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1.1 Introduction

Object recognition or classification have sparked the interest of researchers
for nearly three decades. Nowadays, this topic is one of the most active in
the computer vision research community. Object recognition/classification are
performed on several digital media such as pictures or videos. The recognition
task is more or less obvious according to the visual scene complexity, and the
object to find. It is indeed easier to find an object in a controlled environment
than in a natural scene. Furthermore, in a real-life visual scene, objects can
be numerous and located in the foreground, and the background as well. The
object recognition task is often dependent on the global semantic interpreta-
tion task. One do not seek to recognize all objects in a visual scene, but only
those which are if interest for him. The examples of such a selective interest
are numerous. When seeking for identifying a person crossing the road, the
observer will not focus on the surrounding buildings for instance.

The book chapter addresses recognition/classification of objects in com-
plex visual scenes recoded by using a wearable video camera. Especially we
are willing to recognize manipulated objects of the Instrumental Activities of
Daily Living (IADL). For such videos, the wearable camera is either set on
the subject’s shoulder or tied on the chest. Both camera positions give an ego-
centric point-of-view of the visual scene. This point-of-view has the advantage
to be the best to catch the action happening. However, nobody is behind the
camera to center the object of interest. That is why the object of interest may
be located in an unexpected area of the video frame. This issue is not usual
in edited videos where objects of interest are almost always near the frame
center. IADL video scene are complex as well. Indeed several manipulated
objects could be present on the frame, but only one or two of them could be
active that is of interest for the observer. Hence an additional information
must be integrated in the recognition framework to catch the attention of the
observer.

In this work, we propose to use the visual saliency for detecting active
regions of the frame. The visual saliency represents the human visual attention
within a visual scene. Therefore the saliency is well suited to distinguish active
from inactive objects. Visual saliency modeling captivates researchers since
the early 80’s with the Feature Integration Theory [51] from A. Treisman, and
G. Gelade. This research topic is still very active. In 2012, A. Borji, and L.
Itti [8] took the inventory of 48 significant saliency models. Despite the fact
that the visual saliency modeling is an old research topic, object recognition
frameworks using such models is a new trend [18, 53]. Most of the visual
saliency models are only considering spatial information such as contrast.
These models are called spatial and where designed at first for still pictures.
There are also models called spatio-temporal based on the motion present in
videos. Especially the Human Visual System (HVS) is highly sensitive to the
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relative motion. This is why applying a spatio-temporal saliency model in the
object recognition framework is relevant to consider the temporal dimension
of videos. Indeed most of the object recognition frameworks for video only
process video frames separately, without taking advantage of previous and
next frames.

In this chapter, we also propose to improve the saliency model by adding a
third saliency cue called geometric. Recent works [50] have shown that subjects
tend to fixate the screen center when watching natural scene. In [17] the
authors came to the same conclusion for natural edited videos. This is why
the authors of [13] proposed a thrid cue modeling a 2D Gaussian centered in
the middle of the frame. In our third cue, we considered this center hypothesis
applied to egocentric videos. After analyzing gaze fixations on these videos we
figured out that viewers anticipate the camera motion. Hence, we propose
with the geometric cue to consider the anticipation phenomenon by moving
the 2D Gaussian center according to the camera center motion.

Before going into further details on the use of saliency for object retrieval,
we review in section 1.2 the existing methods for object recognition in im-
ages or video frames considered as stills. Then the section 1.3 presents the
state-of-the-art methods using visual saliency for object recognition as well as
saliency models that are used in this work, and the proposed saliency geomet-
ric saliency cue. Section 1.4 describes our object extraction approach based on
the BoVW weighted by saliency maps. Section 1.5 details the evaluation pro-
tocol, and the test video databases. Section 1.6 shows the evaluation results.
Finally, section 1.7 concludes this chapter.

1.2 State of the Art on Objects Recognition

Object recognition or classification are very active research topics. Over thou-
sands of papers have been published on these subjects during the last ten
years. Doing an exhaustive state of the art is therefore unrealistic. Hence we
focus on the works that have received the most attention and have given the
most promising results. One common strategy for all these methods can be
highlighted. First, the image or areas of interest is described with the most
possible pertinent information. The descriptors can either be local, global
or semi-local. Next, a compact representation of the set of all the descrip-
tors is defined. Finally, distances or similarities between these representations
are computed so that the current image can be classified or compared to a
database in order to obtain the recognition result. In this section, all these
steps are detailed.
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1.2.1 Features extraction

In order to analyze the content of images or videos, the first step consists in
extracting some features which characterize the data. This step is useful for
all the applications such as Content-Based Image Retrieval (CBIR), image
classification, object recognition or scene understanding. The features can
either be global, local or semi-local. All of them can be applied for object
recognition in the areas of interest detected in video frames. We here review
some of the existing works on the topic.

1.2.1.1 Global image descriptors

Global image features are generally based on color cues. Indeed, color is an
important part of the human visual perception. In images, the colors are
encoded in color spaces. A color space is a mathematical model that enables
the representation of colors, usually as a tuple of color components. There exist
several models of this type, some motivated by the application background,
some by the perceptual background of the human vision system. Among them
we can cite the RGB (Red Green Blue) space, the HSV (Hue Saturation Value)
or the luminance-chrominance spaces (YUV for instance).

Probably the most famous global color descriptor is the color histogram.
Color histograms aim at representing the distribution of colors within the im-
age or a region of the image. Each bin of a histogram represents the frequency
of a color value within this area. It usually relies on a quantization of the color
values, which may differ from one color channel to another. Histograms are
invariant under geometrical transformations of the region.

Color moments are another way of representing the color distribution of
an image or a region of an image. The first order moment is the mean which
provides the average value of the pixels of the image. The standard deviation is
the second order moment representing how far color values of the distribution
are spread out from each other. The third order moment, named skewness,
can capture the asymmetry degree of the distribution. It will be null if the
distribution is centered on the mean. Using color moments, a color distribution
can be represented in a very compact way [26, 34].

Other color descriptors that can be mentioned are the Dominant Color De-
scriptor (DCD) introduced in the MPEG-7 standard [37] or the Color Layout
Descriptor (CLD).

