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Singular solutions of fractional elliptic equations with absorption

The aim of this paper is to study the singular solutions to fractional elliptic equations with absorption

where p > 0, Ω is an open, bounded and smooth domain of R N (N ≥ 2) with 0 ∈ Ω. We analyze the existence, nonexistence, uniqueness and asymptotic behavior of the solutions.

Introduction

In the present paper, we are concerned with the singular solutions of fractional elliptic problems of the form

     (-∆) α u + |u| p-1 u = 0, in Ω \ {0}, u = 0, in R N \ Ω, lim x→0 u(x) = +∞, (1.1) 
where Ω is an open, bounded and smooth domain of R N (N ≥ 2) with 0 ∈ Ω, p > 0 and (-∆) α with α ∈ (0, 1) is the fractional Laplacian defined as (-∆) α u(x) = P.V.

R N u(x) -u(y) |x -y| N +2α dy, (1.2) 
here P.V. stands for the principle value integral, that for notational simplicity we omit in what follows.

During the last years, singular solutions of nonlinear elliptic equations have been studied by many authors. We just mention the earlier work by Véron [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF][START_REF] Véron | Singularités éliminables déquations elliptiques non linéaires[END_REF], Gmira-Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF], Brezis-Lions [START_REF] Brezis | A note on isolated singularities for linear elliptic equations[END_REF], Bandle-Marcus [START_REF] Bandle | Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior[END_REF][START_REF] Bandle | Asymptotic behavior of solutions and their derivative for semilinear elliptic problems with blow-up on the boundary[END_REF], Baras-Pierre [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF], Chen-Matano-Véron [START_REF] Chen | Anisotropic singularities of nonlinear elliptic equations[END_REF], without any attempt to review the references here. The first result of unconditional removability of isolated sets for semilinear elliptic equations with absorption term is due to Brezis-Véron [START_REF] Brezis | Removable singularities for some nonlinear elliptic equations[END_REF]. They considered the classical equation

-∆u + g(u) = 0 in Ω \ {0}, (1.3) 
where Ω is an open subset of R N (N ≥ 3) containing 0 and g is a continuous function satisfying some extra hypothesis, then there exists a solution for equation (1.3) in the whole Ω. Later on, this result was extended in [START_REF] Véron | Singularités éliminables déquations elliptiques non linéaires[END_REF] using the method which is developed by Baras-Pierre [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF]. In the meantime, Véron [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF] has done much work for equation (1.3) with g(u) = |u| p-1 u and 1 < p < N N -2 if N ≥ 3 (p > 1 if N = 2), he described the behaviour of solution for equation (1.3) near the isolated singularity.

Recently, great attention has been devoted to investigate nonlinear equations involving fractional Laplacian. Caffarelli-Silvestre [START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF] gave a new formulation of the fractional Laplacian through Dirichlet-Neumann maps. Later, they studied the regularity results for fractional problems in [START_REF] Caffarelli | Regularity theory for fully non-linear integrodifferential equations[END_REF][START_REF] Caffarelli | Regularity results for nonlocal equations by approximation[END_REF]. The existence of solution for equation with fractional Laplacian was proved by Cabré-Tan [START_REF] Cabré | Positive solutions of non-linear problems involving the square root of the Laplacian[END_REF], Felmer-Quaas [START_REF] Felmer | Fundamental solutions and Liouville type theorems for nonlinear integral operators[END_REF], Servadei-Valdinoci [START_REF] Servadei | Mountain pass solutions for non-local elliptic operators[END_REF]. Moreover, Li [START_REF] Li | Remark on some conformally invariant integral equations: the method fo moving spheres[END_REF], Chen-Li-Ou [START_REF] Chen | Qualitative properties of solutions for an integral equation[END_REF][START_REF] Chen | Classification of solutions for an integral equation[END_REF] and Felmer-Wang [START_REF] Felmer | Radial symmetry of positive solutions to equations involving the fractional laplacian[END_REF] studied symmetry results and monotonicity of positive solutions for fractional equations. Chen-Felmer-Quaas [START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF] analyzed the existence and asymptotic behavior of large solution to fractional equation with absorption by advanced method of super and sub solutions.

The purpose of this paper is to study singular solutions for fractional equations (1.1) with absorption, including the existence and the asymptotic behavior of singular solutions near 0. It is well-known that the singular near 0 of functions |x| τ only could be considered with τ ∈ (-N, 0) for working by fractional laplacian, which is a nonlocal operator. In the following, we state main result.

Theorem 1.1 Suppose that Ω is an open, bounded and smooth domain of

R N (N ≥ 2) with 0 ∈ Ω, α ∈ (0, 1). (i) If 1 + 2α N < p < N N -2α , (1.4) 
then problem (1.1) admits a positive solution u such that for some C > 0,

lim x→0 u(x)|x| 2α p-1 = C. (1.5)
Moreover, that solution u is unique in the sense of

0 < lim inf x→0 u(x)|x| 2α p-1 ≤ lim sup x→0 u(x)|x| 2α p-1 < +∞. (1.6) (ii) If 0 < p < N N -2α , (1.7) 
then for any t > 0, problem (1.1) admits a positive solution u such that

lim x→0 u(x)|x| N -2α = t. (1.8) 
(iii) If p > 0, then problem (1.1) doesn't admit any solution u such that

0 < lim inf x→0 u(x)|x| -τ ≤ lim sup x→0 u(x)|x| -τ < +∞, (1.9) 
for any τ ∈ (-N, 0) \ {2α -N, -2α p-1 }.

Theorem 1.1 part (i) presents the existence, uniqueness in the sense of (1.6) and the asymptotic behavior with power -2α p-1 of singular solution to (1.1), part (ii) shows the existence and the asymptotic behavior with power -N + 2α of singular solution to (1.1) and part (iii) gives the nonexistence of singular solution to (1.1) in the sense (1.9). In the next, we give some remarks to show more information for singular solution to (1.1).

Remark 1.1 Under the hypothesis of Theorem 1.1 part (i), the solution u, which satisfies (1.5), has estimate

|u(x) -C 1 |x| -2α p-1 | < C 2 , x ∈ Ω \ {0} (1.10)
where C 1 > 0 will be given in (3.1) and C 2 > 0.

