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A Logic with Revocable and Refinable Strategies

Christophe Chareton, Julien Brunel∗, David Chemouil

Onera/dtim, 2 avenue Édouard Belin, F-31055 Toulouse

Abstract

In this article, we present Updatable Strategy Logic (USL), a multi-agent temporal logic which subsumes the main
propositions in this area, such as ATL, ATL*, ATLsc and SL. These logics allow to express the capabilities of agents
to ensure the satisfaction of temporal properties. USL mainly differs from SL, in two ways. Semantically, USL relies
on multi-strategies (that is, non-deterministic strategies), and the notion of strategy composition is extended to enable
an agent to refine her strategy, that is to update it without revoking it. Syntactically, the logic features a binding
operator enabling multi-strategy refinements as well as an “unbinding” operator that allows an agent to explicitly
revoke a multi-strategy (whereas revocation is implicit with the binding operator in SL). We show that USL allows to
express a notion of sustainable control for an agent, i.e., a capability to always decide the satisfaction of a property,
that still holds even after the said capability has been employed. Furthermore, USL allows the definition of a notion
of equality between multi-strategies that enables to consider quantification over deterministic strategies. This makes
USL strictly more expressive than SL. Finally, we also show that the model-checking problem for USL is decidable
but non-elementary (as for SL).

Keywords: multi-agent temporal logic, strategic reasoning, non-deterministic strategies, refinement, revocation

1. Introduction

Multi-agent logics are receiving growing interest in contemporary research. Since the seminal work of R. Alur,
Th. A. Henzinger, and O. Kupferman [1], increasing efforts have been made to formalise agent interactions and
strategies in game structures.

Basically, multi-agent logics allow to formulate assertions about the ability of agents to ensure temporal properties.
Thus, ATL (resp. ATL∗) appears as a generalization of CTL (resp. CTL∗) in which the path quantifiers E and A are
replaced by quantifiers 〈〈·〉〉 and J·K. Such a quantifier takes a coalition (set) of agent(s) as parameter: for instance,
〈〈A〉〉ϕ specifies that there is a way for agents in A to ensure the satisfaction of the temporal formula ϕ (the universal
quantifier is written JAK). Such formulas are usually interpreted in Concurrent Game Structures (CGS’s), where every
agent makes choices influencing the execution of the system depending on her strategy (a function indicating an action
depending on the history of states already met). Here for instance, 〈〈A〉〉ϕ is true in a given CGS if every agent a in A
has a strategy ςa s.t. if all agents in A play their respective strategy ςa, they force the system execution to satisfy ϕ,
whatever the other agents in the CGS do.

∗Corresponding author.
Email addresses: Christophe.Chareton@gmail.com (Christophe Chareton), Julien.Brunel@onera.fr (Julien Brunel),

David.Chemouil@onera.fr (David Chemouil)

Preprint submitted to Information & Computation April 9, 2015



1.1. Strategy Composition
Since these logics allow to reason about agent interactions, the ability to address the composition of strategies,

which comes to nesting strategy quantifiers in a formula, is a major issue that has enjoyed several developments. To
illustrate this aspect and introduce our contribution, consider the following ATL formula:

〈〈a1〉〉�(ϕ1 ∧ 〈〈a2〉〉�ϕ2) (1)

where � is the usual “always” operator and 〈〈a1〉〉 is a shorthand for 〈〈{a1}〉〉 (similarly for 〈〈a2〉〉), i.e. we only consider
one-agent coalitions.

In the following, we study the avatars of this formula in various logics, depending on whether a1 and a2 stand for
the same agent or not (so, in full rigour, a1 and a2 are meta-variables here).

In ATL and ATL∗, the operator 〈〈a2〉〉 drops the strategies introduced by any earlier quantifier (here 〈〈a1〉〉). So
during the evaluation of �ϕ2, the strategy adopted by a1 is not taken into account. Notice that this situation happens
whether a1 and a2 are the same agent or not. Generally speaking, the interpretation of an operator 〈〈A〉〉 in ATL and
ATL∗ induces an implicit revocation of their current strategy by every agent in the system.

ATLsc [2, 3, 4], while keeping the ATL syntax, adapts the semantics in order to interpret formulas in a context
which stores strategies introduced by earlier quantifiers. This way, if a1 and a2 are two different agents, then, during
the evaluation of Formula (1) under the ATLsc semantics, when reaching �ϕ2, the strategy adopted by a1 is read
from the current context and taken into account. Said otherwise, it is not revoked. Note however that revocation still
happens if a1 and a2 are the same agent.

1.2. Explicit Strategy Binding
Strategy Logic (SL), which uses similar strategy contexts, is the starting point for our contribution. (Notice there

are two versions of SL in the literature: the first one [5] considered interactions between two players in a turn-based
game. It was later extended to concurrent games between any finite number of agents [6, 7]. In the remainder of this
paper, we only refer to the latter.)

In SL, the ATL operator 〈〈a〉〉 is split into two different operators: an existential quantifier over strategies 〈〈x〉〉, where
x is a strategy variable, and a binder (a, x), which stores into a context the information that a follows a strategy ςx

instantiating the variable x. In order to illustrate the SL syntax, consider the following SL formula that is equivalent
to Formula (1) under the ATLsc semantics:

〈〈x1〉〉(a1, x1)Jx2K(a2, x2) . . . JxkK(ak, xk)�(ϕ1 ∧ 〈〈x2〉〉(a2, x2)�ϕ2) (2)

where JxK is the universal quantifier over strategy variables (dual of 〈〈x〉〉) and {a1, . . . ak} is the set of agents in the
system under consideration. (Note that in Formula (2), each agent in the system is explicitly bound, which is due to a
syntactic constraint of SL, see Remark 1 later.)

In SL, the composition of contexts is defined in a quite natural way (as far as strategies concern distinct agents)
through the semantics of the nesting of binders. For instance, as for ATLsc, when evaluating �ϕ2 in Formula (2), a1
remains bound to strategy ςx1 , except if a1 and a2 are the same agent. In which case, ςx1 is revoked before adding a
binding to ςx2 in the context, i.e. the former binding stored in the context is overwritten.

1.3. Explicit Strategy Unbinding
Thus, in SL (resp. ATLsc), a strategy binder (a, x) (resp. a strategy quantifier 〈〈A〉〉), does not perform any implicit

revocation of the current strategies for the agents distinct from a (resp. not in A). However, an implicit revocation still
holds for the agent a (or the members of coalition A in ATLsc). So, it is not possible to express what we call a strategy
refinement for an agent, i.e., the possibility to enrich her own strategy, instead of revoking it.

In this paper, building on previous work introduced in [8], we present Updatable Strategy Logic (USL), a logic
allowing to consider strategies that are updatable, i.e. refinable or revocable explicitly. The syntax of USL formulas
features (1) a binder (a B x) enabling to associate a strategy with an agent without overwriting strategies previously
bound to her; and (2) an unbinder (a 7 x) allowing an agent to revoke a strategy explicitly. Thus, if a1 and a2 are the
same agent, say a, then Formula (2) translates as:

〈〈x1〉〉(a B x1)�(ϕ1 ∧ 〈〈x2〉〉(a 7 x1)(a B x2)�ϕ2)
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while the following formula, without an unbinder, asserts that a refines the strategy instantiating x1 with the one
instantiating x2:

〈〈x1〉〉(a B x1)�(ϕ1 ∧ 〈〈x2〉〉(a B x2)�ϕ2)

A key point is that, instead of classical strategies, USL makes uses of non-deterministic strategies, called multi-
strategies. The non-determinism of multi-strategies makes them refinable and an agent may then be committed to
several multi-strategies. We define the syntax and semantics of USL in detail in Sect. 2.

As shown in Sect. 3, one consequence of considering commitments to several multi-strategies is that it allows
to characterise a particular property, called sustainable control, which allows to reason about situations where an
agent (1) has a choice between different properties she can alternatively ensure, and (2) after using it she still has
the choice between the same properties. Another consequence is that, in case of “contradictory” multi-strategies,
the “execution” of the system stops. We regard this property as fruitful as it allows to compare multi-strategies, to
characterise deterministic multi-strategies (thus covering SL strategies) or to express notions of dependences between
multi-strategies.

In Sect. 4, we prove that USL is strictly more expressive than SL and that the satisfiability problem for USL is not
decidable. On the other hand, as shown in Sect. 5 (adapting a proof from [6]), the model-checking problem on finite
models for USL enjoys the same complexity as SL, that is NonElementary in time over the length of the formula and
Polynomial over the size of the CGS.

Finally, in Sect. 6 and 7, we compare our results to related works and sketch directions for future work.

Technical Conventions and Notations Used in this Paper

The notation for a partial function from a set A to a set B is f : A 9 B. We write dom( f ) for the domain of
definition of a partial function f .

Given a binary relation R ⊆ A × B, for any sets A and B, we write R(a) for the set {b ∈ B | 〈a, b〉 ∈ R} and dom(R)
for the left projection of R.

Given a set S , we write |S | for the cardinality of S , P(S ) for the set of subsets of S , P>0(S ) for the set of non-empty
subsets of S , and P<ω>0 (S ) for the set of non-empty finite subsets of S .

Given a set S , we write S ∗ for the set of possibly-empty finite sequences over S , S + for the set of non-empty finite
sequences over S , and S ω for the set of possibly-empty finite and infinite sequences over S .

Given a sequence λ, we write λ0 for its first element and λi for its (i + 1)-th element. The length of a finite
sequence λ (i.e. the number of elements in the sequence) if written |λ| and its last element is written last(λ). We also
use the extensive notation λ0 · λ1 · · · λ|λ|−1. Note that in the case where |λ| = 1, then λ0 denotes both a sequence and its
unique element.

We also write λ6i for the finite subsequence (λ0, . . . , λi) of λ, and λ>i for the subsequence of λ starting at index i.

2. Syntax and Semantics

This section introduces USL. First, we recall the standard definitions regarding the semantic framework used
for interpretation, namely concurrent game structures. Second, we define the syntax of USL. Then we introduce a
number of useful technical definitions before defining the formal semantics of the logic. In all these steps, we follow
most of the structure and notations of SL [6] to facilitate the further comparisons in expressive power done in Sect. 4.

2.1. Semantic Framework

The semantic framework used to interpret USL formulas is that of concurrent game structures, introduced in [1]
and then subsequently used with slight modifications in numerous works [2, 4, 6]. As USL builds upon SL, our
definition for CGS’s is the one from [6] (the main difference between this and the one from [1] lies in the cardinalities
of the sets of states and actions: here they are enumerable whereas they are finite in [1]).

Intuitively, concurrent game structures are an extension of labelled transition systems dedicated to modelling
multi-agent systems. In these systems, transitions are decided by actions a set of agents perform. At each state of any
execution, each agent plays an action and the transition is determined by these actions and the current state.
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Definition 1 (Concurrent Game Structure). A concurrent game structure is a tuple G = 〈Ag, St,At, prop,Act,
tr, so〉 where:

• Ag is a finite non-empty set of agents

• St is an enumerable non-empty set of states

• At is a finite non-empty set of atomic propositions

• prop : St → P(At) is a valuation function which maps each state s to the set of propositions true at s

• Act is an enumerable non-empty set of actions

• Let us write Dec = ActAg for the set of decisions, i.e. maps from agents to actions representing the choices of
an action for every agent. Then tr : St × Dec → St is the transition function which maps a state and a decision
to a state.

• s0 ∈ St is an initial state

Now, we define tracks and paths as non-empty finite and infinite (resp.), legal, sequences of states in a CGS.

Definition 2 (Track, Path, Execution). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS. A track in G is a non-empty
finite sequence of states θ ∈ St+ s.t. for every i ∈ [0, |θ| − 1[, there is a decision δ ∈ Dec s.t. θi+1 = tr(θi, δ).

A path in G is an infinite sequence of states η ∈ Stω s.t. every finite prefix of η is a track in G.
The set of all tracks (resp. paths) in G is written TrackG (resp. PathG) (the index will be omitted in case there is no

ambiguity).
An execution in G is a track or a path in G.

We can now define the notion of multi-strategy (the use of this word is inspired by [9]). A multi-strategy indicates
a set of actions that may be performed by an agent depending on the history of states already met. Notice that, as usual
in the literature, a multi-strategy is not attached to a single agent as multiple agents may follow the same strategy.

Note that, contrary to a number of formalisms, we allow our strategies to be non-deterministic. In practice, this
approach typically encompasses situations where strategies are under-specified.

In practice, a multi-strategy which is not explicitly specified for a given track is considered to yield the set Act of
all actions.

Definition 3 (Multi-strategy). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS. A multi-strategy ς in G is a map
which, given a track, yields a non-empty set of actions, i.e. ς : Track → P>0(Act).

The set of multi-strategies in G is written MStratG (the index will be omitted in case there is no ambiguity).

We now define the notion of multi-strategy translation along a track θ, which represents the way a multi-strategy
is to be “updated” to take into account the fact that θ is now added to the history of a game.

