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UPDATABLE STRATEGY LOGIC
RESEARCH REPORT

CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Abstract. In this article, we present Updatable Strategy Logic (USL), a multi-agent temporal logic which

subsumes the main propositions in this area, such as ATL-ATL*, ATLsc and SL. These logics allow to express the

capabilities of agents to ensure the satisfaction of temporal properties. USL mainly di�ers from SL in two ways.

Semantically, the notion of strategy composition is extended to enable an agent to re�ne her strategy, that is to

update it without revoking it. Syntactically, a new operator, called “unbinder”, is introduced: it allows an agent

to explicitly revoke a strategy, whereas revocation is implicit in SL. We show that USL allows to express the

notion of sustainable capability for an agent, i.e., a capability that still holds even after it has been employed.

This makes USL strictly more expressive than SL. We also show that the model-checking problem for USL is

decidable but non-elementary (as for SL), and that it is Pspace-complete for its memory-less version.

1. Introduction

Multi-agent temporal logics are receiving growing interest in contemporary research. Since the seminal

work [22] of R. Alur, Th. A. Henzinger, and O. Kupferman on Alternating-Time Temporal Logic (ATL-ATL
∗
),

increasing e�orts have been made to formalise agent interactions in game-theoretical terms.

Basically, multi-agent temporal logics enable to formulate assertions about the ability of agents to ensure

temporal properties by following strategies. Thus, ATL-ATL
∗

appears as a generalisation of CTL-CTL
∗

in

which the path quanti�ers E and A are replaced by strategy quanti�ers. They are interpreted in Concurrent

Game Structures (CGSs), where agents make choices in�uencing the execution of the system.

In these logics, the ability to express strategy composition, which comes to nesting strategy quanti�ers

in a formula, is a major issue. Composition of strategies for di�erent agents has notably been introduced in

ATLsc [44, 99] and Strategy Logic (SL, presented �rst in [88] and then extended in [1111, 1212]. In the remainder

of the article, we refer to the latter version of SL.). In these formalisms, the ability of agents to act upon

the system is evaluated in contexts storing the behaviour of other agents. However, as noticed in [11], after

a given agent has been bound to a strategy, if this very agent is bound to a new strategy, she revokes the

former. Said otherwise, the new binding overwrites the previous one in the evaluation context.

This way, it is not possible to express what we call a strategy re�nement for an agent i.e. the possibility

to enrich her strategy. We envision at least two examples where we think this notion is relevant. In the

remainder of the article, we will particularly focus on the second example.

Example 1 (Requirement modelling). The �rst application stems from our work in requirements modelling [55,

66]: let us consider two groups of agents G1 and G2, which share one agent a. In order to satisfy a property (or

“requirement”) p1 (resp. p2) every agent in G1 (resp. G2) follows a certain strategy. An interesting case occurs

when G2 is helped by G1 to ful�ll p2. In other words, G2 is able to ensure p2 only in the context where G1

follows its strategy for p1. That is, we expect the strategies of agents in G2 to compose with the strategies of

agents in G1. Since a belongs to both groups, her strategy for p1 and her strategy for p2 must be coherent so

that there is a re�nement of both strategies that satis�es both p1 and p2. Suppose now a third group of agents

G3 is added to the model, with requirement p3. And suppose a is also in this group. Expressing that G1 can
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Figure 1. ModelM1 for the server

follow a strategy which may be enriched either to help G2 or to help G3 imposes to consider two di�erent

potential improvement for that strategy. In this case, an explicit formalism for strategy re�nement is needed.

This notion of re�nement also allows to consider a particular kind of properties that we call sustainable

capability (further explained in Sect. 3.13.1): a capability for an agent (i.e. an action the agent can perform

and which constraints the set of possible next states) is sustainable if it remains usable even when already

employed by this very agent. We also say that an agent having the sustainable capability to enforce both

logical values of a given property has sustainable control over it.

Example 2 (Sustainable capability). As an illustration (see Fig. 11), suppose a client program sends connection

requests to a chat server. The server can always decide whether to grant or deny access to the client. In addition,

the server can ban a client and refuse connection once and for all.

We want to express with logical formulas (and to check them over the model) the fact the server is able to

ensure some properties. For instance, the server is able to ban the client at any time, i.e. to ensure that, from an

arbitrary instant chosen by the server, access becomes false forever. As we will see more in details in Sect. 3.13.1

this property involves strategy revocation. We also want to express that the server is able to set access to true at

any moment and as many times as it wants. This is the sustainable capability to ensure access. A stronger

property is the ability to set access to true or to false at any moment and as many times as it wants. This is the

sustainable control over access.

In this paper, building on previous work introduced in [77], we present Updatable Strategy Logic (USL), a

logic allowing to express these kinds of properties by considering strategies that are updatable, i.e. revocable

or re�nable. USL di�ers from SL in two main ways. On the one hand, the syntax of formulas features (1) a

binder (a B x) enabling to associate a strategy to an agent without overwriting strategies previously bound

to her ; and (2) an unbinder (a 7 x) allowing an agent to revoke a strategy explicitly. On the other hand, the

semantic framework is built to enable an agent to update her own strategy without revoking it.

The remainder of this paper is organized as follows: in Sect. 22, we de�ne the syntax and semantics of

USL, and we also describe the semantics for a restricted version of the logic featuring memory-less strategies

only (we call the resulting logic USL
0
). In Sect. 33, we detail the notions of sustainable capability and control,

and we prove that these properties are not expressible in SL and that USL subsumes SL. Finally, we show in

Sect. 44 that model-checking for USL is non-elementarily decidable and that it is Pspace-complete for USL
0
.
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 3

2. Syntax and Semantics

In this section we present the syntax and the semantics of USL, and a restricted semantics with memory-

less strategies.

2.1. Syntax.

De�nition 1. Let Ag be a set of agents, At a set of atomic propositions andX a set of strategy variables. The

syntax of USL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (A B x)ϕ | (A 7 x)ϕ | ϕUϕ | Xϕ

where p ∈ At , A ⊆ Ag , x ∈ X .

A set of agents is also called a coalition. The propositional connective ∨ and constants > and ⊥ are

de�ned as usual. We also use the common temporal abbreviations ♦ and �, de�ned as follows: ♦ϕ = >Uϕ
and �ϕ = ¬♦¬ϕ.

We de�ne the set of subformulas of a formula ϕ as usual and we call its length |ϕ| the number of its

subformulas. We de�ne hereafter a notion of free variables FV (ϕ) by induction, and then we call sentence

is a formula ϕ s.t. FV (ϕ) = ∅.
• FV (p) = ∅, for p ∈ At
• FV (¬ϕ) = FV (Xϕ) = FV ((A 7 x)ϕ) = FV (ϕ)
• FV (ϕ1 ∧ ϕ2) = FV (ϕ1Uϕ2) = FV (ϕ1) ∪ FV (ϕ2)
• FV (〈〈x〉〉ϕ) = FV (ϕ)\{x}
• FV ((A B x)ϕ) = FV (ϕ) ∪ {x}

2.2. Semantics. USL interprets the re�nement of a strategy as a precision given to this strategy. By re�ning

her strategy, an agent will remove some non-determinism from it. The expression of strategy re�nement

thus relies on nondeterministic models.

De�nition 2 (NATS). A Nondeterministic Alternating Transition System (NATS) is a tuple

M = 〈Ag ,M,At , v ,Ch〉 where:
• M is a set of states, called the domain ofM, At is the set of atomic propositions and v is a valuation

function, fromM to P(At);
• Ch : Ag × M → P(P(M)) is a choice function mapping a pair 〈agent , state〉 to a non-empty

family of choices of possible next states. It is s.t. two choices from di�erent agents are always in non

empty intersection: given a state s ∈ M and agents a1 and a2 ∈ Ag , for every c1 ∈ Ch(a1, s) and
c2 ∈ Ch(a2, s), c1 ∩ c2 6= ∅.

The set of �nite sequences of states that are possible inM is denoted by Track : τ = τ0τ1 . . . τk ∈ Track
i� for every i < k, for every a ∈ Ag , there is ca ∈ P(M) s.t. ca ∈ Ch(a, τi) and τi+1 ∈ ca. Similarly, an

in�nite sequence of states that are possible inM, i.e. all its pre�xes are in Track , is called a path inM.

Let λ be a path, then for every i ∈ N, we write λi its ith element. We also write λk the path s.t. for every

i ∈ N, λki = λk+i.

