics,
since this problem is usually addressed by solving 2-dimensional Helmholtz equations. We
therefore neglect this problem in order to concentrate on the fully 3-dimensional problem of
particulate gratings like those of figure 6.1.

The first five sections constitute the heart of this chapter since they describe the gen-
eral mathematical analysis of gratings using spherical harmonic lattice sums. The last four
sections treat numerical methods for calculating lattice sums and special functions. Support
material, corrections, and erratum will be made available and updated during the year 2013 at
www.fresnel.fr/perso/stout/index.htm.

6.2 Waves and partial waves

A fundamental aspect of the particulate gratings is that they can be viewed as a multiple-scatting
phenomenon with light propagating through the host medium between individual scatterings
events. The wave equation for light in this homogeneous isotropic medium is:

∇∇∇×∇∇∇×EEE + k2EEE = 000 , (6.1)

where k =
√

εrµr
ω

c is the wavenumber of the host medium. Solutions of eq.(6.1) satisfy both
the vector Helmholtz equation,

∆EEE + k2EEE = 000 , (6.2)

and the additional constraint that the longitudinal field components are null:

∇∇∇ ·EEE = 0 . (6.3)

A basis set for solutions to the vector Helmholtz equation of eq.(6.2) can be readily con-
structed starting from the scalar Helmholtz equation:

∆ϕ + k2
ϕ = 0 . (6.4)

http://www.fresnel.fr/perso/stout/index.htm


6.4 Gratings: Theory and Numeric Applications, 2012

As well established in textbooks, eq.(6.4) can be solved by separation of variables in spherical
coordinates with ‘regular’ solutions taking the form of spherical harmonics, Yn,m multiplied by
spherical Bessel functions, jn (kr), that are regular for all values of r. There are also ‘irregu-
lar’ solutions spherical Neumann functions, yn (kr), that have essential singularities as kr→ 0.
Details concerning the properties and calculation of the Yn,m (θ ,φ) are given in section 6.8.1.

The spherical coordinate solutions to eq.(6.4) will henceforth be referred to as scalar
partial waves and will be defined as:

Jn,m (krrr)≡ jn (kr)Yn,m (r̂rr) , and Yn,m (krrr)≡ yn (kr)Yn,m (r̂rr) . (6.5)

The regular partial waves, Jn,m, can serve as a basis set for any source free incident field
solution to eq.(6.4). Outgoing partial waves solutions of the Helmholtz equation, denoted Hn,m,
will be of primary interest in grating theory since they will be used to describe fields scattered
by the grating. They are defined as a superposition of the regular and irregular partial waves:

Hn,m (krrr)≡ hn (kr)Yn,m (r̂rr) = Jn,m (krrr)+ iYn,m (krrr) . (6.6)

Incident field solutions to the vector Helmholtz equation of eq.(6.2) can be expressed as
scalar partial waves associated with unit vectors along each axis i.e.:

EEE inc (rrr) = x̂xx ∑
n,m

α
(x)
n,mJn,m (krrr)+ ŷyy ∑

n′,m′
α
(y)
n′,m′Jn′,m′ (krrr)+ ẑzz ∑

n′′,m′′
α
(z)
n′′,m′′Jn′′,m′′ (krrr) . (6.7)

The field scattered field scattered by a particle in the context of the vector Helmholtz equation
can likewise be developed in terms of the outgoing spherical waves:

EEEscat (rrr) = x̂xx ∑
n,m

β
(x)
n,mHn,m (krrr)+ ŷyy ∑

n′,m′
β
(y)
n′,m′Hn′,m′ (krrr)+ ẑzz ∑

n′′,m′′
β
(z)
n′′,m′′Hn′′,m′′ (krrr) , (6.8)

provided that the coordinate system origin is chosen to lie inside the particle and that the field
description is applied only to regions lying outside the particle. The field in eq.(6.8) repre-
sents the field scattered by a single scatterer, so the grating problem in terms of partial waves
must sum over the field scattered by all the particles in the lattice. Finding efficient ways for
calculating the lattice sum will therefore figure prominently in the subsequent sections of this
chapter.

Before studying T-matrices in the next section, we first address an important technical
issue. The field expansions in eq.(6.7) and eq.(6.8) have both transverse and longitudinal com-
ponents and therefore are not generally solutions of the light propagation problem of eq.(6.1).
The transverse wave condition of eq.(6.3) can be satisfied by requiring that the Cartesian field
coefficients, α

(x,y,z)
n,m , (and respectively β

(x,y,z)
n,m ) satisfy certain relations amongst themselves.

The important point is to remark that the constraint conditions, although somewhat complex
in spherical coordinates, only affect the partial wave coefficients, and not the partial waves
themselves. Consequently, in the rest of this chapter, we can generally restrain our attention to
lattice sums of scalar partial wave sums even though the end goal is describe electromagnetic
field scattering.

Expressing the transverse vector partial waves in terms of the Cartesian axis partial waves
of eq.(6.7) or eq.(6.8) is a relatively complex affair involving angular momentum coupling
formalism, coordinate transformations, and recurrence relations.[21] Consequently, it is more
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common to invoke one of the various methods that have been devised over the years to directly
generate transverse partial waves: Debye potentials, Hertz potentials, the Boulenkamp-Casimir
approach[10], pilot vector techniques[5], etc. Whatever one’s “preferred” technique and nota-
tion, the two types of transverse partial waves, ΨΨΨJ ,q,p (often denoted MMMJ ,p and NNNJ ,p in the
literature), can be expressed:

ΨΨΨJ ,1,p (krrr)≡ jn (kr)XXXn,m(r̂rr)

ΨΨΨJ ,2,p (krrr)≡ 1
kr

{√
n(n+1) jn (kr)YYY n,m(r̂rr)+ [kr jn (kr)]′ZZZn,m(r̂rr)

}
, (6.9)

where XXXn,m, YYY n,m, and ZZZn,m are the vector spherical harmonics (VSHs), (described in section
eq.(6.9.3)). The first subscript, J , on ΨΨΨJ ,q,p serves to indicate that the radial dependence is
governed by spherical Bessel functions. A value of q = 1 in the second subscript indicates a
“transverse electric” (TE) type wave (i.e. possessing no radial electric field component), while
q= 2 indicates transverse magnetic (TM) waves. In order to minimize the number of subscripts,
we adopt the common procedure that the third subscript p of ΨΨΨJ ,q,p, replaces the two multipole
subscripts n and m by defining its value such that[31]:

p(n,m)≡ n(n+1)−m . (6.10)

With the notation of eq.(6.9), one can express any incident field satisfying equation (6.1)
in terms of the transverse vector partial waves:

EEE inc (rrr) = E ∑
q=1,2

∞

∑
p=1

ΨΨΨJ ,q,p (krrr)aq,p , (6.11)

where aq,p are (dimensionless) field coefficients, and E is a constant with the dimension of
electric field and which can be used to adjust the field strength. With this notation, the field
scattered by a particle whose circumscribing sphere is centered at a position xxx j can be written:

EEEscat
(
rrr j
)
= E ∑

q=1,2

∞

∑
p=1

ΨΨΨH ,q,p
(
krrr j
)

f ( j)
q,p , (6.12)

where rrr j ≡ rrr−xxx j, and f ( j)
q,p are the scattering coefficients of the particle j. The index, H . on the

ΨΨΨH ,q,p indicates that the radial dependence should be governed by spherical Hankel functions,
hn (kr), rather than the spherical Bessel functions, jn (kr), found in the ΨΨΨJ ,q,p functions of
eq.(6.9).

6.3 T-matrix theory

6.3.1 Green functions and T-matrices

The fundamental object that one would like to calculate in a multiple-scattering system (like
a particulate grating) is the system Green’s function. However, the dyadic Green’s function
for a homogeneous medium has a strongly singular behavior and needs to be defined in the
context of distributions.[5] The T-matrix formalism allows us to largely circumvent this singular
behavior, and also to work directly in terms of fields which is often more manageable than the
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relatively intricate dyadic Green’s function formalism. For instance, the operator form of the
Green function of a single object in a homogeneous medium can be written:

GGG = ggg+gggtttggg , (6.13)

where ttt is the isolated particle (or 1-body) T-matrix operator, and ggg is the Green function oper-
ator of the homogeneous medium (sometimes called a propagator). In this formalism, the sin-
gular behavior is relegated to the propagator, ggg, leaving the (non-singular) scattering response
due to the object being described by ttt.

Furthermore, when considering excitations outside the scatterer, the homogeneous Green
function, ggg to the right of the ttt operator acting on the sources generates the incident field, while
the ggg to the left of it generates the scattered field.[24] In the partial wave basis, ttt then truly
takes the form of a matrix, henceforth denoted, t, that relates the incident field coefficients to
the scattered field coefficients:

f = ta , (6.14)

where a and f are column matrices composed respectively of the incident field and scattered
field coefficients (cf. eqs.(6.11 and (6.12)).[30] The 1-body T-matrix, t, in this expression is
now truly a matrix relating field coefficients of partial wave field decompositions.

This T-matrix formalism can be extended to include systems containing N particles. The
system Green function can be written,

GGG = ggg+ggg

(
N

∑
j=1

TTT ( j)

)
ggg , (6.15)

where the multiple-scattering (or N-body) T-matrix operators, TTT ( j), are associated with each
particle and which incorporates all the multiple-scattering effects due to the presence of the
N− 1 other particles in the system. Passing once again to a partial wave field description, the
multiple-scattering T-matrix, T ( j), generates the field scattered by each particle in terms of the
field incident on the system:

f ( j) = T ( j)a( j) , (6.16)

where a( j) indicates the incident field developed on a coordinate system centered on the jth

particle. All multiple-scattering phenomenon and some rather subtle technical difficulties have
all been incorporated into the definition of T ( j), but nowadays they can be calculated rather
readily for systems with a finite number of particles starting from the 1-body T-matrices, t( j),
of the individual particles.[30]

The number of particles in a grating problem is infinite (from the ideal mathematical
standpoint), which given their physical content would render exact calculations of T ( j) im-
possible. Nevertheless, the fact that the system is identical when viewed from any lattice site
allows the T ( j) matrices to be calculated as a lattice sum as we shall see in section 6.3.3. We
first rapidly review below our notation and terminology for lattices.

6.3.2 Direct and reciprocal lattices

A lattice, Λ, of dimension dΛ, is invariant under a coordinate system translation along any
vector, rrr jjj, that can be expressed

rrr jjj =
dΛ

∑
i=1

jiaaai , (6.17)
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where aaai are the primitive lattice vectors, and jjj ≡ ( j1, ..., jdΛ
) is a shorthand notation for a set

of dΛ relative integers, ji ∈Z. In order to diminish the number of subscripts, we will sometimes
employ an alternative notation for the primitive lattice vectors: aaa ≡≡≡ aaa1, bbb ≡≡≡ aaa2, and ccc ≡≡≡ aaa3.
It also proves convenient to define the x and y axis of the system so that the primitive lattice
vectors can be expressed: aaa = (a,0,0), bbb = (bx,by,0), and ccc = (cx,cy,cz).