Definition 4 (Multi-strategy Translation). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS, ς be a multi-strategy and
θ be a track in G. We call translation of ς along θ the multi-strategy ςθ s.t. for any track θ′, ςθ(θ′) = ς(θ · θ′>1).

2.2. Syntax
The syntax of USL makes a distinction between state and path formulas. We first describe a notion of pseudo-

formulas and then define formulas as pseudo-formulas where every quantified multi-strategy variable is fresh w.r.t.
the scope in which it is introduced.

Definition 5 (Pseudo-formulas). Let Ag be a set of agents, At a set of propositions, and Var a set of (multi-strategy)
variables. Then the set of USL pseudo-formulas is defined by the following grammar:

• State pseudo-formulas:
ψ ::= p | ¬ψ | ψ ∧ ψ | 〈〈x〉〉ψ | (A B x)ϕ | (A 7 x)ϕ
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• Path pseudo-formulas:
ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ

where p ∈ At, x ∈ Var and A is a coalition (i.e. A ⊆ Ag).

Note that in this grammar, path formulas are introduced exclusively after (A B x) or (A 7 x). In particular, a path
formula cannot follow 〈〈x〉〉. This restriction avoids counter-intuitive effects in the semantics definitions. As we will
see in Sect. 4.2, this is made without loss of generality.

Furthermore, the semantics of these operators includes a quantification over the executions that are made possible
by the context. This is not detailed in the present article, but it is possible to simulate branching-time specifications
with USL.
Notation. The propositional connective ∨ (“or”) and constants > (“true”) and ⊥ (“false”) are defined in the obvious
way. In the same way, we make use of the common temporal connectors ♦ (“eventually”), � (“always”) and R
(“release”), defined by: ♦ϕ , > U ϕ, �ϕ , ¬♦¬ϕ, and ϕ1 R ϕ2 , ¬(¬ϕ1 U ¬ϕ2). Finally, the universal quantifier on
multi-strategies is defined as follows: for every variable x and every pseudo-formula ϕ, JxKϕ , ¬〈〈x〉〉¬ϕ.

Definition 6 (Sub-pseudo-formulas). The set Sub(ϕ) of sub-pseudo-formulas of a pseudo-formula ϕ is defined by
induction over ϕ:

• Sub(p) = {p}, with p ∈ At

• Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ)

• Sub(ϕ1 ∧ ϕ2) = {ϕ1 ∧ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2)

• Sub(〈〈x〉〉ϕ) = {〈〈x〉〉ϕ} ∪ Sub(ϕ)

• Sub((A B x)ϕ) = {(A B x)ϕ} ∪ Sub(ϕ)

• Sub((A 7 x)ϕ) = {(A 7 x)ϕ} ∪ Sub(ϕ)

• Sub(Xϕ) = {Xϕ} ∪ Sub(ϕ)

• Sub(ϕ1 U ϕ2) = {ϕ1 U ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2)

As multi-strategy variable names are taken into account in the semantics of formulas, some care must be taken
when a quantifier is encountered. Thus, well-formed formulas are pseudo-formulas such that every quantifier intro-
duces a fresh multi-strategy variable w.r.t. the scope in which it appears.

Definition 7 ((Well-Formed) Formula). A pseudo-formula ϕ is a (well-formed) formula if for any sub-pseudo-for-
mula 〈〈x〉〉ϕ′ of ϕ and every sub-pseudo-formula 〈〈y〉〉ϕ′′ of ϕ′, x and y are distinct variables.

It is straightforward to check that any sub-pseudo-formula of a formula is itself a formula.

Definition 8 (Subformulas). Given a formula ϕ, the set of subformulas of ϕ is defined as its set of sub-pseudo-for-
mulas and is also denoted by Sub(ϕ).

Definition 9 (Free Variables). The set of free variables of a formula ϕ, written FV(ϕ), is defined by induction on ϕ:

• FV(p) = ∅, for p ∈ At

• FV(¬ϕ) = FV(Xϕ) = FV(ϕ)

• FV(ϕ1 ∧ ϕ2) = FV(ϕ1 U ϕ2) = FV(ϕ1) ∪ FV(ϕ2)

• FV(〈〈x〉〉ϕ) = FV(ϕ) \ {x}
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• FV((A B x)ϕ) = FV((A 7 x)ϕ) = FV(ϕ) ∪ {x}

Notation. The length of a formula ϕ is defined as |Sub(ϕ)| and is written |ϕ|.

Definition 10 (Sentence). A formula ϕ is called a sentence if it is closed, that is if FV(ϕ) = ∅.

Remark 1 (Comparison with SL Sentences). In SL [6], a sentence is a formula that is both variable-closed and
agent-closed. The latter condition requires that all agents are bound to a strategy variable before any temporal sub-
formula. For instance, given a set of agents {a1, . . . , an} (with n ∈ N), the formula 〈〈xn〉〉(an, xn)Xp is not a sen-
tence. In order to be a sentence, a reference to all agents other than an must be added, as in the following formula:
〈〈xn〉〉(an, xn)Jx1K(a1, x1) . . . Jxn−1K(an−1, xn−1)Xp.

As a consequence, writing SL sentences can sometimes be tedious. More importantly, a single informal specifi-
cation may give rise to different SL sentences depending on the number of agents of the system not mentioned in the
specification. In contrast, in USL as in ATL [1] or ATLsc [2, 4], this syntactic constraint is not present.

2.3. Semantics

We now give a number of technical definitions that are required to define the notion of satisfaction between a CGS
and a formula. We first define the evaluation contexts that are used for USL, and different operations on these contexts
(Sect. 2.3.1). In Sect.2.3.2 we introduce the set of outcomes of an evaluation context and a state. Then we give the
definition of satisfaction in Sect.2.3.3.

2.3.1. Evaluation Contexts
As in SL or ATLsc, USL relies on a notion of “environment” (called “assignment” in SL [6]) to evaluate the

subformulas of a sentence. However, contrary to SL, we make a distinction between two parts, namely assignments,
that keep track of multi-strategy variable instantiations, and commitments, that store the bindings of agents to multi-
strategy variables. This distinction is important because USL allows to compose multi-strategies so that a given agent
may be committed to several multi-strategies at once.

Definition 11 (Assignment, Commitment, Context). An assignment α is a dictionary which associates a multi-
strategy with every multi-strategy variable in its domain of definition, i.e. a partial function α : Var 9 MStrat.

A commitment γ gathers bindings between a set of agents and variables they are bound to, i.e. it is a relation
γ ⊆ Ag × Var.

A context χ is a “well-formed” pair 〈α, γ〉 of an assignment α and a commitment γ, i.e. a pair s.t. each multi-
strategy variable associated with an agent in the commitment is instantiated: γ(Ag) ⊆ dom(α).

Notation. We write α∅ for the empty assignment (s.t. dom(α∅) = ∅), γ∅ for the empty commitment (s.t. dom(γ∅) = ∅),
and χ∅ for the empty context (s.t. χ∅ = 〈α∅, γ∅〉).

The notion of multi-strategy translation is now extended to assignments, which will be useful to define the notion
of outcome in the next section. A translated assignment is one where every multi-strategy instance is itself translated.

Definition 12 (Assignment Translation, Context Translation). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS, χ =

〈α, γ〉 be a context and θ be a track in G. We call translation of α along θ the assignment αθ s.t. dom(αθ) = dom(α)
and for any x ∈ dom(αθ), αθ(x) = (α(x))θ. The translation for the context χ is simply defined as 〈α, γ〉θ = 〈αθ, γ〉.

During the semantic evaluation of a formula, the context must be transformed as we encounter a multi-strategy
quantifier, a binding operator or an unbinding operator. For a quantifier 〈〈x〉〉, we simply update the current assignment
for x. For a binding operator (A B x), the commitment must be updated with a pair 〈a, x〉 for every agent a in A.
Finally, for an unbinding operator, all pairs 〈a, x〉 must be removed from the commitment, for any agent a in A.
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Definition 13 (Context Transformations). Let χ = 〈α, γ〉 be a context, A ⊆ Ag be a coalition, x be a multi-strategy
variable and ς be a multi-strategy. We define the transformations [x 7→ ς] on assignments and [A ⊕ x] and [A 	 x] on
commitments as follows:

α[x 7→ ς](y) =

ς if x = y
α(y) otherwise

γ[A ⊕ x] = γ ∪ {〈a, x〉 | a ∈ A}

γ[A 	 x] = γ \ {〈a, x〉 | a ∈ A}

This notation is extended to contexts: χ[x 7→ ς] = 〈α[x 7→ ς], γ〉, χ[A⊕ x] = 〈α, γ[A⊕ x]〉 and χ[A	 x] = 〈α, γ[A	 x]〉.

Remark 2. Note that applying any of these three transformations to a context gives a context as result.

2.3.2. Outcomes
In SL [6], a number of definitions (“s-total” strategies and assignments, “complete” assignments. . . ) is introduced

to help characterising a play, that is the unique outcome of a game. Here, the situation is a bit different owing to non-
determinism of our strategies and, instead of a unique play, we will end up with a set of outcomes. More precisely, a
context induces an outcome function that maps every track θ to a set of executions that can happen if agents, starting
from θ, play according to the multi-strategies stored in χ.

To define the outcome function, we must first define the set of possible immediate successors of a given track in a
context χ = 〈α, γ〉.

Definition 14 (Successor Function). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS and χ = 〈α, γ〉 be a context.
Then the successor function succχ : Track → P(St) induced by χ is defined, for any track θ, by:

succχ(θ) = {tr(last(θ), δ) | ∀〈a, x〉 ∈ γ · δ(a) ∈ α(x)(θ)}

Remark 3 (Finite Executions). Note that, in USL, as the successor function may yield the empty set, some execu-
tions may be finite. We use a common interpretation of temporal operators over finite executions, already defined
in [10]. The semantics of the temporal operator X is less regular than in the usual framework with infinite executions:
in particular, it does not commute with ¬. Nevertheless, it enables the framework to encompass cases where an agent
is committed to contradictory multi-strategies, that is multi-strategies which indicate disjoint sets of actions after a
given track. Detecting such cases brings significant additional expressive power, especially through the expression of
equality between multi-strategies. The details are given in Sect. 3.2.

We finally come to the definition of outcomes of a context and a track, which is the set of finite and infinite
executions (i.e. tracks and paths) that are possible when the history of the game is given by the track.

Definition 15 (Outcomes). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS, θ be a track and χ = 〈α, γ〉 be a context.
We define the set of outcomes of χ and θ in G as the set out(χ, θ) of tracks and paths λ, in G, s.t. λ0 = last(θ) and:

• if λ is a path: for any i ∈ N, λi+1 ∈ succ
χ
λ6i (λ6i)

• if λ is a track λ6n:

– for any i < n, λi+1 ∈ succ
χ
λ6i (λ6i)

– and succχλ (λ) = ∅.

2.3.3. Satisfaction
Definition 16 (Satisfaction). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS and χ be a context. Then the satisfaction
relation |= is defined by induction on formulas, for every state s ∈ St and executions λ in G, as follows:

• State formulas
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– G, χ, s |= p iff p ∈ prop(s), with p ∈ At

– G, χ, s |= ¬ψ iff G, χ, s 6|= ψ

– G, χ, s |= ψ1 ∧ ψ2 iff G, χ, s |= ψ1 and G, χ, s |= ψ2

– G, χ, s |= 〈〈x〉〉ψ iff there is a multi-strategy ς ∈ MStratG s.t. G, χ[x 7→ ς], s |= ψ

– G, χ, s |= (A B x)ϕ iff for any λ ∈ out(χ[A ⊕ x], s),G, χ[A ⊕ x], λ |= ϕ

– G, χ, s |= (A 7 x)ϕ iff for any λ ∈ out(χ[A 	 x], s),G, χ[A 	 x], λ |= ϕ

• Path formulas

– G, χ, λ |= ψ iff G, χ, λ0 |= ψ, if ψ is a state formula

– G, χ, λ |= ¬ϕ iff G, χ, λ 6|= ϕ

– G, χ, λ |= ϕ1 ∧ ϕ2 iff G, χ, λ |= ϕ1 and G, χ, λ |= ϕ2

– G, χ, λ |= Xϕ iff |λ| > 1 and G, χλ0λ1 , λ>1 |= ϕ

– G, χ, λ |= ϕ1 U ϕ2 iff there is a number i ∈ N s.t. |λ| > i, s.t. G, χλ6i , λ>i |= ϕ2 and s.t. for any 0 6 j < i,
G, χλ6 j , λ> j |= ϕ1.

Given the empty context χ∅ and a sentence ψ, we write G, s |= ψ iff G, χ∅, s |= ψ, and G |= ψ iff G, s0 |= ψ.