De�nition 3 (Strategies). A strategy σ is a map from Ag × Track to P(M) s.t. for every (a, τ), σ(a, τ) ∈
Ch(a, last(τ)). We note Strat the set of strategies in a model.

Now we give the de�nition of contexts used for the interpretation of formulas. Unlike what is done for

SL, we make a distinction between the part representing the active bindings (the commitments) and the

part dealing with the strategy variables (the assignments).
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4 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

De�nition 4 (Assignments, commitments and contexts). An assignment α is a partial function from X to

Strat which associates a strategy variable with to a strategy in the model.

A commitment κ is a �nite sequence upon P(Ag) × X , which stores the bindings of sets of agents (or

coalitions) to strategy variables. Let κ1 and κ2 be two commitments, then we note κ1 · κ2 their concatenation.

A context χ is a pair of an assignment and a commitment.

A context induces a function from Track to P(M). This function, which we denote the same way as the

context itself, yields a set of possible successor states, following the execution of a track. These are de�ned

according to the strategies that are present in the context and which only concern the agents bound to

some strategy variable via a commitment.

De�nition 5 (Context function). Let χ = (α, κ) be a context and write κ∅ for the empty sequence upon

P(Ag)×X . The function induced by χ is de�ned as follows:

• (α, κ∅)(τ) = M
• (α, (A, x))(τ) =

–
⋂
a∈A α(x)(a, τ) if A 6= ∅

– M otherwise

• (α, κ · (A, x))(τ) =
– (α, κ)(τ) ∩ (α, (A, x))(τ) if this intersection is not empty

– (α, κ)(τ) otherwise (which means that in case the commitment (A, x) is in contradiction with κ,
we do not take it into account and we keep κ).

De�nition 6 (Outcome). Let χ be a context and s be a state. The outcome of χ and s, written out(χ, s), is
de�ned as the set of paths derived by χ from s: let λ be a path, then λ ∈ out(χ, s) i� s = λ0 and for every

n ∈ N, λn+1 ∈ χ(λ0 . . . λn).

De�nition 7 (Strategy and assignment translation). Let σ be a strategy and τ be a track. Then στ is the
strategy s.t. for every τ ′ ∈ Track , στ (τ ′) = σ(τ · τ ′). The notion is extended to an assignment α : ατ is the
assignment with same domain as α and s.t. for every x ∈ dom(α), ατ (x) = (α(x))τ .

De�nition 8 (Transformations of contexts). Given a commitment κ, coalitions A and B, a strategy variable

x, an assignment α and a strategy σ, we de�ne transformations [A→ x], [A9 x] and [x→ σ] as follows:

Binding: κ[A→ x] = κ · (A, x)
Revocation: κ∅[A9 x] = κ∅ and ((B, x) · κ)[A9 x] = (B\A, x) · (κ[A9 x])
Strategy instantiation: α[x→ σ] is the assignment with domain dom(α)∪{x} s.t.∀y ∈ dom(α)\{x}, α[x→
σ](y) = α(y) and α[x→ σ](x) = σ.

De�nition 9 (Satisfaction relation). LetM be a NATS, then for every assignment α, commitment κ and path

λ:

• M, α, κ, λ |= p i� p ∈ v(λ0), with p ∈ At
• M, α, κ, λ |= ¬ϕ i� it is not true thatM, α, κ, λ |= ϕ
• M, α, κ, λ |= ϕ1 ∧ ϕ2 i�M, α, κ, λ |= ϕ1 andM, α, κ, λ |= ϕ2

• M, α, κ, λ |= 〈〈x〉〉ϕ i� there is a strategy σ ∈ Strat s.t.M, α[x→ σ], κ, λ |= ϕ
• M, α, κ, λ |= (A B x)ϕ i� for every λ′ in out((α, κ[A→ x]), λ0),M, α, κ[A→ x], λ′ |= ϕ
• M, α, κ, λ |= (A 7 x)ϕ i� for all λ′ in out((α, κ[A9 x]), λ0),M, α, κ[A9 x], λ′ |= ϕ
• M, α, κ, λ |= Xψ i�M, αλ0 , κ, λ1 |= ψ
• M, α, κ, λ |= ψ1Uψ2 i� there is i ∈ N s.t.M, αλ0...λi−1 , κ, λi |= ψ2 and for every 0 ≤ j <
i,M, αλ0...λj−1 , κ, λj |= ψ1
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 5

We writeM, α, κ, s |= ϕ if for every path λ s.t. λ0 = s, we haveM, α, κ, λ |= ϕ. Furthermore, let α∅ be the
unique assignment with empty domain. Then we writeM, s |= ϕ i�M, α∅, κ∅, s |= ϕ.

Let us comment these de�nitions: for every context χ = (α, κ) and state s, the de�nition of out(χ, s)
ensures that the di�erent binders encoded in χ compose their choices together, as far as possible. In case two

contradictory choices from an agent are encoded in the context, the priority is given to the �rst binding that

was introduced in this context (the leftmost binding in the formula). This guarantees that a formula requiring

the composition of two contradictory strategies is false. For instance, suppose that 〈〈x1〉〉(a B x1)ϕ1 and

〈〈x2〉〉(a B x2)ϕ2 are both true in a state of a model, and suppose that σx1
and σx2

necessarily rely on

contradictory choices of a (this means that a cannot play in a way that ensures both ϕ1 and ϕ2). Then,

〈〈x1〉〉(a B x1)(ϕ1 ∧ 〈〈x2〉〉(a B x2)ϕ2) is false in the same state of the same model. If the priority was

given to the most recent binding (right most binding in the formula), the strategy σx1 would be revoked

and the formula would be satis�ed.

2.3. USL0. USL
0

is the logic obtained by modifying the semantics of USL so that the strategies only depend

on the current state, rather than on a whole track. We call such strategies memory-less strategies. Many

cases of programming and interaction situations can actually be modelled by using memory-less strategies

only.

De�nition 10 (Memory-less strategies). A memory-less strategy is a function σ from Ag ×M to P(M) s.t.
for every (a, s) ∈ Ag ×M,σ(a, s) ∈ Ch(a, s). We note Strat0

the set of memory-less strategies in a model.

All the semantic de�nitions for USL adapt to USL
0

by simply modifying the clause for 〈〈x〉〉: the strategy

variable ranges over Strat0
instead of Strat in the case of USL

0
.

3. Sustainability, USL and SL

In this section we further analyse the mechanisms of strategy update. This analysis is led by help

of sustainable capability and sustainable control and by comparison with SL. First, we give an informal

explanation of these concepts and exhibit their expression in USL. Then we prove that they cannot be

expressed within SL. In the remainder, the notations used for SL formulas and semantic framework are the

ones de�ned in [1111].

3.1. Sustainable Capability and Sustainable Control in USL. Here we introduce the notions of sus-

tainable capability and sustainable control, by help of Example 22.

3.1.1. A Capability that is Not Sustainable. First, let us consider the property “the server (S) can always

ensure access in the next state”. In SL, if S is the only agent, the property is expressed by Formula 11:

(1) 〈〈x1〉〉(S , x1)�(〈〈x2〉〉(S , x2)Xaccess)

As proved in Sect. 3.23.2, it is equivalent to the USL formula:

(2) 〈〈x1〉〉(S B x1)�(〈〈x2〉〉(S 7 x1)(a B x2)Xaccess)

Now and in the remaining of this paper, for any variable x, we write σx a strategy instantiating x.

In Formula 11, the subformula 〈〈x2〉〉(S , x2)Xaccess states that S can adopt a strategy σx2 that ensures

Xaccess , even if σx2 is in contradiction with σx1 and makes it lose its ability to ensure Xaccess later on.

Consider the modelM2 illustrated by Fig. 22. The transitions are labelled the following way: let s, s′ be

two states and c a choice, then the transition from s to s′ is labelled with c i� S has a choice c to go to s′

from s. From state s0, S can either choose to stay in that state (choice deny) , where access does not hold, or

to go to state s1 (choice grant) where access holds. In the latter case, the server will not be able to leave s2,

in which the connection is closed.

ha
l-0

07
85

65
9,

 v
er

si
on

 2
 - 

16
 A

pr
 2

01
3



6 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL
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Figure 2. ModelsM2 (left) andM3 (right) for the server

Formula 11 holds in state s0 of M2. Indeed, by playing strategy always- play-

deny (apd , de�ned by: for all τ ∈ Track , apd(a, τ) = deny), S remains in s0, from which it can en-

sure Xaccess . However, in order to ensure access once, S must revoke apd and adopt a new strategy with

choice grant . Doing this, S loses its capability to ensure Xaccess . It can achieve Xaccess at any time, but

only once: its capability is not sustainable. This somehow contradicts the intuition of the property we want

to express. By “S can always ensure access in the next state”, we mean that S remains able to ensure access

even after using this capability.