1.2.1.2 Local image descriptors

The features that have received the most attention in the recent years are
the local features. The main idea is to focus on the areas containing the
most discriminative information. In particular the descriptors are generally
computed around the interest points of the image and are therefore often
associated to an interest point detector.
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SIFT

Scale Invariant Feature Transform (SIFT) [35] has been designed to match
different images or objects of a scene. The features are invariant to image
scaling and rotation, and partially invariant to change in illumination and 3D
camera viewpoint. They are well localized in both the spatial and frequency
domains, reducing the probability of disruption by occlusion, clutter, or noise.
In addition, the features are highly distinctive, which allows a single feature
to be correctly matched with high probability against a large database of fea-
tures, providing a basis for object and scene recognition. There are two main
steps for extracting SIFT features: the key-point localization through scale-
space extreme detection and the generation of key-point descriptors. First, a
scale pyramid is built by convolving the image with variable-scale Gaussians
and DoG images are computed from the difference of adjacent blurred images.
Interest points for SIFT features finally correspond to local extrema of these
DoG images. To determine the key-point orientation, necessary for rotation
invariance, a gradient orientation histogram is computed in the neighborhood
of the key-point. The contribution of each neighboring pixels is weighted by
the gradient magnitude. Peaks in the histogram indicate the dominant orien-
tations. The feature descriptor finally corresponds to a set of orientation his-
tograms, relative to the key-point orientation, on a 4x4 pixel neighborhoods.
As histograms contain 8 bins, a SIFT features is a vector of 128 dimensions.
This vector is normalized to ensure invariance to illumination changes.

SURF

SIFT have proven to be a powerful feature in many computer vision appli-
cations. Nevertheless, all the necessary convolutions make it computationally
expensive. Speeded Up Robust Features (SURF) [5] have then been proposed
as an alternative feature. This feature describes a distribution of Haar-wavelet
responses within interest point neighborhood. It relies on integral images. The
latter is the sum of all pixel values contained in the rectangle between the
origin and the current position. SURF key-points are also extracted by scale-
space analysis through the use of Hessian-matrices. Here again, the dominant
orientation is extracted. It is estimated by computing the sum of Haar-wavelet
responses within a sliding orientation window. In an oriented square window
centered at the key-point, which is split up into 4x4 sub-regions, each sub-
region finally yields a feature vector based on the Haar-wavelet responses, of
dimension 64.

1.2.1.3 Semi-local image descriptors

Most shape descriptors fall into this category. Shape description relies on
the extraction of accurate contours of shapes within the image or region of
interest. Image segmentation is usually fulfilled as a preprocessing stage. In
order for the descriptor to be robust with regard to affine transformations of
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an object, quasi perfect segmentation of shapes of interest is supposed. Here,
we just mention some shape descriptors but more can be found in literature. In
particular, let us mention the Curvature Scale Space (CSS) descriptor [39] and
the Angular Radial Transform (ART), descriptors in the MPEG-7 standard.

1.2.1.4 Bag-of-Visual-Words approaches

The descriptors presented above, and in particular SIFT and SURF, have been
widely used for retrieving objects in images. Local feature extraction leads to
a set of unordered feature vectors. The main difficulty of the recognition,
retrieval or classification steps consists in finding a compact representation
of all these features and its associated (dis-)similarity measure. An efficient
approach that has been widely used is the so-called Bag-Of-Visual-Words
framework [47], that we now describe. The Bag-of-Visual-Words (BoVW) ap-
proaches have four main stages: building a visual dictionary by clustering
visual features extracted from a training set of images/objects, quantifying
the features, choosing an image representation using the dictionary and com-
paring images according to this representation. We now review these steps.

Visual dictionary

In analogy with text retrieval, the features extracted in an image correspond
to the words in a document. A visual dictionary must then be built. This is
generally done by randomly selecting a sufficiently large set of features over
a huge amount of images. This dictionary, V = v;,i = {1,..., K}, is then
built by clustering these features into a certain number of K classes or ”visual
words”.

Feature quantization

The second step consists in quantizing the features extracted in an image
according to the visual dictionary. Each feature from N extracted features for
an image is quantized. This quantization is generally achieved by assigning
each feature to its closest word in the dictionary V.

Pooling

Each image in the data-set can now be represented by a unique vector of K
dimensions. Each dimension represents the number of times a feature appears
in the image. Therefore, this vector can be seen as a histogram representing the
distribution of visual words in an image. This histogram is often normalized
which enables comparing images containing a different number of features.
These histograms were named Bag-of-Visual-Words [47] (BoVW).
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Image comparison

All images being now represented by a histogram, the last step simply con-
sists in comparing the histograms. Obviously, when the size of the database
increases this step can become very computationally expensive. The compu-
tational time also depends on the size of the dictionary which therefore needs
to be chosen carefully. Several strategies have been proposed in the literature
to improve the cost of this last step. In [47], this framework was applied with
SIFT features. The vector quantization was carried out by k-means cluster-
ing, the number of clusters being chosen manually. In order to increase the
discriminative power of the words produced by the clustering, a stop list was
used. The idea of the stop list is to remove from the vocabulary the words
which are very frequent, thus not discriminative enough, and those which are
very rare, that can then be seen as noise. In [47], the authors removed from
the list the 5% more frequent words and 10% less frequent.

Limitations and improvements

The method in [47] is at the origin of most recent works in the domain of im-
age recognition and retrieval. Many improvements have been proposed since
then.

1.2.1.5 Improvements of Bag-of-Visual-Words approaches
Feature quantization

First, concerning the vector quantization, it is well known that k-means algo-
rithm has no guarantee to converge to the global optimum and depends on the
initialization of the centers of the clusters. An improved version of this algo-
rithm, known as k-means++ has been proposed in [2]. In order to deal with an
incremental amount of images in a data-set, a hierarchical quantization can be
built. For instance, a hierarchical k-means clustering, called vocabulary tree
was proposed in [40]. The vocabulary tree gives both higher retrieval quality
and efficiency compared to the initial BoOVW framework of [47]. Until now, we
have only been talking about Bag-of-Visual Words approaches in which only
one type of feature is used. Note that if several different types of features are
extracted from the images, the BoVW framework can also be directly applied.
The set of all the feature vectors from one image is generally referred to as
”Bag-of-Features”.