3. Noticeable properties

In this section, we develop on interesting properties we can express in USL. We present properties that are due
to the multi-strategy refinement and revocation in Sect. 3.1. Then in Sect. 3.2, we show that USL enables to express
equality between multi-strategies and we investigate how this can be useful to express notions such as uniqueness,
determinism and dependences between multi-strategies.

3.1. Refinement and revocation of multi-strategies

Let us illustrate the mechanisms of multi-strategies refinement and revocation. The ability to refine multi-strategies
in USL allows to reason about situations where an agent

1. has a choice between different properties she can alternatively ensure,
2. and is able to remain in capacity to have all these choices available.

The concept of sustainable control is a particular case where the agent’s choice is about satisfying or falsifying
a given property, at any time: when the agent ensures the satisfaction (or the falsification) of the property in a given
state, both possibilities remain available in the next state. Let us first informally illustrate this notion with a simple
example of a chat server. Then, we will provide a formal definition.

Example 1 (Chat server: sustainable control). As an illustration (see Fig. 1), suppose one client sends connection
requests to the chat server. From the initial state (s0) the server can always decide whether to grant or deny access to
the client. In addition, the server can ban a client and refuse connection once and for all.

So it can set the atomic proposition access to true or to false at any moment and as many times as it wants. While
the server does not ban the client, both possibilities (set access to true or to false) remain available. So intuitively,
there is a multi-strategy for the server (namely “not banning the client”) such that it always controls the proposition
access. Thus we say that the server has sustainable control over access.

We now give a formal definition of sustainable control from a semantic perspective. We represent the property to
control by a set of states S , and consider that an agent has sustainable control over S from the current state if she has
an action that forces the system to go to S and another action that forces the system not to go to S ; and after playing
either one, she still has sustainable control over S .
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ban
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grant

deny

denygrant

Figure 1: One-player CGS G1 for the server

Definition 17 (Sustainable control). Given a CGS G = 〈Ag, St,At, prop,Act, tr, so〉, an agent a ∈ Ag, and a set
S ⊆ St of states, we note SCont(a, S , s) to express that a has sustainable control over S from state s, which is defined
coinductively as follows: SCont(a, S , s) iff

∃ac1, ac2 ∈ Act · ∃S 1, S 2 ⊆ St s.t. tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · SCont(a, S , s′)

where tr returns the set of all possible successors from a state, given the action performed by one agent1:

tr(s, {a 7→ ac}) = {s′ ∈ St | ∃δ ∈ Dec · δ(a) = ac and tr(s, δ) = s′}

As a matter of fact, sustainable control can be characterised syntactically by a USL formula. We represent the
property to control by a (propositional) formula ψ (for the set S of states). Besides, we need three multi-strategy
variables to express sustainable control: a multi-strategy variable y to ensure the satisfaction of ψ, a multi-strategy
variable z to ensure the falsification of ψ and a general multi-strategy x, which can compose both with y and z and
which ensures that the agent can stay forever in condition to ensure the satisfaction and the falsification of ψ.

Proposition 1. Given a CGS G = 〈Ag, St,At, prop,Act, tr, so〉, an agent a ∈ Ag, a set S ⊆ St of states, a state s ∈ St,
and a formula ψ such that, for any state s′ ∈ St, s′ ∈ S iff G, s′ |= ψ, then

SCont(a, S , s) iff G, s |= 〈〈x〉〉(a B x)�
(
〈〈y〉〉(a B y)Xψ ∧ 〈〈z〉〉(a B z)X¬ψ

)
Proof. See Appendix A.

Let us come back to our chat server example. As we informally explained above, from the initial state s0 (as well
as from state s1) the server has sustainable control over access, i.e., it can set access to true and to false at any time.
Indeed, one can easily see that the following formula expressing the sustainable control of a over access holds in s0:

〈〈x〉〉(a B x)�
(
〈〈y〉〉(a B y)Xaccess ∧ 〈〈z〉〉(a B z)X¬access

)
Finally, the presence of the explicit unbinder makes it possible to reason about the revocation of multi-strategies.

For instance, we can express that the server, when applying the multi-strategy by which it controls access, can decide

1In the case of a single agent (Ag = {a}), as in the chat server, tr always returns a singleton and can be identified with tr.
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at any time to revoke this multi-strategy and to ban the client, i.e., to ensure that, from an arbitrary moment chosen by
the server, access becomes false forever:

〈〈x〉〉(a B x)�
((
〈〈y〉〉(a B y)Xaccess

)
∧

(
〈〈z〉〉(a B z)X¬access

)
∧

(
〈〈t〉〉(a 7 x)(a B t)�¬access

))
3.2. Relations between multi-strategies

In USL, when an agent is committed to contradictory multi-strategies, in the sense that, after a given track, these
specify disjoint sets of actions, then the “execution” stops. More precisely, the context that stores the contradictory
commitments induces an empty set of outcomes. This aspect of the semantics of USL allows to test, for instance,
whether two multi-strategies x and y specify overlapping sets of actions, using the formula (a B x)(a B y)X>. We
can then express relations of inclusion and equality between two multi-strategies (Sect. 3.2.1). It is also possible to
characterise deterministic multi-strategies and define quantifiers over them (Sect. 3.2.2), which is useful to express
a simple notion of dependence between two multi-strategies (Sect. 3.2.3). We also show in Sect. 3.2.4 that we can
actually characterise a finer-grained relation of strong dependence between multi-strategies.

3.2.1. Inclusion, equality and uniqueness
First, we consider the inclusion for one transition, which expresses that given the current state and the current

context, the set of actions specified by the multi-strategy x is included in the one specified by y. This is given by
Formula (3):

x ⊆X y , JzK(a B z)
(
(a B x)X> → (a B y)X>

)
(3)

Indeed, Formula (3) asserts that any set of actions in intersection with the one specified by x is also in intersection
with the one specified by y. From this definition, we define easily the equality =X for one transition. We also define
the global inclusion ⊆ (and equality =) between multi-strategies.

x =X y , x ⊆X y ∧ y ⊆X x
x ⊆ y , JzK(a B z)�

(
(a B x)X> → (a B y)X>

)
x = y , x ⊆ y ∧ y ⊆ x

Formula x ⊆ y asserts that the set of actions yielded by x is included in the one yielded by y, after any track θ starting
from the current state. Similarly, the equality x = y characterises multi-strategies that yield the same sets of actions
after any possible track from the current state.

The existence of an equality predicate enables to count the number of possible multi-strategies for a given goal.
In particular, we can express the existence of a unique multi-strategy satisfying a goal.

Definition 18 (Uniqueness quantification). The unique existential quantifier (〈〈!x〉〉) is defined as follows: for any
formula ψ with free variable x:

〈〈!x〉〉ψ , 〈〈x〉〉(ψ ∧ JyK(ψ[x B y]→ x = y))

where ψ[x B y] is obtained from ψ by substituting any free occurrence of variable x by y.

Note that if there is a unique multi-strategy such that an agent ensures a goal, then the satisfaction of the goal fully
determines the multi-strategy of the agent pursuing it.

3.2.2. Deterministic strategies
Inclusion and equality also enable to express that a multi-strategy is deterministic, i.e., it specifies a single action

after any track. In order to express in USL that a variable x represents a multi-strategy which is deterministic from the
current state, we specify that the only multi-strategy included in x is x itself. It is expressed by Formula (4), with x as
free variable:

Det(x) , JyK(y ⊆ x→ y = x) (4)

A natural way to reason about deterministic strategies consists in using dedicated quantifiers:
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Definition 19 (Quantifiers over deterministic strategies). The existential (〈〈x〉〉d) and universal (JxKd) quantifiers
over deterministic strategies are defined as follows:

Existential For any formula ψ, 〈〈x〉〉dψ , 〈〈x〉〉(Det(x) ∧ ψ);

Universal For any formula ψ, JxKdψ , JxK(Det(x)→ ψ).

3.2.3. Alternation of quantifiers and dependence
Of course, these deterministic quantifiers are useful to compare USL to deterministic multi-agent logics such as

SL. For instance, in Sect. 4.2, we use them to define an embedding of SL into USL. But they are also of interest in
order to express properties that involve an alternation of quantifiers. Indeed, in the case of an alternation of the kind
JxK〈〈y〉〉ψ, one needs to use the quantifier JxKd instead of JxK to enable multi-strategy y to depend on x. Let us develop
on this aspect in the following.

Example 2 (Alternation of quantifiers). Let us consider the CGS GJK〈〈〉〉 illustrated in Fig. 2. There are two agents a
and b, playing heads or tails. They both win the game if they get the same side of their respective coin and they both
lose otherwise. Both players can play either action heads or action tails. The initial state is s0. State s1 is reached
if the players win and state s2 is reached if they lose. The only atomic proposition in the language, p, is true only in
state s1 and testifies that the game is won. We want to express that whatever a plays, b can ensure the victory. From
a game-theoretic point of view, where both players are able to control their play and decide between heads and tails,
this is obviously true, since b can play the same action as a.

s0

s1p

s2

[
a 7→ heads
b 7→ tails

]
or

[
a 7→ tails

b 7→ heads

]

[
a 7→ heads
b 7→ heads

]
or

[
a 7→ tails
b 7→ tails

]

Figure 2: Model GJK〈〈〉〉

First, remark that Formula (5) is inadequate to express the property:

JxK〈〈y〉〉(a B x)(b B y)Xp (5)

Indeed, this formula specifies that for any multi-strategy ςx, there is a multi-strategy ςy s.t., at s0, if a plays ςx and b
plays ςy then p will necessarily be true in the next state (which means that the execution goes to s1). In particular, if
ςx is the multi-strategy that yields the whole set of available actions after any track, then there is obviously no ςy such
that p will be ensured. So Formula (5) is not satisfied in state s0.

Actually, Formula (5) is semantically equivalent to Formula (6), obtained from Formula (5) by replacing JxK with
〈〈x〉〉 and 〈〈y〉〉 with JyK (we leave the proof to the reader):

〈〈x〉〉JyK(a B x)(b B y)Xp (6)

What is at stake in this example is a dependence relation between the actions yielded by the multi-strategy instan-
tiating x and those yielded by the multi-strategy instantiating y. Questions linked to dependence relations between
strategies of actors were raised by Hintikka [11] and have given rise to numerous works. Independence Friendly
Logic (IF [12]) focuses on the independence relation between strategies: within a set of assignments, a strategy y is
independent from another strategy x iff changes on x do not affect the value of y. In such a case, y has a constant value
over x (whereas it may have functional dependence relations with other variables).
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The semantic framework of Dependence Logic (DL [13]), on the other hand, is based on the converse notion of
dependence: within a set of assignments, a strategy y is dependent on another strategy x iff the value of x determines
the value of y. In such a case there is a function from the possible values for x giving the value of y. Following this
view, universal non-deterministic quantification is not adequate to express the dependence relation between actions
that is due to the alternation of quantifiers. One must rather use the deterministic quantifier, as in Formula (7), which
is true in state s0 of our example:

JxKd〈〈y〉〉(a B x)(b B y)Xp (7)

Actually, Formula (7) is true in every model where the actions yielded by y depend on those yielded by x. But it is
also true in every models where y is completely independent of x, that is, where there is a multi-strategy y such that for
every strategy x, (a B x)(b B y)Xp is true. In such a case, y is both independent from x, with the IF perspective, and
dependent on x, with the DL perspective. These two notions are not contradictory. Indeed, Formula (7) is a semantic
consequence of 〈〈y〉〉JxKd(a B x)(b B y)Xp. We say that Formula (7) expresses a potential dependence.

Then, using both deterministic and non-deterministic quantifiers enables us to characterise actual dependence,
that is dependence without independence:(

JxKd〈〈y〉〉(a B x)(b B y)Xp
)
∧ ¬(〈〈y〉〉JxKd(a B x)(b B y)Xp) (8)

Indeed, this formula asserts that the multi-strategy y must not be the same for every x, to satisfy (a B x)(b B y)Xp.

3.2.4. Strong dependence
Intuitively, expressing dependence aims at answering the following question: if x varies, does y vary? The actual

dependence expressed in Formula (8) asserts that the whole set of possible variations of x induces some changes on
y. However it would be interesting to give finer means to characterise the variations of x due to those of y. Thanks
to equality, we can propose a first step in that direction: we say that y strongly depends on x for the satisfaction of
ϕ if any change of x induces a change of y for the satisfaction of ϕ. Let us illustrate this aspect with the following
example.

Example 3 (Magic trick). Consider a game with two players, the magician and the spectator. The spectator picks up
a card from a pack of 52 pairwise different cards, then replaces it in the pack. Then the magician picks up a card. The
game is iterated infinitely often. We distinguish between two different levels:

Beginner level The magician wins iff he never picks up the same card as the spectator.

Expert level The magician wins iff he always picks up the same card as the spectator.

We wish to express the fact that the expert level is harder than the beginner level for the magician.

The game is represented by model GM in Fig. 3. There are three states s0, s1 and s2. The initial state is s0 and
there is one action per card in the game (for the sake of readability, Fig. 3 does not show actions but only whether they
correspond to picking the same card or not). The transition function specifies that from any state the execution goes
to:

• s1 if both players play the same card,

• s2 if they play different card.