When dΛ = 3, the rrr jjj ensemble defines a crystalline type lattice, henceforth denoted (L), as
frequently encountered in photonic crystals and “meta-materials”. A two-dimensional grating,
or mono-layer lattice (ML), like that of figure 6.1, occurs when the system invariance only
occurs for 2D displacements of rrr jjj = jaaaa+ jbbbb. Finally, linear chains (C) are only invariant with
respect to translations of rrr j = jaaa.

The reciprocal lattice, Λ∗, is defined in terms of lattice ‘wave-vectors’, pppggg, defined in
terms of the primitive reciprocal lattice vectors, ãaai:

pppggg = 2π

dΛ

∑
i=1

giãaai , (6.18)

where gi ∈ Z. The primitive reciprocal vectors, ãaa j, are defined such that their scalar products
with respect to aaa j satisfy:

aaai · ãaa j = δi j i, j = 1, ...,dΛ . (6.19)

From eqs.(6.17) (6.18) and (6.19), one readily finds that the reciprocal lattice vectors, pppggg, of
eq.(6.18), have the property

rrr jjj · pppggg = 2πN , (6.20)

where N is some integer (which results in exp
(
irrr jjj · pppggg

)
= 1 for all rrr jjj and pppggg).

The unit cell “volume”, A , appears repeatedly in theories of particulate lattices. For
lattice dimensions of dΛ = 1, 2, and 3, the corresponding A1,2,3 is given by:

A1 = |aaa| dΛ = 1
A2 = |aaa×××bbb| dΛ = 2
A3 = |(aaa×××bbb) · ccc| dΛ = 3

, (6.21)

with dimensions of “length” for dΛ = 1, “area” for dΛ = 2 and “volume” for dΛ = 3. The
corresponding “volume” of the reciprocal space lattice sites are given by A −1.

6.3.3 Grating T-matrices

Each site of a lattice is identical to all the others so that the multiple scattering T-matrices of
eq.(6.16) are all equal, i.e. T ( j) = T . The scattering coefficients f ( j) are then given by:

f ( j) = Ta( j) . (6.22)

The trouble with this equation is that the coefficients f ( j) and a( j) are expressed on localized
partial wave basis, but the long range nature of scattered fields would require the T -matrices to
act on very high multipole orders in order to account for these long-rang interactions.

Since manipulating high multipole orders is numerically inefficient, one considerably
simplifies this problem by only calculating the multiple-scattering T -matrices for incident fields
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satisfying a quasi-periodic condition. Quasi-periodicity can be viewed as requiring the partial-
wave decomposition of the incident field on each lattice site, rrr jjj, to satisfy,

a( j) = eiβββ ·rrr jjja , (6.23)

where ‘a’ corresponds to the incident field coefficients at the origin, and βββ , the ‘on-shell’ quasi-
periodicity vector. The term ‘on-shell’ indicates that the quasi-periodic vector satisfy |βββ | = k,
and although this considerably restricts the type of incident fields (and modes) that one can
treat, it does correspond to many situations of physical interest including both homogeneous
and inhomogeneous plane-waves incident on diffraction gratings.

The quasi-periodic condition can be viewed as a partial Fourier transform description in
that the overall field behavior is of an oscillatory nature, while the quasi-periodic T-matrix,
Tβββ , describes local-field perturbations due to the presence of the particles. Consequently, one
expects the Tβββ matrices to be well approximated on a truncated (i.e. finite) partial-wave basis
(similar to the behavior of the isolated particle T-matrices[30]). The quasi-periodic condition
allows the Foldy-Lax equations for the multiple-scattering T-matrices to take the form:

Tβββ = t + tΩβββ Tβββ , (6.24)

where the Ωβββ matrix designates a quasi-periodic lattice sum of the irregular translation-addition
matrices:

Ωβββ (k,aaai≤d) = ∑
rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjH
(
krrr jjj
)
. (6.25)

The analytical properties of the irregular translation-addition matrix, H (xxx), are described in
section 6.8.3 where one also gives expressions for its matrix elements.

The exclusion of the ‘origin’ lattice site, rrr jjj = 000, from the sum in Ωβββ has a physical
significance in that it accounts for propagation of the light scattered by all the other particles
in the lattice onto the particle at the origin (the light ‘scattered’ by the particle onto itself has
already been included in the individual T-matrix, t). One finds in section 6.8.3 that each matrix
element of the translation-addition matrix, H

(
krrr jjj
)
, can be written:[

H
(
krrr jjj
)]

p,q;p′,q′ = ∑
l,m

Cl,m
(

p,q; p′,q′
)

hl
(
kr jjj
)

Yl,m
(
r̂rr jjj
)
, (6.26)

where the sum over the multipole indices, (l,m) is finite. Expressions for the Cl,m (p,q; p′,q′)
coefficients[31, 5, 29] are given in the section 6.8. Inserting eq.(6.26) into eq.(6.25) and rear-
ranging the summations, we find[

Ωβββ

]
p,q;p′,q′ = ∑

l,m
Cl,m

(
p,q; p′,q′

)
∑

rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjhl
(
kr jjj
)

Yl,m
(
r̂rr jjj
)

≡∑
l,m

Cl,m
(

p,q; p′,q′
)

Sl,m (k,βββ ) . (6.27)

where we have defined Sl,m (k,βββ ) as a Hankel function lattice sum such that:

Sn,m (k,βββ )≡ SH
n,m (k,βββ )≡ ∑

rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjHn,m
(
krrr jjj
)
. (6.28)



B. Stout: Spherical harmonic Lattice Sums for Gratings 6.9

We recall that Hn,m (xxx) was defined in eq.(6.6) as a partial wave of the spherical Hankel function
type.

It will occasionally prove useful to calculate the analogous lattice sums over the partial
waves of the Bessel or Neumann types, denoted respectively, SJ

n,m (k,βββ ) and SY
n,m (k,βββ ). Since

we will principally be concerned with the partial wave lattice sums of the Hankel function type,
Sn,m without a superscript will always indicate a lattice sum of the Hankel function type. We
also remark that the exclusion of the origin position from the lattice sum is important from a
mathematical standpoint since the Hankel functions have an essential singularity at their origin.

The solution to eq.(6.24) for the multiple-scattering T-matrix is readily formulated in
terms of matrix inversion:

Tβββ =
[
t−1−Ωβββ

]−1
. (6.29)

Once the Tβββ matrix is known, the scattering field coefficients for any particle, j, in the lattice is
the same as the coefficients at the origin but multiplied by a eiβββ ·rrr jjj phase factor. In the matrix
notation, this is simply expressed:

f ( j)
βββ

= eiβββ ·rrr jjj fβββ = eiβββ ·rrr jjjTβββ a , (6.30)

where a is the column matrix composed of the incident field coefficients developed around the
origin.

6.3.3.1 Far-fields

The field ‘scattered’ by the grating (i.e. ‘transmitted’ and ‘reflected’ diffraction orders) can be
determined by inserting eq.(6.30) into eq.(6.12) wherein the scattered field takes the form of
a lattice sum of the transverse-outgoing-vector partial waves, ΨΨΨH ,q,p, described in eq.(6.9) of
section 6.2:

EEEs,Λ (rrr) = E ∑
rrr jjj∈Λ

eiβββ ·rrr jjjΨΨΨH

(
krrr jjj
)

fβββ

≡ E ∑
q=1,2

∞

∑
p=1

[
∑

rrr jjj∈Λ

ΨΨΨH ,q,p
(
krrr jjj
)

eiβββ ·rrr jjj

][
fβββ

]
q,p . (6.31)

We will see in eq.(6.62) of section 6.4.4 that for each multipole order, p = 1, ...∞, and
transverse wave type q = 1,2; the term in brackets can be re-expressed as an infinite sum of
plane waves. Only a finite subset of these waves are of the propagative type however (the rest
are all of an evanescent nature). Consequently, the multipole summation of eq.(6.31) allows
one to calculate the efficiency of each reflected or transmitted order in the far field.

6.3.3.2 Near-fields

Another quantity of physical interest is that of near fields in a particulate grating (non-linear
effects, SERS, etc.). The plane wave expansion discussed above for far fields could be invoked
in principal, but for near fields one must also calculate the (infinite) evanescent orders that one
could neglect in the far field. The convergence of the plane wave expansion will generally be
poor near the grating, which renders this approach unattractive.
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As long as the incident field is quasi-periodic with respect to the grating, one needs only
to determine the near fields in a single Brillouin zone around a given lattice site (the site at
the origin being the most practical). In this case, it seems clear that the localized multipolar
field developments are well adapted to the development of the local field in the Brillouin zone.
In multiple scattering theory, the fβββ coefficients give the field scattered by the particle at the
origin, while the excitation field corresponds to the field at that was ‘incident’ on this particle,
i.e. the superposition of the field incident on the grating and the field scattered by all the other
particles in the system. This excitation field can be developed on the regular partial waves and
its coefficients, eβββ , related to the scattering coefficients via the 1-body T-matrix via the relation:

eβββ = t−1 fβββ . (6.32)

The total field in the Brillouin zone is simply a superposition of the scattered and excitation
field:

EEE(B.z.)
t (rrr) = E

(
ΨΨΨH (krrr) fβββ +ΨΨΨJ (krrr) t−1 fβββ

)
≡ E ∑

q=1,2

∞

∑
p=1

[
ΨΨΨH ,q,p (krrr) fq,p +ΨΨΨJ ,q,p (krrr)eq,p

]
. (6.33)

6.3.3.3 Propagating modes

The response of a grating or chain of particles will often be dominated by the excitation of
nearly guided modes in the structure (commonly referred to as leaky modes). Unlike, lossless
3D lattices which have true propagating modes described by real values of βββ , the leaky modes
in a grating or chain of particles are so-named because they generally radiate energy to the far
field even in the absence of intrinsic losses. Consequently, leaky modes can be described by
a complex valued βββ -vector (or complex frequency). The determination of a leaky mode thus
involves searching for a complex pole in the determinant of the multiple-scattering T-matrix,∣∣Tβββ

∣∣.
Since matrix inversions are numerically expensive, one may prefer to look for zero eigen-

vectors, να , of the matrix
[
t−1−Ωβββ α

]
, i.e.[

t−1−Ωβββ α

]
να = 0 . (6.34)

However, the search for zero eigenvalues can limit the implantation of complex analysis meth-
ods that have proven useful in determining the position of poles in the complex plane.

The Floquet mode associated with the eigenvector, να , can be constructed from eq.(6.34)
coupled with the plane-wave development the terms in eigenvector, να :

EEE(F.m.)
α (rrr) = E ∑

q=1,2

∞

∑
p=1

[
∑

rrr jjj∈Λ

ΨΨΨH ,q,p
(
krrr jjj
)

eiβββ α ·rrr jjj

]
[να ]q,p . (6.35)

Before finishing this section, it should be pointed out that matrix inversion solutions to
the multiple scattering problem (like that given in eq.(6.29)) were disregarded for a long time
in favor of iterative solutions to the T-matrix or underlying linear system of equations. The
reason for this is that the matrix

[
t−1−Ωβββ α

]
is generally ill-conditioned. This difficulty can be

generally overcome by analytical matrix balancing as described in the next section 6.3.4.
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6.3.4 Matrix balancing

Although not necessary from a formal standpoint, analytical matrix balancing improves the con-
ditioning of the matrices occurring in multiple-scattering calculations for both matrix inversion
and eigenvalue resolution.[30] Analytical matrix balancing can be achieved by multiplying a
matrix from both the right and left by diagonal matrices, [ξ ] and [ψ]−1, whose matrix elements
are given by:

[ψ]q,q′,p,p′ = δq,q′δp,p′ψn(kR) , [ξ ]q,q′,p,p′ = δq,q′δp,p′ξn(kR) , (6.36)

where ψn(kR) and ξn(kR) are respectively the regular and irregular spherical Ricatti-Bessel
functions (cf. 6.168) and R the radius of the minimal circumscribing sphere surrounding the
scatterers.