Soft and sparse coding

In previous methods, the feature quantization, and thus the image represen-
tation, is obtained by assigning the feature vector to the closest word in the
dictionary. This is called "hard coding”. The coding step can be modeled by
a function which assigns a weight o ; to the closest center v; of the feature



Visual search for objects in a complex visual context: what we wish to see 11
vector x; :

[ 1 if j=argming ||xi — vk]|
g { 0 otherwise. (1.1)

Hence for each feature vector in the image, a code-vector wan be com-
puted by encoding the feature with the dictionary. The drawbacks of hard
quantization are twofold: (i) word uncertainty: when a feature is close to sev-
eral codewords, i.e. words of the dictionary, only the closest is considered;
(ii) word plausibility: a codeword is assigned to the closest codeword no mat-
ter how far it can be. An illustration of these two drawbacks of hard coding
are given in Figure 1.1 below. In green an example of an "uncertain” word is
shown, in light blue an example of an implausible word is given. A ”consistent”
word example is given in yellow.

FIGURE 1.1
Soft quantization and sparse coding.

Instead of assigning a feature to a unique codeword, a soft assignment can
be used [52]. The weight « is not anymore a constant weight for all the features
vectors but will contain more information on the distribution of the feature
vectors over the visual dictionary. For instance, the weight can be equal to the
distance from the feature to the codeword. The resulting code is therefore not
sparse contrary to what happens with hard coding. Some works also proposed
to use kernel density estimators to estimate the weights [7]. Let us mention
three models studied in [7], and relying on a Gaussian-shaped kernel: the ker-
nel code-book (KCB), the codeword uncertainty (UNC) and the codeword
plausibility (PLA). They all weight each word by the average kernel density
estimation for each feature.

Sparse coding uses a linear combination of a small number of codewords
to approximate a feature. The strength of sparse coding approaches is that
one can learn the optimal dictionary while computing the weights « [36].
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Pooling in BoVW approaches

The third step of BoVW approaches is pooling which consists in forming the
final image representation. A good representation must be robust to different
image transformations and to noise, and must be as compact as possible. A
pooling operator aggregates the projections of all the input feature vectors
onto the visual dictionary to get a single scalar value for each codeword.
The standard BoVW [47], considers the traditional text retrieval sum pooling
operator:

N
VjilK, Zi:Zai,j-
i=1

Max pooling,

Vi=1...K, z;= max o4 ;
J s <1 P 7

associated to sparse coding have also allowed to get superior performance than
sum pooling [55]. Performance of max pooling and sum pooling has also been
studied in [12]. Several extensions to these two traditional pooling operators
have recently been proposed, some focusing on applying the pooling step on
more local areas. The most powerful is probably the Spatial Pyramid Match-
ing method (SPM) [31]. A fixed predetermined spatial image pyramid is first
computed. The BoVW are then built on nested partitions of image plane from
coarse-to-fine resolutions. In other words, pooling is performed over the cells
of a spatial pyramid rather than over the whole image. In [1], an approach
called ”Visual Phrases” is introduced to group visual words according to their
proximity in the image plane as a sequence of features. The visual phrases are
represented by a histogram containing the distribution of the visual words in
the phrase. Spatial information has also been taken into account in [27]. In-
deed, a spatial embedding of features with local Delaunay graphs is proposed.
The advantage of Delaunay triangulation is that it is invariant to affine trans-
formation of image plane preserving the angles. Another BoVW improvement
belonging to the aggregated coding class is the Fisher Kernel approach pro-
posed in [41]. It is based on the use of the Fisher kernel with Gaussian Mixture
Models (GMM) estimated over the whole set of images.

1.2.1.6 Conclusion

In this section, we gave an overview of different type of features to represent
the images and videos. The extraction of such descriptors is the preliminary
step for any visual indexing and retrieval systems. The accuracy of all the
methods presented in the following highly depends on the robustness of the
chosen features to scaling, rotation and lightning changes.
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1.2.2 Classification and recognition of objects in images

Now that a good representation of each image or video has been extracted,
the problem of classification or retrieval can be addressed. In case of image
retrieval or indexing, the goal is to find, within a database, the image(s) that
best matches a query image given by the user. In the context of classification,
the purpose is to assign the image to the category to which it corresponds. The
categories are defined beforehand by the user and a learning phase is necessary
to learn the most important properties of each category. When relying to
BoVW approaches, at the end of the pooling step, every object or image is
represented by one histogram over the visual dictionary. In this section, we
will see how these histograms can be used for image or object retrieval on one
hand and for classification on the other hand.

1.2.2.1 Vector distances

Many distances and strategies have been proposed to retrieve an image from
its compact representation. Obviously, as BoVW approaches represent the
distribution of visual words in an image by a histogram, the easiest way to
perform retrieval is to compute (dis-)similarities between histograms. There
exist two main categories of distances between histograms: the bin-to-bin dis-
tances and the cross-bin ones. Bin to bins measures require the histograms to
have the same number of bins. Among the existing ones, let us mention the L2
and L1 metrics, the Kullback-Leibler divergence, the Chi-Square metric or the
histogram intersection [49]. Among the cross-bins metrics, the most famous
ones are the Mahalanobis distance and the Earth Mover’s distance (EMD).

1.2.2.2 Feature distribution comparison

In previous sections, we consider a unique histogram per image. However, more
recent approaches have shown that it can be more powerful to represent an
image by several histograms, taking into account only a small part of the data
or incorporating some local descriptions. When the data is represented by one
or several histograms, kernel functions can be used to perform the matching.
A kernel function is a function which allows evaluating the correlation between
two data descriptions. In recent years, two principal types of kernels have been
used in visual recognition system: the pyramid match kernel and the context
dependent kernel. Pyramid match kernel was introduced in [20], for object
recognition and document analysis. The principle is to map the features of
some interest points using a multi-resolution histogram representation and
to compute the similarity using a weighted histogram intersection. In [45],
Sahbi et al. have introduced the context dependent kernel (CDK). This kernel
takes into account both the feature similarity ”alignment quality” and the
spatial alignment in a neighborhood criterion. The CDK is defined as the
fixed-point of an energy function which balances a "fidelity” term, i.e. the
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alignment quality in terms of features similarity, a context criterion, i.e. the
neighborhood spatial coherence of the alignment and an entropy term.