Proposition same is true exactly at s1. It states that both players picked up the same card during the previous turn.
For both levels, the magician has a winning multi-strategy, which depends on x. So the following formulas, similar

to Formula (8), are true in our model.

GM |=
(
JxKd〈〈y〉〉(spectator B x)(magician B y)X�same

)
∧ ¬(〈〈y〉〉JxKd(spectator B x)(magician B y)X�same)

and

GM |=
(
JxKd〈〈y〉〉(spectator B x)(magician B y)X�¬same

)
∧ ¬(〈〈y〉〉JxKd(spectator B x)(magician B y)X�¬same)
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Figure 3: Illustration of the magic trick: GM

The fact that the expert level is harder than the beginner level comes from the fact that, for the former, y strongly
depends on x: any change in the strategy played by the spectator induces a change in the magician’s multi-strategy.
This is not the case for the beginner level, since for any action from the spectator, the magician has 51 available
favourable actions. Intuitively, to win in the expert level, the magician needs complete information about the spec-
tator’s play; while in the beginner level, partial information only may be sufficient. Formula (9) expresses that the
magician’s multi-strategy strongly depends on the spectator’s strategy in order to win the expert level game:

JxKd〈〈y〉〉(spectator B x)(magician B y)X�same

∧

(
JxKdJyKJx′KdJy′K

(
((spectator B x)(magician B y)X�same)

∧ ((spectator B x′)(magician B y′)X�same) ∧ x , x′
)
→ y , y′

)
(9)

The first part of the formula states that for any strategy played by the spectator, the magician has a winning multi-
strategy. The rest of the formula states that if two pairs 〈x, y〉 and 〈x′, y′〉 of a strategy and a multi-strategy (x and x′

for the spectator and y and y′ for the magician), such that x , x′, enable to ensure that the magician wins the expert
level game, then y , y′. Said otherwise, if the strategy of the spectator changes, then the magician’s multi-strategy
must change in order to win the expert level game.

Formula (9) is true in GM . But the formula expressing strong dependence of the magician’s multi-strategy on the
spectator’s strategy to win the beginner level (i.e. the one obtained from Formula (9) by replacing p= with ¬p=) is
obviously false in GM . This shows that the beginner level is easier that the expert level.

4. Comparison with SL

In this section, we show that USL is strictly more expressive than SL. We first recall technical facts regarding the
notion of expressive power. Then we show that USL is at least as expressive as SL. Finally, we show that the converse
does not hold.
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4.1. Comparing Logics
The comparison of expressive powers between USL and SL uses two classical partial ordering relations between

logics. Let us first recall their definitions.

Definition 20 (Expressiveness). Let L and L′ be two logics interpreted over CGS’s. Let ϕ be an L sentence and ϕ′

be an L′ sentence. We say that ϕ and ϕ′ are equivalent iff for any CGS G: G |=L ϕ iff G |=L′ ϕ′.
We say that L is at least as expressive as L′, written L′ 4exp L iff for any sentence in L′, there is an equivalent

sentence in L. We also say that L is strictly more expressive than L′, written L′ ≺exp L, iff L′ 4exp L and L $exp L
′.

Definition 21 (Distinguishing power). Let L and L′ be two different logics interpreted over CGS’s. We say that L
distinguishes between two CGS’s G1 and G2 iff there is a sentence ϕ in L such that G1 |=L ϕ and G2 2L ϕ.

We say that L is at least as distinguishing as L′, written L′ 4dis L, iff for any pair of CGS’s G1 and G2, if L′

distinguishes between G1 and G2, then L also distinguishes between G1 and G2

Lemma 1. Let L and L′ be two logics interpreted over CGS’s. If L′ 4exp L then L′ 4dis L.

4.2. USL is at least as expressive as SL
We show in Sect. 4.2.2 that USL is at least as expressive as SL by defining an embedding of the latter into the

former. We first make a few considerations on SL formulas in Sect. 4.2.1 then come to the embedding itself in
Sect 4.2.2.

4.2.1. Technical Considerations on SL Formulas
First, we make a distinction between path and state formulas for SL as the embedding will depend on this. Notice

that we do not change the syntax of SL, not even its grammar: we only distinguish between two classes of formulas.
We recall in Appendix B the facts related to SL that we rely on in the following.

Definition 22 (State and path formulas of SL). Let Ag be a set of agents, At be a set of propositions and Var be a
set of variables. The set of SL formulas can be divided into two subsets described by the following grammar:

• state formulas: ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈〈x〉〉ϕ | JxKϕ | (a, x)ϕ

• path formulas: ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ

where p ∈ At, a is an agent and x ∈ Var.

Second, to ensure that our embedding yields well-formed USL formulas, and not just pseudo-formulas, we transfer
our well-formedness criterion for USL formulas (cf. Def. 7) to SL ones.

Definition 23 (USL-compliant SL formula). An SL formula ϕ is USL-compliant iff for any subformula 〈〈x〉〉ϕ′ or
JxKϕ′ of ϕ and for any subformula 〈〈y〉〉ϕ′′ or JyKϕ′′ of ϕ′, x and y are distinct variables.

Notice that in the remainder of Sect. 4, we only consider USL-compliant SL formulas, which is without loss of
generality as one can easily check that any SL formula can be made USL-compliant by an adequate renaming of
variables.

4.2.2. Embedding SL into USL
Here, we establish that USL is at least as expressive as SL by exhibiting an embedding of SL into USL that applies

to SL formulas and to SL contexts:

• The embedding is applied to USL-compliant SL formulas (cf. Def. 23).

• For any SL formula ϕ, for any subformula ϕ′ = (a, x)ϕ′′ of ϕ, the operator (a, x) is replaced by :

– (a B x) if there is no other binding (a, y) above ϕ′ in ϕ

– (a 7 y)(a B x) otherwise.
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Thus, for any agent a, the translation of subformulas depends on the unique (if any) strategy variable to which
a is bound in a strategy context used for evaluating ϕ′. We address this by parameterising the embedding with
a dictionary f keeping track of bindings of strategy variables to agents, i.e. f : Ag 9 X. Then, given an agent a
and a variable x, we write f [a 7→ x] for the update of f with the binding of x to a. (Formally, except for typing,
this works exactly as for assignments and transformations thereof, see Def. 11 and 13.)

• SL quantifiers are simulated by the USL quantifiers 〈〈x〉〉d and JxKd over deterministic strategies (cf. Def. 19).

• In SL, quantifiers apply to path formulas while, in USL, for any pseudo-formula 〈〈x〉〉ψ or JxKψ, ψ is a state
formula. To address constraint in our embedding, we give a different treatment of SL formulas 〈〈x〉〉ψ or JxKψ,
depending on whether ψ is a state formula or not (cf. Def. 22).

If ψ is not a state formula, we insert Jx∅K(∅ B x∅) in the embedding (here, ∅ is the empty coalition and x∅ is
fresh in the source formula). This insertion enables to transform any formula that is not a state formula into a
state formula, by universally quantifying over the executions that are made possible within the current context.
Indeed, one can check that the semantics of USL is such that for any G, χ, s and for any formula ψ which is not
a state formula, G, χ, s |=USL Jx∅K(∅ B x∅)ψ iff for any λ ∈ out(χ, s),G, χ, λ |=USL ψ.

Definition 24 (Embedding of SL into USL). Let ϕ be an (USL-compliant) SL formula. Then the embedding usl(ϕ)
of ϕ in USL is the formula usl f∅ (ϕ), where f∅ is the function f∅ : Ag 9 X with empty domain, and where usl f (ϕ) is
defined by structural recursion over ϕ as follows:

• usl f (p) = p

• usl f (¬ψ) = ¬ usl f (ψ)

• usl f (ψ1 ∧ ψ2) = usl f (ψ1) ∧ usl f (ψ2)

• usl f (ψ1 ∨ ψ2) = usl f (ψ1) ∨ usl f (ψ2))

• usl f (〈〈x〉〉ψ) =

〈〈x〉〉d(Jx∅K(∅ B x∅) usl f (ψ)) if ψ is not a state formula (where x∅ is fresh in ϕ)
〈〈x〉〉d usl f (ψ) if ψ is a state formula

• usl f (JxKψ) =

JxKd(Jx∅K(∅ B x∅) usl f (ψ)) if ψ is not a state formula (where x∅ is fresh in ϕ)
JxKd usl f (ψ) if ψ is a state formula

• usl f ((a, x)ψ) =

(a 7 f (a))(a B x) usl f [a 7→x](ψ) if a ∈ dom( f )
(a B x) usl f [a 7→x](ψ) otherwise

• usl f (Xψ) = X usl f (ψ)

• usl f (ψ1 U ψ2) = usl f (ψ1) U usl f (ψ2)

• usl f (ψ1 R ψ2) = usl f (ψ1) R usl f (ψ2)

Before going any further, let us note that this embedding is such that for any SL formula ϕ, | usl(ϕ)| ∈ O(|ϕ|): in
every item of Def. 24, the size of the subformula is at most increased by a constant.

We now consider the translation of SL contexts into USL ones. We first make a few remarks.

Remark 4.

• For any SL context χ used in the evaluation under |=SL of a USL-compliant sentence ϕ in a CGS, χ is such that
for any agent a in dom(χ), there is a strategy variable x in χ such that χ(a) = χ(x).

• For any SL context χ used in the evaluation under |=SL of a sentence ϕ, if χ is used for the evaluation, in a state
s, of a subformula of ϕ that is not a state formula, then χ is a complete and s-total context (cf. Appendix B,
Def. 52).
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Let us now comment on the definition of the transformation of SL contexts defined hereafter: any strategy context
χ for SL is mapped to a set of contexts for USL.

Indeed, a strategy context χ for SL maps agents and variables to strategies directly, while a context χ for USL
maps agents to variables, and variables to multi-strategies.

Therefore, we transform χ into contexts for USL s.t. each variable x in the domain of χ is mapped to χ(x), and s.t.
each agent a in the domain of χ is mapped to a variable x s.t. χ(x) = χ(a). This ensures that a is committed to χ(a).
Now, suppose there are different variables in the domain of χ having the same image as a. Then there are different
ways to transform χ into a context for USL. This is why the transformation may yield several different contexts.

Definition 25 (Embedding of SL contexts). Let χ be a strategy context for SL, then usl(χ) is the set of contexts
χ = 〈α, γ〉 for USL such that:

• dom(α) = dom(χ) ∩ Var and for every x ∈ dom(α), α(x) = χ(x)

• dom(γ) = dom(χ) ∩ Ag and for every a ∈ dom(γ), γ(a) yields a singleton {x} and x ∈ dom(α) and α(x) = χ(a).

Remark 5.

• For any SL context χ used in the evaluation under |=SL of a USL-compliant sentence ϕ, for any χ = 〈α, γ〉 ∈
usl(χ), for any agent a ∈ Ag, there is at most one variable x s.t. 〈a, x〉 ∈ γ. Then γ can be seen as a partial
function from Ag to X. Let γ be such a commitment, a be an agent and x be a variable. In the following proof
we use the transformation γ[a 7→ x] as introduced above for partial functions. We also use the transformations
γ[a⊕ x] and γ[a	 x] introduced in Def.13 for commitments. Note that these three transformations are different
from one another.

• For any CGS G, for any strategy context χ, for any χ, χ′ ∈ usl(χ), and for any state s in G, out(χ, s) = out(χ′, s).
Furthermore, if χ is complete and s-total, then out(χ, s) is the singleton made from the unique path λ determined
by χ and s.

Lemma 2. For any SL formula ϕ, for any CGS G and for any strategy context χ such that χ may be used in the
evaluation of ϕ into G, for any χ = 〈α, γ〉 ∈ usl(χ), and for any state s:

• if ϕ is a state formula then:
G, χ, s |=SL ϕ iff G, χ, s |=USL uslγ(ϕ)

• if ϕ is not a state formula then:

G, χ, s |=SL ϕ iff the unique path Λχ,s ∈ out(χ, s) is s.t. G, χ,Λχ,s |=USL uslγ(ϕ)

Proof. By structural induction on ϕ. We present the cases for the negation, the existential quantifier, the binder and
the X operator. Note that the strategies for SL are partial functions (see Def. 49) whereas multi-strategies for USL are
functions. Consequently, the deterministic strategies defined in USL (see Sect. 3.2.2) slightly differ from SL strategies.
In this proof, the terms strategy and s-total strategy refer to SL definitions, and the strategies in the sense of USL are
called total strategies.

• Case ϕ = ¬ψ:

– If ψ is a state formula, thenG, χ, s |=SL ¬ψ iff (by induction hypothesis) for any χ ∈ usl(χ)) it is not true that
G, χ, s |=USL uslγ(ψ), which is the definition of G, χ, s |=USL ¬ uslγ(ψ) and holds iff G, χ, s |=USL uslγ(¬ψ).