Matrix balancing can be readily formulated by defining normalized incident and scattering
coefficients, a and f respectively such that:

a≡ [ψ]a , f βββ ≡ [ξ ] fβββ . (6.37)

The associated normalized or ‘balanced’ matrices are defined[30]:

t ≡ [ξ ] t [ψ]−1 , T βββ ≡ [ξ ]Tβββ [ψ]−1 , Ωβββ ≡ [ψ]Ωβββ [ξ ]
−1 . (6.38)

The above definitions were chosen such that eqs.(6.22) and (6.24) respectively take the
form:

f ( j) ≡ T βββ a( j) , (6.39)

and
T βββ a = ta+ tΩβββ T βββ a . (6.40)

The normalized T-matrix, T , is then obtained via the generally well-conditioned matrix inver-
sion:

T βββ =
[
t−1−Ωβββ

]−1
. (6.41)

Since we generally want the non-normalized T-matrix for applications, we reconstruct, Tβββ via a
final multiplication by our diagonal matrices:

Tβββ = [ξ ]−1 T βββ [ψ] . (6.42)

6.4 Mathematical relations for lattice sums

This section is dedicated to reviewing the mathematical relations that allow one to treat lattice
sums for lattices of dimensions dΛ = 1,2,3 (i.e. particulate chains, gratings, and crystals). They
will notably allow us to evaluate the lattice sum in eq.(6.27) which is used to calculate far-field
response from gratings. These relations were derived (and often rederived) in many places, and
we refer the reader to refs.[15, 16, 19, 20, 8] for additional details and perspectives.

The most difficult mathematical problem to address will be the evaluation of Hankel func-
tion lattice sum, SH

n,m that was introduced in eq.(6.28) for the calculation of the Ωβββ matrix of
eq.(6.27).

SH
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjHn,m
(
krrr jjj
)

(6.43)
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When not otherwise specified, partial waves lattice sums will always be assumed to be of the
Hankel functions type. The underlying reason for this appears in the translation-addition where
Hankel functions allow one to re-express waves scattered by a given lattice site as waves inci-
dent on a different lattice site.

We will occasionally consider Bessel and Neumann types of scalar partial waves:

SY
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjYn,m
(
krrr jjj
)

SJ
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjJn,m
(
krrr jjj
)
, (6.44)

The interest of these sums in part is due to the fact that SH
n,m = SJ

n,m+ iSY
n,m but also because SJ

n,m
can potentially prove useful in certain applications. We will see that the relations developed in
this chapter permit the SJ

n,m sum to be evaluated in closed form, but unfortunately the Neumann
partial wave sum, SY

n,m, appears to be as difficult to evaluate as the Hankel partial wave sum,
and a closed form expression does not appear to be possible.

6.4.1 Lattice reduction

Although Ewald sums are a time honored technique in solid state physics, a considerable
amount of effort has recently been devoted to what has come to be called Lattice reduction
techniques. The basic idea turns around the fact that lattice sums tend to be more practical for
dΛ = 1 and dΛ = 3 than for the grating dimension of dΛ = 2.

First one chooses a coordinate system such that a preferred axis (like the z axis) will
along a given lattice vector. For example aaa = (0,0,a), and bbb = (0,b2,b1). With this basis the
2D Mono-Layer lattice sum, SML

n,m can then be written expressed as a superposition of a Chain
sum, SC

n,m, containing the origin (z-axis), and a superposition of all the chain sums ‘above’ the
central chain (z>0), denoted SML+

n,m or ‘below’ the central chain, SML−
n,m (z<0). The central chain

can be readily be evaluated using one of the techniques described in this chapter, while the
integral expression for Hankel functions described in section 6.4.4 allows one to derive efficient
expressions for SML+

n,m and SML−
n,m .

Lattice reduction can also be applied in the reverse direction, with one expressing the
3D crystalline lattice sum, SL

n,m, as the superposition of a monolayer sum in the z = 0 plane,
with sums of all monolayers with z > 0, SL+

n,m and all monolayers with z < 0, SL−
n,m. There exists

efficient techniques for calculating the crystalline lattice sum, SL
n,m while one can determine

efficient expressions for SL,+
n,m and SL,−

n,m using again the integral expressions of section 6.4.4. In
this reverse lattice sum method, the monolayer lattice sum is expressed:

SML
n,m = SL

n,m−SML,+
n,m −SL,−

n,m . (6.45)

One should that the choice of orientation of the coordinate axis will not be the same in general
for different lattice sum techniques, but these differences can be be compensated for by using
the rotation matrices of section 6.8.4

Lattice reduction is based on the idea that it can prove numerically efficient to carry out
lattice sums for a lattice dimensions other than that desired. To construct a 3D periodic media,
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we rotate the 2D lattice of the preceding section back to an orientation in the xOy plane with
aaa = (a,0,0), and bbb = (b1,b2,0), and now ccc = (0,c2,c3). The quasi-periodic vector is given by
βββ = (β1,β2,β3). The 3D lattice sum can then be written:

SL
n,m = SML

n,m +SL+
n,m +SL−

n,m . (6.46)

The SL+
n,m denotes all the z > 0 planes, while SL−

n,m sums all the z < 0 planes.
The lattice reduction technique breaks the sum down into elements which tend to have

a decreasing difficulties for divergence. An interest of the lattice reduction technique is that it
can be adapted to partial lattices. For instance, large but finite chains, a finite number of infinite
chains or finally a finite number of infinite planes.

6.4.2 Plane wave expansion

The expansion of a plane wave in terms of partial waves allows one to transform between partial
wave and Fourier transforms. It reads:

eikkk·rrr = 4π

∞

∑
ν=0

µ=ν

∑
µ=−ν

iν jν (kr)Y ∗ν ,µ
(

k̂kk
)

Yν ,µ (r̂rr)

=
∞

∑
ν=0

µ=ν

∑
µ=−ν

pν ,µ Ψν ,µ (rrr) , (6.47)

where Ψν ,µ (rrr) are the scalar partial wave functions discussed in section 6.2, and pν ,µ the
coefficients in the development of a scalar plane wave on a partial wave basis i.e. :

Ψν ,µ (rrr)≡ jν (kr)Yν ,µ (r̂rr) , pn,m = 4πinY ∗n,m
(

k̂kk
)
. (6.48)

One can produce an integral expression of jn (kr)Yn,m (r̂rr) by multiplying both sides of

eq.(6.47) by Yn,m

(
k̂kk
)

and integrating over all directions of k̂kk.

∫
dΩkkkeikkk·rrrYn,m

(
k̂kk
)
= 4π

∫
dΩkkk

∞

∑
ν=0

µ=ν

∑
µ=−ν

iν jν (kr)Yν ,µ (r̂rr)Y ∗ν ,µ
(

k̂kk
)

Yn,m

(
k̂kk
)

= 4πin jn (kr)Yn,m (r̂rr) . (6.49)

We have thus found that regular partial waves are an angular Fourier transform of the spherical
harmonics:

ΨJ ,n,m ≡ jn (kr)Yn,m (r̂rr) =
1

4πin

∫
dΩkkkeikkk·rrrYn,m

(
k̂kk
)
. (6.50)

Likewise, the transverse regular partial waves, ΨΨΨJ can be expressed as an angular Fourier
transform of the vector spherical harmonics:

ΨΨΨJ ,q=1,n,m(krrr) =
i−n

4π

∫
dΩkkk eikkk···rrrXXXn,m(k̂kk)

ΨΨΨJ ,q=2,n,m(krrr) =
i1−n

4π

∫
dΩkkkeikkk···rrrZZZn,m(̂kkk) . (6.51)
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6.4.3 Poisson summation formula

The Poisson summation formula is a crucial mathematical tool for evaluating lattice sums. It
allows one to pass from a sum over the real lattice vectors to a sum over the reciprocal lattice
vectors. Formally, it can be written:

∞

∑
rrr jjj∈Λ

eikkk·rrr jjj =
(2π)dΛ

AdΛ

∑
pppggg∈Λ∗

δ
(
kkk− pppggg

)
, (6.52)

where AdΛ
is the “volume” of the reciprocal lattice cell. Since long and short range interactions

can both be strong for lattice problems the Poisson summation formula often does not directly
accelerate the lattice sum, but it nevertheless proves invaluable for a number of useful that we
will derive in the rest of this chapter.

For the 1-D sum in eq.(6.90), this can be written:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

a

∞

∑
g=−∞

δ

(
kz +βz−

2π

a
g
)

. (6.53)

We then write this relation in a dimensionless form:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

kain
∞

∑
g=−∞

δ

(
kz

k
+

βz

k
−g

2π

ka

)
. (6.54)

6.4.4 Integral expressions for outgoing partial waves

The Weyl identity expressed the Hankel function of order 0 as an integral of plane waves:

h0 (kr) =
1

2πk

∞∫∫
−∞

dkxdky
exp(±ikkk ··· rrr)

kz

=
1

2πk

∞∫∫
−∞

dkxdky
exp [±i(kxx+ ikyy+ ikzz)]

kz
z ≷ 0 , (6.55)

where the plus sign is taken for z > 0 and the minus sign is used when z < 0. The kz component
is fixed by the constraint that k2

x + k2
y + k2

z = k2, namely kz =
√

k2− k2
x − k2

y . It is interesting to
remark that the spherical Bessel function is a superposition of plane waves that are constrained
to satisfy ‖kkk‖ = k. Since the reciprocal space integration in eq.(6.55) is carried out in the
xOy plane, it is convenient to define a specific symbol for the wavevector in the xOy plane,
KKK = kxx̂xx+ kyŷyy, and the full wavevector is then, kkk = KKK + kzẑzz. It is also convenient to define
dimensionless or normalized quantities:

K ≡ |KKK|/k γz ≡ kz/k =
√

1−K2
. (6.56)

If we take the position vector rrr in eq.(6.55) to lie along the z axis, rrr === rẑzz, then we can
integrate over the azimuthal angle to obtain a single integral expression for Hankel functions
that can be used in lattice sums:

h0 (kr) =
∫

∞

0
dKK

exp [±iγzkr]
γz

z ≷ 0 . (6.57)
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Wittmann pointed out that the above Weyl identity of eq.(6.55) can be generalized to all
partial waves of the Hankel function type[33] :

ΨH ,n,m ≡ hn (kr)Yn,m(r̂rr)

=
i−n

2π

∞∫∫
−∞

dkxdky
(
kx + iky

)m
P̃m

n (γz)
exp(±i(kxx+ kyy+ kzz))

γz
z ≷ 0 .