1.2.2.3 Image classification

Image classification requires a pre-processing step of learning in order to find
a decision rule (classifier) assigning Bag-of-Features representations of images
to different classes. In general, a set of images belonging to the class (positive
training examples) and a set of images not belonging to the class (negative
training examples) are provided to the learning tool. Nowadays, SVM is the
most frequently used machine learning tool in a supervised context. Hence we
find it necessary to briefly review its principles for object recognition purposes.
SVM is a supervised statistical learning method that belongs to the class of
kernel methods. The goal of SVM is to learn good separating hyper planes
in a high dimensional feature space. The role of the kernel function k is to
map the training data into a higher dimensional space where the data is
linearly separable. In other words, the feature vectors, z;, are first mapped
into feature vectors ¢(z;) in an induced space. Next, a linear decision function
f(z;) = wx;+bis defined. The hyperplane then corresponds to wz;+b = 0 and

separates the positive y; = +1, from the negative training examples, y; = —1:
wxr; +b>0 fory; =+1 (1.2)
wr; +b< 0 fory;=-—1. ’

The SVM optimization problem can now be formulated as

. 1 2 . .
mmwybinH subject to Vi, yif(x;) > 1. (1.3)

The decision function relies on the so-called ”support vectors” which define the
maximal margin between positive and negative subspaces in the target space.
Detailed description can be found in the fundamental work [|. In its original
formulation SVM is a binary classifier, but since the original framework it has
been adapted to the multi-class problem.

1.2.3 Object recognition in videos

For recognition of objects in videos, a lot of work has been done using so-called
spatio-temporal features [46] computed around spatio-temporal points [30].
Nevertheless, the key-framing and intra-frame object recognition still remains
one of the most popular approach [16]. Temporal dimension can be integrated
in this case by fusion operators using multiple detections along the video [4] or
by extraction of visually salient regions which are supposed to contain object
of interest. In the following section we will introduce the notions of visual
saliency for object extraction in videos.
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1.3 Visual Saliency in Visual Object Extraction
1.3.1 State of the art in visual saliency for object extraction

Since recently, the focus of attention in video content understanding, presen-
tation, and assessment has moved towards incorporating of visual saliency
information to drive local analysis process. The fundamental model by L. Itti
and C. Koch [24] is that one the most frequently used for driving analysis pro-
cess by visual saliency. If we simplify the concept of saliency to its very basic
definition, we can reasonably say that visual saliency is what attracts human
gaze. For visual object recognition in video, the first step which consists in
extracting the potential area of object can be driven by extraction of saliency
areas in video frames. Then features can be selected in these areas for ob-
ject description. Numerous psycho-visual studies which have been conducted
since the last quarter of 20th century uncovered some factors influencing it.
Considering only signal features, the sensitivity to color contrasts, contours,
orientation and motion observed in image plane has been stated by numerous
authors [23, 32]. Nevertheless, only these features are not sufficient to delimit
the area in the image plane which is the strongest gaze attractor. In [50],
the author states, for still images, that observers show a marked tendency
to fixate the center of the screen when viewing scenes on computer moni-
tors. The authors of [17], come to the same conclusion for dynamic general
video content such as movies and Hollywood trailers. This is why the authors
of [13] propose the third cue which is the geometrical saliency modeled by
a 2D Gaussian located at the image center. While signal based cues remain
valuable saliency indicators, we claim that geometrical saliency depends on
global motion and camera settings in the dynamic scene. Recently a new and
challenging video content came out from various applications: the so-called
egocentric vision content [33, 48]. It is recorded by camera worn by persons.
This is a complex content, characterized by a strong camera motion, richness
of the visual scene, especially if recorded in a home environment as it is done
in [27] for studies of neurodegenerative diseases. Object recognition in such
videos is difficult due to occlusions by hands, and the complexity of the en-
vironment. This is probably the most challenging content from the variety of
user generated content from mobile devices. Hence the methods for visual ob-
ject recognition in such content would make profit to the advances in a wide
range of visual object recognition tasks in video. Some attempts to identify
visual saliency for object recognition mainly on the basis of the frequency of
repetition of visual objects and regions in the wearable video content have
recently been made in [44]. We are specifically interested in the development
and the application of visual saliency extraction methods for object recogni-
tion inhere. We consider visual saliency as a combination of all cues in the
pixel domain for the case of ”egocentric” video content.

Recent research for object recognition extend the Bag-of-Features video
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representations [46] by making use of space-variant saliency mask [53]. In [46],
space-time descriptors, capturing spatial appearance and motion properties,
are sampled densely over the entire scene. The authors of [53] then propose to
prune this set of densely extracted descriptors with the cumulative distribution
function:

FlaskA) =1— e (%) (1.4)

where k£ > 0 is the shape parameter and A > 0 is the scale parameter. The
raw saliency value z € [0, 1] is derived from a saliency mask obtained with six
different saliency models.

In the following section, we propose an automatic method for spatio-
temporal saliency extraction on wearable camera videos with a specific ac-
cent on geometrical saliency dependent on strong wearable camera motion.
We evaluate the proposed method with regard to subjective saliency maps
obtained from gaze tracking. The obtained saliency maps will serve for weight-
ing the visual features in the whole BoVW video object recognition scheme
we use in this work. The advantage of our approach against [53] is that we
propose a trully automatic way of building saliency maps. Specifically, for the
”egocentric vision” the research on visual saliency is in its embryonic stage.

Let us now introduce the notion of visual saliences, the one subjective we
can obtain from human observers of the video content, and other objectives,
that are automatically predicted from the video signal features.