– If ψ is not a state formula, then G, χ, s |=SL ¬ψ iff G, χ, s 2SL ψ. By induction hypothesis, for any χ ∈
usl(χ), this is equivalent to: G, χ,Λχ,s 2USL uslγ(ψ), which is the definition of G, χ,Λχ,s |=USL ¬ uslγ(ψ)
and holds iff G, χ,Λχ,s |=USL uslγ(¬ψ).

• Case ϕ = 〈〈x〉〉ψ:
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– If ψ is a state formula, then G, χ, s |=SL 〈〈x〉〉ψ iff there is an s-total strategy ς s.t. G, χ[x 7→ ς], s |=SL
ψ. By induction hypothesis, this is equivalent to: there is an s-total strategy ς s.t. for every χ′ =

〈α′, γ′〉 ∈ usl(χ[x 7→ ς]),G, χ′, s |=USL uslγ′ (ψ). Then, by applying Def. 25, this is true iff for every
χ = 〈α, γ〉 ∈ usl(χ) there is a total strategy ς such that G, χ[x 7→ ς], s |=USL uslγ(ψ), iff for every
χ = 〈α, γ〉 ∈ usl(χ),G, χ, s |=USL 〈〈x〉〉d uslγ(ψ).

– If ψ is not a state formula, then G, χ, s |=SL 〈〈x〉〉ψ iff there is an s-total strategy ς s.t. G, χ[x 7→ ς], s |=SL ψ.
By induction hypothesis, this is equivalent to: there is an s-total strategy ς s.t. for every χ′ = 〈α′, γ′〉 ∈
usl(χ[x 7→ ς]),G, χ′,Λχ[x 7→ς] |=USL uslγ′ (ψ). This is true iff for every χ = 〈α, γ〉 ∈ usl(χ) there is a total
strategy ς such that G, χ[x 7→ ς],Λχ[x 7→ς] |=USL uslγ(ψ). This is true iff for every χ = 〈α, γ〉 ∈ usl(χ) there
is a total strategy ς such that for every λ ∈ out(χ, s),G, χ[x 7→ ς], λ |=USL uslγ(ψ), which is true iff there
is a total strategy ς such that G, χ[x 7→ ς], s |=USL Jx∅K(∅ B x∅) uslγ(ψ), iff G, χ, s |=USL 〈〈x〉〉dJx∅K(∅ B
x∅) uslγ(ψ).

• Case ϕ = (a, x)ψ: G, χ, s |=SL (a, x)ψ iff G, χ[a 7→ χ(x)], s |=SL ψ. We can easily check that usl(χ[a 7→
χ(x)]) = {〈α, γ[a 7→ x]〉 | 〈α, γ〉 ∈ usl(χ)}. Then by induction hypothesis, G, χ, s |=SL (a, x)ψ iff for every
χ = 〈α, γ〉 ∈ usl(χ),G, 〈α, γ[a 7→ x]〉, s |=USL uslγ[a7→x] ψ.

– If a ∈ dom(γ) then a ∈ dom(χ). Thus, for every χ = 〈α, γ〉 ∈ usl(χ), γ[a 7→ x] = γ[a 	 γ(a)][a ⊕ x]. Then
G, χ, s |=SL (a, x)ψ iff for every χ = 〈α, γ〉 ∈ usl(χ),G, χ, s |=USL (a 7 γ(a))(a B x) uslγ[a 7→x](ψ).

– If a < dom(γ) then a < dom(χ). Thus, for every χ = 〈α, γ〉 ∈ usl(χ), γ[a 7→ x] = γ[a ⊕ x]. Then
G, χ, s |=SL (a, x)ψ iff for every χ = 〈α, γ〉 ∈ usl(χ),G, χ, s |=USL (a B x) uslγ[a 7→x](ψ).

• Case ϕ = Xψ: let us first introduce some notations for the translation of strategy contexts. Complete definitions
are given in Appendix B. Let χ be a strategy context and s a state, then we write 〈χ, s〉1 for the pair 〈χs·s1

, s1〉

s.t. s1 is the successor of s determined by χ: s1 = tr(s, δ), where δ is the decision s.t. for every a ∈ Ag, δ(a) =

χ(a)(s). Now, G, χ, s |=SL Xψ iff G, 〈χ, s〉1 |=SL ψ. By induction hypothesis and Def. 25, this is equivalent to:
for any χ ∈ usl(χ),G, χs·s1

, s1 |=USL uslγ(ψ). Thanks to Remark 5, this is true iff G, χΛ
χ,s
0 ·Λ

χ,s
1 ,Λ

χ,s
>1 |=USL uslγ(ψ),

and then iff G, χ,Λχ,s |=USL X uslγ(ψ).

Now, we can prove that USL is at least as expressive as SL:

Lemma 3. SL 4exp USL.

Proof. Let G be a CGS and ϕ be a sentence of SL. By applying Lemma 2 to the particular case where χ is the empty
strategy context and s is the initial state of G, we have that G |=SL ϕ iff G |=USL usl(ϕ).

Corollary 1. The satisfiability problem for USL is not decidable.

Proof. The undecidability of the satisfiability problem for SL is established in [6]. If USL had a decision procedure
for this problem, thanks to Lemma 3 it would also give a decision procedure for SL. In Sect. 5.1 we draw another
corollary of Lemma 3: the model-checking problem for USL has no elementary lower bound.

4.3. USL is strictly more expressive than SL
The possibility to define an equality predicate between sets of actions in USL induces the possibility to count the

actions that are available. In particular, the uniqueness existential operator defined in Sect. 3.2 enables to distinguish
two models with actions having the same consequences. Therefore, we can compare the expressive powers of USL
and SL by help of very simple examples.

s
p

s
p

Figure 4: Illustration of the comparison between USL and SL: G1 and G2
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Lemma 4. USL $dis SL

Proof. The models G1 and G2 in Fig. 4 feature one agent a and one atomic proposition p. Both these models have a
single state s. In the figure, every action from every state is represented by an arrow. Each arrow goes from a state to
its successor if a plays the corresponding action. Using the operator ,X introduced in Sect. 3.2.1, we then have:

• G1, s |=USL 〈〈!x〉〉(a B x)Xp

• G2, s 2USL 〈〈!x〉〉(a B x)Xp

• While, for any SL formula ϕ,G1, s |=SL ϕ iff G2, s |=SL ϕ.

We finally end up with the expected expressiveness result.

Theorem 1. SL ≺exp USL

Proof. By Lemmas 4 and 1, we have USL $exp SL. Then combine with Lemma 3.

Remark 6. Note that the proof of Lemma 4 distinguishes between SL and USL expressive powers without use of the
operator (A 7 x). Strategy refinement is indeed enough to make this distinction.

5. Model-Checking

In this section, we tackle the model-checking problem for USL. We borrow our definition for the size of a CGS
from [14]: let G be a CGS, the size of G is written |G| and defined as the sum |St| + |tr|, where |tr| is the cardinality of
the domain of the transition function, defined itself as |tr| = |St| × |Act||Ag|. Given a logic L, we note MC(L) its finite
model checking problem: given a formula ϕ of L and a model G such that |G| ∈ N, it decides whether G |=L ϕ or not.
In Sect. 5.1, we show that the complexity of MC(USL) has no elementary upper bound over the length of the formula.
This is given as a corollary of Theorem 1. In Sect. 5.2, we show that it is decidable in time NonElementary over the
length of the formula.

5.1. MC(USL) has no elementary upper bound

The embedding of SL into USL (see Theorem 1) provides us the following theorem:

Theorem 2. The complexity of MC(USL) has no elementary upper bound over the length of formulas.

Proof. Suppose that there is an elementary bound B(|ϕ|) over the length of formulas for MC(USL). Then, for any
SL formula ϕ, the model-checking of ϕ is decidable in B(| usl(ϕ)|), where usl(ϕ) refers to Def. 24. One checks that
| usl(ϕ)| ∈ O(|ϕ|). So, the model-checking for ϕ is decidable in B(O(|ϕ|2)). Then MC(SL) has an elementary bound
B(O(|ϕ|2)), which is in contradiction with the result proved in [6].

5.2. MC(USL) is decidable in time NonElementary
In this section, we establish two results. First, we prove the existence of an algorithm deciding the model-checking

of USL in time NonElementary. Second, in Sect. 5.2.5, we split the set of USL formulas in fragments USLk, where
k ∈ N, and show that, for every k ∈ N, MC(USLk) is decidable in time k + 1-Exponential.

For the first result, we use a reduction of MC(USL) to the model-checking problem for the Quantified Computation
Tree Logic (QCTL∗ [15, 14]) under its tree semantics. This reduction is made in two steps:

1. In Sect. 5.2.1, we define an alternative semantics for USL, called USL∞, that uses infinite executions exclusively.
Then we define a reduction of MC(USL) to MC(USL∞) in Sect. 5.2.2.

2. In Sect. 5.2.3, we recall the definitions of QCTL∗ and its tree semantics. Then, in Sect. 5.2.4, we devise a
reduction of MC(USL∞) to MC(QCTL∗).
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5.2.1. USL∞

In USL, if a context specifies that an agent is committed to multi-strategies yielding non-intersecting sets of
actions after a given track, then the outcomes of this context end after this track. USL∞ is basically an adaptation of
the semantics of USL s.t. outcomes never end. In USL∞, we exhibit a special state s⊥ and a special atom ps⊥ , which
holds exactly in s⊥, in order to simulate the end of outcomes. The state s⊥ is not accessible through the transition tr
from any other state of the CGS.

However, the outcomes induced by a context may go through s⊥. This is the case if the context includes contra-
dictory sets of actions for a given agent (e.g., sets of actions in empty intersection). In USL, such a context would
induce outcomes that end whereas in USL∞ it induces outcomes going to s⊥ and staying there forever. Consequently,
USL∞ is interpreted in the subclass of CGS’s in which s⊥ and ps⊥ are interpreted this way. We call them CGS’s for
USL∞ and write them CGS∞s.

Definition 26 (CGS∞s). A CGS G = 〈Ag, St,At, prop,Ac, tr, s0〉 is a CGS∞ iff:

• s⊥ ∈ St

• ps⊥ ∈ At

• prop(s⊥) = {ps⊥ }

• for every δ ∈ Dec, for every s ∈ St, tr(s, δ) = s⊥ iff s = s⊥

In USL∞, the successors of a track θ under a context χ are written succ∞χ (θ). They are defined the same way as
in USL, except that if the set of transitions enabled by the intersection of expressed choices is empty (that is if the
context χ indicates contradictory sets of actions for at least one agent), then the only successor is s⊥:

Definition 27 (Successor Function). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS∞ and χ be a context. Then the
successor function succ∞χ : Track → P(St) induced by χ is defined, for any track θ, by:

succ∞χ (θ) =

succχ(θ) if it is not empty
{s⊥} otherwise

The set out∞(χ, θ) of outcomes of a context χ and a track θ is defined as in USL, except that they are all infinite.

Definition 28 (Outcomes). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS∞, θ be a track and χ be a context. We
define the set of outcomes of χ and θ in G as the set out∞(χ, θ) of paths λ in G s.t. λ0 = last(θ) and for any i ∈ N,
λi+1 ∈ succ∞

χ
λ6i

(λ6i).

We do not detail the definition for the satisfaction relation |=USL∞ . It is defined by structural induction on formulas,
the same way as |=USL except that the outcome function is out∞ instead of out. Note also that since in USL∞ any
executions in the outcomes of a context and a track execution is a path, we do not need to check for the execution
length when interpreting temporal operators.

5.2.2. Reduction of MC(USL) to MC(USL∞)
The reduction of MC(USL) to MC(USL∞) consists in a transformation from any USL formula ϕ to a USL∞

formula ϕ∞, and from any CGS G to a CGS∞ G∞, such that:

• G∞ is an adaptation of G so as to answer the constraints in Def. 26.

• we add occurrences of ¬ps⊥ in ϕ∞ in order to force the execution not to go to s⊥ before satisfying the subfor-
mulas that are in the scope of temporal operators X and U.

Let us first define the transformation of CGS’s.

Definition 29 (Tranformation of any CGS into a CGS∞). Let G = 〈Ag, St,At, prop,Ac, tr, s0〉 be a CGS. We note
G∞ the CGS∞ 〈Ag, St∞,At∞, prop∞,Ac, tr∞, s0〉 defined by:
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• St∞ = St ∪ {s⊥}

• At∞ = At ∪ {ps⊥ }

• for every s ∈ St, prop∞(s) = prop(s)

• for every (s, δ) ∈ St × Dec, tr∞(s, δ) = tr(s, δ)

Now we come to the transformation of an USL formula ϕ. In the treatment of temporal operators X and U, this
transformation explicitly specifies that the path is not sent to the state that satisfies ps⊥ (i.e. to s⊥).