(6.58)

If we take rrr again to lie along the z axis, we find an integral expression for spherical Hankel
functions:

hn (kr) = i−n
∫

∞

0
dKK Pn (γz)

exp [iγzkr]
γz

. (6.59)

The integral relation of eq.(6.58) can also be extended to the outgoing vector partial
waves:

ΨΨΨH ,q=1,n,m(krrr) = i−n

2π

∞∫∫
−∞

dkxdky
exp(±i(kxx+kyy+kzz))

γz
XXXn,m(k̂kk)

ΨΨΨH ,q=2,n,m(krrr) = i1−n

2π

∞∫∫
−∞

dkxdky
exp(±i(kxx+kyy+kzz))

γz
ZZZn,m(̂kkk)

z ≷ 0 . (6.60)

The Poisson sum rule allows one to express quasi-periodic 2D lattice sum in terms of 2D
reciprocal lattice vectors. For the scalar partial waves, one has:

∑
rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨH ,n,m

(
kr jjj
)
= ∑

pppggg∈Λ∗

2πi−n

kk+ggg,zA2
Yn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
z ≷ 0 , (6.61)

while for the vector partial waves,

∑
rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨΨΨH ,1,n,m(krrr jjj) = ∑

pppggg∈Λ∗

2πi−n

kk+ggg,zA2
XXXn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
∑

rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨΨΨH ,2,n,m(krrr jjj) = ∑

pppggg∈Λ∗

2πi1−n

kk+ggg,zA2
ZZZn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
z ≷ 0 . (6.62)

In the partial wave lattice sums of eqs.(6.61) and (6.62), the wavevector kkk±ggg is given by:

kkk±ggg ≡

(
βββ ‖+ pppggg± ẑzz

√
k2−

(
βββ ‖+ pppggg

)2
)

, (6.63)

and k+gggz
is its z component:

k+ggg,z ≡ kkk±ggg · ẑzz =
√

k2−
(

βββ ‖+ pppggg

)2
. (6.64)

One remarks that for a real Bloch vector βββ ‖, the wavevector kkk±ggg is real i.e. propagative in nature
only for those lattice vectors for which

k >
∣∣∣∣∣∣βββ ‖+ pppggg

∣∣∣∣∣∣ . (6.65)
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6.4.5 Partial wave rotation

Let us consider once again a row matrix, Ψt
J ,Y ,H , composed of one of the types of partial

waves in eq.(6.5). The fact that the choice of the orientation of the coordinate system is arbitrary
imposes transformation relations amongst the partial waves. Let us consider a position M given
by the vector rrr in our chosen coordinate system. We next consider another coordinate system
with the same origin, but rotated by the 3 Euler angles, α , β , and γ in which the same point M
is now designated by a vector rrr′(n.b. |rrr′| = |rrr| = r). The linear relationship between the row
matrix in these 2 coordinate systems is then:

Ψ
t (rrr) = Ψ

t (rrr′)D (α,β ,γ) . (6.66)

If the rotated coordinate systems is taken such that rrr′ lies along the z axis in the rotated coordi-
nate n this relation takes the form:

Ψ
t (rrr) = Ψ

t (rẑzz) D (φ ,θ ,0) . (6.67)

In component form this reads for Hankel function sums:

hn (kr)Yn,m (r̂rr) = hn (kr)Yn0 (0,0)Dn,0;n,m (φr̂rr,θr̂rr,0)

=

√
2n+1

4π
hn (kr)Dn,0;n,m (φr̂rr,θr̂rr,0) , (6.68)

where we used eq.(6.75) for an expression of the Yn0 (0,0).

6.5 Numerical Examples

This section will be expanded considerably in the second edition.

6.5.1 Far and near field response from gratings

As discussed in section 6.3, once the lattice sums have been determined for all the Ωβββ matrix
elements, and the lattice T-matrix of eq.(6.29) obtained, one has ready access to both the far
and near field response of the system. However, the quasi-periodic lattice for all the multipole
orders must be calculated anew whenever one looks for response to a different quasi-periodicity
vector, βββ or wavenumber k (i.e. frequency).

6.5.2 Modes for particulate chains

There is considerable interest in calculating and characterizing the ‘propagating’ modes of pe-
riodic chains, gratings, and finite stacks of particulate gratings. A major difficulty is that these
systems are open, so propagating ‘modes’ are necessarily lossy which entails that they don’t
exist for real values of frequency and quasi-periodicity vector βββ . This situation was in fact
already present in the T-matrices of the individual particles which have do have poles at any
real frequencies, but one can find poles at complex frequencies. For planar surfaces, Greffet
has recently argued[2] that the Leaky-modes can be described by letting either frequency or
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wavevector be described by a complex number. This idea has recently been employed by sev-
eral authors for calculating modes in infinite particulate chains where the component of βββ along
the chain axis is allowed to be a complex number.[23, 4, 6, 11, 12] There are still some technical
issues under discussion considering modes in gratings due to ambiguities in the best manner to
define a complex propagation vector in the grating plane.[9]. This issue will be treated in more
depth in the second edition.

Typically, one has looked for propagating modes in particulate arrays of sub-wavelength
particles metallic particles. There is however an increased in interest in high index dielectrics.
Due to the complexity of the full multipole approach, most works searches for modes in the
complex plane have adopted what amounts to be a electric dipole approximation to eq.(6.29).[23]
We have recently argued that electric dipole is insufficient in the presence of strong interactions
that are provoked by resonances.[23] These results and conclusions are reviewed here.

We adopt the same parameters for a plasmonic chain as Conforti and Guasoni.[6] Namely,
we consider an infinite chain of identical 50nm diameter silver particles separated by d = 75nm
(center-to-center). The system is immersed in a non-magnetic medium with relative permittivity
ε = 2.25 (n = 1.5).

The figures are plotted with normalized frequencies and wave-vectors:

ω ≡ ωd
2πc

=
d
λv

β ≡ βd
2π

(6.69)

where λv is the vacuum wavelength. The light line for these parameters is given by ω = β

nmed
.

The dispersion relations of the principal propagating modes calculated in the electric dipole
approximation are plotted in figure 6.2 (dashed curves). They are then compared with fully
converged nmax = 10 calculations of these dispersion relations (solid line) in this same figure
by solving eq.(6.34). The imaginary part of the dispersion relations for dipolar and converged
multipole calculations are given in figure 6.2a).

Figure 6.2: Real and imaginary parts of the dispersion relations in the dipole approximation (dashed curves),
and fully converged multipole calculations with nmax = 10 (full lines). The Longitudinal mode with posi-
tive imaginary part is in cyan(gray) the “T1” mode with positive imaginary part is in blue(black line). The
“T2” transverse mode with negative imaginary part is in orange(gray). reproduced with permission :
http://dx.doi.org/10.1364/JOSAB.29.001012

Figures 6.2a) and 6.2b) merit some commentary. It is immediately clear that the dipole
approximation provides a moderately accurate prediction of dispersion relations only over a
narrow range of frequencies for which the imaginary part of the propagating wavevector is
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rather small, and the real part is near the light line. One should also recall that symmetry
dictates that if a given value of β corresponds to mode at a given frequency, then by symmetry,
−β is also a solution to these equations. For the sake of clarity, these symmetric modes are not
presented in these figures.

Like Conforti and Guasoni[6], we find a transverse mode, labeled “T2” whose imaginary
part of β is opposite in sign with the real part of β . It may prove physically relevant to think of
this T2 mode as a backscattering mode, or to interpret this in terms of negative effective index.
It is interesting to remark that the T2 mode tends toward the edge of the Brillouin zone at low
frequencies. It has recently been argued that these

Our dipole approximation predictions for the longitudinal mode are quite similar to that of
ref.[6] wherein the dipole prediction is that the mode “folds back” before reaching the edge of
the Brillouin zone. The full multipole calculations on the other hand predict that the longitudinal
mode goes to the edge of the Brillouin zone, and that the “fold back” only occurs after it has
gone “beyond” the edge of the Brillouin zone. In our calculations, the “T1” mode is quite close
to the light line, and henceforth rather poorly confined by the plasmon chain so its importance in
applications seems limited. In our calculations, the dipole approximation for the “T1” mode is
quite similar to the multipole solution except that we only found that the full multipole solution
predicted both extremities of the T1 mode to lie on the light line.

Figure 6.3: Normalized extinction is a solid blue (line) and scattering cross section given by a dashed
green line of a silver monomer in terms of frequency (a = 25nm). reproduced with permission :
http://dx.doi.org/10.1364/JOSAB.29.001012

Due to the system design (sub-wavelength resonance particles) one expected to find sig-
nificant guiding of modes appear only in the frequency domains where the scattering cross
section of the individual particles is non-negligible. To illustrate this point, we plot the extinc-
tion and scattering cross section for an individual particle in the chain in figure 6.3. We remark
in particular that near individual particle resonance maxima, all the guided modes of figure 6.2
lie near the light line, and as seen in figure 6.2b) it is here also that their imaginary parts are
smallest. Furthermore, with the exception of the ‘backscattering’ mode T2, all guided modes
apparently cease to exist when one moves sufficiently far away from the scattering resonance
frequency.

The reader has probably remarked some strange behavior of the modes in the electric
dipole approximation at high frequencies. For instance, at around ω̃ = 0.225 a “kink” appears
in the longitudinal mode, and a spurious T2 solution emerges from the light line. We carried
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out mode calculations with various multipole cutoffs and found that such kinks and spurious
solutions were relatively commonplace (at high or low frequencies) when low numbers of mul-
tipoles are used in the simulations and such behavior disappears when higher multipole orders
are used. It is also worth remarking that for high order simulations, the Re[β ] of the modes
terminate at either the light line, or the edge of the Brillouin zone, but modes can terminate at
undiscriminating positions in β space when calculations are carried out at low order.

Figure 6.4: Positive and imaginary parts of the dispersion relations in the Re[β ] > 0 part of the Brillouin zone.
Transverse modes with: Im[β ]> 0 modes are solid blue(black) lines, while that with Im[β ]< 0 is given by a dashed
blue(black) line. Longitudinal modes with Im[β ] > 0 are solid cyan(gray) lines, while those with Im[β ] < 0 is a
dashed cyan(gray) line. reproduced with permission : http://dx.doi.org/10.1364/JOSAB.29.001012

The mode diagrams of figures 6.2a) and 6.2b) were somewhat unconventional since they
did not display symmetric, −β , modes, and allowed the dispersion relation of the longitudinal
mode to move outside the Brillouin zone. A more conventional representation of the dispersion
relations is given in figure 6.4 which includes the symmetric modes, but only displays modes
when Re[β ] has positive values lying within Brillouin zone (here we display only the converged
multipole calculations). Transverse modes with Im[β ]> 0 modes are given by solid blue(black)
lines, while transverse modes with Im[β ]< 0 are dashed dashed blue(black) lines. Longitudinal
modes with Im[β ]> 0 are given by solid cyan(gray) lines while longitudinal modes with nega-
tive Im[β ] are in dashed cyan(gray). It is interesting to note that the longitudinal modes extend
to the positive edge of the Brillouin zone and that the “fold back” only occurs when Im[β ] of the
longitudinal mode is negative. One can also remark that transverse modes, T2, with both posi-
tive and negative Im[β ] exist above the light line, but that their imaginary parts are quite large.
Longitudinal modes above the light line also exist at frequencies below the particle resonance
maximum, but these modes remain quite close to the light line.