Remark 1.2 Under the hypothesis of Theorem 1.

1 part (ii), if 2α N -2α < p < N N -2α , (1.11) 
then for any t > 0, problem (1.1) admits a positive solution u such that, for any 0 < |x| < d 0 , we have

|x| τ 1 C ≤ t|x| 2α-N -u(x) ≤ C|x| τ 1 , (1.12) 
where C > 0,

τ 1 = 2α -(N -2α)p < 0 and d 0 = 1 3 min{dist(0, ∂Ω), 1}. Remark 1.3 Under the hypothesis of Theorem 1.1 part (iii), if p ≥ N N -2α , then problem (1.1) doesn't admit any solution u such that 0 < lim inf x→0 u(x)|x| -τ ≤ lim sup x→0 u(x)|x| -τ < +∞, (1.13) 
for any τ ∈ (-N, 0).

The rest of the paper is organized as follows. In Section §2, we introduce Preliminaries for existence and some estimates which is used for constructing super and sub solutions of (1.1). In Section §3, we prove the existence of the solutions of (1.1). The uniqueness is addressed in Section §4. In the section §5, it is devoted to non-existence.

Preliminaries

We remind here some basic knowledge about (-∆) α with α ∈ (0, 1), see for instance [START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF]. Lemma 2.1 Assume that x 0 achieves the maximum of u in R N , then

(-∆) α u(x 0 ) ≥ 0.
(2.1)

Moreover, if x 0 achieves the maximum of u in R N , then (-∆) α u(x 0 ) ≤ 0, (2.2) 
holds if and only if u(x) = u(x 0 ) a.e. in R N .

Lemma 2.2 Assume that 0 ∈ Ω and p > 0. Moreover, we suppose that there are super-solution Ū and sub-solution U of (1.1) such that

Ū ≥ U in Ω \ {0}, lim inf x→0 U(x) = +∞, Ū = U = 0 in Ω c .
Then there exists at least one positive solution u of (1.1) such that

U ≤ u ≤ Ū in Ω \ {0}.
Proof. The process of the proof is the same as Theorem 2.6 in [START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF].

In order to construct super and sub solutions for problem (1.1), we will use some appropriate truncated functions. To describe our following analysis, we give some notations. By 0 ∈ Ω, it is able to assume that δ ∈ (0,

d 0 ) is such that d(•) = dist(•, ∂Ω) is C 2 in A δ := {x ∈ Ω | d(x) < δ} and d(x) ≤ |x| in A δ , where d 0 = 1 3 min{dist(0, ∂Ω), 1}. Let B r := B r (0) \ {0} for any r > 0, we have dist(A δ , B d 0 ) > 0. Moreover, we define V τ (x) :=            |x| τ , x ∈ B d 0 , d(x) 2 , x ∈ A δ , l(x), x ∈ Ω \ (A δ ∪ B d 0 (0)), 0, x ∈ Ω c , (2.3) 
where τ is a parameter in (-N, 0) and the function l is positive such that

l(x) ≤ |x| τ in Ω \ (A δ ∪ B d 0 (0)) and V τ is C 2 in R N \ {0}.
It will be convenient for next auxiliary lemmas to define the following function

C(τ ) := R N |z -e 1 | τ -1 |z| N +2α dz (2.4)
where

e 1 = (1, 0, • • • , 0) ∈ R N .
It is well known from [START_REF] Felmer | Fundamental solutions and Liouville type theorems for nonlinear integral operators[END_REF] that

C(τ )      > 0, if τ ∈ (-N, -N + 2α), = 0, if τ = -N + 2α, < 0, if τ ∈ (-N + 2α, 0).
(2.5) Lemma 2.3 Assume that Ω is an open, bounded, smooth domain with 0 ∈ Ω and τ ∈ (-N, 0). Then there exists c > 0 such htat

-c < (-∆) α V τ (x) + C(τ )|x| τ -2α ≤ 0, ∀ x ∈ B d 0 /2 , (2.6) 
where C(•) is defined in (2.4).

Proof. For any given x ∈ B d 0 /2 , we have

-(-∆) α V τ (x) = R N V τ (z) -V τ (x) |z -x| N +2α dz = R N V τ (z) -|x| τ |z -x| N +2α dz = R N |z| τ -|x| τ |z -x| N +2α dz + R N \B d 0 V τ (z) -|z| τ |z -x| N +2α dz =: I 1 (x) + I 2 (x).
We look at each of these integrals separately. On one side, by direct computation, we have

I 1 (x) = R N |z + x| τ -|x| τ |z| N +2α dz = C(τ )|x| τ -2α .
On the other side, for z ∈ R N \ B d 0 and x ∈ B d 0 /2 , we have |z -x| ≥ |z| 2 and |V τ (z) -|z| τ | ≤ c|z| τ for some c > 0. Then there exists C > 0 such that

I 2 (x) = R N \B d 0 V τ (z) -|z| τ |z -x| N +2α dz ≥ -C R N \B d 0 |z| τ -N -2α dz ≥ -Cd τ -2α 0 .
On the other hand by V τ (z) ≤ |z| τ , we have

I 2 (x) = R N \B d 0 V τ (z) -|z| τ |z -x| N +2α dz < 0.
Hence, we obtain (2.6). The proof is compete.

As a consequence, we have the following corollary 

(i) If τ ∈ (-N, -N + 2α),
then there exists δ 1 ∈ (0, d 0 ) and C > 1 such that

1 C |x| τ -2α ≤ -(-∆) α V τ (x) ≤ C|x| τ -2α , ∀ x ∈ B δ 1 . (ii) If τ ∈ (-N + 2α, 0), then there exists δ 1 ∈ (0, d 0 ) and C > 1 such that 1 C |x| τ -2α ≤ (-∆) α V τ (x) ≤ C|x| τ -2α , ∀ x ∈ B δ 1 . (iii) If τ = -N + 2α, then there exists C > 1 such that |(-∆) α V τ (x)| ≤ C, ∀ x ∈ Ω \ {0}.
Proof. It follows directly Lemma 2.3 and (2.5).