Definition 30 (Transformation of USL formulas into USL∞). The transformation of a USL formula ϕ to the USL∞

formula ϕ∞ is defined by structural recursion on ϕ:

• p∞ = p

• (¬ϕ)∞ = ¬ϕ∞

• (ϕ1 ∧ ϕ2)∞ = ϕ∞1 ∧ ϕ
∞
2

• (〈〈x〉〉ϕ)∞ = 〈〈x〉〉ϕ∞

• ((A B x)ϕ)∞ = (A B x)ϕ∞

• ((A 7 x)ϕ)∞ = (A 7 x)ϕ∞

• (Xϕ)∞ = X(ϕ∞ ∧ ¬ps⊥ )

• (ϕ1 U ϕ2)∞ = (ϕ∞1 ∧ ¬ps⊥ ) U (ϕ∞2 ∧ ¬ps⊥ )

We have the following correspondence:

Proposition 2. For any CGS G and for any formula ϕ,G |= ϕ iff G∞ |=USL∞ ϕ
∞.

Proof. By structural induction on ϕ.

5.2.3. QCTL∗

The logic QCTL∗ [14] is an extension of CTL∗ by means of quantifiers ∃p and ∀p, where p is an atomic proposi-
tion. Just as CTL∗, it is interpreted in Kripke structures. The quantifiers ∃p and ∀p range over the possible valuations
for p.

Definition 31 (QCTL∗ formulas). Let At be a set of propositions. Then the set of QCTL∗ formulas is defined by the
following grammar:

• State formulas:
ψ ::= p | ¬ψ | ψ ∧ ψ | Eϕ | Aϕ | ∃p.ψ | ∀p.ψ

• Path formulas:
ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ

where p ∈ At.

In [14], the authors give two different semantics for QCTL∗: the structure semantics and the tree semantics. Both
semantics use Kripke structures. In the structure semantics, quantifiers ∃p and ∀p quantify over labellings of the
proposition p in the Kripke structure itself. In the tree semantics, they quantify over labellings of p in its execution
tree. Here we are interested in the tree semantics. Nevertheless, in order to define the tree semantics we first need to
present the structure semantics.

Let us start with the definition of Kripke structures.
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Definition 32 (Kripke structures). A Kripke structure is a tuple K = 〈St,At, prop,R, so〉 where:

• St is an enumerable non-empty set of states

• At is a finite non-empty set of atomic propositions

• prop : St → P(At) is a valuation function which maps each state s to the set of propositions true in s

• R ⊆ St × St is a relation of accessibility

• s0 ∈ St is an initial state

Definition 33 (Track, Path, Outcome). Let K = 〈St,At, prop,R, so〉 be a Kripke structure. A track in K is a non-
empty finite sequence of states θ ∈ St+ s.t. for every i ∈ [0, |θ| − 1[, R(θi, θi+1).

A path in K is an infinite sequence of states η ∈ Stω s.t. every finite prefix of η is a track in G.
The set of all tracks (resp. paths) in K is written TrackK (resp. PathK ).
Let also s be a state in St, then the outcomes of s are the paths starting at s, i.e. outQCTL∗ (s) = {λ ∈ PathK | λ0 = s}.

The interpretation of quantifiers in QCTL∗ uses the notion of At′-equivalence between Kripke structures, defined
in [14]:

Definition 34 (At′-equivalence). LetK = 〈St,At, prop,R, so〉 andK ′ = 〈St,At, prop′,R, so〉 be two Kripke structures,
and let At′ ⊆ At. We say that K and K are At′-equivalent, and we write K ≡At′ K

′, iff for every s ∈ St and
p ∈ At′, p ∈ prop(s) iff p ∈ prop′(s).

Now, we can define the relation of satisfaction under the structure semantics:

Definition 35 (Satisfaction under the structure semantics). LetK = 〈St,At, prop,R, so〉 be a Kripke structure. The
satisfaction relation |=QCTL∗ is defined by induction on formulas, for every state s ∈ St and for every path λ in K , as
follows:

• State formulas

– K , s |=QCTL∗ p iff p ∈ prop(s), with p ∈ At

– K , s |=QCTL∗ ¬ψ iff K , s 2QCTL∗ ψ

– K , s |=QCTL∗ ψ1 ∧ ψ2 iff K , s |=QCTL∗ ψ1 and K , s |=QCTL∗ ψ2

– K , s |=QCTL∗ Eϕ iff there is λ ∈ outQCTL∗ (s) s.t. K , λ |=QCTL∗ ϕ

– K , s |=QCTL∗ Aϕ iff for any λ ∈ outQCTL∗ (s),K , λ |=QCTL∗ ϕ

– K , s |=QCTL∗ ∃p.ψ iff there is K ′ s.t. K ≡At\{p} K
′ and K ′, s |=QCTL∗ ψ

– K , s |=QCTL∗ ∀p.ψ iff for every K ′ s.t. K ≡At\{p} K
′,K ′, s |=QCTL∗ ψ

• Path formulas

– K , λ |=QCTL∗ ψ iff G, χ, λ0 |=QCTL∗ ψ, if ψ is a state formula

– K , λ |=QCTL∗ ¬ϕ iff K , λ 2QCTL∗ ϕ

– K , λ |=QCTL∗ ϕ1 ∧ ϕ2 iff K , λ |=QCTL∗ ϕ1 and K , λ |=QCTL∗ ϕ2

– K , λ |=QCTL∗ Xϕ iff K , λ>1 |=QCTL∗ ϕ

– K , λ |=QCTL∗ ϕ1 U ϕ2 iff there is a number i ∈ N s.t. K , λ>i |=QCTL∗ ϕ2 and s.t. for any 0 6 j < i
K , λ> j |=QCTL∗ ϕ1

The tree semantics for QCTL∗ uses the notion of execution trees of Kripke structures. First, we define Σ-labelled
S -trees, where Σ and S are finite sets:

21



Definition 36 (Σ-labelled S -trees). Let Σ and S be two finite sets. A Σ-labelled S -tree is a pair T = 〈T, `〉 where
T ⊆ S ∗ is a non-empty set of finite words on S s.t. for any non-empty word n = m · s in T with m ∈ S ∗ and s ∈ S , we
have that m ∈ T ; and ` : T → Σ is a labelling function.

Definition 37. Let K = 〈St,At, prop,R, so〉 be a finite-state Kripke structure. The execution tree of K is the P(At)-
labelled St-tree TK = 〈TrackK , `〉 s.t. for every θ ∈ TrackK , `(θ) = prop(last(θ)).

Now, under the tree semantics, a QCTL∗ formula is true in a modelK iff it is true in the execution tree ofK under
the structure semantics:

Definition 38 (Satisfaction under the tree semantics). Let K = 〈St,At, prop,R, so〉 be a Kripke structure. Then the
relation of satisfaction under the tree semantics, written |=QCTL∗T , is defined, for every state s ∈ St, for every execution
λ ∈ PathK and for every QCTL∗ formulas ϕ, by:

• if ϕ is a state formula, then K , s |=QCTL∗T ϕ iff TK , s |=QCTL∗ ϕ

• if ϕ is a path formula, then K , λ |=QCTL∗T ϕ iff TK , λ |=QCTL∗ ϕ

From now on, MC(QCTL∗) indicates the model-checking problem for QCTL∗ under the tree semantics.

5.2.4. Reduction of MC(USL∞) to MC(QCTL∗)
Here, we define a reduction of MC(USL∞) to MC(QCTL∗). This is an adaptation of the one of MC(ATLsc) to

MC(QCTL∗) given in [14]. Basically, we define a transformation:

• from any CGS∞ G to a Kripke structure KG.

• from any pair of an USL∞ formula ϕ and a commitment γ to a QCTL∗ formula qctl*γ(ϕ)

s.t. for any USL∞ sentence ϕ,G |= ϕ iff KG |=QCTL∗
T

qctl*γ∅ (ϕ), where γ∅ is the empty commitment.
To transform a CGS G into a Kripke model KG, we use new atomic propositions to encode the actions yielded by

multi-strategies and played by agents. A multi-strategy can be seen as a function labelling the execution tree of KG
with the atomic propositions representing the actions indicated by this multi-strategy. Then, the fact an agent a plays
along a multi-strategy x is represented by an adequate labelling of the atomic propositions for the actions played by
a. So, a labelling of the execution tree of KG can encode any context χ applied to any state s in G (such an encoding
is called the unravelling tree of G, χ and s: it is defined in Appendix C and used for the proof of Prop. 3).

The set of atoms in KG also contains, for any state s, an atomic proposition ps which is true exactly in s. Finally,
it contains a proposition pcontr, for encoding the cases of contradictory commitments for at least one agent.

Definition 39 (Tranformation of any CGS∞ into a Kripke structure). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a
CGS∞, s.t. Act = {ac1, . . . ack} and let X be a set of variables. We consider the following fresh atomic propositions:

• a fresh atomic proposition pcontr

• for any state s ∈ St \ {s⊥} a fresh atomic proposition ps (we call PSt the set of these propositions together with
ps⊥ , the latter being already in At)

• for every variable x in X, a set of fresh atomic propositions Px
Act = {px

ac1
, . . . px

ack
}

• for every agent a in Ag, a set of fresh atomic propositions Pa
Act = {pa

ac1
, . . . pa

ack
}

We also write PX =
⋃

x∈X Px
Act and PAg =

⋃
a∈Ag Pa

Act. Then KG = 〈St,At ∪ {pcontr} ∪ PSt ∪ PX ∪ PAg, propSt,R, s0〉 is
the Kripke structure s.t.:

• R ⊆ St × St is the relation s.t.:

– for every s, s′ ∈ St \ {s⊥} × St \ {s⊥},R(s, s′) iff there is δ ∈ Dec s.t. tr(s, δ) = s′

– for every s ∈ St,R(s, s⊥)
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• for every s ∈ St, propSt(s) = prop(s) ∪ {ps}.

Note that the relation R indicates all the possible successors of any state in the CGS∞, regardless of any context.
Thus, it includes all the transitions going to s⊥, so thatKG includes the outcomes of the CGS∞ induced by any possible
context.

The transformation of formulas also uses a successor function. Given a state s in a CGS G and a partial decision
(i.e. a partial function from agents to actions representing the choices of an action for some agents) δ, it specifies the
possible successors of θ, given the actions played by agents in dom(δ).

Definition 40 (succG). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS∞ and s be a state in G. Let also Ag′ be a subset
of Ag and δ ∈ ActAg′ . Then succG(s, δ) = {s′ | ∃δ′ ∈ Dec · ∀a ∈ Ag′, δ′(a) = δ(a) ∧ tr(s, δ′) = s′}

Before defining the QCTL∗ formula from the USL∞ formula and the context χ, we need to define the following
auxiliary formulas, that express the encoding of multi-strategies and of the context:

Definition 41. Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS∞, x be a strategy variable and γ be a non-empty com-
mitment. Then:

• For any strategy variable x, ξms(x) ensures that the propositions in Px
Act label a multi-strategy, i.e. that in every

state of every possible execution, there is at least one action ac s.t. px
ac is true:

ξms(x) , A�
( ∨

ac∈Act

px
ac

)

• deadlockγ expresses that in the current state, at least one agent is committed to contradictory multi-strategies
according to the context γ:

deadlockγ ,
∨

a∈dom(γ)

∧
ac∈Act

∨
x∈γ(a)

¬px
ac

• ξγ ensures that the propositions in PAg encode the fact that the agents bound by γ play as specified by γ:

– agents do not play iff the execution is in s⊥ or some of them are committed to contradictory multi-strategies
(pcontr is true in this case);

– if agents play then

∗ for every agent a in the domain of γ, the actions ac s.t. pAg
ac is true are exactly those s.t. for every

variable x s.t. 〈a, x〉 ∈ γ, px
ac is true.

∗ for every agent a not in the domain of γ, for every ac ∈ Act, pa
ac is false.