1.3.2 Subjective vs. objective saliency maps

Any objective human visual perception model expressed as a induced visual
attention map in the image/video plan has to be validated and evaluated
with regard to a ground truth. The ground truth is the subjective saliency. The
subjective saliency is built from eye fixation measurements with the help of
eye-tracking. The eye positions are recoded with a device called eye-tracker.
The eye-tracker only collects eye positions at a regular rate, up to 1250 Hz for
some models. Eye positions are first measured in the eye-tracker coordinates
system. Then the measures are transposed to the experiment screen coordi-
nates system, and recorded. The origin of the screen coordinates system is
usually the screen center. Finally, the measures have to be transposed to the
frame coordinates system. In this chapter, we consider that the eye measure
coordinates (z,yo) are already transposed in the frame coordinates system.
However eye fixations cannot be directly used to represent the visual atten-
tion. First the eye fixations are only spots on the frame and do not represent
the field of view. Secondly, to get accurate results, the saliency map is not
built with the eye tracking data from one subject, but from many subjects. So
the subjective saliency map should provide an information about the density
of eye positions.

The method proposed by D. S. Wooding [54] fulfills these two constraints.
Moreover, his method was tested over 5000 participants on digitalized images
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Fovea projection on the screen

of paintings from the National Gallery. In the case of video sequences, the
method is applied on each frame I of a sequence M. The process result is
a subjective saliency map Seup;(I) for each frame I. With this method, the
saliency map is computed in three steps. In the first step, for each eye fixation
measure m of frame I, a two dimensional Gaussian is applied at the center of
the eye measure (zo,yo)m. The two dimensional Gaussian depicts the fovea
projection on the screen. The fovea is the central retina part where the vision is
the most accurate. The image falls on the fovea when an observer fixates. This
region contains only cone photo-receptors and has the highest cone density
of the retina. The human eye contains two kinds of receptors, the rods and
the cones. Rods are more sensitive at low light levels. However, rods do not
allow color discrimination and provide poor information about details. On the
contrary, cones are efficient at high intensity lightning. Cones are responsible
for color vision and for the fine details detection. In the Sensibility to Light [21]
book chapter from D.C. Hood and M.A. Finkelstein (1986), the authors stated
that the fovea covers an area from 1.5° to 2° in diameter at the retina center. It
is also specified that the cone population falls sharply outside the fovea region,
to reach a minimum at around 10° from the fovea center. M. Pomplun, H.
Ritter and B. Velichkovsky in [43] were the first to apply a two dimensional
Gaussian to depict the fovea projection on the screen. D.S. Wooding proposed
to set the Gaussian spread o to an angle of 2° (Figure 1.2). Equation (1.5)
is used to estimate the o,,,, in mm according to the fovea view angle « set
to 2°. The distance eye-screen D in mm is also required. According to ITU-R
Rec. BT.500-11 [25], D should be equal to three times the screen height 3H.
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Psycho-visual 2D Gaussian depicting the fovea area on the screen center (1280x960 pixels resolution)

Psycho-visual 2D Gaussian
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FIGURE 1.3

Psycho-visual 2D Gaussian (2° spread) depicting the fovea area related to one
eye-tracker measure.

oc—mm =D X tan («) (1.5)

Nevertheless, measures in mm are not convenient for processing video
frames. So the o, value in mm is converted in pixels (o) with equation (1.6),
where R is the screen resolution in pixels per mm .

0=RXOmm (1.6)

For the eye measure m of the frame I, a partial saliency map Ssup; (1, m)
is computed (1.7).

(z—0,,)> +<y—yom>2>

Ssup; (I,m) = Ae_< 293 295

(1.7)
with o, =0y =c and A=1

Then, at the second step, all the partial saliency maps Ssyp; (I, m) of frame
S;I are added into Seup;/(I) (1.8).

Ny
Ssubj/(l) = Z Ssubj(l7m) (18)
m=0

where Ny is the number of eye measures recorded on all the subjects for the
frame I. Finally, at the third step, the saliency map Ssyp;/(I) is normalized by
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Normalized 2D Gaussian sum on an egocentric video frame.

the highest value argmaz of Sgyp;/(I) (Figure 1.4). The normalized subjective
saliency map is stored in Ssup; (1) (1.9).

Ssubj/(I)
argmaz(Ssup;!(I))

Ssubj(-[) = (19)

Figure 1.5 shows an example of a subjective saliency map computed with
the D. S. Wooding’s method. Why could not we use the subjective saliency
maps for object extraction? The subjective saliency map processing requires
eye-tracker measures from subjective experiments. Subjective experiments are
time consuming and expensive to carry out. To get a subjective saliency map
would require viewing the video by several subjects. Thus, subjective saliency
are not suited for real-life video analysis applications. To fulfill this constraint
we are interested in an automatic objective saliency maps we proposed. The
automatic spatio-temporal saliency map computation process is described in
the next sections. However the subjective saliency map remains helpful for
the objective saliency map accuracy evaluation. That is why the subjective
saliency map is considered below as the reference saliency map. Hence, the
subjective saliency maps will be used as the ground truth to asses the objective
maps automatically built.
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FIGURE 1.5
Subjective saliency map example computed with D. S. Woodings method from
eye-tracker data. (a) Original frame. (b) Subjective saliency map.

1.3.3 Objective saliency map

To delimit the area of video analysis in video frames to the regions which are
potentially interesting to human observers we need to model visual saliency
on the basis of video signal features. Here we follow the results of commu-
nity research [22, 24, 23, 32, 13, 44] by proposing fusion of spatial, temporal,
and geometric cues. We extend the state-of-the art approaches by a specific
modeling of geometrical saliency and propose multiplicative fusion of all three
cues.