Existence of Problem (1.1)

This section is devoted to use Corollary 2.1 to to construct suitable subsolution and super-solution of (1.1) to prove the existence.

Proof of Remark 1.1. Firstly, we construct super-solution and sub-solution of (1.1) under the hypotheses of Theorem 1.1 part (i) by adjusting the parameter λ > 0 in the following functions

U λ (x) := C(τ p ) 1 p-1 V τp (x) + λ V (x) and W λ (x) := C(τ p ) 1 p-1 V τp (x) -λ V(x), (3.1) where V τp is defined in (2.3) with τ p = -2α p-1 ∈ (-N, -N + 2α), C(τ p ) > 0 is defined in (2.4) and V is the solution of (-∆) α V (x) = 1, x ∈ Ω, V (x) = 0, x ∈ Ω c . (3.2) By Lemma 2.1, we have that V > 0 in Ω. 1. Super-solution. By the definition of U λ , it has (-∆) α U λ (x) = C(τ p ) 1 p-1 (-∆) α V τp (x) + λ in Ω \ {0}.
By (2.6) and τ p p = τ p -2α, it follows that for all λ ≥ 0,

(-∆) α U λ (x) + U p λ (x) ≥ -C(τ p ) p p-1 |x| τp-2α + C(τ p ) p p-1 |x| τpp ≥ 0, x ∈ B d 0 2 .
In above inequality we used that for any a, b ≥ 0,

(a + b) p ≥ a p .
Next we consider the domain Ω \ B d 0 2 (0). Then, by definition of V τ , there exists

C 1 > 0 such that |(-∆) α V τ | ≤ C 1 in Ω \ Bd 0 2 (0).
Then there exists λ > 0 such that for λ ≥ λ, it has

(-∆) α U λ (x) + U p λ (x) ≥ λ -C 1 C(τ p ) 1 p-1 ≥ 0.
Together with Uλ = 0 in Ω c , we have that Uλ is a super-solution of (1.1). 2. Sub-solution. We observe that

(-∆) α W λ (x) = C(τ p ) 1 p-1 (-∆) α V τp (x) -λ in Ω \ {0}. By (2.6), it follows that for x ∈ B d 0 2 and λ ≥ 0, (-∆) α W λ (x) + |W λ | p-1 W λ (x) ≤ -C(τ p ) p p-1 |x| τp-2α + C(τ p ) p p-1 |x| τpp ≤ 0.
In the first inequality above we used that for any a, b ≥ 0,

|a -b| p-1 (a -b) ≤ a p . Since (-∆) α V τ + V p τ is continuous in Ω \ {0}, then there exists C 2 > 0 such that |C(τ p ) 1 p-1 (-∆) α V τ | + C(τ p ) p p-1 V p τ ≤ C 2 , x ∈ Ω \ B d 0 2 (0).
Then, there exists λ > 0 such that for λ ≥ λ, we have

(-∆) α W λ (x) + |W λ | p-1 W λ (x) ≤ C 2 -λ ≤ 0, x ∈ Ω \ B d 0 2 (0).
Then W λ is a sub-solution of (1.1). Since λ, λ > 0 and V > 0 in Ω, then

Uλ > W λ in Ω \ {0} and Uλ = W λ = 0 in Ω c . (3.3)
Then, by Lemma 2.2, there exists at least one positive solution u such that

W λ ≤ u ≤ Uλ in Ω \ {0}.
The proof is complete.

The proof of Theorem 1.1 part (i) follows the proof of Remark 1.1.

Proof of Theorem 1.1 part (ii) with 0 < p ≤ 2α N -2α . Let τ 0 = 2α -N and τ 1 = 2α-N 2 < 0. For 0 < p ≤ 2α N -2α , we have that 0 > pτ 0 ≥ τ 1 -2α.
For any given t > 0, we define

U µ (x) := tV τ 0 (x) + µ V (x) and W µ (x) := tV τ 0 (x) -µV τ 1 (x) -µ 2 V (x),
where µ, λ > 0, V τ is defined in (2.3) and V is the solution of (3.2). We construct super-solution and sub-solution of (1.1) under the hypotheses of Theorem 1.1 part (ii) by adjusting the positive parameters µ.

1. Super-solution. By the definition of U µ , it has

(-∆) α U µ (x) = t(-∆) α V τ 0 (x) + µ, x ∈ Ω \ {0}. By Corollary 2.1 part (iii), for x ∈ B d 0 , it follows that (-∆) α U µ (x) + U p µ (x) ≥ -Ct + t p |x| τ 0 p .
Then there exists δ 2 ∈ (0, d 0 ) such that

(-∆) α U µ (x) + U p µ (x) ≥ 0, x ∈ B δ 2 .
Next we consider the domain Ω\B δ 2 (0). Then, by definition of U µ,λ , there exists

C 1 > 0 such that |(-∆) α V τ 0 | ≤ C 1 in Ω \ B δ 2 (0). Then there exists µ 1 > 1 such that for µ ≥ µ 1 , it has (-∆) α U µ (x) + U p µ (x) ≥ µ -tC 1 ≥ 0, x ∈ Ω \ B δ 2 (0).
Then U µ 1 is a super-solution of (1.1).

2. Sub-solution. We observe that

(-∆) α W µ (x) = t(-∆) α V τ 0 (x) -µ(-∆) α V τ 1 (x) -µ 2 , x ∈ Ω \ {0}.
By Corollary 2.1 part (ii) and (iii), for x ∈ B δ 1 , it follows that

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ Ct - µ C |x| τ 1 -2α + t p |x| τ 0 p ,
where C > 1. Here the inequality above we used that for any a, b ≥ 0,

|a -b| p-1 (a -b) ≤ a p .
Then for µ ≥ 2Ct p and τ 1 -2α < τ 0 p, there exists δ 2 > 0 such that

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ 0, x ∈ B δ 2 . Since (-∆) α V τ + V p τ is continuous in Ω \ {0}, then there exists C 2 > 0 such that |(-∆) α V τ 0 | + V p τ 0 ≤ C 2 , x ∈ Ω \ B δ 2 (0) and |(-∆) α V τ 1 | ≤ C 2 , x ∈ Ω \ B δ 2 (0).
Then, there exists µ 2 ≥ 2Ct p such that for µ ≥ µ 2 , we have

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ C 2 t + µC 2 + C p 2 t p -µ 2 ≤ 0, x ∈ Ω \ B δ 2 (0). As a consequence, W µ 2 is a sub-solution of (1.1). Since µ 2 , µ 1 > 0 and V , V τ 0 , V τ 1 > 0 in Ω \ {0}, then U µ 1 > W µ 2 in Ω \ {0} and U µ 1 = W µ 2 = 0 in Ω c . (3.4)
Then by Lemma 2.2, there exists solution u of (1.1) satisfies (1.8). The proof is complete.