6.6 Chain sums

6.6.1 Hankel function chain sums

A periodic chain of wave scattering is defined by a lattice vector aaa, such that there is an elemen-
tary ‘scatterer’ at all positions rrr j i.e.:

rrr j ≡ jaaa j ∈ Z j =−∞, ...−2,−1,0,1,2, ...,∞ . (6.70)
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A chain sum for a quasi-periodicity vector βββ is defined:

SC
n,m (k,a,β ; âaa)≡ SC,H

n,m (k,a,β ; âaa)≡ ∑
j 6=0
j∈Z

Hn,m ( jaaa)ei jaβββ ·âaa , (6.71)

One can remark that the chain sum, SC
n,m, depends on the amplitude of the lattice vector a = |aaa|,

and its direction, and the scalar product between aaa and another vector βββ which we will call
the ‘incident’ or ‘quasi-periodicity’ vector. The chain sum in fact only depends on the scalar
product between βββ and the periodicity vector:

β ≡ βββ · âaa . (6.72)

One remarks that the direction of aaa depends on the orientation of the coordinate system. We
can take advantage of this fact to define the z axis as the direction of aaa such that:

rrr j = jaẑzz , (6.73)

but one must keep in mind that the expression for SC
n,m is reference frame dependent. In this

coordinate system, the chain sum, SC
n,m (k,a,β ; ẑzz), takes the form :

SC
n,m (k,a,β ; ẑzz)≡ ∑

j 6=0
j∈Z

Hn,m ( jaẑzz)eiβββ ·̂zzz ja

= ∑
j 6=0
j∈Z

hn (k | j|a)Yn,m

(
j
| j|

ẑzz
)

eiβa j

= δm,0λn,0

∞

∑
j=1

hn ( jka)
[
ei jβa +(−1)n e−i jβa

]
, (6.74)

where we used the fact that only the m = 0 scalar spherical harmonics are non null at θ = 0,π:

Yn,m (0,0) = δm,0λn,0 =

√
2n+1

4π
Yn,0 (π,0) = δm,0 (−)nYn,m (0,0) . (6.75)

The analytical expressions for the first few Hankel function are:

h0 (x) =−
i
x

eix

h1 (x) = eix
(
−1
x
− i

x2

)
h2 (x) = eix

(
i
x
− 3

x2 −
3i
x3

)
, (6.76)

which are readily obtained from the general analytic expression for Hankel functions of arbitrary
order:

hn (x) = (−i)n+1
n

∑
s=0

is

2ss!
(n+ s)!
(n− s)!

eix

xs+1 . (6.77)
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6.6.2 Integral technique for Hankel lattice sums

Generalizing the Weyl integral to produce an integral expression for spherical Hankel functions
gives us the integral:

hn (kr) =
1
in

∫
∞

0
dK K Pn (kz/k)

exp(iγzkr)
γz

, (6.78)

where we recall that kz =
√

k2−K2 and K =
√

k2
x − k2

y is the wavevector component in the xOy

plane. In the last line we defined the dimensionless quantities, K ≡ K/k and γz =

√
1−K2 so

that this integral could be calculated using dimensionless variables.
Now if we actually try to evaluate this integral, we will have numerical problems when

we go past the point where kz = 0. Since the singularity coming from the kz denominator lies
just above the real axis, we can analytically continue the integration into the fourth quadrant
of the complex plane. Any angle will do as long as the resulting line integral is sufficiently far
from the positive real axis or the negative imaginary axis. We will generally take an angle of
45◦ as a reasonable compromise. We will find that the integrand will decrease exponentially for
large |K| in the complex plane so that we don’t have much problem with the integral extending
to infinity.

Thanks to the integral expression for Hankel functions of eq.(6.78), we are now ready to
treat an infinite chain sum for a chain oriented along the z axis:

SC
n,m (k,a,β ; ẑzz) = ∑

j∈Z∗
exp(iβa j)hn (k | j|a)Yn,m

(
j
| j|

ẑzz
)

=
∞

∑
j=1

exp(iβa j)hn (ka j)Yn,m (0,0)

+
∞

∑
j=1

exp(−iβa j)hn (ka j)Yn,m (π,0)

= δm,0

√
2n+1

4π

[
∞

∑
j=1

exp(iβa j)hn (ka j)+(−)n
∞

∑
j=1

exp(−iβa j)hn (ka j)

]
(6.79)

where we used:

Yn,m (0,0) = δm,0

√
2n+1

4π
Pn (1) , Yn,m (π,0) = δm,0

√
2n+1

4π
Pn (−1) , (6.80)

and
Pn (1) = 1 , Pn (−1) = (−1)n . (6.81)

Using the integral relation of eq.(6.78), we have:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

1
ink

∫
∞

0
dK K

Pn (kz/k)
kz

×

[
∞

∑
j=1

exp [i(kz +β ) jd]+ (−)n
∞

∑
j=1

exp [i(kz−β ) ja]

]
. (6.82)
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We have finally an integral expression for the chain sums:

SC
n,m (k,a,β ; ẑzz) = ∑

j∈Z∗
exp(iβ jd)hn

(
kr j
)

Yn,m
(
r̂rr j
)

= δm,0

√
2n+1

4π

1
in

∫
∞

0
dK K

Pn (γz)

γz

×

 1

exp
[
−i
(

kz +β

)
ka
]
−1

+
(−)n

exp
[
−i
(

kz−β

)
ka
]
−1

 . (6.83)

6.6.3 Polylog approach to Hankel chain sums

Inspection of eqs.(6.79) and (6.77) shows that all terms in the chain sum can be expressed in
terms of polylogarithm functions which are defined by[1]:

Lin (z) =
∞

∑
j=1

z j

jn . (6.84)

The chain sum expressed in terms of polylogarithms is then:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

n

∑
s=0

[(
(−i)n+1 is

2ss!
(n+ s)!
(n− s)!

)
×(Lis+1 exp [i(k+β )a]+ (−)n Lis+1 exp [i(k−β )a])

(ka)s+1

]
.

(6.85)

This was the chain sum for outgoing Hankel functions, but we will also sometimes be interested
in incoming Hankel functions, or Bessel functions of the fourth kind. These are expressed:

h(4)n (x)≡ h−n (x) = jn (x)− iyn (x) , (6.86)

and their chain sums are:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

n

∑
s=0

[(
(−i)n+1 is

2ss!
(n+ s)!
(n− s)!

)
×(Lis+1 exp [−i(k−β )a]+ (−)n Lis+1 exp [−i(k+β )a])

(ka)s+1

]
.

(6.87)

6.6.4 Bessel function chain sums

Although fully analytic expressions for Hankel function chain and lattice sums do not seem to
exist currently, the Bessel functions lattice and chain sums do have analytic expressions. These
Bessel function sums are useful in their own right for certain applications:



B. Stout: Spherical harmonic Lattice Sums for Gratings 6.23

SC,J
n (k,a,β ; ẑzz) =

∞

∑
j=−∞, j 6=0

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa

=
∞

∑
j=−∞

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa−
∞

∑
j=−∞

Y0,0 (r̂rr0) j0 ( jka)

=
∞

∑
j=−∞

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa− 1√
4π

δn,0 . (6.88)

Using the integral expression for Yn,m
(
r̂rr j
)

jn ( jka) as an integral over the directions a wavenum-
ber k̂kk as derived in eq.(6.50) allows us to write:

jn
(
kR j
)

Yn,m
(
r̂rr j
)

eiβββ ·(̂zzz ja) =
1

4πin

∫
Yn,m

(
k̂kk
)

eiβββ ·̂zzz jaeikkk·̂zzz jadΩkkk . (6.89)

The lattice sum of the Bessel type then can be written:

SC,J
n (k,a,β ; ẑzz) =

1
4πin

∫
Yn,m

(
k̂kk
)[ ∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja)

]
dΩkkk−

1√
4π

δn,0 . (6.90)

At this point, one invokes the Poisson summation formula which can be written formally as:

∞

∑
rrr jjj∈Λ

eikkk·rrr j =
(2π)dΛ

A ∑
pppg∈Λ∗

δ
(
kkk− pppg

)
, (6.91)

where A is the “volume” of the reciprocal cell. For the 1-D sum in eq.(6.90), this can be
written:

∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

a

∞

∑
g=−∞

δ

(
kz +βz−

2π

a
g
)

. (6.92)

We then write this relation in a dimensionless form:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

kain
∞

∑
g=−∞

δ

(
kz

k
+

βz

k
−g

2π

ka

)
. (6.93)

Putting this relation into the k̂kk integral of eq.(6.90), we then obtain a finite sum expression for
SC,J

n :

SC,J
n (k,a,β ; ẑzz) =− 1√

4π
δn,0 +

πin

ka

gmax

∑
g=gmin

Yn0
(
cosβz,q

)
, (6.94)

where since -1 < kz/k < 1we only sum over those values of g for which

−1 < ℜ

[
βza+2πg

ka

]
< 1 . (6.95)

The values gmin and gmax are:

gmin =

(
−βza− ka

2π

)
+1 gmax =−

βza+ ka
2π

. (6.96)
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The angle cosβz,g in eq.(6.94) is given by:

cosβz,g ≡
βza+2πg

ka
= ℜ [βz/k]+ iℑ [βz/k]+g

2π

ka
, (6.97)

where we used the parity relation:

Yn,m (−r̂rr) = (−1)nYn,m (−r̂rr) . (6.98)

We recall that the sin and cosines for a complex angle, θk = θ ′+θ ′′, are given by:

cosθk =
eiθ ′e−θ ′′+ e−iθ ′eθ ′′

2
= cosθ

′ coshθ
′′− isinθ

′ sinhθ
′′ , (6.99)

and

sinθk =
eiθ ′e−θ ′′− e−iθ ′eθ ′′

2i
= sinθ

′ coshθ
′′+ icosθ

′ sinhθ
′′ . (6.100)

6.6.5 Chain sum rotation

The chain sums expressions given in eqs.(6.83), (6.87), and (6.94) all took advantage of the
facilities presented by orienting the chain of particles along the z axis. When performing lattice
reduction techniques, it is necessary to have chain sums in other orientations. The chain sum is
obtained by applying:

Yn,m (r̂rr) = Yn,0 (̂zzz)D
(n)
0,m (θr̂rr,φr̂rr) =

√
2n+1

4π
D

(n)
0,m (θr̂rr,φr̂rr) , (6.101)

which just translates the relation derived in Edmonds (eq.(4.1.25) page 59) that:

D
(n)
0,m (θ ,φ) =

√
4π

2n+1
Yn,m (θ ,φ) . (6.102)

Thus is trivial to write chain sums of any type (J ,H ,Y ) in an arbitrary orientation, r̂rr, in terms
of the chain sum in the direction ẑzz by the simple relation:

SC
n,m (β ; r̂rr) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m (θr̂rr,φr̂rr) . (6.103)

An orientation along the x axis is for example:

SC
n,m (β ; x̂xx) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m

(
π

2
,0
)
, (6.104)

is useful when carrying out a monolayer sum in the next section. An orientation along the y axis
is for example:

SC
n,m (β ; ŷyy) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m

(
π

2
,
π

2

)
. (6.105)
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6.7 2D Grating lattice sums

A 2D periodic media is characterized by two basic lattice vectors aaa, bbb. Although, we want to
describe a system with lattice vectors aaa = (a,0,0), and bbb = (b1,b2,0), we are going to work in
a rotated coordinate systems in which the lattice will be placed in the xOy plane.