ξγ ,

(
ps⊥ →

∧
p∈PAg

¬p
)
∧

(
deadlockγ →

(
pcontr ∧

∧
p∈PAg

¬p
))

∧

(
¬deadlockγ →

( ∧
a∈dom(γ)

ac∈Act

(
pa

ac ↔
∧

x∈γ(a)

px
ac

)
∧

( ∧
a<dom(γ)

ac∈Act

¬pa
ac

)
∧ ¬pcontr

))

• ξout(γ) ensures that, from any state s in any execution, the successor of this state complies with the transitions of
the system if agents play as encoded by the propositions in PAg that are true in s:

ξout(γ) ,

(
(pcontr ∨ ps⊥ ) ∧ Xps⊥

)
∨

[ ∨
s∈St\{s⊥}

[
ps ∧

( ∨
δ∈Actdom(γ)

([ ∧
a∈dom(γ)

pa
δ(a)

]
∧ X

[ ∨
s′∈succG(s,δ)

ps′
]))]]

Now, we can define the transformation from a pair of a USL∞ formula and a commitment to a QCTL∗ formula:
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Definition 42 (Transformation of USL∞ formulas into QCTL∗). For any commitment γ and any USL∞ formula ϕ,
we define a QCTL∗ formula qctl*γ(ϕ) by structural recursion on ϕ:

• qctl*γ(p) = p, for every p ∈ At

• qctl*γ(¬ϕ) = ¬ qctl*γ(ϕ)

• qctl*γ(ϕ1 ∧ ϕ2) = qctl*γ(ϕ1) ∧ qctl*γ(ϕ2)

• qctl*γ(〈〈x〉〉ϕ) = ∃px
ac1
. . . .∃px

ack
.ξms(x) ∧ qctl*γ(ϕ)

• qctl*γ((A B x)ϕ) = ∀pa1
ac1 . . . .∀pa1

ack .∀pan
ac1 . . . .∀pan

ack .∀pcontr. A ((�(ξγ[A⊕x] ∧ ξout(γ[A⊕x]))) → qctl*γ[A⊕x](ϕ)), where
dom(γ) ∪ A = {a1, . . . , an}

• qctl*γ((A 7 x)ϕ) = ∀pa1
ac1 . . . .∀pa1

ack .∀pan
ac1 . . . .∀pan

ack .∀pcontr. A ((�(ξγ[A	x] ∧ ξout(γ[A	x]))) → qctl*γ[A	x](ϕ)), where
dom(γ) ∪ A = {a1, . . . , an}

• qctl*γ(Xϕ) = X qctl*γ(ϕ)

• qctl*γ(ϕ1 U ϕ2) = qctl*γ(ϕ1) U qctl*γ(ϕ2)

We write qctl*(ϕ) for qctl*γ∅ (ϕ), where γ∅ is the empty commitment.

We have the following correspondence:

Proposition 3. For any USL∞ sentence ϕ and for any CGS∞ G,

G |=USL∞ ϕ iff KG |=QCTL∗
T

qctl*(ϕ)

Proof. (Sketch) By structural induction over ϕ. The formulation of the induction hypothesis uses, for any CGS∞ G,
any context χ and any state s in G, the unravelling tree of 〈G, χ, s〉 (written T(G,χ,s)). It is formally defined in Appendix
C. The induction hypothesis is the following: for any USL∞ formula and for any context χ = 〈α, γ〉,

• if ϕ is a state formula then for any state s: G, χ, s |=USL∞ ϕ iff T(G,χ,s), s |=QCTL∗ qctl*γ(ϕ)

• If ϕ is a path formula then for any path λ: G, χ, λ |=USL∞ ϕ iff T(G,χ,λ0), λ |=QCTL∗ qctl*γ(ϕ)

Corollary 2. MC(USL) is decidable.

Remark 7. Let us notice that QCTL∗ has the same expressive power as the monadic second order logic (MSO) on
trees, as shown in [14]. Therefore, the reduction of MC(USL) to MC(QCTL∗) also provides a reduction of MC(USL)
to the model-checking of MSO on trees.

5.2.5. Model-checking for USLk

Our reduction of MC(USL) to MC(QCTL∗) provides a result of decidability for MC(USL) in time NonElementary.
We can get a finer result. For any k ∈ N, we write QkCTL∗ the fragment of QCTL∗ with k alternations of quantifiers.

In [14], the authors also show that, for any k ∈ N, the problem MC(QkCTL∗) is decidable in time k+1-Exponential
over the length of ϕ. As it happens, we can as well split the set of USL formulas into fragments USLk s.t. for every
k ∈ N,MC(USLk) reduces to MC(QkCTL∗).

These fragments are defined using an extension of the notion of alternation depth of formulas, where the binder
and the unbinder of USL are also treated as quantifiers:

Definition 43 (General alternation depth, USLk). We call general alternation depth of ϕ, and write gad(ϕ), the
alternation depth of ϕ, where (A B x) and (A 7 x) are counted as:

• universal quantifiers when they are in the scope of an even number of ¬
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• existential quantifiers otherwise

and 〈〈x〉〉 is counted as:

• an existential quantifier when it is in the scope of an even number of ¬

• an universal quantifier otherwise.

Now, for any integer k, USLk is the fragment of USL with at most k general quantifiers alternation, that is the set of
USL formulas ϕ s.t. gad(ϕ) 6 k.

Theorem 3. For any k ∈ N, the problem MC(USLk), of checking the satisfaction of an USLk sentence ϕ in a CGS G,
is decidable in time k + 1-Exponential over the length of ϕ.

Proof. Let ϕ be a USL formula and let G be a CGS. One checks that qctl*(ϕ∞) ∈ Qgad(ϕ)CTL∗. Furthermore, one
easily checks that |ϕ∞| is in O|ϕ| and | qctl*(ϕ∞)| ∈ O(|ϕ∞| × |G|3) (easy induction). Thus, the complexity bound of
MC(Qgad(ϕ)CTL∗) is preserved when using these transformations.

6. Related Work

Several directions have already been explored for extensions of ATL-ATL∗ considering the strategies played by
different coalitions of agents. Table 1 sums up the main mechanisms at stake in this article and their occurrences in
related works.

In the logic BSIL [16], an operator explicitly mentions that a strategy bound to a coalition can be composed with
the context. In terms of expressiveness, it extends ATL but is incomparable with ATL∗. It is subsumed both by SL
and ATLsc (and therefore by USL) but has “only” a Pspace-complete model-checking problem.

The overwriting of strategies is also addressed in IATL [17]. In this proposition, the authors make a distinction
between, on the one hand, ATL- and SL-style revocable strategies and, on the other hand, irrevocable strategies. They
formalise the latter in a language named ATL with Irrevocable strategies (IATL). In IATL, once an agent is bound to
a strategy, she never revokes it and she cannot be bound to another strategy anymore. We believe that USL multi-
strategies offer an adequate synthesis between this view and the classical one of systematic revocation: in USL, when
an agent already bound to a multi-strategy is bound to a new one, she commits to the second one without revoking the
first one.

The work presented here deeply refers to SL [6], which fully enables to compose the different strategies fol-
lowed by agents in a context. Nevertheless, the composition of several strategies for one agent is not possible in that
formalism, contrary to USL, since an agent overwrites her previous strategy when she is bound to a new one.

Incidentally (as explained in Remark 1), SL also bears a syntactic constraint that is not present in USL: all agents
must be explicitly bound to a strategy before evaluating a temporal formula. In addition to the unnecessary important
size of formulas, this raises the more fundamental problem of (lack of) modularity: a single informal specification may
give rise to different SL formulas depending on the number of agents of the system not mentioned in the specification.

The idea of agents explicitly unbound from their current strategies is also present in ATLsc [2, 3] with the operator
·〉A〈·. Yet, strategies are also automatically revoked in case a given agent is bound to several strategies: it is not
possible for an agent to refine her strategy.

All these formalisms enrich the composition of strategies defined in ATL with a notion of strategy context. But
they only compose strategies if they concern distinct agents. We figure USL as a further step in this contextualisation.
In USL, binding an agent to a strategy commits her to play this strategy. This strategy can then be refined, and its
possible revocation must be explicit.

As far as we know, USL is the first proposition of a multi-agent logic featuring finite executions. The USL
interpretation of temporal operators in tracks is the traditional one defined in [10] and used in [18] under the name of
neutral interpretation. The ensuing possibility to characterise equality and dependences is also, as far as we know,
new in the field.
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Table 1: Strategy contexts, revocation and refinement in multi-agent temporal logics (p stands for “partial support”).

Strategy Explicit No systematic Revocable Refinable Sustainable Predicate
contexts revocation revocation strategies strategies control of equality

ATL ×

BSIL p p ×

IATL p ×

SL × ×

ATLsc × × ×

USL × × × × × × ×

7. Conclusion

In this article we defined the logic USL, in which we can reason about agents refining or revoking their strategies.
This unifies a rich composition of strategies that allows strategies refinement with the usual revocation of strategies
developed in the literature. It also gathers in a single formal language both a treatment of agent actions through non-
deterministic multi-strategies and their classical treatment by use of deterministic strategies. USL strictly extends SL,
and is in particular able to express what we called sustainable control and equality of multi-strategies. The syntax of
USL is also more flexible than that of SL and is better adapted to modular specifications. Its model-checking problem
is NonElementary. Furthermore, we show that one can split the set of USL formulas in fragments USLk, where k ∈ N,
and show that, for every k ∈ N, MC(USLk) is decidable in time k + 1-Exponential.

A sound and complete axiomatisation for ATL was given in [19]. It would be interesting to seek the axiomatisation
of multi-agent logics bearing the mechanisms of strategy refinement and explicit revocation that are introduced for
USL in this article.

It is also important to deepen the comparison of USL with pre-existing formalisms. We have good reasons to
think that sustainable control is not expressible in SL. We also want to compare the expressive power of USL with
the logic QDµ [20]. The latter formalism enables to express fixed-point properties about strategies and subsumes SL
over CGS’s of finite bounded size. Since the refinement of multi-strategies is close to a fixed point, we think that this
comparison may yield interesting results.

We are currently working on an extension of CGS in which the transition function is not total, in order to model
conflicting capabilities, which are capabilities of different agents that cannot be applied together at the same time.

As future work, we plan to study applications of USL. In particular, as we already noticed in [21], temporal multi-
agents logics can be useful to investigate goal- and agent-oriented requirements engineering problems. For instance,
thanks to multi-strategy refinement, our framework allows to give a precise semantics to the fact that a coalition
can at any time choose to help a second or a third coalition (both sharing actors with the first one) to satisfy their
requirements. We will investigate on the possibilities offered by USL for the verification of requirements engineering
models.

A search for fragments of USL with better complexity results should be led. In [7, 22, 23], a hierarchy of fragments
of SL have been defined. The most restrictive fragment of this hierarchy is the logic SL [1G]. This logic extends the
expressive power of ATL∗ and share its complexity result for the model-cheking problem (both problems are 2-
ExpTime complete). We intend to investigate whether the corresponding fragment of USL increases the expressive
power of SL [1G] and benefits from its lower complexity results.

We will also study further the expressiveness of USL. In particular, we think the unbinder offers interesting
perspectives: in this article we exclusively discussed the meaning of unbinding an agent before she is herself bound
again. The expressiveness given by unbinding some agents before binding others should also be investigated.

Searches for further characterisation of the dependences between different multi-strategies should also be led.
In particular, USL could provide means to formalise questions such as: which changes of multi-strategy x induce
changes on multi-strategy y? if both multi-strategies y and z depend on x, do the changes on x affecting y also affect
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z? This last question implies the existence of a partial ordering of strategies w.r.t. their dependence relations towards x
and a notion of strength of dependence relations between strategies. The strong dependence introduced in Sect. 3.2.4
is, in our opinion, a first step in that direction.
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Appendix A. Proof of Proposition 1

Here, we give the proof of Proposition 1 (see p. 9). It is led through the following steps:

• We express the property a has sustainable control over S from s as the existence of a multi-strategy ς having
the property being a multi-strategy by which a has sustainable control over S from s. The set of pairs 〈s, ς〉 ∈
St × Strat where s is a state and ς is a multi-strategy by which a has sustainable control over S from s is written
Contω(a, S ).

• We exhibit a function Φ from P(St × Strat) to P(St × Strat) and, for any k ∈ N, we write Contn(a, S ) the set
obtained by applying n times Φ starting from the set St × Strat. We show that:
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– Contω(a, S ) is the meet of Contn(a, S ) for n ∈ N.

– G, s |= 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xψ ∧ 〈〈z〉〉(a B z)X¬ψ) iff there is a multi-strategy ς s.t. for every
n ∈ N, 〈s, ς〉 ∈ Contn(a, S ).

Let us first introduce a notation for the set of binary partitions of a given set:
Notation. Let E be a set, we denote Par2(E) the set of binary partitions of E i.e. for every 〈E1, E2〉 ∈ P(E) ×
P(E), 〈E1, E2〉 ∈ Par2(E) iff

• E1 , ∅ and E2 , ∅

• E1 ∩ E2 = ∅ and E1 ∪ E2 = E

Now, we define the property, for a pair of a state s and a multi-strategy ς, to be s.t. by playing ς from s, a has
sustainable control over S . In that case we say that ς is a multi-strategy of sustainable control for a from s towards S .

Definition 44 (Multi-strategies of sustainable control). Let S be a set of states and a an agent. The set Contω(a, S )
of pairs 〈s, ς〉 of a state and a multi-strategy s.t. ς is a multi-strategy of sustainable control for a from s towards S is
defined coinductively by: for every 〈s, ς〉 ∈ St × Strat, 〈s, ς〉 ∈ Contω(a, S ) iff

∃〈Ac1, Ac2〉 ∈ Par2(ς(s)) · ∀ac1 ∈ Ac1 · ∀ac2 ∈ Ac2 · ∃S 1, S 2 ⊆ St s.t.

tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · 〈s′, ςs·s′〉 ∈ Contω(a, S )

We show that a has sustainable control over S from s iff there is a multi-strategy of sustainable control for a from
s towards S .