Proof of Remark 1.2. For any given t > 0, we define

U µ,λ (x) := tV τ 0 (x) -µV τ 1 (x) + λ V (x) and W µ (x) := tV τ 0 (x) -µV τ 1 (x) -µ 2 V (x),
where µ, λ > 0,

τ 0 = 2α -N, τ 1 = τ 0 p + 2α, V τ is defined in (2.
3), and V is the solution of (3.2). By 2α N -2α < p < N N -2α , we have that

-N + 2α < τ 1 < 0.
We construct super-solution and sub-solution of (1.1) under the hypotheses of Remark 1.2 by adjusting the positive parameters µ and λ.

1. Super-solution. By the definition of U µ,λ , it has

(-∆) α U µ,λ (x) = t(-∆) α V τ 0 (x) -µ(-∆) α V τ 1 (x) + λ, x ∈ Ω \ {0}.
By Corollary 2.1 part (ii) and (iii), for x ∈ B δ 1 , it follows that

(-∆) α U µ,λ (x) + U p µ,λ (x) ≥ -Ct -Cµ|x| τ 1 -2α + t p |x| τ 0 p .
Then letting µ = t p /(2C) and there exists δ 2 ∈ (0, δ 1 ) such that

(-∆) α U µ,λ (x) + U p µ,λ (x) ≥ 0, x ∈ B δ 2 .
Next we consider the domain Ω\B δ 2 (0). Then, by definition of U µ,λ , there exists

C 1 > 0 such that |(-∆) α V τ | ≤ C 1 in Ω \ B δ 2 (0), for τ = τ 0 , τ 1 . Then for µ = t p /(2C), there exists λ 1 > 1 such that for λ ≥ λ 1 , it has (-∆) α U µ,λ (x) + |U µ,λ | p-1 U µ,λ (x) ≥ λ -µC 1 -tC 1 -µ p C p 1 ≥ 0, x ∈ Ω \ B δ 2 (0).
Then for λ = λ 1 > 1 and µ = µ 1 = t p /2, we have that U µ 1 ,λ 1 is a supersolution of (1.1). 2. Sub-solution. We observe that

(-∆) α W µ (x) = t(-∆) α V τ 0 (x) -µ(-∆) α V τ 1 (x) -µ 2 , x ∈ Ω \ {0}.
By Corollary 2.1 part (ii) and (iii), for x ∈ B δ 1 , it follows that

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ Ct - µ C |x| τ 1 -2α + t p |x| τ 0 p ,
where C > 1. Here the inequality above we used that for any a, b ≥ 0,

|a -b| p-1 (a -b) ≤ a p .
Then for µ ≥ 2Ct p , there exists δ 2 > 0 such that

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ 0, x ∈ B δ 2 . Since (-∆) α V τ + V p τ is continuous in Ω \ {0}, then there exists C 2 > 0 such that |(-∆) α V τ 0 | + V p τ 0 ≤ C 2 , x ∈ Ω \ B δ 2 (0) and |(-∆) α V τ 1 | ≤ C 2 , x ∈ Ω \ B δ 2 (0).
Then, there exists µ 2 ≥ 2Ct p such that for µ ≥ µ 2 , we have

(-∆) α W µ (x) + |W µ | p-1 W µ (x) ≤ C 2 t + µC 2 + C p 2 t p -µ 2 ≤ 0, x ∈ Ω \ B δ 2 (0).
As a consequence, W µ 2 is a sub-solution of (1.1).

Since

µ 2 > µ 1 > 0 and V , V τ 0 , V τ 1 > 0 in Ω \ {0}, then U µ 1 ,λ 1 > W µ 2 in Ω \ {0} and U µ 1 ,λ 1 = W µ 2 = 0 in Ω c . (3.5)
Then by Lemma 2.2, there exists solution u of (1.1) satisfies (1.8). The proof is complete.

The proof of Theorem 1.1 part (ii) with 2α N -2α < p < N N -2α follows the proof of Remark 1.2.

Proof of the uniqueness

In this section, we prove the uniqueness in Theorem 1.1 part (i) by contradiction. Let u and v be two solutions of problem (1.1) satisfying (1.6). We observe that, u and v are positive in Ω \ {0} and there exists

C 0 ≥ 1 such that 1 C 0 ≤ v(x)|x| -τ , u(x)|x| -τ ≤ C 0 , ∀x ∈ B d 0 , (4.1) 
where, we recall, B d 0 = B d 0 (0) \ {0}, d 0 = 1 3 dist(0, ∂Ω) and in whole this section, τ = -2α p-1 of Theorem 1.1 part (i). We denote

A = {x ∈ B d 0 | u(x) > v(x)}. (4.2)
It is easy to see that A is open and A ⊂ Ω.