(a) (b) (c)

FIGURE 1.6
Objective saliency map example. (a) Original frame. (b) Spatial saliency map.
(¢) Temporal saliency map.
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1.3.3.1 Spatial saliency map

The spatial saliency map S, is mainly based on color contrasts [3]. We used
the method from O. Brouard, V. Ricordel and D. Barba [13]. The spatial
saliency map extraction is based on seven color contrast descriptors. These
descriptors are computed in the HSI color space [19]. On the contrary to RGB
color system, the HSI color space is well suited to describe color interpretation
by humans. The spatial saliency is defined according to the following seven
local color contrasts V' in the HSI domain:

1. Contrast of Saturation: A contrast occurs when low and highly sat-
urated color regions are close.

2. Contrast of Intensity: A contrast is visible when dark and bright
colors co-exist.

3. Contrast of Hue: A hue angle difference on the color wheel may
generate a contrast.

4. Contrast of Opponents: Colors located at the hue wheel opposite
sides create very high contrast.

5. Contrast of Warm and Cold Colors: Warm colors — red, orange and
yellow — are visually attractive.

6. Dominance of Warm Colors: Warm colors are always visually at-
tractive even if no contrast are present in the surrounding.

7. Dominance of Brightness and Saturation: Highly bright and satu-
rated regions have more chances of attracting the attention, regard-
less of the hue value.

The spatial saliency value Sgp(I ,1) for a pixel ¢ from a frame I is computed
by mean fusion operator from seven color contrast descriptors (1.10):

7

> Vi(I,i) (1.10)

s=1

Se,(1,i) =

==

Finally, S§,(I,1) is normalized between 0 and 1 to Ss,(I,4) according to its
maximum value.

1.3.3.2 Temporal saliency map

The objective spatio-temporal saliency map model requires a temporal
saliency dimension. This section will describe how to build temporal saliency
maps. The temporal saliency map S; models the attraction of attention to
motion singularities in a scene. The visual attention is not grabbed by the
motion itself. The gaze is attracted by the motion difference between the ab-
solute motion scene and the global motion scene. The motion difference is
called the residual motion. O. Le Meur et al. [32], O. Brouard et al. [13], and
S. Marat [38] propose a temporal saliency map model that takes advantage
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of the residual motion. In this work, we have implemented the model from O.
Brouard et al. [13].

The temporal saliency map is computed in three steps. The first one is the
optical flow estimation. Then the global motion is estimated in order to get
the residual motion. Finally a psycho-visual filter is applied on the residual
motion.

To compute the optical flow, we have applied the Lucas Kanade method
from OpenCV library [9]. The optical flow was sparsely computed on 4x4
blocks, as good results were reported in [10] when using 4 x 4 macro-block
motion vectors from the H.264 AVC compressed stream. The next step in
temporal saliency computation is the global motion estimation.

The goal here is to estimate a global motion model to differentiate then
local motion from camera motion. In this work, we follow the preliminary
study from [10] and use a complete first order affine model (1.11):

dx; = a1 + asx + asy

1.11
dy; = a4 + asw + agy ( )

Here 0 = (a1,as,...,a6)T is the parameter vector of the global model
(1.11) and (dz;, dy;)T is the motion vector of a block. To estimate this model,
we used robust least square estimator presented in [28]. We denote this motion
vector Vp(I,4). Our goal is now to extract the local motion in video frames
i.e. residual motion with regard to model (1.11). We denote the macro-block
optical flow motion vector 176(1 ,i). The residual motion VT(I ,1) is computed
as a difference between block motion vectors and estimated global motion
vectors.

Finally, the temporal saliency map S¢(/,7) is computed by filtering the
amount of residual motion in the frame. The authors of [13] reported, as
established by S. Daly, that the human eye cannot follow objects with a ve-
locity higher than 80°/s [15]. In this case, the saliency is null. S. Daly has
also demonstrated that the saliency reaches its maximum with motion values
between 6°/s and 30°/s. According to this psycho-visual constraints, the filter
proposed in [13] is given by (1.12).

1V.(1,4), if 0 < HC(IJ')<771
Si(en) — 1, if 7y < Vi (1,i) < (1.12)
) — V(L) + 8, i B < Vo(1,4) < Tinas '
0, if Upaa < Vr(lai)

with o) = 6°/s, U5 = 30°/s and Uyna. = 80°/s. We follow this filtering scheme
in temporal saliency map computation.
1.3.3.3 Geometric saliency map

Many studies have showed that the observers are attracted by the screen
center. In [13], the geometrical saliency map is proposed as a 2D Gaussian
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located at the screen center with a spread o, = o, = 5°. In our work [11] we
proposed to adapt the geometric saliency to the camera position estimated by
a psycho-visual experiment with subjects watching recorded videos. We stated
that in a shoulder-fixed wearable camera video the gaze is always located in the
first upper third of video frames, see the scattered plot of subjective saliency
peaks in Fig. 1.7. Therefore, we have set the 2D Gaussian center at xy = %‘“h

and yg = %. The geometrical saliency S; map equation is given by (1.13).
Sy(I)=¢ \ 2% = 2% (1.13)
Subjetive saliency peak location on IMMED data-set
0
o
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FIGURE 1.7

Scattered plot of subjective saliency peaks for all the frames from the IMMED
database

However, this attraction may change with the camera motion. This is ex-
plained by the anticipation phenomenon [29]. Indeed, the observer of video
content produced by a wearable video camera tries to anticipate the actions
of the actor. The action anticipation is performed according to the actor body
motion which is expressed by the camera motion. Hence we propose to simu-
late this phenomenon by moving the 2D Gaussian centered on initial geometric
saliency point in the direction of the camera motion projected in the image
plane. A rough approximation of this projection is the motion of image center

computed with the global motion estimation model, equation (1.11), where
o = width o4, — height
=2 y= =5

1.3.3.4 Saliency map fusion

We now describe the method that merges these three saliency maps in the
target objective saliency map. The fusion result is a spatio-temporal-geometric
saliency map. In [10], several fusion methods for the spatio-temporal saliency
without geometric component were proposed. We have tested these fusion
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methods on wearable video database. The results show that the multiplicative
fusion performs the best. So for the full spatio-temporal-geometric saliency we
compute multiplicative ST, (1.14).