6.7.1 Integral technique

For the integral technique, it is useful to adopt a coordinate system where the aaa lattice vector
lies along the y axis. In this coordinate system, the basis vectors are aaa = (0,a,0), bbb = (0,b2,b1),
then lattice sites are given by:

rrr jjj=( ja, jb) = jaaaa+ jbbbb = (0, jaa+ jbb2, jbb1) . (6.106)

In this case, fixing jb = 0 and summing over ja corresponds to a chain sum along the y axis,
and jb ≶ 0, corresponds to a term in the z ≶ 0 half plane respectively.

The Mono-Layer (ML) lattice sum, SML
n,m, can be written:

SML
n,m = SC

n,m (β1; ŷyy)+SML+
n,m +SML−

n,m , (6.107)

where SC
n,m (β1; ŷyy) is the chain sum along the y axis, and SML

n,m is the sum of all the sites with
z 6= 0 The lattice sum for all jb > 0 (z > 0) sites can be expressed as an integral:

SML+
n,m =−(−)m

inka

∞

∑
g=−∞

∫
∞

0

dkx

γz
P̃(m)

n (γ)
[(

kg− ikx
)m

+
(
kg + ikx

)m
]

× 1

1− exp
{
−i
[
kb2

(
β 2− kg

)
+ kb1

(
β 1 + γ

)]} , (6.108)

while the lattice sum for all jb < 0, can be expressed:

SML−
n,m =− 1

(−i)n ka

∞

∑
g=−∞

∫
∞

0

dkx

γz
P̃(m)

n (γ)
[(

kg− ikx
)m

+
(
kg + ikx

)m
]

× 1

1− exp
{
−i
[
kb2

(
−β 2 + kg

)
+ kb1

(
−β 1 + γ

)]} . (6.109)

In both of these expressions, we defined kg as the reciprocal lattice vector along the y axis:

kg ≡ β2 +2πg/a = kkg , (6.110)

and normalized the components of the quasi-periodic vector β as:

β 1 ≡ β1/k β 2 ≡ β2/k , (6.111)

and γ is reciprocal lattice vector along the z axis:

γ ≡
√

1− k2
g− k2

x . (6.112)

At the end of this calculation, one should keep in mind that lattice sum was carried out in a
system where the lattice was in the yOz plane. One can obtain the expression for the lattice sum
in the xOy plane by rotating the lattice sums by 90◦ around the y axis in a clockwise manner,
and then 90◦ around the new y′ axis, and finally 90◦ around the new z′′ axis.



6.26 Gratings: Theory and Numeric Applications, 2012

6.7.2 Modified Bessel function sums

Although the integral technique is rather efficient, one may prefer to obtain do a little more
analytic work and obtain the lattice sum in a manner which takes the from of a lattice sum in
a 2D host space. As for the integral it proves convenient to place the lattice in the yOz plane,
but this time, one places the aaa lattice vector along the z axis, so that the lattice vectors can be
written:

aaa = (0,0,a) , and bbb = (0,b2,b1) .

The lattice sites in this system can be expressed:

rrr jjj=( ja, jb) = jaaaa+ jbbbb = (0, jbb2, jaa+ jbb1) = jbb2ŷyy+( jaa+ jbb1) ẑzz . (6.113)

The reciprocal lattice is given by:

KKKggg=(ga,gb) = gaãaa+gbb̃bb , (6.114)

where the reciprocal lattice vectors are:

ãaa =
1

ab2
(0,−b1,b2) b̃bb =

(
0,

1
b2

,0
)

. (6.115)

This time, lattice reduction is performed by carrying out the lattice sum on the z axis of
the working coordinate system which is to say that one sets jb = 0, and sums over all ja. The
lattice sum is then achieved by:

SML
n,m = SC

n,m (β1; ẑzz)+SML,+
n,m +SML,−

n,m , (6.116)

where SML,±
n,m is the sum of all sites except those along the z axis:

SML,±
n,m = ∑

jb∈Z∗
ei jb(β1b1+β2b2)

∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)
. (6.117)

Since jb 6= 0 in this sum and all lattice sites are in the yOz plane, the azimuthal angle of rrr jjj is
either π/2 or −π/2 for jb > 0 or jb < 0 respectively. This allows us to conclude in this plane,
Hn,m doesn’t depend on the sign of m:

Hn,−m
(
krrr jjj
)
= Hn,m

(
krrr jjj
)
. (6.118)

We then appeal to an integral representation:

hn (kr)Pm
n (cosθ) =

(−i)n+1

π

∫
∞

−∞

eikztKm (−ikργ (t))Pm
n (t)dt (6.119)

=
(−i)n−m

π

∫
∞

−∞

eikztHm (kργ (t))Pm
n (t)dt , (6.120)

where z = r cosθ , kρ =

√
(kr)2− (kz)2 > 0, and Km (z) is a modified Bessel function defined

by:
Km (z)≡ im+1Hm (iz) , (6.121)
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and finally γ (t) is defined such that:

γ (t) =
{

i
√

t2−1 |t| ≥ 1√
1− t2 t < 1

. (6.122)

The modified Bessel functions, Km (z). The ja sum can then be written:
∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)

=
(−i)n

π
(−)m [sgn( jb)]

m
∞

∑
ja=−∞

ei jaβ1a
∫

∞

−∞

eik( jaa+ jbb1)tHm (kργ (t))Pm
n (t)dt (6.123)

=
(−i)n

π
(−)m [sgn( jb)]

m
∫

∞

−∞

∞

∑
ja=−∞

ei ja(β1+kt)aeik jbb1tHm (kργ (t))Pm
n (t)dt . (6.124)

Using the 1D Poisson sum formula, we have:
∞

∑
ja=−∞

ei ja(kt+β1)a =
2π

a

∞

∑
g=−∞

δ

(
kt +β1 +g

2π

a

)
=

2π

ka

∞

∑
g=−∞

δ

(
t +

β1

k
+g

2π

ka

)
. (6.125)

∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)

=
(−i)n

π
(−)m [sgn( jb)]

m
∫

∞

−∞

eik jbb1t
∞

∑
ja=−∞

ei ja(β1+kt)aHm (kργz (t))Pm
n (t)dt

=
2(−i)n

ka
(−)m [sgn( jb)]

m
∞

∑
g=−∞

e−iβ1p jbb1Hm (kb2 | jb|γg)Pm
n

(
−β 1,g

)
=

2in

ka
[sgn( jb)]

m
∞

∑
g=−∞

e−iβ1,g jbb1Hm (kb2 | jb|γg)Pm
n

(
β 1,g

)
, (6.126)

where β1,g and β 1,g are defined:

β1,g ≡ β1 +g
2π

a
β 1,g ≡

β1

k
+g

2π

ka
(6.127)

and
γg ≡ γ

(
β 1,g

)
. (6.128)

We have therefore the monolayer sum:

SML,±
n,m =

2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

)
∑

jb∈Z∗
ei jb(β1−β1,g)b1ei jbβ2b2 [sgn( jb)]

m Hm (kb2 | jb|γg)

=
2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

) ∞

∑
jb=1

[
ei jbwg +(−)m e−i jbwg

]
Hm (kb2 jbγg)

=
2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

)
Sm (wg,kb2γg) , (6.129)
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where we defined:
wg ≡ β2b2−

2pπb1

a
. (6.130)

One can rotate the lattice sum to put it in the desired coordinate system in the xOy plane. This
can be obtained simply by a rotation of 90◦ about the y axis. The expression of eq.(6.129) is
still in the form of the 2 double infinite sums like our initial expression. However, only a finite
number of g values will correspond to propagating modes, i.e.

∣∣∣β 1,g

∣∣∣< 1, and the other values
for g correspond to evanescent modes and are exponentially convergent. therefore infinite series
sums. The jb sum in eq.(6.129) is known as a Schlömilch series, and it can be expressed as a
finite sum of Bernoulli polynomials.

6.7.3 Schlömilch series

The Schlömilch series can be expressed

Sm (λ ,µ)≡
∞

∑
j=1

[
eiλ j +(−)m e−iλ j

]
Hm (µ j) . (6.131)

The zero order sum is

S0 (λ ,µ) =−1− 2i
π

(
C+ log

µ

4π

)
+

2
Θ0

+ ∑
g∈Z∗

(
2

Θg
+

i
π |g|

)
, (6.132)

where C ' 0.5772 is Euler’s constant and

Θg =
(
µ

2−λ
2
g
)1/2

λg = λ +2gπ . (6.133)

6.8 Addition theorem and Rotation matrices

6.8.1 Scalar spherical harmonics

The scalar spherical harmonics, Yn,m(θ ,φ), are expressed in terms of the associated Legendre
functions Pm

n (cosθ) [7] :

Yn,m(θ ,φ) =

[
2n+1

4π

(n−m)!
(n+m)!

] 1
2

Pm
n (cosθ)exp(imφ)

≡ Pm
n (cosθ)exp(imφ) , (6.134)

where in the second line we have introduced the normalized associated Legendre functions,
Pm

n (cosθk)≡ λn,mPm
n (cosθk), where the λn,m normalization factor is defined:

λn,m ≡
[

2n+1
4π

(n−m)!
(n+m)!

] 1
2

. (6.135)

These scalar spherical harmonics are normalized with respect to an integration over the solid
angles :∫ 4π

0
dΩY ∗ν ,µ(θ ,φ)Yn,m(θ ,φ)≡ (−1)µ

∫
π

0
sinθdθ

∫ 2π

0
dφ Yν ,−µ(θ ,φ)Yn,m(θ ,φ)

= δn,νδm,µ . (6.136)
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In principal, the Legendre polynomials, Pn(x) = P0
n (x), can be obtained from Rodrigues’

formula:
Pn(x) =

1
2nn!

dn

dxn

(
x2−1

)n
, (6.137)

but in practice we will calculate them with recurrence relations. Likewise, the associated Leg-
endre functions could be obtained for from the expression:

Pm
n (x) = (−1)m (1− x2)m/2 dm

dxm Pn(x) . (6.138)

Their calculation is simplified by noting that the normalized associated Legendre functions have
the convenient parity property that:

P−m
n (x) = (−1)m Pm

n (x) . (6.139)

There are alternative ways of calculating the scalar spherical harmonics that are better for
formulating lattice sums and reflections from a physical interface. In lattice sums and reflections
from surfaces, the spherical harmonics will be evaluated in terms of the direction of the incident
or reflected wavevectors, k̂kk:

Yn,m (θk,φk) = Yn,m

(
k̂kk
)
= Yn,m (kkk///k) = Yn,m (kx/k,ky/k,kz/k) , (6.140)

where we recall that:

kz

k
= cosθk

kx/k = sinθk cosφk

ky/k = sinθk sinφk , (6.141)

and we keep in mind that Pm
n are functions of cosθk = kz/k.