Theorem 4.1 Under the hypotheses of Theorem 1.1 part (i), we have

A = Ø.
To overcome the difficulty caused by the nonlocal character, we introduce the following lemmas to prove Theorem 4.1. We denote

g(x) = (1 -|x| 2 ) 3 , x ∈ B 1 (0), 0, x ∈ B c 1 (0). Since g is C 2 in R N , then there exists C > 0 such that (-∆) α g(x) ≤ C, x ∈ B 1 (0).
Then it is obvious to see that Lemma 4.1 Let V = g/ C in R N , where g(x) and C > 0 defined above, then

(-∆) α V (x) ≤ 1 and V (0) = max x∈R N V (x). (4.3) Lemma 4.2 Under the hypotheses of Theorem 1.1part (i), if A k,M := {x ∈ R N \ {0} | u(x) -kv(x) > M} = Ø,
for k > 1 and M ≥ 0. Then,

0 ∈ ∂A k,M . (4.4) 
Proof. If (4.4) is not true, there exist r > 0 such that

A k,M ⊂ Ω \ B r(0).
Then there exists x ∈ Ω \ B r (0) such that

u(x) -kv(x) -M = max x∈R N \{0} (u -kv)(x) -M > 0,
which follows by A k,M = Ø. Then, by Lemma 2.1, we have

(-∆) α (u -kv)(x) ≥ 0,
which is impossible with

(-∆) α (u -kv)(x) = -u p (x) + kv p (x) ≤ -(k p -k)v p (x 0 ) -M p < 0.
We finish the proof. By the definition of A k,M for any

M 1 ≥ M 2 ≥ 0, we have that A k,M 1 ⊂ A k,M 2 . For notation convenient, we denote that A k = A k,0 . Lemma 4.3 Under the hypotheses of Theorem 1.1 part (i), if A k = Ø,
where k > 1 and A k is given above. Then Proof.

If not, we have M := sup x∈R N \{0} (u -kv)(x) < +∞. We see that M > 0 and there doesn't exist point x achieving the supreme of u -kv in Ω \ {0}. Indeed, if not, we can get a contradiction as in the proof of Lemma 4.2. By Lemma 4.2, A k verifies (4.4). Let x 0 ∈ A k chosen later and r = |x 0 |/4. In the following, we will consider the function

w k = u -kv in R N \ {0}.
Under the hypotheses of Theorem 1.1 part (i), for all

x ∈ B r (x 0 ) ∩ A k , (-∆) α w k (x) = -u p (x) + kv p (x), (4.6) 
then we have that

(-∆) α w k ≤ -K 1 r τ -2α in B r (x 0 ) ∩ A k . (4.7) 
where τ p = -2αp p-1 = τ -2α and K 1 = C -p 0 (k p -k) > 0 with C 0 is from (4.1). We define

w(x) = 2 M V (0) V (r(x -x 0 )), x ∈ R N ,
where V is given in Lemma 4.1, then we see that

w(x 0 ) = max x∈R N w(x) = 2 M (4.8)
and

(-∆) α w ≤ 2 M V (0) r -2α in B r (x 0 ). (4.9) Let x 0 ∈ A k close enough to 0 such that 2 M V (0) ≤ K 1 r τ .
Combining (4.7) with (4.9), we have that

(-∆) α (w k + w)(x) ≤ 0, x ∈ B r (x 0 ) ∩ A k .
By Lemma 2.1 and w k (x 0 ) > 0, w = 0 in B c r (x 0 ), then we have which is impossible with (4.8). We finish the proof.

w(x 0 ) < w k (x 0 ) + w(x 0 ) ≤ sup x∈Br(x 0 )∩A k (w k + w)(x) ≤ sup x∈(Br(x 0 )∩A k ) c (w k + w)(x) = max{sup x∈B c r (x 0 ) w k (x), sup x∈Br(x 0 )∩A c k (w k + w)(x)} ≤ max{ M , sup x∈Br(x 0 )∩A c k (w k + w)(x)}.

Remark 4.1 It is clear that

A k ∩ B d 0 = Ø. Remark 4.2 Let m k (t) = max |x|=t w k (x), which is continuous in (0, +∞) and m k (t) = 0, ∀ t ≥ diam(Ω).
Lemma 4.3 is equivalent to say: if there exist t 0 > 0 such that

m k (t 0 ) > 0.
Then,

lim t→0 + m k (t) = +∞. Moreover, let m 0 = max t∈[t 0 ,∞) m k (t) > 0, then for any C > m 0 , there exists t C ∈ (0, t 0 ) such that m k (t C ) = C and m k (t) ≤ C for all t ∈ [t C , ∞).
Directly by the results of Lemma 4.3, we have

Corollary 4.1 If A k = Ø with k > 1, then A k,M = Ø for any M ≥ 0. Lemma 4.4 Let x 0 ∈ A k ∩ B d 0 , r = |x 0 |/4 and Q n = {z ∈ B r n | w k (z) > M n }, n ∈ N with M n = max Ω\B r n (0) w k (x), then there exist C n > 0 (n ≥ 1) independent of x 0 and k, such that lim n→+∞ C n = 0 (4.11)
and

Qn w k (z) -M n |z -x| N +2α dz ≤ C n r τ -2α , ∀x ∈ B r (x 0 ). (4.12)
Proof. By v ≥ 0 in R N \ {0}, M n ≥ 0 and (4.1), we have

w k (z) -M n ≤ u(z) ≤ C 0 |z| τ , z ∈ B d 0 . For x ∈ B r (x 0 ) with r = |x 0 |/4 and z ∈ Q n , we have |x -z| ≥ |x| -|z| ≥ 3r - r n > r.
Together with

Q n ⊂ B r n ⊂ B d 0 , we have Qn w k (z) -M n |z -x| N +2α dz ≤ Qn u(z) |z -x| N +2α dz ≤ C 0 r -N -2α B r n |z| τ dz ≤ Cr -N -2α r n 0 t τ +N -1 dt ≤ C n N +τ r τ -2α . Let C n = C
n N+τ , then lim n→+∞ = 0. The proof is complete. Now we give the proof of Theorem 4.1 as follows: Proof of Theorem 4.1. A is defined in (4.2). If the conclusion of Theorem 4.1 under hypothesis (i) in Theorem 1.1 isn't true, then A = Ø. Let x ∈ A and k 0 ∈ (1, u(x) v(x) ). For example, k 0 = u(x)+v(x) 2v(x) . We observe that x ∈ A k 0 . By Corollary 4.1, A k 0 ,1 is open and nonempty. By Lemma 4.2, we have that 0 ∈ ∂A k 0 ,1 . (4.13)

By using Remark 4.2, there exists

x 0 ∈ A k 0 ,1 ∩ B d 0 such that u(x 0 ) -k 0 v(x 0 ) = max x∈Ω\B 4r (0) (u -k 0 v)(x),
where r = |x 0 |/4. We recall that w k 0 = u -k 0 v, then, by (4.1), for all x ∈ B r (x 0 ) ∩ A k 0 ,1 , we have