3.1.2. Sustainable Capability. Consider now the following USL formula that is syntactically similar to

Formula 11:

(3) 〈〈x1〉〉(S B x1)�(〈〈x2〉〉(S B x2)Xaccess)

USL requires that the strategies σx1
and σx2

, instantiating x1 and x2, can be composed together. So the

strategy σx2
does not revoke σx1

according to which S has the capability to ensure Xaccess later on in

the execution. Thus, Formula 33 expresses that S is able to ensure Xaccess as many times as it wants. This

property is not satis�ed inM2.

Let us now enrich the modelM1 from Fig. 11 with the nondeterministic choice not_ban (see modelM3

in Fig. 22). This choice uni�es the choices grant and deny , it corresponds to not banning the client from the

service. (Now we consider non-deterministic choices, in the �gure, a label c from s to s′ means that “from

s, S has a choice c that includes s′”.)
As formally stated in Example 33 hereunder, Formula 33 is true in state s0 ofM3 with the strategy always-

play-not_ban (apn , de�ned by: for all τ ∈ Track ,
apn(S , τ) = not_ban) instantiating x1. Indeed, this strategy can be re�ned by making the additional choice

grant (which ensures Xaccess) at any time. With this strategy, S always remains capable of ensuring

Xaccess , as many times as it wants: it has sustainable capability to ensure Xaccess .

Example 3 (Proposition). M3, s0 |= 〈〈x1〉〉(S B x1)�(〈〈x2〉〉(S B x2)Xaccess).

Proof. Let us prove the proposition of Example 33 formally. First, out((〈(x1 7→ apn)〉, (S , x1)), s0) =
s0 · (s0 + s1)ω , where (s0 + s1)ω is the notation taken from language theory for the set of in�nite

sequences of states s0 or s1 (we also write (s0 + s1)∗ the set of such �nite sequences). Thus, for all
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 7

λ ∈ out((〈(x1 7→ apn)〉, (S , x1)), s0), for all n ∈ N, λn ∈ {s0, s1}, out((〈(x1 7→ apn)〉λ0...λn−1 ,
(S , x1)), λn) = λn · (s0 + s1)ω .

Now, consider the strategy play-grant-once(pgo) de�ned over S × (s0 + s1)∗ by, for i ∈ {0, 1}:
pgo(S , si) = grant and pgo(S , si · τ) = not_ban for all τ ∈ (s0 + s1)∗.

It is easy to see that for all λ′ ∈ out((〈(x1 7→ apnλ0...λn−1), (x2 7→ pgo)〉,
((S , x1), (S , x2))), λn), we have λ′1 = s1.

Now we can derive the steps of evaluation: for all λ ∈ out((〈(x1 7→ apn)〉,
(S , x1)), s0), for all n ∈ N, for all λ′ ∈ out((〈(x1 7→ apn)λ0...λn−1 , (x2 7→ pgo)〉,
((S , x1), (S , x2))), λn):

M3, (〈(x1 7→ apn)λ0...λn , (x2 7→ pgoλn)〉, ((S , x1), (S , x2)), λ′1 |= access
M3, 〈(x1 7→ apn)λ0...λn−1 , (x2 7→ pgo)〉, ((S , x1), (S , x2)), λ′0 |= Xaccess
M3, 〈(x1 7→ apn)λ0...λn−1 , (x2 7→ pgo)〉, (S , x1), λn−1 |= X(S B x2)access
M3, (〈(x1 7→ apnλ0...λn−1)〉, (S , x1), λn−1 |= 〈〈x2〉〉(S B x2)Xaccess
M3, 〈(x1 7→ apn)〉, (S , x1), s0 |= �(〈〈x2〉〉(S B x2)Xaccess)
M3, 〈(x1 7→ apn)〉, κ∅, s0 |= (S B x1)�(〈〈x2〉〉(S B x2)Xaccess)
M3, s0 |= 〈〈x1〉〉(S B x1)�(〈〈x2〉〉(S B x2)Xaccess)

�

3.1.3. Sustainable Control. But S is not only sustainably capable of ensuring access . A similar strategy

play-deny-once can also be used at any time to re�ne strategy apn so as to ensure X¬access . So, S is in fact

sustainably capable of deciding whether or not access holds. We say that, inM3, S has sustainable control

over the property access from state s. Formally:

(4) M3, s0 |= 〈〈x〉〉(S B x)�(〈〈y〉〉(S B y)Xaccess ∧ 〈〈y〉〉(S B y)X¬access)

3.1.4. Strategy Revocation. Actually, strategy apn is also always revocable. When following it, S can revoke

it at any time to ban the client. This is shown in Formula 55 which ends up the description of the server

capabilities, as presented in Example 22 in Sect. 11:

(5) M3, s0 |= 〈〈x〉〉(S B x)�(〈〈y〉〉(S B y)Xaccess

∧ 〈〈y〉〉(S B y)X¬access ∧ 〈〈z〉〉(S 7 x)(S B z)�¬access)

3.2. Comparison with SL. In this section, we compare the expressive power of SL and USL. This compar-

ison is not straightforward because the models of both logics di�er: in particular, SL models, called CGSs,

are deterministic in the sense that given the current state and a choice for every agent, there is only one

possible successor state, which is not the case in USL models (NATS). Still, we show that sustainable control

cannot be satis�ed in the class of deterministic models. Furthermore, even with a natural extension of SL

semantics to nondeterministic models, sustainable control is not expressible in SL. First, let us give a formal

de�nition of sustainable control, generalising the property expressed in Formula 44.

De�nition 11 (Sustainable control). Given a coalition of agents A and ϕ ∈ USL, the sustainable control of A
over ϕ is the class of modelsM with a state s in its domain such that:

(6) M, s |= 〈〈x1〉〉(A B x1)�(〈〈x2〉〉(A B x2)Xϕ ∧ 〈〈x2〉〉(A B x2)X¬ϕ)

The main results of this section are stated as follows:

• There is an embedding of SL models and formulas into USL models and formulas (resp.). It preserves

the satisfaction relation.
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8 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

• Sustainable control has no deterministic instance. Therefore one needs the nondeterminism of

NATSs to express it.

• Sustainable control over an atomic proposition is not expressible under a natural extension of SL

semantics to NATSs. Strategy re�nement is also needed to express it.

3.2.1. Embedding of SL into USL. The embedding of SL into USL consists in a parallel transformation

from SL models and formulas to USL models (Concurrent Games Structures, or CGSs) and formulas. This

transformation preserves the satisfaction relation.

Let us �rst bring the necessary de�nitions related to SL:

SL. This paragraph only gives a brief presentation of SL syntax and semantics. The non familiar reader may

refer to [1111] for a complete presentation of this framework.

De�nition 12 (SL syntax). Given a set Ag of agents, a set At of atomic propositions and a set X of strategy

variables, the syntax of SL is de�ned by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | 〈〈x〉〉ϕ | JxKϕ | (a, x)ϕ

where a ∈ Ag and x ∈ X .

SL uses a notion of free agents of a formula ϕ (Fa(ϕ)), de�ned inductively as follows:

• Fa(p) = ∅, for p ∈ At
• Fa(¬ϕ) = Fa(〈〈x〉〉ϕ) = Fa(JxKϕ) = Fa(ϕ)
• Fa(ϕ1 ∧ ϕ2) = Fa(ϕ1 ∨ ϕ2)Fa(ϕ1) ∪ Fa(ϕ2)
• Fa(ϕ1Uϕ2) = Fa(ϕ1Rϕ2) = Fa(Xϕ) = Ag
• Fa((a, x B ϕ)) = Fa(ϕ)\{a}

The sentences of SL are the formulas ϕ such that FV (ϕ) = Fa(ϕ) = ∅, where FV (ϕ) is de�ned

similarly as for USL.