Smul,_ (I) = Ssp(I) x S¢(I) x Sy(I) (1.14)

sp—t—g

1.4 Object recognition with saliency weighting

In the trending approach of Bag-of-Visual-Words, all the SURF descriptors
from the learning dataset are quantized into a visual dictionary (or codebook)
using k-means clustering. In this case, SURF points are detected by using
the sparse SURF detector. Each image is then modeled by a distribution of
its visual words. For this purpose, the descriptors computed on the image
are matched with a Ly norm with their closest representative in the code-
book. In the traditional Bag-of-Visual-Words approach, the final image sig-
nature is the statistical distribution of the image descriptors according to the
codebook. We propose instead of a hard assignment for BoVW computation
(see section 1.2.1.4) to apply what we call saliency weighting. With saliency
weighting, the contribution of each image descriptor is defined by the maxi-
mum saliency value found under the descriptor ;. In other words, descriptors
over salient areas will get more weight in the image signature than descrip-
tors over non-salient areas, see Figure 1.8. Therefore, the image signature z;
is computed with equations (1.15), and (1.16):

N
Vi=1...N,z :Zai,jwi (1.15)
i=1
w; = argmax(S(s)) (1.16)
S€EP;

where o; ; = 1 if the descriptor ¢; of feature point p; is quantized to class
K. w; is the maximum saliency map value within the area covered by the
descriptor ;.

1.5 Evaluation

This section presents the video databases and the methods used for the eval-
uation of the saliency model and the object recognition. Recognition methods
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(a) (b)

FIGURE 1.8
Example of SURF points not-weighted, and weighted by visual saliency. (a)
Classical BoVW. (b) BoVW weighted by visual saliency.

were tested on the IMMED! (Indexing MultiMEdia data from wearable sen-
sors for diagnostics and treatment of Dementia) and the ADL (Activities of
Daily Life) [42] video databases. Both are egocentric video corpus depicting
Instrumental Activities of Daily Living (IADL). The evaluation of saliency
models requires a subjective experiment to record eye fixations as presented
in section 1.3.2. The duration of these experiments is limited to 30 minutes
because of the tiredness of participants [25]. For this reason we only evaluate
the automatic saliency models on the IMMED database. Object recognition
is evaluated on both corpora. In the following subsection we describe these
two data-sets.

1.5.1 IMMED and ADL video databases

The ADL dataset, and the corpus provided by the IMMED project. Both
of these datasets were chosen since they were filmed by a GoPro wearable
Camera which captures videos at the rate of 30 frames per second, with a
resolution of 1280x960, and a 170 viewing angle.

The ADL is a publicly available academic data-set of 18 actions of daily
life accomplished by 20 different people. All the 32662 frames extracted from
these videos were annotated with an action label, object bounding boxes,
object identity and human-object interaction.

The IMMED corpus is composed of 53 videos of activities of daily living
shot in a home environment. This corpus was recorded during the time life
of IMMED Project funded by French National Agency of Research (ANR).
A psychologist was present during the shooting of the videos to suggest the

Lhttp://immed.labri.fr
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activities. A total of 3641 frames extracted from the videos were annotated
with temporal tasks, object locations and object categories.

1.5.2 Eye-tracker experiment

The subjective saliency maps expressing user attention are obtained on the
basis of psycho-visual experiment consisting in measuring the gaze positions
on videos from wearable video camera. The map of the visual attention has
to be built on each frame of these videos. Videos from wearable camera differ
from traditional video scenes: the camera films the user point of view, in-
cluding his hands. Unlike traditional videos, wearable camera videos have a
very high temporal activity due to the strong ego-motion of the wearer. The
gaze positions are recorded with an eye-tracker. We used HS-VET 250Hz from
Cambridge Research Systems Ltd. This device is able to record 250 eye posi-
tions per second. The videos we display in this experiment have a frame-rate
of 29.97 frames per second. A total of 28 videos from IMMED database filming
the IADL of patients and healthy volunteers are displayed to each participant
of the experiment. This represents 17 minutes and 30 seconds of video. The
resolution of the videos is 1280x960 pixels and the storage format is raw YUV
4:2:0. The experiment conditions and the experiment room is compliant to the
recommendation ITU-R BT.500-11 [25]. Videos are displayed on a 23 inches
LCD monitor with a native resolution of 1920x1080 pixels. To avoid image
distortions, videos are not resized to screen resolution. A mid-gray frame is
inserted around the displayed video. 25 participants were gathered for this
experiment, 10 women and 15 men. For 5 participants some problems oc-
curred in the eye-tracking recording process. So we decided to exclude these
5 records. After looking at gaze position records on video frames, we stated
that gaze anticipated camera motion and user actions. This phenomenon has
been already reported by M. Land et al. in [29]. They state that visual fixation
does precede motor manipulation, putting eye movements in the vanguard of
each motor act, rather than as adjuncts to it. The observers somehow antic-
ipate the motor act of camera wearer, in the same way as they are involved
in the upcoming action. Nevertheless, gaze positions cannot directly be ap-
plied as ground truth to compare automatic saliency model we aim at. They
must be processed in order to get the subjective saliency map as depicted in
section 1.3.2.

1.5.3 Saliency maps evaluation

In this section, we compare the objective spatio-temporal saliency maps with
subjective saliency map obtained from gaze tracking Ssys;.

Here, we use the Normalized Scanpath Saliency (NSS) metric that was
proposed in [14, 38]. The NSS is a Z-Score that expresses the divergence
of the subjective saliency maps from the objective saliency maps. The NSS
computation for a frame I is depicted by:
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Ssubj X Soij - %
o (Sov;)

Here, Sé\{)j denotes the objective saliency map S,,; normalized to have

NSS =

(1.17)

a zero mean and a unit standard deviation, X means an average. When
Ssubj X Sé\{yj is higher than the average objective saliency, the NSS is pos-
itive; it means that the gaze locations are inside the saliency depicted by the
objective saliency map. In other words, higher the NSS is, more objective
and subjective saliency maps are similar. The NSS score for a video sequence
is obtained by computing the average of N.SS for all frames as in [38]. Then
the overall N'S'S score on each video database is the average NS'S of all video

sequences. Saliency model evaluation results are presented in section 1.6.1.

1.5.4 Object recognition evaluation

For the evaluation process we separate learning and testing images by a ran-
dom selection. On each data set, 50% of the images of each category are
selected as learning images for building the visual dictionaries and for the re-
trieval task. Here we test the standard BoVW approach using 64 dimensional
SURF descriptors. For the training we applied the manually annotated masks
on the object. For the testing, we compare the performance of queries by
using the manually annotated mask, without mask, and the Spatio-Temporal-
Geometric saliency map.