(-∆) α w k 0 (x) = -u p (x) + k 0 v p (x) ≤ -(k p 0 -k 0 )v p (x) ≤ -C -p 0 (k p 0 -k 0 )|x| τ p ≤ -C -p 0 (k p 0 -k 0 )(|x 0 | -r) τ p =: -K 1 r τ -2α , where τ = -2α p-1 , K 1 = 3 τ -2α C -p 0 (k p 0 -k 0 ) > 0 and C 0 is from (4.1). Then we have that (-∆) α w k 0 ≤ -K 1 r τ -2α in B r (x 0 ) ∩ A k 0 ,1 , (4.14) 
We redefine

w(x) = K 1 r τ 2 V (r(x -x 0 ))
for x ∈ R N , where V is given in Lemma 4.1, then we see that

(-∆) α w ≤ K 1 r τ -2α 2 in B r (x 0 ), (4.15) 
Combining with (4.14) and (4.15), we have that

(-∆) α (w k 0 + w)(x) ≤ - K 1 r τ -2α 2 , x ∈ B r (x 0 ) ∩ A k 0 ,1 . (4.16) 
Let

M n := max x∈B 5r \B r n w k 0 (x), for n ≥ 1, we have x 0 ∈ B 5r \ B r n , then M n ≥ w k 0 (x 0 ) = max x∈Ω\B 4r (0) (u -k 0 v)(x). (4.17) 
We denote that

Q n = {z ∈ B r n | w k 0 (z) > M n }, n ∈ N and wn (x) = M n , if x ∈ Q n , (w k 0 + w)(x), if not. ( 4.18) 
By Lemma 4.4, then there exists n 0 > 1 such that

C n 0 ≤ K 1 2 ,
which, together with (4.16), (4.12), we obtain

(-∆) α wn 0 (x) = (-∆) α (w k 0 + w)(x) + Qn 0 w k 0 (z) -M n 0 |z -x| N +2α dz ≤ - K 1 2 r τ -2α + C n 0 r τ -2α ≤ 0, x ∈ B r (x 0 ) ∩ A k 0 ,1 .
By Lemma 2.1 and

w k 0 (x 0 ) > 1, x 0 ∈ B r (x 0 ) ∩ A k 0 ,1 , w = 0 in B c r (x 0 ), then we have w(x 0 ) + 1 < w k 0 (x 0 ) + w(x 0 ) = wn 0 (x 0 ) ≤ sup x∈Br(x 0 )∩A k 0 ,1 wn 0 (x) ≤ sup x∈(Br(x 0 )∩A k 0 ,1 ) c wn 0 (x) = max{sup x∈B c r (x 0 ) wn 0 (x), sup x∈Br(x 0 )∩A c k 0 ,1 wn 0 (x)} ≤ max{M n 0 , sup x∈Br(x 0 )∩A c k 0 ,1 (w k 0 + w)(x)}. (4.19) 
We first claim that sup x∈Br(x 0 )∩A c k 0 ,1 (w

k 0 + w) ≤ M n 0 . If not, by w k 0 ≤ 1 in A c k 0 ,1 , we have sup x∈Br(x 0 )∩A c k 0 ,1 (w k 0 + w)(x) ≤ sup x∈Br(x 0 )∩A c k 0 ,1 w(x) + 1,
which together with (4.19), we have

w(x 0 ) + 1 < sup x∈Br(x 0 )∩A c k 0 ,1 w(x) + 1 ≤ sup x∈R N w(x) + 1 = w(x 0 ) + 1,
which is impossible. Then we have that

w k 0 (x 0 ) + w(x 0 ) ≤ sup x∈Br(x 0 )∩A k 0 ,1 (w k 0 + w)(x) ≤ M n 0 . (4.20) 
Since Ω \ B r n 0 (0) is compact and (4.17), then there exists

x 1 ∈ B 5r \ B r n 0 such that w k 0 (x 1 ) = M n 0 .
Together with (4.20), we have

K 1 V (0) 2 r τ = w(x 0 ) < w k 0 (x 0 ) + w(x 0 ) ≤ M n 0 = w k 0 (x 1 ). (4.21) 
By (4.1) and r n 0 ≤ |x 1 | ≤ 5r, we have

K 1 V (0) 2 v(x 1 ) 5 τ C 0 ≤ K 1 V (0) 2 r τ ≤ w k 0 (x 1 ) = u(x 1 ) -k 0 v(x 1 ), which implies that u(x 1 ) > (1 + c 0 )k 0 v(x 1 ), (4.22) 
where

c 0 = 3 τ -2α (k p-1 0 -1)V (0) 2C 2 0 n -τ 0 > 0.
Now we repeat the process above initiating by x 1 . We know that K 1 is increasing with k 0 , which is replaced by k 1 = (1+c 0 )k 0 and n 0 is independent of electing x 0 , so we can keep our first choosing of n 0 , then we have

x 2 ∈ A such that u(x 2 ) > (1 + c 1 )k 1 v(x 2 ) > (1 + c 0 ) 2 k 0 v(x 2 ), since c 1 = 3 τ -2α (k p-1 1 -1)V (0) 2C 2 0 n -τ 0 > c 0 .
Proceeding inductively, we can find a sequence {x m } ⊂ A such that

u(x m ) > (1 + c 0 ) m k 0 v(x m ),
which contradicts (4.1).

With the help of Theorem 4.1, we can prove Theorem 1.1. Proof the uniqueness in part (i) of Theorem 1.1.

By A = Ø in Theorem 4.1, then u ≤ v in B d 0 .

By using Theorem 4.1 in domain {x ∈ B d 0 | u(x) < v(x)}, we see that

u ≡ v in B d 0 . Let w := u -v in R N \ {0}.
We first prove w ≥ 0 in R N \ {0}. If not, there exists some point x ∈ Ω \ B d 0 (0) such that w(x) = min

x∈R N \{0} w(x) < 0.
We observe, on the one hand, that

(-∆) α w(x) < 0. (4.23)
On the other hand, we have that

(-∆) α w(x) = -u p (x) + v p (x) > 0,
which is impossible with (4.23). By the same way, we get w ≤ 0 in R N \ {0}.