Here is the de�nition of CGSs:

De�nition 13. A CGS is a tuple G = 〈Ag ,M,At , v ,Ac,Tr〉 where :
• Ag ,M,At and v are as in NATSs.

• Ac is a set of actions.

• Let DC = AcAg
be the set of decisions, i.e. the set of total functions from agents to actions. Then

Tr : M ×DC →M is the transition function.

Note that, modulo the interpretation of actions as the set of successors compatible with each agent

playing them (for every a ∈ Ag , for every ac ∈ Ac, the choice corresponding to (a, ac) is {Tr(Dc) | Dc ∈
AcAg ,Dc(a) = ac}), CGSs are a particular case of NATSs (the case where a vector of one choice per agent

from a given state uniquely determines a successor).

De�nition 14. Let G be a CGS, the set Path is the set of in�nite sequences λ0λ1 . . . s.t. for every n ∈ N,
there is Dc ∈ DC s.t. Tr(λn,Dc) = λn+1. Track is the set of such �nite sequences. A strategy in CGS G is a

partial function from Track to the set of actions. We note Strat the set of strategies in a model:

Strat = {σ : Track → Ac}

We also call s-total a strategy that is de�ned upon the whole set of sequences beginning with s. A strategy

context is a partial function from Ag ∪ X to Strat . It is s-total if it de�nes only s-total strategies and it is

complete if Ag is included in its domain.
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 9

Note that strategies for SL have tracks as single parameter, so that a strategy binds each agent of a

coalition to the same actions. Then the set of possible strategies for a coalitionA does not match the product

of the sets of possible strategies for agents in A. This is the main reason why the embedding from SL to

USL is not trivial.

The semantics of SL is given as a relation between a formula and a triple (G, χ, s) where:

• G is a CGS.

• χ is a strategy context over G.

• s is a state in M , the domain of G.

The transition function Tr being de�ned over the set of decisions, a strategy context must be complete

and s-total to determine a transition from a given state s. Under this condition we can write (χ, s)n the

pair de�ned by:

• (χ, s)0 = (χ, s)
• for every i ∈ N, (χ, s)i+1 = (χi+1, si+1) = (χsii ,Tr(si, χi(Ag)))

where the notation χτ , for χ a strategy context and τ a track, is as in Def. 77. Again, the de�nition for the

semantics of SL proceeds in two steps:

De�nition 15 (Satisfaction relation for SL). Let G be a CGS, χ a strategy context for G and s a state in it.

Then:

(1) G, χ, s |=SL p i� p ∈ λ(s), with p ∈ At .
(2) For every formula ϕ, ϕ1 and ϕ2 :

(a) G, χ, s |=SL ¬ϕ i� it is not true that G, χ, s |=SL ϕ.
(b) G, χ, s |=SL ϕ1 ∧ ϕ2 i� G, χ, s |=SL ϕ1 and G, χ, s |=SL ϕ2.

(c) G, χ, s |=SL ϕ1 ∨ ϕ2 i� G, χ, s |=SL ϕ1 or G, χ, s |=SL ϕ2.

(3) For every variable x and formula ϕ :

(a) G, χ, s |=SL 〈〈x〉〉ϕ i� there is an s-total strategy f s.t. G, χ[x→ f ], s |=SL ϕ.
(b) G, χ, s |=SL JxKϕ i� for every s-total strategy f, G, χ[x→ f ], s |=SL ϕ.

(4) For every agent a, variable x and formula ϕ, G, χ, s |=SL (a, x)ϕ i�

G, χ[χ(x)\χ(a)], s |=SL ϕ.
(5) If χ is a complete strategy context, then for every formula ϕ, ϕ1 and ϕ2 :

(a) G, χ, s |=SL Xϕ i� G, (χ, s)1 |=SL ϕ.
(b) G, χ, s |=SL ϕ1Uϕ2 i� there is i ∈ N s.t. G, (χ, s)i |=SL ϕ2 and, for every index j ∈ N s.t.

0 ≤ i < j, G, (χ, s)j |=SL ϕ1.

(c) G, χ, s |=SL ϕ1Rϕ2 i� for every index i ∈ N, it holds that G, (χ, s)i |=SL ϕ2 or there is an index

j ∈ N s.t. 0 ≤ j ≤ i, G, (χ, s)j |=SL ϕ1

Where χ[χ(x)\χ(a)] is obtained from χ by giving for a the value χ(x).

De�nition 16 (Satisfaction of a sentence in a state of a model).
Let G be a CGS and s a state in its domain. Let also ϕ be a formula in SL. ϕ is true in G at s, we note

G, s |=SL ϕ, if and only if G, χ∅, s |=SL ϕ, where χ∅ is the context with empty domain.

Now that the required de�nitions are given, we can come to the embedding of SL into USL:

Translation of SL into USL.

Proposition 1. There is a transformation which maps each CGS G to a NATSMG and each formula ϕ in

SL to a formula ϕ in USL s.t. for every CGS G and for every ϕ ∈ SL, G |= ϕ i�MG |= ϕ. Furthermore, if we

consider a single agent in the language, the transformation of models reduces to the interpretation of actions as

choices.
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10 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

In SL, choices from USL are replaced by actions, and agents playing along the same strategies perform the

same action at every state. To prove Prop. 11, �rst we de�ne both the syntactical and semantic transformations

that enable to express, by help of new atomic symbols, the related constraints of agents playing uniform

strategies.

• Syntax: transform ϕ to ϕ′. The transformation consists in identifying, in the syntax of the formula,

those of the coalitions that have to play along the same strategy. It enables to represent a part of

the information hold by the current context in every subformula.

– First erase all ∨, JxK and R operators from ϕ, by use of the equivalences ψ1 ∨ ψ2 i� ¬(¬ψ1 ∧
¬ψ2), JxKψ i� ¬〈〈x〉〉¬ψ and ψ1Rψ2 i� ¬(¬ψ1U¬ψ2).

– Let ≡ be the equivalence relation over AcAg = DC given by: for every Dc,Dc′ ∈ DC ,Dc ≡
Dc′ i� ∀a, b ∈ Ag , (Dc(a) = Dc(b)) i� (Dc′(a) = Dc′(b)). Let also [DC ]≡ be the partition

of DC over ≡. Then for every P ∈ [DC ]≡, add a new proposition P in the language.

– For each subformula ψ of ϕ:

∗ If ψ := Xψ1 change it for X(ψ1 ∧ Pψ1
) where Pψ1

is given by the set of binders ψ is in

the scope of (because ϕ is a sentence they completely de�ne Pψ1 ).

∗ If ψ := ψ1Uψ2 change it for ψ2 ∨X(ψ1 ∧ Pψ2
)U(ψ2 ∧ Pψ2

)
∗ Else do not change ψ.

• Semantics: change G to G′. Intuitively, we make a di�erent copy of the domain M for each p ∈ DC .

Then for each agent a, the choices of a in the new CGS are the set of outcomes of the function Tr
times the set of copies of M where a plays ac, for each ac ∈ Ac. Formally:

Let G = 〈Ag ,M,At , v ,Ac,Ch〉. Then G′ is the CGS 〈Ag ,M ′,At ′, v ′,Ac,Tr ′〉 where:

– M ′ = M ×DC
– At ′ = At ∪ {P | P ∈ [DC ]≡}
– for every (s,Dc) ∈ M ′, v ′(s,Dc) = v(s) ∪ {[Dc]≡}, where [Dc]≡ is the element of [DC ]≡

induced by Dc.

– for every (s,Dc) ∈M ′, for every Dc′ ∈ DC , Tr ′((s,Dc),Dc′) = (Tr(s,Dc′),Dc′).

Then we have the following lemma:

Lemma 1.
G |=SL ϕ i� G′ |=SL ϕ

′

Proof. One simply replaces every subformula of typeψ1Uψ2 inϕ byψ2∨X(ψ1Uψ2). Then the equivalence

is obtained by induction over ϕ complexity. �

The next intermediary step is to consider G′ as a NATS and use a semantics for SL in NATS. Viewing G′
as a NATS only consists in interpreting each 3-tuple (a, s, ac) of an agent, a state and an action as the set of

potential successor states when a performs ac from s. The semantics for SL in NATSs holds the following

case for (a, x): G′, α, κ, s |=NATS (a, x)ψ i� G′, α, κ[κ(x)\κ(a)], s |= (a, x)ψ. Since we are using it only in

the model G′ with deterministic choices, |=NATS does not need further de�nition so far. An extension of

|=NATS for every NATSs is given further. Both semantics are obviously equivalent for the evaluation of ϕ′

in G′. Now, we can come to the translation of SL binder. To achieve this, we de�ne a new operator in USL.