The performance is evaluated by the Mean Average Precision (M AP)
measure using the Trec Fval [6] tool. For each test image, all images in the
learning set are ranked from the closest (in terms of L; distance between visual
signatures) to the furthest. The average precision AP aims to evaluate how
well the target images, i.e images of the same class as the query, are ranked
amongst the n retrieved images:

Ap — k=t P(R) - rel(k)

Cp

(1.18)

where rel(k) equals 1 when the k' ranked image is a target image and
0 otherwise and ¢, is the total number of target. The average precision is
evaluated for each test image of an object, and the M AP is the mean of these
values for all the images of an object in the test set. For the whole database
we measure the performance by the average value of the M AP i.e. we do not
weight the M AP per class by the number of query which would give more
consideration to categories where more testing images are present.

For the Spatio-temporal-geometric saliency masking we use a 2D Gaussian
function located at the screen center with a spread o, = o, = 5°. More
details regarding the evaluation of the saliency-based masking are given in
the following part of this section. For these preliminary results the dictionary
size has been fixed to 500, 1000, and 5000.
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1.6 Results

In this section, we first report the results of the correlation of the proposed
saliency method with subjective saliency. Then we present the performance of
object recognition by using the ideal mask, no mask, and the spatio-temporal-
geometric saliency map for query images.

1.6.1 Saliency model assessment

In this section, we compare the correlation of three automatic saliency maps
with the subjective saliency. These three saliency maps are the spatio-temporal
saliency map, the spatio-temporal-geometrical without camera motion, and
the proposed method the spatio-temporal-geometrical with camera motion,
expressing the anticipation phenomenon. The 28 video sequences described
earlier from wearable cameras are all characterized by strong camera motion
which is up to 50 pixels magnitude in the centre of frames. As it can be seen
from the Figure 1.9 the proposed method with moving of geometrical Gaus-
sian almost systematically outperforms the base-line spatio-temporal saliency
model and the spatio-temporal-geometrical saliency with a fixed Gaussian.
For few sequences (e.g. number 2), the performance is poorer than obtained
by geometric saliency with a fixed Gaussian. In these visual scenes, the dis-
tractors appear in the field of view. The resulting subjective saliency map
then contains multiple maxima due to the unequal perception of scenes by
the subjects. This is more ”semantic saliency” phenomenon (faces, etc) which
can not be handled with the proposed model. The average NSS on the whole
database also shows the interest of proposed moving geometrical saliency. The
mean NSS scores are respectively 1.832 for patio-temporal, 2.607 for spatio-
temporal with still geometrical Gaussian, and 2.791 with moving geometrical
Gaussian. Which means 52.37% improvement of correspondence with subjec-
tive visual saliency map, which was our goal.

1.6.2 BoVW vs saliency-based BoVW

For the ADL and IMMED data-sets we present how the different masking
approaches influence the results for the Bag of Visual Words framework.

1.6.2.1 TIMMED Corpus

The results for the different masking applied on the BoVW framework for this
data-sets are depicted in Figures 1.10, 1.11, 1.12, and 1.13. First of all one can
notice the effect of manual masking on the performances. The overall perfor-
mance is about 29.2%. The experimental result of Spatio-temporal-geometric
approaches did, as expected, improve in comparison to the baseline method
(no mask). It is also important to emphasize that the results obtained from a
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Average NSS on 28 wearable camera videos
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FIGURE 1.9

Objective saliency map correlation with subjective saliency maps.

simple Geometric-based saliency map are better than the one obtained from
the analytical approach. We explain this phenomenon by pointing out that,
similarly to the Hollywood2 benchmark, the area of interest of the images
extracted from the IMMED corpus have been designed to be at the center of
the scenes.

1.6.2.2 ADL Data-set

The results for the different masking applied on the BoVW framework for
the ADL data-set are depicted in Figures 1.14, 1.15, and 1.16. Similar to
the IMMED data-set, the overall performance obtained by manual masking
are the best. However the overall experimental results of the Spatio-temporal-
geometric approach improved in comparison to the baseline method (no mask).
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FIGURE 1.10

Visual representation of the 4 different masking approaches for an image from
the IMMED corpus. (a) Original frame. (b) Manual masking. (¢) Geometric
saliency map. (d) Spatio-temporal-geometric saliency map
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FIGURE 1.11
BoVW results on IMMED database without mask

IMMED - with mask
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FIGURE 1.12
BoVW results on IMMED database with the ideal mask
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IMMED - with Spatio-Temporal-Geometric saliency
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BoVW results on ADL database with the spatio-temporal-geometric saliency
map
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BoVW results on ADL database without mask
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BoVW results on ADL database with the ideal mask
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ADL data-set BoVW performance with the spatio-temporal-geometric saliency map
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FIGURE 1.16
BoVW results on ADL database with the spatio-temporal-geometric saliency
map
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1.7 Conclusion

In this work we proposed a saliency based psycho-visual weighting of the
BoVW for object recognition. This approach has been designed to identify
objects related to IADL on videos recorded by a wearable camera. These
recording give an egocentric point-of-view on the upcoming action. This point-
of-view is also characterized by a complex visual scene with several objects on
the frame plan.

The human visual system functions is a way to process only the relevant
data by considering areas of interest. Based on this idea, we propose a new
approach by introducing saliency models to discard irrelevant information in
the video frames. Therefore we apply a visual saliency model to weight the
image signature within the BoVW framework. Visual saliency is well suited
for catching spatio-temporal information related to the observer’s attention on
the video frame. We also proposed an additional geometric saliency cue that
models the anticipation phenomenon observed on subjects watching video con-
tent from the wearable camera. The findings show that discarding irrelevant
features gives better performances when compared to the baseline method
which consider the whole set of features in the images.

Thanks to these encouraging results, we believe that our propositions in-
troduce a promising paradigm that can be used in future works to improve
the quality of object recognition in complex user-generated videos.
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