Then we have that u ≡ v in R N \ {0}. We complete the proof.

Nonexistence

In this section, we focus on the nonexistence of classical solutions under the hypotheses of Theorem 1.1 part (iii). The idea of the proof is as following: if there is a solution u for (1.1) such that (1.9) holds for some τ ∈ (-N, 0) \ {2α -N, -2α p-1 }, there exists some constants C 2 ≥ C 1 > 0 such that

C 1 = lim inf x→0 u(x)|x| -τ ≤ lim sup x→0 u(x)|x| -τ = C 2 .
We will find two sub solutions (or both super solutions) U 1 and U 2 such that

lim x→0 U 1 (x) = C 1 2 , lim x→0 U 2 (x) = 2C 2 .
By using Proposition 5.1 below, we will get a contradiction. Therefore there is no solution under assumption of Theorem 1.1 part (iii).

Proposition 5.1 Under the hypotheses of Theorem 1.1 part (iii), we suppose that U 1 and U 2 are both sub solutions (or both super solutions) of (1.1) and satisfy that

U 1 = U 2 = 0 in Ω c and 0 < lim inf x→0 U 1 (x)|x| -τ ≤ lim sup x→0 U 1 (x)|x| -τ < lim inf x→0 U 2 (x)|x| -τ ≤ lim sup x→0 U 2 (x)|x| -τ < +∞,
for some τ ∈ (-N, 0). For the case τ p > τ -2α, we assume more that (i) in the case that U 1 , U 2 are sub solutions, there exist C > 0 and δ > 0, (-∆) α U 2 (x) ≤ -C|x| τ -2α , x ∈ Bδ;

(5.1) or (ii) in the case that U 1 , U 2 are super solutions, there exist C > 0 and δ > 0,

(-∆) α U 1 (x) ≥ C|x| τ -2α , x ∈ Bδ. (5.2)
Then there doesn't exist any solution u of (1.1) such that

lim sup x→0 U 1 (x) u(x) < 1 < lim inf x→0 U 2 (x) u(x) . (5.3) 
Proof. Here we only prove the case that U 1 and U 2 are sub solutions of (1.1) and the other case could be done similarly. We prove it by contradiction.

Assume that there exists a solution u for (1.1) satisfying (5.3). We observe that Lemma 4.2 and Lemma 4.4 hold in {x ∈ Ω | u(x) -kU 1 (x) > 0} for any k > 1 and Lemma 4.

3 holds for {x ∈ Ω | u(x) -kU 1 (x) > 1}. Denote C 0 = {x ∈ R N \ {0} | U 2 (x) > u(x) > U 1 (x) > 1}
, which is open and nonempty by (5.3). By our hypothesis on U 1 , U 2 and (5.3), there exists

C 0 > 1 such that 1 C 0 ≤ U 1 (x)|x| -τ < u(x)|x| -τ < U 2 (x)|x| -τ ≤ C 0 , x ∈ C 0 . (5.4) 
Let x ∈ C 0 and k 0 ∈ (1, U 2 (x) u(x) ). We denote 

C k 0 := {x ∈ R N \ {0} | U 2 (x) -k 0 u(x) > 1}
∈ C k 0 such that u(x 0 ) -k 0 v(x 0 ) = max x∈Ω\B 4r (0) (u -k 0 v)(x), where r = |x 0 |/4. Let w k 0 = u -k 0 U 1 .
In the case of τ p ≤ τ -2α, by (5.4) we have

(-∆) α w k 0 (x) ≤ -u p (x) + k 0 U p 1 (x) ≤ -(k p 0 -k 0 )U p 1 (x) ≤ -C -p 0 (k p 0 -k 0 )(|x 0 | -r) τ p =: -K 1 r τ -2α , x ∈ B r (x 0 ) ∩ C k 0 ,
where K 1 = 3 τ -2α C -p 0 (k p 0 -k 0 ) > 0 and C 0 is from (5.4). In the case of τ p > τ -2α, by (5.4) and (5.1) we have

(-∆) α w k 0 (x) ≤ -u p (x) -Ck 0 |x| τ -2α ≤ -Ck 0 |x| τ -2α , x ∈ B r (x 0 ) ∩ C k 0 .
Proceeding as the Proof of Theorem 4.1, we find a sequence {x m } ⊂ C 0 such that u(x m ) > (1 + k 1 ) m k 0 U 1 (x m ) for a certain constant k 1 > 0, which contradicts (5.4). Then there is no solution of (1.1) satisfying (5.3). Now we are in the position to prove Theorem 1.1 part (iii). Proof of Theorem 1.1 (iii). With the help of Corollary 2.1, for any given t 1 > t 2 > 0, we construct two sub solutions (or both super solutions) U 1 and

U 2 of (1.1) such that lim x→0 U 1 (x)|x| -τ = t 1 , lim x→0 U 2 (x)|x| -τ = t 2 .
Then we use Proposition 5.1, we can get there is no solution of (1.1).

We will prove the nonexistence results in 3 cases. Case 1: τ ∈ (-N, -N + 2α) and τ p > τ -2α. Denote that

W µ,t = tV τ -µ V in R N \ {0},
where t, µ > 0, V τ is defined in (2.3) and V is the solution of (3.2). By Corollary 2.1(i), for x ∈ B δ 1 , we have

(-∆) α W µ,t (x) + |W µ,t | p-1 W µ,t (x) ≤ - t C |x| τ -2α + t p |x| τ p .
For any fixed t > 0, there exists δ 2 ∈ (0, δ 1 ], for all µ ≥ 0, we get

(-∆) α W µ,t (x) + |W µ,t | p-1 W µ,t (x) ≤ 0, x ∈ B δ 2 . (5.5) To consider x ∈ Ω \ B δ 2 (0), in fact, (-∆) α V τ is bounded in Ω \ B δ 2 (0) and (-∆) α W µ,t (x) + |W µ,t | p-1 W µ,t (x) ≤ C(t + t p ) -µ, x ∈ Ω \ B δ 2 (0).
For given t > 0, there exists µ(t) > 0 such that