Since x = cosθ , and the Pn(x) are polynomials in x, the dm

dxm Pn(x) are functions of

cosθ . The factor
(
1− x2)m/2 corresponds to sinm

θk with no ambiguity in sign since Re{θk} is

∈ (0,π). One should remark that the
(
1− x2)m/2 is non-polynomial so that is why one refers

to them as associated Legendre functions. For applications involving reciprocal space and/or
integrations in the complex plane it proves useful to explicitly extract this factor, and define
associated Legendre polynomials, which we shall denote, P̃m

n (not to be confused with the nor-
malized associated Legendre functions).

For positive m we have then:

Yn,m (kx/k,ky/k,kz/k) = Pm
n (cosθk)exp(imφk)

= λn,m(−1)m sinm
θk (cosφk + isinφk)

m dm

dxm Pn(
kz

k
)

= (sinθk cosφk + isinθk sinφk)
m (−1)m

λn,m
dm

dxm Pn(
kz

k
)

= (kx/k+ iky/k)m (−1)m
λn,m

dm

dxm Pn(
kz

k
)

= (kx/k+ iky/k)m P̃m
n (

kz

k
) =

(
K
k

)|m|
exp(imφk) P̃m

n (
kz

k
) . (6.142)
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where we have defined the normalized associated Legendre polynomials, P̃m
n , such that:

P̃m
n (

kz

k
)≡ (−1)m

λn,m
dm

dxm Pn(
kz

k
) . (6.143)

The parameter,
KKK ≡ kxx̂xx+ kyŷyy , (6.144)

corresponds to the momentum space vector in the x-y plane.
The wave vector components kx, ky, and kz are related to the possibly complex angles, θk

and φk, via the relations:

kx = k sinθk cosφk

ky = k sinθk sinφk

k2
z = k2−K2 = k2 cos2

θk , (6.145)

This relation of eq.(6.142) for Yn,m can be extended to negative m by writing :

Yn,m (kx/k,ky/k,kz/k) =
(

K
k

)|m|
exp(imφk) P̃m

n (
kz

k
) m ≷ 0 , (6.146)

as long as we define P̃−m
n such that :

P̃−m
n ≡ (−1)m P̃m

n . (6.147)

The objective of the above procedure was to define P̃m
n (x) that are always polynomials

of x for both positive and negative m. This is in contrast to the associated Legendre functions
Pm

n (x) which are not polynomials in terms of x.

6.8.2 Translation-addition theorem for scalar partial waves

Let us consider a point M in a system using spherical coordinates. We consider a second system
of spherical coordinates centered on the position rrr0. The position of M in this second system
centered on rrr0 is:

rrr′ = rrr−−− rrr0 . (6.148)

We take the usual convention of outgoing scalar partial waves as products of spherical
Hankel function and scalar spherical harmonics:

ΨH ,n,m (krrr)≡Ψ
(3)
n,m (krrr)≡ hn (kr)Yn,m (θ ,φ) , (6.149)

while the regular scalar partial waves replace the spherical Hankel functions with spherical
Bessel functions:

ΨJ ,n,m (krrr)≡Ψ
(1)
n,m (krrr)≡ jn (kr)Yn,m (θ ,φ) . (6.150)

One can construct a row ‘matrices’ composed of the ΨJ ,n,m (krrr) or ΨH ,n,m (krrr) functions
respectively then the translation-addition theorem for scalar partial waves can be compactly
expressed in matrix form:

Ψ
t
H (krrr) = Ψ

t
H

(
krrr′
)
.α(krrr0) r′ > r0

Ψ
t
H (krrr) = Ψ

t
J

(
krrr′
)
.β (krrr0) r′ < r0

Ψ
t
J (rrr) = Ψ

t
J

(
rrr′
)
.β (krrr0) ∀

∣∣rrr j
∣∣ , (6.151)
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where the elements of the irregular translation-addition matrix, α have extremely simple ex-
pressions in terms of the 3Y coefficients :

αν ,µ,nm(krrr0) = 4πiν−n
n+ν

∑
p=|n−ν |

ip3Y (n,m;ν ,µ; p)hp (kr0)Yp,m−µ (θ0,φ0) , (6.152)

while the the elements of the regular translation-addition matrix, βν mu,;n,m, are the same as the
αν ,µ;n,m coefficients but with the jp (kr0) replacing the hp (kr0) function i.e.:

βν ,µ;n,m(krrr0)≡ 4πiν−n
n+ν

∑
p=|n−ν |

ip3Y (n,m;ν ,µ; p) jp (kr0)Yp,m−µ (θ0,φ0) , (6.153)

where 3Y (n,m;ν ,µ; p) are the 3Y coefficients defined by the angular integral of three scalar
spherical harmonics:

3Y (n,m;ν ,µ; p)≡
∫

π

0

∫ 2π

0
Yn,m (θ ,φ)Y ∗ν ,µ (θ ,φ)Y ∗p,m−µ (θ ,φ)sinθdθdφ

= (−)µ (−)m−µ

∫
π

0

∫ 2π

0
Yn,m (θ ,φ)Yν−µ (θ ,φ)Yp,µ−m (θ ,φ)sinθdθdφ

= (−)m
[
(2n+1)(2ν +1)(2p+1)

4π

]1/2( n ν p
0 0 0

)(
n ν p
−m µ µ−m

)
.

(6.154)

The symbol, (
n ν p
m µ M

)
, (6.155)

stands for the Wigner 3J coefficients. It is worth remarking that the ‘3Y’ coefficients of eq.(6.154)
are closely related to the Gaunt coefficients developed in quantum mechanics for treating the
helium atom (mostly differing on account of different normalization conditions).

6.8.3 Vector translation-addition theorem

The vector translation-addition theorem are the vector analogue of the scalar translation theorem
discussed above in section6.8.2. This would be an almost trivial extension of the scalar addition
theorem if we were working with solutions of the vector Helmholtz equation in a Cartesian
basis like those of eqs.(6.7) and (6.8). The additional complication is due to the fact we want
to the vector translation-addition theorem to act on the purely transverse waves like those of
eq.(6.9). Defining column matrices, ΨΨΨ , composed of the transverse vector partial waves, the
vector translation-addition theorem is written:

ΨΨΨ
t
H (krrr) = ΨΨΨ

t
H

(
krrr′
)

J(krrr0) r′ > r0

ΨΨΨ
t
H (krrr) = ΨΨΨ

t
J

(
krrr′
)

H(krrr0) r′ < r0

ΨΨΨ
t
J (rrr) = ΨΨΨ

t
J

(
rrr′
)

J(krrr0) ∀|r0| , (6.156)

where the matrix J(krrr0) matrix can be expressed in terms of spherical scalar β (krrr0) matrices
of eq.(6.153) (expressed in terms of spherical Hankel functions) while the H(krrr0) matrices can
be expressed in terms of the α(krrr0) matrices of eq.(6.152).
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Explicitly, the H(krrr0) matrix can be expressed:

H(krrr0) =

[
Aν ,µ;n,m (kr0,θ0,φ0) Bν ,µ;n,m (kr0,θ0,φ0)
Bν ,µ;n,m (kr0,θ0,φ0) Aν ,µ;n,m (kr0,θ0,φ0)

]
. (6.157)

The vector coefficients Aν ,µ;n,m are then calculated using :

Aν ,µ;n,m =
1
2

√
1

ν (ν +1)n(n+1)
[
2µmαν ,µ;n,m+

+
√

(n−m)(n+m+1)
√
(ν−µ)(ν +µ +1)αν ,µ+1;n,m+1

+
√
(n+m)(n−m+1)

√
(ν +µ)(ν−µ +1)αν ,µ−1;n,m−1

]
. (6.158)

When filling up a matrix, with the Aνµ,nm coefficient, we should fill them up column by column
(calculate all the ν ,µ) elements for a fixed n,m. Then, for each n,m, the Bνµ,nm coefficients can
be calculated from the previous (i.e. ν−1) scalar coefficients :

Bν ,µ,n,m =−i
1
2

√
2ν +1
2ν−1

1
ν (ν +1)n(n+1)

[
2m
√
(ν−µ)(ν +µ)αν−1,µ;n,m

+
√
(n−m)(n+m+1)

√
(ν−µ)(ν−µ−1)αν−1,µ+1;n,m+1

−
√
(n+m)

√
(n−m+1)

√
(ν +µ)(ν +µ−1)αν−1,µ−1;n,m−1

]
. (6.159)

6.8.4 Rotation matrices

Under rotation, each of the four blocks of a vector translation-addition matrix transform follow-
ing the rotation matrix, D (α,β ,γ), which is expressed in terms of the 3 Euler angles, α , β , and
γ . The D (α,β ,γ) matrix elements are described in detail in ref.[7], and are block diagonal in
the orbital (multipole) ‘quantum’ number, n :

[D (α,β ,γ)]
ν ,µ,n,m = δn,ν exp(iµα) d(n)

µ m (β )exp(imγ) . (6.160)

The elements d(n)
µm are standard,[7] and the d(n)

µ,m term in the rotation matrices can be expressed
in terms of the Jacobi polynomials[7] :

d(n)
µm (β ) =

[
(n+µ)!(n−µ)!
(n+m)!(n−m)

]1/2(
cos

β

2

)m+µ

×
(

sin
β

2

)m−µ

P(µ−m,m+µ)
n−µ (cosβ ) . (6.161)

6.9 Recurrence relations for special functions

Partial wave descriptions are composed of products of spherical harmonic and spherical Bessel
types special functions. For a numerical analysis, it is important to calculate these functions
rapidly and accurately. Recurrence relations prove to be a good manner to achieve this goal.
Multipole expansions must be truncated to a given order nmax, which determines the the strength
of spatial field variations. Inspection of the translation-addition theorem formulas show us that
we will need to evaluate spherical harmonic and spherical Hankel functions up to order 2nmax.
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6.9.1 Recurrence relations for associated Legendre polynomials

The recurrence relations for the P̃m
n polynomials are are initialized with:

P̃0
0 (u) =

√
1

4π
. (6.162)

We can then calculate all the P̃n
n up to 2nmax with the recurrence relation:

P̃n
n (u) =−

√
2n+1

2n
P̃n−1

n−1 (u) . (6.163)

The P̃m
n with m = n−1 are calculated via:

P̃n−1
n (u) = u

√
2n+1P̃n−1

n−1 . (6.164)

All the remaining P̃m
n with m = 1, ...,n−2 can be calculated for each n = 3, ...,2nmax using the

relation :

P̃m
n (u) =

√
(2n+1)
(n2−m2)

√(2n−1)x P̃m
n−1−

√
(n−1)2−m2

(2n−3)
P̃m

n−2

 . (6.165)

Although we obtain the P̃0
n in the above scheme, it can sometimes prove useful to obtain the

normalized Legendre Polynomials through the recurrence relation :

P̃0
n (u) =

1
n

(
u
√

4n2−1
)

P̃0
n−1 (u)− (n−1)

√
2n+1
2n−3

P̃0
n−2 (u) . (6.166)

The P̃m
n with negative values of m are calculated using :

P̃−m
n (u) = (−)m P̃m

n (u) . (6.167)