Let X ′ ⊆ X be a set of variables, and let us abbreviate by (A 7 X ′) the sequence of operators

(A 7 x1), . . . , (A 7 xn) where X ′ = {x1, . . . xn}, for any coalition A (note that the semantics of the

sequence (A 7 x1), . . . , (A 7 xn) is invariant upon the ordering of the xis). We de�ne the new operator

[A B x] for USL by: for any formula ϕ, coalition A and variable x, [A B x]ϕ , (A 7 X)(A B x)ϕ. Then

[A B x] is the counterpart for the binder in SL: A is unbound from all its current strategies and then bound
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 11

to the sole strategy σx. (Note that by use of a macro for (Ag 7 X) (A B x), an ATL-like capability operator

is also de�nable for USL).

Now we replace inductively, from innermost to outermost subformulas, all subformulas (a B x)ψ of ϕ′

by [a B x] ψ, and we call ϕ the resulting formula. We have:

Lemma 2.
G′ |=NATS ϕ

′
i� G′ |= ϕ

Proof. Straightforward, since [a B x] in USL is interpreted the same way as (a,x) in SL. �

The two preceding lemmas bring Prop. 11.

3.2.2. Sustainable Control has no Deterministic Instance. Let us call DNATS a NATS with deterministic

choices: i.e. a NATSM = 〈Ag ,M,At , v ,Ch〉 is a DNATS i� for every s ∈ M and for every function C
from Ag to P(M) such that for every a ∈ Ag , C(a) ∈ Ch(a, s),

⋂
a∈Ag C(a) is a singleton. The following

proposition states that sustainable control has no deterministic instance.

Proposition 2. For every DNATSM, for every s ∈M,a ∈ Ag , ϕ ∈ USL:

M, s 2 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xϕ ∧ 〈〈y〉〉(a B y)X¬ϕ)

Proof. Suppose that there is a DNATS M with set of agents Ag , and a state s s.t. M, s |= 〈〈x〉〉(a B
x)�(〈〈y〉〉(a B y)Xϕ ∧ 〈〈y〉〉(a B y)X¬ϕ). Let us call Ag\{a}−complete a context χ = (α, κ) such

that every a′ ∈ Ag\{a} appears in κ and is committed to a variable strategy distinct from x and y and

in the domain of α. Now, M, s |= 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xϕ ∧ 〈〈y〉〉(a B y)X¬ϕ) i� there is a

strategy σx s.t.M, 〈(x 7→ σx)〉, (a, x), s |= �(〈〈y〉〉(a B y)Xϕ ∧ 〈〈y〉〉(a B y)X¬ϕ). One checks that

this is i� there is a strategy σx s.t. for all Ag\{a}−complete context χ = (α, κ),M, α[x 7→ σx], κ[a →
x], s |= �(〈〈y〉〉(a B y)Xϕ∧〈〈y〉〉(a B y)X¬ϕ) BecauseM is a DNATS, for all Ag\{a}−complete context,

out((α[x 7→ σx], κ[a→ x]), s) is a unique path λ = λ0λ1 . . . inM.

Now, next steps in the evaluation of M, s |= 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xϕ ∧ 〈〈y〉〉(a B y)X¬ϕ)
require, for every i ∈ N, thatM, 〈α[x 7→ σx]〉λ0...λi−1 , κ[a → x], λi |= 〈〈y〉〉(a B y)Xϕ andM, 〈α[x 7→
σx]〉λ0...λi−1 , κ[a → x], λi |= 〈〈y〉〉(a B y)X¬ϕ. And the following steps require for every i ∈ N,

that there are strategies σy1 and σy2 s.t. for every λ′ ∈ out(〈〈α[x 7→ σx]〉λ0...λi−1〉[y → σλiy1 ]〉, κ[a →
x][a → y1], λi),M, (〈〈α[x 7→ σx]〉λ0...λi−1〉[y → σλiy1 ]〉, κ[a → x][a → y1]), λ′1 |= ϕ and for every

λ′ ∈ out(〈〈α[x 7→ σx]〉λ0...λi−1〉[y → σλiy2 ]〉, κ[a → x][a → y2], λi),M, (〈〈α[x 7→ σx]〉λ0...λi−1〉[y →
σλiy2 ]〉, κ[a→ x][a→ y2]), λ′1 |= ¬ϕ.

But for every k ∈ {1, 2}, out(〈〈α[x 7→ σx]〉λ0...λi−1〉[y → σλiyi ]〉, κ[a→ x][a→ yi], λi) is a non-empty

set of paths included in {λi+1}, so it is equal to {λi+1} itself. Eventually, the satisfaction requires that,

for every i ∈ N,M, 〈α[x 7→ σx]〉λ0...λi−1 , κ[a → x], λi+1 |= ϕ and M, 〈α[x 7→ σx]〉λ0...λi−1 , κ[a →
x], λi+1 |= ϕ, which gives a contradiction.

�

Remark 1. From Proposition 22 we can easily deduce that the models of SL (CGSs), which are deterministic, do

not allow to express sustainable control. But since sustainable control is formally de�ned in term of NATSs,

the fact CGSs cannot express it would be tricky to establish. However, in the case of one single agent, the

mapping from CGSs to NATSs (de�ned in the embedding from SL
1
to USL) is identity (more precisely it reduces

to the interpretation of actions in CGSs as choices in NATSs). Then we easily see that CGSs are “equivalent” to

DNATSs, and thus do not allow to express sustainable control.
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12 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

3.2.3. Sustainable Control over an Atomic Proposition is not Expressible in SL over NATSs. The following

argument uses an extension of SL semantics to nondeterministic NATSs. We already have a straightforward

interpretation of SL over DNATSs. The generalisation to NATSs requires to de�ne an interpretation of

nondeterministic choices for agents. Indeed, the di�erence between DNATSs and NATSs lies in the fact

that under DNATSs, a context χ de�ning a strategy for each agent induces an unique possible path λ. The

de�nition of SL sentences induces that their temporal operator can only be evaluated in such contexts. So,

the evaluation of temporal operators follows the classical de�nition for semantics of LTL under paths. Under

NATSs, χ induces a non-empty set of paths with possibly more than one element. Our generalisation follows

the semantics of LTL under Kripke models, taking the universal quanti�cation over paths in out(χ, s).

De�nition 17 (Semantics for SL under NATSs). LetM be a NATS for a language with set of variables X , λ
a path, (α, κ) a context forM and ϕ,ϕ1 and ϕ2 formulas in SL, then:

• M, α, κ, λ |=NATS p i� p ∈ v(λ0), with p ∈ At .
• M, α, κ, λ |=NATS ¬ϕ i� it is not true thatM, α, κ, λ |=NATS ϕ.
• M, α, κ, λ |=NATS ϕ1 ∧ ϕ2 i�M, α, κ, λ |=NATS ϕ1 andM, α, κ, λ |=NATS ϕ2.

• M, α, κ, λ |=NATS ϕ1 ∨ ϕ2 i�M, α, κ, λ |=NATS ϕ1 orM, α, κ, λ |=NATS ϕ2.

• M, α, κ, λ |=NATS 〈〈x〉〉ϕ i� there is a strategy σ ∈ Strat s.t. M,
α[x→ σ], κ, λ |=NATS ϕ

• M, α, κ, λ |=NATS JxKϕ i� for every strategy σ ∈ Strat ,
M, α[x→ σ], κ, λ |=NATS ϕ.

• M, α, κ, λ |=NATS (a, x)ϕ i� for every λ′ ∈ out((α, κ[a 9 X][a → x]), λ0),M, α,
κ[a9 X][a→ x], λ′ |=NATS ϕ

• M, α, κ, λ |=NATS Xϕ i�M, αλ0 , κ, λ1 |=NATS ϕ
• M, α, κ, λ |=NATS ϕ1Uϕ2 there is i ∈ N s.t.M, αλ0...λi−1 , κ, λi |=NATS ϕ2 and for all 0 ≤ j ≤
i,M, αλ0...λi−1 , κ, λj |=NATS ϕ1.

• M, α, κ, λ |=NATS ϕ1Rϕ2 i�M, αλ0...λi−1 , κ, λi |=NATS ϕ2 or there is j ≤ i s.t.M, αλ0...λi−1 , κ, λi |=NATS

ϕ2.