Lemma 5. for every s, SCont(a, S , s) iff there is a multi-strategy ς s.t. 〈s, ς〉 ∈ Contω(a, S ).

Proof. (Sketch)

• ⇒: for every s s.t. SCont(a, S , s), let acs
1 and acs

2 be s.t.:

∃S 1, S 2 ⊆ St s.t. tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · SCont(a, S , s′)

Then any multi-strategy ς that satisfies ς(τ) = {aclast(τ)
1 , aclast(τ)

2 } for every track τ s.t. SCont(a, S , last(τ)), also
satisfies 〈s, ς〉 ∈ Contω(a, S ).

• ⇐: Straightforward.

We show that Contω(a, S ) is the limit of applying n times the function Φ to St × Strat, when n approaches ω and
Φ is defined as follows:

Definition 45 (Function Φ). Given an agent a and a set S of states, Φ is a map2 from P(St × Strat) to P(St × Strat)
s.t. for every U ∈ P(St × Strat), Φ(U) is the set of pairs 〈s, ς〉 s.t.

∃〈Ac1, Ac2〉 ∈ Par2(ς(s)) · ∀ac1 ∈ Ac1 · ∀ac2 ∈ Ac2 · ∃S 1, S 2 ⊆ St s.t.

tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · 〈s′, ςs·s′〉 ∈ U

2Although Φ depends on a and S , we do not use the notation Φa,S since there is no ambiguity.
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For any n we write Contn(a, S ) the set obtained by applying n times the function Φ starting from the set St× Strat.
Intuitively, for any state s and multi-strategy ς, 〈s, ς〉 ∈ Contn(a, S ) iff, by playing ς from s, a is able to refine ς so as
to decide whether the next state is in S or not. And a keeps this ability during the first n transitions of any possible
execution if she plays ς.

Definition 46 (Contn(a, S )). Let S be a set of states and a an agent, s a state and ς a multi-strategy.

• Cont0(a, S ) = St × Strat

• for every n ∈ N,Contn+1(a, S ) = Φ(Contn(a, S ))

Now, we can show that Contω(a, S ) =
⋂

n∈N Contn(a, S ):

Lemma 6. For every s, ς, 〈s, ς〉 ∈ Contω(a, S ) iff for every n ∈ N, 〈s, ς〉 ∈ Contn(a, S ).

Proof. (Sketch)

• ⇒: By recurrence over n, for every n, for any agent a and any set S ,Contω(a, S ) ⊆ Contn(a, S ).

• ⇐: Contω(a, S ) is defined coinductively over St × Strat, P(St × Strat) is a complete lattice and it is easy to see
that Φ is monotone. So Contω(a, S ) is the greatest fixed point of Φ in P(St × Strat).

Now, in order to show that
⋂

n∈N Contn(a, S ) ⊆ Contω(a, S ), it is sufficient to show that
⋂

n∈N Contn(a, S ) ⊆
Φ(

⋂
n∈N Contn(a, S )). Let 〈s, ς〉 ∈

⋂
n∈N Contn(a, S ). For all k ∈ N>0, there is 〈Ack

1, Ack
2〉 ∈ Par2(ς(s)) s.t.:

∀ac1 ∈ Ack
1 · ∀ac2 ∈ Ack

2 · ∃S 1, S 2 ⊆ St s.t.

tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · 〈s′, ςs·s′〉 ∈ Contk−1(a, S )

The condition S 1 ⊆ S and S 2 ⊆ St \ S ensures that the partition 〈Ack
1, Ack

2〉 is the same for any k ∈ N>0. Indeed,
for all ac in ς(s), tr(s, {a 7→ ac}) ⊆ S or tr(s, {a 7→ ac}) ⊆ St\S . So there is an unique binary partition 〈Ac1, Ac2〉

in Par2(ς(s)) s.t. for all ac1 in Ac1, tr(s, {a 7→ ac1}) ⊆ S and for all ac2 in Ac2, tr(s, {a 7→ ac2})St\ ⊆ S . It is s.t.:

∀k ∈ N · ∀ac1 ∈ Ac1 · ∀ac2 ∈ Ac2 · ∃S 1, S 2 ⊆ St s.t.

tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S
and ∀s′ ∈ S 1 ∪ S 2 · 〈s′, ςs·s′〉 ∈ Contk(a, S )

So, ∀s′ ∈ S 1∪S 2 · 〈s′, ςs·s′〉 ∈
⋂

n∈N Contn(a, S ). Thus, 〈s, ς〉 ∈ Φ(
⋂

n∈N Contn(a, S )). Then,
⋂

n∈N Contn(a, S ) ⊆
Contω(a, S ).

Let us consider now that S is the set of states s in G s.t. G, s |= ψ. We have the following lemma:

Lemma 7. Let S be a set of states in G, s.t. there is an USL formula ψ s.t. for every state s of G, G, s |= ψ iff
s ∈ S . Then G, s |= 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xψ ∧ 〈〈z〉〉(a B z)X¬ψ) iff there is a multi-strategy ς s.t. for every
n ∈ N, 〈s, ς〉 ∈ Contn(a, S ).

Proof. (Sketch) Both sides of the equivalence are equivalent to: there is a multi-strategy ς such that for any λ in
out(〈(x 7→ ς), 〈a, x〉〉) and for any n ∈ N,

∃〈Ac1, Ac2〉 ∈ Par2(ς(λ6n)) · ∃S 1, S 2 ⊆ St s.t. tr(s, {a 7→ ac1}) = S 1 and tr(s, {a 7→ ac2}) = S 2
and S 1 ⊆ S and S 2 ⊆ St \ S

Now, the proof of Proposition 1 is straightforward, by application of Lemmas 5, 6 and 7.
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Appendix B. Syntax and semantics of SL

This section only gives a brief presentation of the syntax and semantics of SL. The reader may refer to [6] for a
complete presentation.

Definition 47 (SL syntax). Given a set of atomic propositions At, a set of strategy variables X and a set of agents Ag,
the syntax of SL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | JxKϕ | (a, x)ϕ

where p ∈ At, a ∈ Ag and x ∈ X.

SL uses a notion of free agents of a formula ϕ (free(ϕ)), defined inductively as follows:

• free(p) = ∅, for p ∈ At

• free(¬ϕ) = free(〈〈x〉〉ϕ) = free(JxKϕ) = free(ϕ)

• free(ϕ1 ∧ ϕ2) = free(ϕ1 ∨ ϕ2) = free(ϕ1) ∪ free(ϕ2)

• free(ϕ1 U ϕ2) = free(ϕ1 R ϕ2) = free(Xϕ) = Ag

• free((a, x B ϕ)) = free(ϕ)\{a}

Definition 48 (Sentences). The sentences of SL are the formulas ϕ such that FV(ϕ) = ∅ and free(ϕ) = ∅ (with FV(ϕ)
defined similarly as in USL).

SL considers strategies, which can be seen as deterministic multi-strategies, in USL parlance.

Definition 49 (Strategies). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS. A strategy ς in G is a partial function
which, given a track, yields an action or is not defined, i.e. ς : Track 9 Act.

The set of multi-strategies in G is written StratG (the index will be omitted in case there is no ambiguity).
We also call s-total a strategy that is defined upon the set of tracks beginning at state s.

The contexts used in SL are also slightly different from those of USL.

Definition 50 (Strategy contexts for SL). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS. An SL strategy context χ
for G is a partial function from Ag ∪ X to Strat. It is s-total if it defines only s-total strategies and it is complete if
Ag ⊆ dom(χ).

As the transition function tr is defined over the set of decisions, a strategy context must be complete and s-total to
determine a transition from a given state s. Conversely, a complete, s-total strategy context and a state determine an
execution.

Definition 51 (Global translation). Let s be a state and χ be a complete and s-total strategy context. Then, for any
n ∈ N, we write 〈χ, s〉n the pair made by the state sn reached after n transitions under χ and the complete and sn-total
strategy context χn = χs···sn . Formally:

• 〈χ, s〉0 = 〈χ, s〉

• 〈χ, s〉n+1 = 〈χn+1, sn+1〉 = 〈χsn·tr(sn,δn)
n , tr(sn, δn)〉

where δn is the decision s.t. for every a ∈ Ag, δn(a) = χn(a)(sn) and the notation χθ, for χ a strategy context and θ a
track, is as in Def. 12.

Now we can define the satisfaction for SL.
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Definition 52 (Satisfaction relation for SL). The satisfaction relation |=SL is defined by induction over the structure
of formulas: let G be a CGS, χ a strategy context for G and s a state in it, then:

• G, χ, s |=SL p iff p ∈ λ(s), with p ∈ At

• G, χ, s |=SL ¬ϕ iff it is not true that G, χ, s |=SL ϕ

• G, χ, s |=SL ϕ1 ∧ ϕ2 iff G, χ, s |=SL ϕ1 and G, χ, s |=SL ϕ2

• G, χ, s |=SL ϕ1 ∨ ϕ2 iff G, χ, s |=SL ϕ1 or G, χ, s |=SL ϕ2

• G, χ, s |=SL 〈〈x〉〉ϕ iff there is an s-total strategy ς s.t. G, χ[x 7→ ς], s |=SL ϕ

• G, χ, s |=SL JxKϕ iff for every s-total strategy ς, G, χ[x 7→ ς], s |=SL ϕ

• G, χ, s |=SL (a, x)ϕ iff G, χ[a 7→ χ(x)], s |=SL ϕ

• If χ is a complete strategy context:

– G, χ, s |=SL Xϕ iff G, 〈χ, s〉1 |=SL ϕ

– G, χ, s |=SL ϕ1Uϕ2 iff there is i ∈ N s.t. G, 〈χ, s〉i |=SL ϕ2 and, for every index j ∈ N s.t. 0 6 i < j,
G, 〈χ, s〉 j |=SL ϕ1

– G, χ, s |=SL ϕ1 R ϕ2 iff for every index i ∈ N, it holds that G, 〈χ, s〉i |=SL ϕ2 or there is an index j ∈ N s.t.
0 6 j 6 i, G, 〈χ, s〉 j |=SL ϕ1

where, for every e ∈ Var ∪ Ag, strategy ς and context χ, χ[e 7→ ς] is as in Def.13. We also write G, s |=SL ϕ iff
G, χ∅, s |=SL ϕ (χ∅ being the empty context).

Appendix C. Unravelling tree of a CGS, a context and a state

We define, for any CGS∞ G, any context χ and any state s in G, the unravelling tree of (G, χ, s) (written T(G,χ,s))
which is used in the proof of Theorem 3. Each state in T(G,χ,s) corresponds to a track θ in G starting by s. Its label
contains both the valuation of last(θ) in G and an encoding of the decisions that can be made by agents in G after θ,
given context χ.

Definition 53 (Unravelling tree). Let G = 〈Ag, St,At, prop,Act, tr, so〉 be a CGS∞, χ = 〈α, γ〉 be a context for G and
s be a state in G. As for the definition of the Kripke structure KG obtained from G in Def. 39, we consider the fresh
atomic proposition pcontr and the sets of fresh atomic propositions PSt, PX , PAg. The unravelling tree of (G, χ, s) is the
P(At ∪ {pcontr} ∪ PSt ∪ PX ∪ PAg)-labelled St-tree T(G,χ,s) = 〈T(G,χ,s), `(G,χ,s)〉 s.t.:

• T(G,χ,s) = out∞(χ, s)

• for every θ ∈ T(G,χ,s),

– for every p ∈ At, p ∈ `(G,χ,s)(θ) iff p ∈ prop(last(θ))

– pcontr ∈ `(G,χ,s)(θ) iff last(θ) , s⊥ and there is a ∈ dom(γ) s.t.
⋂

x∈γ(a)
α(x)(θ) = ∅

– for every s ∈ St, ps ∈ `(G,χ,s)(θ) iff s = last(θ)

– for every px
ac ∈ PX , px

ac ∈ `(G,χ,s)(θ) iff x ∈ dom(α) and ac ∈ α(x)(θ)

– for every pa
ac ∈ PAg, pa

ac ∈ `(G,χ,s)(θ) iff a ∈ dom(γ), last(θ) , s⊥, for every a′ ∈ dom(γ),
⋂

x∈γ(a′)
α(x)(θ) , ∅

and for every x ∈ γ(a), ac ∈ γ(x)(θ).

Let us express the following remarks about the labelling of an unravelling tree:

• The propositions in At are true exactly in the tracks ending by a state in which they are true in G.
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• The proposition pcontr expresses that a track θ is in its last possible state before going in s⊥, i.e., χ specifies a
contradictory commitment for at least one of the agents.

• The propositions in PSt label any track θ with an encoding of its last state.

• For any variable x, the propositions in Px
Act label any track θ with the actions specified by α(x) after θ.

• The propositions in PAg label any track θ with the actions that agents included in dom(γ) can play after θ
according to χ, provided that none of them is committed to contradictory multi-strategies.
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