6.9.2 Logarithmic Bessel functions

The spherical Bessel, Neumann and Hankel functions of the Ricatti form, are simply these
functions multiplied by their argument. The advantage of this form is that they have better limit
properties for small arguments. Their definitions are respectively:

ψn (z)≡ z jn (z) , χn (z)≡ zyn (z) , ξn (z)≡ zhn (z) . (6.168)

Multiplying the logarithmic derivatives of these functions by their argument defines the func-
tions, ϕ(1), ϕ(2), ϕ(3):

ϕ
(1)
n (z)≡ ψ ′n (z)

jn (z)
, ϕ

(2)
n (z)≡ χ ′n (z)

yn (z)
, ϕ

(3)
n (z)≡ ξ ′n (z)

hn (z)
. (6.169)

The ϕ
(i)
n can also be generated by particularly efficient numerical recursion relations. They also

provide particularly symmetric expression for the Mie coefficients of spherical scatterers and
formulations of matrix balancing. The Wronskian relation for Ricatti-Bessel functions:

ψn (x)ξ
′
n (x)−ψ

′
n (x)ξn (x) = i , (6.170)
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takes a simple form in terms of the ϕ
(1,2,3)
n functions as:

ϕ
(3)
n (z)−ϕ

(1)
n (z) =

i
x jn (x)hn (x)

. (6.171)

The ϕ(3) can be reliably calculated numerically from the upward recurrence relation:

ϕ
(3)
n (z) =

z2

n−ϕ
(3)
n−1 (z)

−n , (6.172)

starting with an initialization of
ϕ
(3)
0 (z) = iz . (6.173)

The ξn (z) functions in most situations can then be readily calculated numerically from the
recurrence relation:

ξn (z) =
ξn−1 (z)

z

(
n−ϕ

(3)
n−1 (z)

)
, (6.174)

starting from the initial value ξ0 (z) = −ieiz. One should note that analytical expressions exist
for the spherical Ricatti-Hankel functions, ξn (z), and these can be useful at low multipole order:

ξ0 (z) =−ieiz

ξ1 (z) =−eiz
(

1+
i
z

)
ξ2 (z) = eiz

(
i− 3

z
− 3i

z2

)
. (6.175)

When one deals with high multipole orders however, it usually is more practical to exploit the
recurrence relations of eq.(6.172) and (6.174).

The regular Ricatti Bessel functions, ϕ
(1)
n (z), obey the same recurrence relations as the

ϕ
(3)
n (z) functions. If one calculates them by via upward recurrence, things may work fine for the

first few recurrence calculations, but at some point, the recurrence relations can go completely
off course. The solution to this problem has been known for quite some time is that the ϕn (z)
functions should be calculated starting from high values of n in a reverse recurrence relation. I
start usually with n equal to at least nmax +20 where nmax is the largest value that I want to use
in calculations, and start simply with ϕnmax+20 (z) = 0. The ϕn (z) functions so obtained have
always been the correct ones up to machine precision. The reverse recurrence relation is:

ϕn (z) = n+1− z2

n+1+ϕn+1 (z)
. (6.176)

One can check calculations by verifying that the ϕ0 (z) obtained by backward recurrence is
equal to the analytical result:

ϕ0 (z) = z
cosz
sinz

. (6.177)

Once the ϕn (z) functions have been calculated, one can readily generate the ψn (z) func-
tions with the upward recurrence relation which is the direct analogue of eq.(6.174)

ψn (z) =
ψn−1 (z)

z
(n−ϕn−1 (z)) , (6.178)
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starting with the initial value ψ0 (z) = sinz. Analytical expressions for the lowest ψn (z) are:

ψ0 (z) = sinz

ψ1 (z) =
sinz

z
− cosz (6.179)

ψ2 (z) =
(

3
z2 −1

)
sinz− 3

z
cosz . (6.180)

It is perhaps worth remarking that, there is one potential numerical problem with using
eq.(6.174) to calculate spherical Hankel functions. For some values of z the real and imaginary
parts of the spherical Hankel functions can have extremely different absolute values. For con-
creteness, let us assume that |Im(hn (z))| � |Re(hn (z))|, then using eq.(6.174), the calculated
value of Im(hn (z)) will usually be quite inaccurate if its absolute value is less than last signifi-
cant figure in the calculation of Re(hn (z)). This problem can be circumvented (for real values
of z at least) by calculating the spherical Neumann functions (denoted here by yn (z) but some
authors denote it nn (z)). We recall that the Neumann functions are real-valued provided that z
is real valued.

The Ricatti Neumann functions are defined :

χn (z)≡ zyn (z) . (6.181)

The first few Ricatti Neumann functions, χn (z), are

χ0 (z) =−cosz

χ1 (z) =−
cosz

z
− sinz

χ2 (z) =−
(

3
z2 −1

)
cosz− 3

z
sinz . (6.182)

We define a ϕ(2) ‘logarithmic derivative’ Neumann function as :

ϕ
(2)
n (z)≡ χ ′n (z)

yn (z)
. (6.183)

We can calculate the ϕ
(2)
n from the upward recurrence relation:

ϕ
(2)
n (z) =

z2

n−ϕ
(2)
n−1 (z)

−n , (6.184)

with an initialization of
ϕ
(2)
0 (z) =−z

sinz
cosz

. (6.185)

Once the ϕ
(2)
n functions have been calculated, one can readily generate the χn (z) functions with

the upward recurrence relation which is the direct analogue of eq.(6.174)

χn (z) =
χn−1 (z)

z

(
n−ϕ

(2)
n−1 (z)

)
, (6.186)
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starting with the initial value χ0 (z) =−cosz.
Having calculated ψn (z) via eq.(6.178) and χn (z) via eq.(6.186), one can finally construct

hn (z) by
hn (z)≡ jn (z)+ iyn (z) , (6.187)

with the real and imaginary parts of ξn (z) now both being calculated up to machine accuracy.
The ratio of spherical Bessel functions to spherical Hankel functions also occurs fre-

quently in Mie theory, and I found it convenient and more accurate to calculate these ratios
directly using upward recurrence relations, notably:

jn (z)
hn (z)

=
jn−1 (z)
hn−1 (z)

n−ϕn−1 (z)

n−ϕ
(3)
n−1 (z)

, (6.188)

with the initialization
j1 (z)
h1 (z)

=
1
2

(
1− i− z

i+ z
exp[−2iz]

)
, (6.189)

which has good properties for numerical calculations. If one needs j0 (z)/h0 (z), one can usually
calculate it as

j0 (z)
h0 (z)

=−sinz
ieiz =

1− e−2iz

2
. (6.190)

and j1 (z)/h1 (z) satisfies the recurrence relation if we start with j0 (z)/h0 (z) since

j1 (z)
h1 (z)

=
j0 (z)
h0 (z)

1−ϕ0 (z)

1−ϕ
(3)
0 (z)

=
1− e−2iz

2
1− z cosz

sinz

1− iz
=− 1

2i
1− iz− e−2iz− ize−2iz

i+ z

=
1
2

(
1− i− z

i+ z
e−2iz

)
. (6.191)

For coated spheres, it is can also useful to use the analogous recurrence relation:

jn (z)
yn (z)

=
ψn−1 (z)
yn−1 (z)

n−ϕn−1 (z)

n−ϕ
(2)
n−1 (z)

, (6.192)

with the initialization of
j0 (z)
y0 (z)

=− sinz
cosz

, (6.193)

with the first recurrence giving

j1 (z)
y1 (z)

=
zcosz− sinz
zsinz+ cosz

. (6.194)

Other useful relations are obtained from the classic spherical Bessel function recurrence
relations:

fn (z) =
z fn−1 (z)+ z fn+1 (z)

2n+1

f ′n (z) =
n fn−1 (z)− (n+1) fn+1 (z)

2n+1
, (6.195)
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with fn (z) = jn (z) , hn (z) to obtain :

z j′n (z)+(n+1) jn (z) = n
ψn−1 (z)
2n+1

+(n+1)
ψn−1 (z)
2n+1

= ψn−1 (z) , (6.196)

with
ψ
′
n (z)≡ z j′n (z)+ jn (z) (6.197)

we obtain a convenient expression for the derivative of Ricatti-Bessel functions:

ψ
′
n (z) = ψn−1 (z)−n jn (z) . (6.198)

or the expression:
ψ
′
n (z) = (n+1) jn (z)−ψn+1 (z) . (6.199)

6.9.3 Vector Spherical Harmonics

There is no universally accepted notation for the Vector Spherical Harmonics (VSHs). Our
notation for their normalized forms is XXXn,m, YYY n,m, and ZZZn,m where they are respectively defined
by

XXXn,m(θ ,φ)≡ ZZZn,m(θ ,φ)× r̂rr
YYY n,m(θ ,φ)≡ r̂rrYn,m(θ ,φ)

ZZZn,m(θ ,φ)≡
r∇∇∇Yn,m(θ ,φ)√

n(n+1)
= r̂rr×XXXn,m(θ ,φ) , (6.200)

The scalar spherical harmonics, Yn,m(θ ,φ), do have a nearly universal convention for their
definitions[10] which we recalled in eq.(6.134).

For numerical calculations of the VSHs, it is convenient to introduce the normalized func-
tions um

n and sm
n defined as:

um
n (cosθ)≡ γn,m

m
sinθ

Pm
n (cosθ) (6.201)

sm
n (cosθ)≡ γn,m

d
dθ

Pm
n (cosθ) , (6.202)

where the Pm
n are the Legendre functions defined in eqs.(6.137), (6.138), and (6.139), and γn,m

a normalization factor given by

γn,m ≡
λn,m√

n(n+1)
=

√
(2n+1)(n−m)!

4πn(n+1)(n+m)!
. (6.203)

The transverse VSHs have compact expressions in terms of um
n and sm

n :

XXXn,m(θ ,φ) =
[
ium

n (cosθ) θ̂θθ − sm
n (cosθ)φ̂φφ

]
exp(imφ)

ZZZn,m(θ ,φ) =
[
sm

n (cosθ)θ̂θθ + ium
n (cosθ) φ̂φφ

]
exp(imφ) . (6.204)
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The normalized um
n functions can be readily calculated with recurrence relations:

u0
n(x) = 0 , u1

1(x) =−
1
4

√
3
π

un
n(x) =−

√
n(2n+1)

2(n+1)(n−1)

√
1− x2un−1

n−1(x)

um
n (x) =

√
(n−1)(4n2−1)
(n+1)(n2−m2)

xum
n−1(x)

−

√
(2n+1)(n−1)(n−2)(n−m−1)(n+m−1)

(2n−3)n(n+1)(n2−m2)
um

n−2(x)

un−1
n (x) =

√
(2n+1)(n−1)

(n+1)
xun−1

n−1(x) , (6.205)

while the sm
n can be determined from the um

n functions via the formula:

sm
n (cosθ) =

1
(m+1)

√
(n+m+1)(n−m)sinθum+1

n (cosθ)+ cosθ um
n (cosθ) . (6.206)

The respective parity properties of um
n and sm

n are:

u−m
n (x) = (−1)m+1 um

n (x)

s−m
n (x) = (−1)m sm

n (x) . (6.207)
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