(-∆) α W µ(t),t (x) + |W µ,t | p-1 W µ,t (x) ≤ 0, x ∈ Ω \ B δ 2 (0). ( 5.6) 
Combining with (5.5) and (5.6), we have that for any t > 0, there exists µ(t) > 0 such that

(-∆) α W µ(t),t (x) + |W µ(t),t | p-1 W µ(t),t (x) ≤ 0, x ∈ Ω \ {0}.
For given t 1 > t 2 > 0, there exist µ(t 1 ) > 0 and µ(t 2 ) > 0 such that

t 2 = lim x→0 W µ(t 2 ),t 2 (x)|x| -τ < lim x→0 W µ(t 1 ),t 1 (x)|x| -τ = t 1 .
Using Proposition 5.1 with both sub solutions W µ(t 1 ),t 1 and W µ(t 2 ),t 2 , there isn't any solution u of (1.1) satisfying (1.9). Case 2: τ ∈ (-N, -N + 2α) and τ p < τ -2α. We denote that

U µ,t = tV τ + µ V in R N \ {0},
where t, µ > 0. We know that U µ,t > 0 in Ω. By Corollary 2.1 (i), for x ∈ B δ 1 , (-∆) α U µ,t (x) + U p µ,t (x) ≥ -Ct|x| τ -2α + t p |x| τ p , for some C > 0. For any fixed t > 0, there exists δ 2 ∈ (0, δ 1 ], for all µ ≥ 0, we have (-∆) α U µ,t (x) + U p µ,t (x) ≥ 0, x ∈ B δ 2 .

(5.7)

To consider x ∈ Ω \ B δ 2 (0), in fact, (-∆) α V τ is bounded in Ω \ B δ 2 (0) and (-∆) α U µ,t (x) + U p µ,t (x) ≥ -Ct + µ, x ∈ Ω \ B δ 2 (0).

For any given t > 0, there exists µ(t) > 0 such that (-∆) α U µ(t),t (x) + U p µ(t),t (x) ≥ 0, x ∈ Ω \ B δ 2 (0).

(5.8)

Combining with (5.11) and (5.12), we have that for any t > 0, there exists µ(t) > 0 such that (-∆) α U µ(t),t (x) + U p µ(t),t (x) ≥ 0, x ∈ Ω \ {0}.

For given t 1 > t 2 > 0, there exist µ(t 1 ) > 0 and µ(t 2 ) > 0 such that

t 2 = lim x→0 U µ(t 2 ),t 2 (x)|x| -τ < lim x→0 U µ(t 1 ),t 1 (x)|x| -τ = t 1 ,
Using Proposition 5.1 with both super solutions U µ(t 1 ),t 1 and U µ(t 2 ),t 2 , there isn't any solution of (1.1) satisfying (1.9). Case 3: τ ∈ (-N + 2α, 0). By Corollary 2.1(ii), there exists δ 1 > 0 such that (-∆) α V τ (x) > 0, x ∈ B δ 1 .

(5.9) Since V τ is C 2 in Ω, then there exists C > 0 such that |(-∆) α V τ (x)| ≤ C, x ∈ Ω \ B δ 1 (0).

(5.10)

Let Ū := V τ + C V , then we have Ū > 0 in Ω and (-∆) α Ū ≥ 0 in Ω.

Then, we have that t Ū is super solution of (1.1) for any t > 0. Using Proposition 5.1, there isn't any solution of (1.1) satisfying (1.9). The proof is complete.

Proof of Remark 1.3. Since p ≥ N N -2α , we have that -2α p-1 ≤ -N. So by Theorem 1.1, it is only left to prove the case that τ = τ 0 = 2α -N. We denote that U µ,t = tV τ 0 + µ V in R N \ {0}, where t, µ > 0. We know that U µ,t > 0 in Ω. By Corollary 2.1 (iii), for x ∈ B δ 1 , (-∆) α U µ,t (x) + U p µ,t (x) ≥ -Ct + t p |x| τ 0 p , for some C > 0. For any fixed t > 0, there exists δ 2 ∈ (0, δ 1 ], for all µ ≥ 0, we have (-∆) α U µ,t (x) + U p µ,t (x) ≥ 0, x ∈ B δ 2 .

(5.11)

To consider x ∈ Ω \ B δ 2 (0), in fact, (-∆) α V τ is bounded in Ω \ B δ 2 (0) and (-∆) α U µ,t (x) + U p µ,t (x) ≥ -Ct + µ, x ∈ Ω \ B δ 2 (0).

For any given t > 0, there exists µ(t) > 0 such that (-∆) α U µ(t),t (x) + U p µ(t),t (x) ≥ 0, x ∈ Ω \ B δ 2 (0).

(5.12)

Combining with (5.11) and (5.12), we have that for any t > 0, there exists µ(t) > 0 such that (-∆) α U µ(t),t (x) + U p µ(t),t (x) ≥ 0, x ∈ Ω \ {0}.

For given t 1 > t 2 > 0, there exist µ(t 1 ) > 0 and µ(t 2 ) > 0 such that

t 2 = lim x→0 U µ(t 2 ),t 2 (x)|x| -τ 0 < lim x→0 U µ(t 1 ),t 1 (x)|x| -τ 0 = t 1 ,
Using Proposition 5.1 with both super solutions U µ(t 1 ),t 1 and U µ(t 2 ),t 2 , there isn't any solution of (1.1) satisfying (1.9). The proof is complete.

Corollary 2 . 1

 21 Let Ω be an open, bounded, smooth domain containing 0.

(4. 10 )

 10 We first see the contradiction in case of sup x∈Br(x 0 )∩A c k (w k + w) > M . Byw k ≤ 0 in A c k , we have sup x∈Br(x 0 )∩A c k (w k + w)(x) ≤ sup x∈Br(x 0 )∩A c k w(x),which together with (4.10), we havew(x 0 ) < sup x∈Br(x 0 )∩A c k w(x) ≤ sup x∈R N w(x) = w(x 0 ),which is impossible. We finally see the contradiction in case of sup x∈Br(x 0 )∩A c k (w k + w) ≤ M . By (4.10), we have w(x 0 ) < M.