Notice that in the interpretation of (a, x), agent a revokes her current strategy and is then bound to the

strategy x.

Proposition 3. Sustainable control over an atomic proposition is not expressible in SL over NATSs.

To prove this proposition. First we prove a similar result for SL
1

(Proposition 44). Then we prove it

generalises to SL.

Proposition 4. Sustainable control over an atomic proposition is not expressible in SL
1
over NATSs.

To prove it, �rst we consider the set of SL
1

formulas {θi}i∈N, each one asserting that a is inde�nitely

capable of deciding whether p holds or not in next state and can use this ability at least i+ 1 times. We

de�ne θi by induction over i:

• θ0 := 〈〈x〉〉(a, x)�(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p)
• θ1 := 〈〈x〉〉(a, x)�(〈〈x〉〉(a, x)X(p ∧�(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p))

∧〈〈x〉〉(a, x)X(¬p ∧�(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p)))
• for every i ∈ N, θi+1 := θi[p ∧�(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p\p]

[¬p ∧�(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p)\¬p]
where the notation ψ1[ψ2\ψ3] designates the formula obtained from ψ1 by replacing any occurrence of

subformula ψ3 in it by ψ2.
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 13

We use the following notation θ∞ := 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xp ∧ 〈〈y〉〉(a B y)X¬p). θ∞ under

USL is equivalent to {θi}i∈N. Let us suppose that there is a formula Θ ∈ SL
1

equivalent to θ∞ and suppose,

w.l.o.g, it is s.t. the negations in Θ are reduced to atoms (by use of the convenient equivalences in SL). We

call a non-trivial universal subformula in Θ a subformula (a, x)ϕ s.t. ¬ϕ is satis�able and x is universally

quanti�ed in Θ. We call Σ1-SL the set of formulas in SL without non-trivial universal subformula. We call

SL
1
R

the fragment of Σ1-SL without U nor R and with �.

The proof of Prop. 44 proceeds by an an absurdum argument. It is in two parts: �rst we show that Θ, if it

exists, must be equivalent to a formula in SL
1
R
. Then we show that it cannot be in SL

1
R
.

Θ is in SL
1
R
.

Lemma 3. Θ, if it exists, is in Σ1-SL

Proof. Let us consider the model U with domain {sI}I∈{0,1}∗ , with valuation v(p) = {sI·1}I∈{0,1}∗ and

s.t. for every I ∈ {0, 1}∗,Ch(a, sI) = {{sI·0}{sI·1}}. One checks that θ∞ is true in every states of U . One

also checks that for any satis�able LTL formula ϕ using p as only atom, 〈〈x〉〉(a, x)ϕ holds at any state si of

U . Then the innermost subformula (a, x)ϕ of Θ s.t. x is universally quanti�ed in Θ is s.t. ¬ϕ is unsatis�able.

So Θ is equivalent to Θ[ϕ[p ∨ ¬p\(a, x)ϕ]\〈〈x〉〉ϕ]. By iterating this transformation, one eliminates from Θ
all its universal quanti�ers, so as to obtain a Σ1-SL formula. Now we can delete the operators U and R in

Θ. �

Lemma 4. Θ can be written without U norR.

Proof. One observes that Θ is true only in models where a can force the execution to states where she can

ensure any satis�able formula at next state. In particular, if she can ensure ψ1Uψ2, ψ2 is satis�able and

she can ensure it at next state. Formally, Θ is equivalent to the formula Θ′ obtained from it by replacing

any subformula ψ = ψ1Uψ2 by

∨
0≤k≤|Θ|(X

kψ2 ∧
∧

0≤i<kX
iψ1), where Xk

stands for a sequence of X

of length k. In this transformation, the disjunction

∨
0≤k≤|Θ| ensures that a can achieve, in at most |Θ|

transitions, up to |Θ| possibly contradictory state properties. The deletion of the R operator proceeds the

similar way, by use of the equivalence ϕ1Rϕ2 ↔ (ϕ2U(ϕ1 ∧ ϕ2)) ∨�ϕ1. �

Θ′ is not in SL
1
R
. To prove that Θ′ is not in SL

1
R
, we use a compactness argument over formulas {θi}i∈N. To

proceed so, we give both an axiomatization of at-most-binary-trees (we call at-most-binary-trees trees s.t.

each node has one or two successors) and a translation from SL
1
R

to Σ1
1, the fragment of second-order-logic

with only existential quanti�ers over sets.

First, a modelM being an at-most-binary tree rooted in r is axiomatised by:

BT(R,R∗, r) :=

∀s(s 6= r → (∃=1s
′R(s′, s)) ∧ ¬R(s, r) ∧ (R∗(r, s)) ∧ ∃≤2s

′(R(s, s′)))

∧ ∀s, s′(R∗(s, s′)↔ (R(s, s′) ∨ ∃s′′(R(s, s′′) ∧R∗(s′′, s′))))

The translation from SL
1
R

to Σ1
1 uses the property, for a set of states S, to de�ne a strategy from s. It

means that S is a sub-tree inM rooted in s. It is axiomatised the following way :

Strat(S, s) := S(s) ∧ ∀s′ 6= s(S(s′)↔
(R∗(s, s′) ∧ ∃s′′(S(s′′) ∧R(s′, s′′))

∧ ∀s′′(R∗(s, s′′) ∧R∗(s′′, s′)→ S(s′′))))
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14 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Now we can translate SL
1
R

into Σ1
1 under at-most-binary trees:

[q]S(s) := q(s)(for every atom q)

[ϕ1 ∨ ϕ2]S(s) := [ϕ1]S(s) ∨ [ϕ2]S(s)
[ϕ1(s) ∧ ϕ2]S(s) := [ϕ1]S(s) ∧ [ϕ2]S(s)
[¬ϕ]S(s) := ¬[ϕ]S(s)
[(a, x)ϕ]S(s) := [ϕ]Sx(s)
[〈〈x〉〉ϕ]S(s) := ∃Sx(Strat(Sx , s) ∧ [ϕ]S(s))
[Xϕ]S(s) := ∀s′((S(s′) ∧ S(s, s′))→ [ϕS ](s′))
[�ϕ]S(s) := ∀s′((S(s′) ∧ S∗(s, s′))→ [ϕS ](s′))

Let us notice that if ϕ is a sentence, then the translated [ϕ]S(s) does not depend on S, so that we can

consider the formula with one free variable of state [ϕ](s).

The preceding translation ensures that each θi is equivalent, under at-most-binary trees, to a formula

ϕi := ∃Sx1
, . . .∃SXnφi(X1, . . . Xn) where φi(X1, . . . Xn) is a �rst-order formula. So ϕi is satis�able if

and only if φi(X1, . . . Xn) is.

Since the SAT-problem for Σ1
1 reduces to the SAT problem for �rst-order logic, we can apply the

compactness theorem: for every i ∈ N, consider the following class of models Ti: up to rank i, each

member is the binary tree with left direction going to p and right direction going to ¬p, and each state

loops on itself. After rank i each node has a single successor. Each transition from state s to s′ corresponds

to a choice for a in s. For each i, θi is true in every member of Ti. Now let I be a �nite set of indexes.

For any i ∈ I, θi is true in any member of Tmax(I)+1 and θ∞ is false in some of these models. For any

�nite {θi}i∈I ⊂ {θi}i∈N, {BT(R,R∗, r)} ∪ {θi}i∈I ∪ {¬Θ′} is satis�able. If Θ′ is in SL
1
R

then, by the

compactness theorem, {BT(R,R∗, r)} ∪ {θi}i∈N ∪ {¬Θ′} is satis�able, which is a contradiction. So Θ′ is

not SAT-equivalent to a �rst-order formula under at-most-binary trees, it is not in SL
1
R
.

In conclusion, if Θ′ exists, it must and cannot be in SL
1
R
. Then Θ′ does not exist, neither does Θ, and the

formula θ∞ is not expressible in SL, which achieves the proof of Prop. 44.

Now we can generalise this result to SL:

Lemma 5. If sustainable is expressible in SL over NATSs, then it is expressible in SL
1
over NATSs.

Proof. Let Ag be a set of agent and p a proposition, and let [MAg ] be the class of NATSs with set of agents

Ag . We also call SL
Ag

the SL language over Ag . Let a be an agent in Ag and suppose there is a formula

ϕAg [a] ∈ SL
Ag

expressing the sustainable control of a over p. So ϕAg [a] is such that for allM∈ [MAg ],
for all state s in its domain,M, s |=NATS ϕAg [a] i� a sustainably controls p from state s. We call SCAg(a, p)
the relative class of structures. Now, let [MAg 7→a] be the class of models with set of agents Ag and such

that the transitions only depend on choices made by a (for all a′ ∈ Ag\{a}, for all s ∈M,Ch(a′, s) = M ).

It is easy to see that [MAg 7→a] ∩ SCAg(a, p) is not empty and not equal to [MAg 7→a] (modelsM1 andM2

from Fig. 22 induce respective examples for proposition access and agent server).

Now, letMAg = 〈Ag ,M,At , v ,ChAg〉 ∈ [MAg 7→a]. We de�neMa ∈ [M{a}] so that the choices of

for a are the same inMAg as inMa : Ma = 〈Ag ,M,At , v ,Cha〉 where, for all s ∈ M,Cha(a, s) =
ChAg(a, s).

One checks that, the other way, for each Ma = 〈Ag ,M,At , v ,Cha〉 ∈ [M{a}] there is MAg =
〈Ag ,M,At , v ,ChAg〉 ∈ [MAg 7→a]〉 ∈ [MAg 7→a] such that for all s ∈M,Cha(a, s) = ChAg(a, s) and for

all a′ ∈ Ag\{a}, for all s ∈M,Ch(a′, s) = M .

Now, let ϕ[a] be the formula obtained from ϕAg [a] by deleting every binder (a′, x) such that a′ 6= a.
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 15

Again we note let θ∞ := 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xp ∧ 〈〈y〉〉(a B y)X¬p) again. For allMAg ∈
[MAg ],MAg |=NATS ϕAg [a] i�MAg |= θinfty . FurthermoreMAg |=NATS ϕAg [a] i�Ma |=NATS ϕ[a] and

MAg |= θ∞ i�Ma |= θ∞.

Eventually, for allMa ∈ [M{a}],Ma |= θ∞ i�Ma |=NATS ϕ[a]. Then, ϕ[a]∈ SL
1

expresses sustainable

control of a over p in SL
1
, in contradiction with Prop. 44. �

Thus, sustainable control is not expressible in SL, which achieves the proof of Prop. 33.

4. Model-Checking

In this section we discuss the model-checking of USL and USL
0
. The model-checking problem for USL

has the same complexity as for SL and ATLsc, which are non-elementarily decidable. Nevertheless, the

problem for USL
0

is much more tractable, since we get Pspace completeness.

4.1. USL. As for SL, the model-checking for USL with full memory strategies is non-elementarily decid-

able. The embedding of SL into USL provides the hardness part. The upper bound requires the e�ective

construction of an algorithm to perform the model-checking.

Theorem 1. Let us call USL[k-alt] the set of USL formulas with at most k quanti�er alternations, then the

model-checking problem for USL[k-alt] is k-ExpSpace hard.

Proof. Let k ∈ N and let MC-SL[k-alt](M, s, ϕ) be the problem of deciding the truth of an SL[k-alt] formula

ϕ at state s of a CGSM. It is k-ExpSpace-hard. By Prop. 11 it reduces to the problem MC-USL(GA, s, ϕ).

The transformation preserves the number of quanti�er alternations. It also yields a model with domain of

size |M| ×XΣ
. And it yields a formula ϕ with size bounded by 3× |ϕ|. So it is in linear space w.r.t. the

size of ϕ and it does not a�ect the k-ExpSpace lower bound for its model-checking. �

The e�ective existence of a non-elementary algorithm for the model-checking of USL yields the following

theorem:

Theorem 2. The model-checking problem for USL is NonElementary.

Here we prove the e�ective existence of a non-elementary algorithm for the model-checking of USL. To

do so we build, for every formula ϕ ∈ USL, NATSM and state s ofM, a nondeterministic parity automaton

N s
. If ϕ is a sentence, it is s.t. the language of N s

, L(N s), is empty if and only ifM, s |= ϕ. This proof is

adapted from [44, 99, 1111]. In the following paragraphs we give the necessary preliminary de�nitions:

4.1.1. Trees.

De�nition 18. Let ∆ and S be two �nite sets. A ∆-labelled S-tree is a pair T = 〈T, l〉 where:
• T ⊆ S∗ is a non empty set of �nite words upon alphabet S, satisfying the following property: for every
non empty word n = m.s ∈ T s.t.m ∈ S∗ and s ∈ S, we have thatm ∈ T
• l : T → ∆ is a labelling function

Let T = 〈T, l〉 be such a tree. Let n ∈ T , the set of directions in T from n is the set dirn(T ) = {s ∈ S |
n.s ∈ T}. The set of in�nite paths of T is the set pathT = {s0.s1 · · · ∈ Sω | ∀i ∈ N, s0.s1 . . . si ∈ T}. Let

ρ = (si)i∈N , then l(ρ) denotes the in�nite sequence (l(si))i∈N, and Inf(l(ρ)) is the set of characters in ∆
appearing in�nitely often in l(ρ).

Now, let ∆ = ∆1 × ∆2, and let T = 〈T, l〉 be a ∆-labelled S-tree. Then for n ∈ T , we write

l(n) = (l1(n), l2(n)) with l1(n) ∈ ∆1 and l2(n) ∈ ∆2. Furthermore, for i ∈ {1, 2}, we denote by

Proj∆i
(T ) the ∆i-labelled tree Ti = 〈T, li〉.
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16 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

4.1.2. Alternating-Tree Automata. Alternating-tree automata are a generalisation of nondeterministic tree

automata (their closure under complementation). The de�nition of the transition function for these automata

previously requires the de�nition of positive Boolean formulas:

De�nition 19. Let P be a set of atomic propositions, the set of positive Boolean formulas upon P (PBF(P)) is

generated by the following grammar:

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | > | ⊥
where p ∈ P

The satisfaction of a positive Boolean formula is de�ned recursively in the common way, under a

valuation v : P → {>,⊥}. We write that a subset P ′ of P satis�es a positive Boolean formula ϕ i� the

valuation vP ′ de�ned by vP ′(p) = > i� p ∈ P ′ does.

De�nition 20. Let S and ∆ be two �nite sets. An Alternating S-automaton upon ∆ (〈S,∆〉 − ATA for

short), is a 4−tuple A = 〈Q, q0, τ,Acc〉 where:
• Q is a �nite set of states,

• q0 ∈ Q is the initial state,

• τ : (Q×∆)→PBF(S ×Q) is the transition function,

• Acc : Qω → {>,⊥} is an acceptation function.

Under these notations we call S the set of directions of automaton A. Nondeterministic S-automata upon

∆ (〈S,∆〉 − NTAs for short) can be de�ned as particular cases of 〈S,∆〉 − ATAs : an NTA is an ATA in

which each conjunction in the transition function (written in disjunctive normal form) τ has exactly one move

associated with each direction in S. Formally, an NTA is an ATA in which for all state q and for every letter

d ∈ ∆, the transition τ(q, d) has shape:

τ(q, d) =
∨

i∈I(q)

(
∧
s∈S

(s, qi,s))

where I(q) is a �nite set of indices and the qi,s are states in Q.

4.1.3. Runs and Parity Acceptance Conditions.

De�nition 21. Let A = 〈Q, q0, τ,Acc〉 be an 〈S,∆〉 −ATA, and T = 〈T, l〉 a ∆-labelled S-tree. A run of

A on T is a S × Q-tree U = 〈U, p〉 s.t. for every node u ∈ U s.t. u = (t, q) = (t0t1 . . . tn, q0q1 . . . qn) we
have that:

• t ∈ T
• The set diru(U) = {(s0, q

′
0), (s1, q

′
1), . . . , (sn, q

′
n)} ⊆ S ×Q satis�es τ(q, p(t)).

A run U is accepting if Acc(v) = > for every in�nite path v ∈ (S ×Q)ω in PathU . A tree T is accepted

by A i� there is an accepting run of A upon T .

In the remaining of this proof we use parity acceptance conditions. A parity acceptance condition for

automaton A is identi�ed by a chain of subsets included in the set Q of states in A: F1 ⊆ · · · ⊆ Fk = Q
where k ∈ N. The acceptance condition is given by Acc(v) = > i�:

min({l ≤ k | Fk ∩ Inf(ProjQ(v)) is even)}
Under these notations, number k is called the index of the automaton. For automaton A it is denoted by

idA. And the size of A, |A|, is given by the number of its states. An ATA with such acceptation condition

is called an alternating-parity tree automaton, that we abbreviate by APT . Similarly, an NTA with a parity

acceptance condition is an NPT .
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 17

4.1.4. Preliminary Lemma. The remaining of the proof mainly consists in building, for every NATSM,

state s in M and formula ϕ ∈ USL, an APT AMϕ
accepting exactly the encodings of contexts χ s.t.

M, χ, s |= ϕ. The used encoding is formally de�ned in Def.2222. AMϕ
, andAMϕ

is built in induction upon ϕ
complexity. We �rst give the di�erent lemmas that are used to pass the inductive steps in this construction.

Basically, the steps for Boolean operators correspond to the intersection and complementation operation

for APTs . They are described by lemma 66. The case for temporal operators X and U are treated the usual

way.

In this construction, the inductive case for existential operators uses the operation of existential projection

for NTAs . Then, passing an existential step requires the nondeterminisation of the APT . Lemma 77 enables

this required operation. The building of the APT for ϕ goes through an alternation between APTs for

treating the complementation cases and NPTs for treating the existential projection.

Lemma 6 (Intersection and complementation). [1313, 1414] Let A be an

〈S,∆〉 −APT accepting language A and B be a 〈S,∆〉-APT accepting language B.

• There is an 〈S,∆〉 − APT C accepting language A ∩ B. The size |C| of C is bounded by |A|+ |B|
and its index is bounded by max(idA, idB).

• There is an 〈S,∆〉 −APT D accepting language A, the complementary of language A. Its size and
index are the same as those of A. More precisely, if A = 〈Q, q0, τ,Acc〉, then D = 〈Q, q0, τ ,Acc〉
where for every (q, d) ∈ Q×∆, τ(q, d) = ¬τ(q, d) and Acc is the complementary condition of Acc.

Lemma 7 (Nondeterminization). [1414] Let A be an 〈S,∆〉 −APT . There is a 〈S,∆〉 −NPT A accepting

the same language as A, and s.t. |N | = 2©(|A|.idA.log(|A|))
and idN =©(|A|.idA.log(|A|)).

4.1.5. Inputs of the Automata. The inputs for the automata checking the satisfaction of formulas by a context

are composed by an encoding of a context together with a state. From Def. 1818, the input must be from a

�nite set. However, USL semantics de�nes choices by help of a context χ = (χ, κ), where commitment κ
stands for any word upon (Ag ×X). So its domain is in�nite.

Nevertheless, the context registers data only about the previously evaluated binders. Then its size is

actually bound by the maximal number of binders in the formula under evaluation, so that its domain

can be made �nite. Let ϕ be an USL formula and let ψ be one of its subformulas. We write bd(ψ;ϕ) the

binder depth of ψ in ϕ. The notion is de�ned that way: bd(ψ;ϕ) is the number of ϕ’s subformulas of type

θ := (A B x)θ′ s.t. ψ is a subformula of θ. Now, let Kk
be the set of �nite words over (Ag ×X)∗ of length

k. Then the de�nition of our automaton uses Kbd(ψ;ϕ)
.

Furthermore, let s be a state in a NATS. We call a decision from s (Dcs) a function from Ag to P(M) s.t.

for every a ∈ Ag ,Dcs(a) ∈ Ch(a, s).

We write DC s
the set of decisions from s. We want to use it as an uniform set over the di�erent states.

So we need to delete the parameter s in the writing of DC s
: for every s ∈M , we enumerate by [1, . . . , ds]

the di�erent decisions from s. And we note es the corresponding function from [1, . . . , ds] to DC s
. Let dmax

be the maximal such ds for s ∈M . Then, for every s ∈M , we complete es s.t. for every i s.t. ds ≤ i ≤ dmax,

es(i) = es(ds). We designate by D the set [0, . . . dmax]. Now, let us write Ac and call actions the set of

partial functions from X to D.

The states of trees we examine are taken in S × Ac ×Kbd(ψ;ϕ)
. Let (s, ac, κ) ∈ S × Ac ×Kbd(ψ;ϕ)

,

it de�nes as its outcome an unique out(s, ac, κ) ⊆ M : out(s, ac, (A, x)) =
⋂
a∈A es(ac(x))(a) and

out(s, ac, κ · (A, x)) = out(s, ac, κ) ∩
⋂
a∈A es(ac(x))(a) if it is not empty, else out(s, ac, κ).

Before coming to the e�ective building of the APT , we de�ne a state-context Encoding:

De�nition 22. LetM be a NATS, s a state inM , χ a context forM and j ∈ N. Then aM×Ac×Kj
-labelled

M-tree T = 〈T, l〉, where T ⊆ Track , is the state-context Encoding for χ = (α, κ) i� it holds that for every
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18 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

t ∈ T , l(t) = (last(t), ac, κ), where ac is s.t. out(l(t)) = χ(last(t)). If T is the context-state encoding for χ,
we call ProjAc×Kj (T ) the context encoding for χ.

4.1.6. Checking a State-Context Encoding. Now we can give the main step lemma of that proof. It states that

given a NATSM and a formula ϕ in USL, one can build an automaton accepting exactly those trees that

are state-context encodings of contexts satisfying ϕ inM.

Lemma 8. LetM be a NATS with domainM and ϕ an USL formula. Then, there is an 〈M,M ×Ac×K0〉−
APT AMϕ s.t. for all states s ofM and contexts χ with commitment ∈ K0

forM, it holds thatM, χ, s |= ϕ

i� T ∈ L(AMϕ ), where T is the state-context encoding for χ.

Proof. The proof of the lemma is led by e�ective building of AMϕ . The building is inductive upon ϕ
complexity and the induction hypothesis is: for every subformula ψ of ϕ, there is an 〈M,M × Ac ×
Kbd(ψ;ϕ)〉 −APT AMψ s.t. for every state s ofM and context χ ∈ Kbd(ψ;ϕ)

, it holds thatM, χ, s |= ψ i�

T ∈ L(AMψ ), where T is the state-context encoding for χ.

In the following we write ∆ for M ×Ac ×Kbd(ψ;ϕ)
.

• Case ψ is an atomic proposition: the only thing to check is that the state at the root of the tree given

in entry satis�es ψ. Then AMψ = 〈{ψ}, ψ, τψ, ({}{ψ})〉 s.t. for every ent ∈ ∆, τψ(ψ, ent) = > if

ψ ∈ v(s) and τψ(ψ, (P, s)) = ⊥ otherwise.

• Caseψ = ¬ψ1. IfAMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
, then by lemma 66,AMψ = 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉.

• Case ψ = ψ1 ∧ ψ2. If AMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉 and AMψ2

= 〈Qψ2
, q0ψ2

, τψ2
,Accψ2

〉 then

AMψ = 〈Qψ, q0, τψ,Accψ〉 where:

– Qψ = {qoψ} ∪Qψ1
∪Qψ2

and qo /∈ Qψ1
∪Qψ2

– for every ent ∈ ∆, τψ(q0ψ , ent) = τψ1(q0ψ1
, ent) ∧ τψ2(q0ψ2

, ent)

– for every q ∈ Qψ1
∪Qψ1

and for every ent ∈ ∆, τψ(q, ent) =
∗ τψ1

(q, ent) if q ∈ Qψ1

∗ τψ2
(q, ent) if q ∈ Qψ2

– IfAccψ1
= (Fψ1

1 , . . . Fψ1

k1
) andAccψ2

= (Fψ2

1 , . . . Fψ2

k2
), max({k1, k2}) = ki and min({k1, k2}) =

kj then Accψ = (Fψ1

1 ∪ Fψ2

1 , . . . , Fψ1

kj
∪ Fψ2

kj
, Fψikj+1, . . . F

ψi
ki−1, Qψ).

• The resolution of case ψ = Xψ1 consists in a run of the automaton for ψ on the successors of the

root of the tree given in entrance. These successors are given by the outcomes of the label at the

root. Concretely, if AMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉 then AMψ = 〈Qψ, q0ψ , τψ,Accψ〉 where:

– Qψ = {qoψ} ∪Qψ1 and qo /∈ Qψ1

– for every ent ∈ ∆, τψ(q0ψ , ent) =
∧
s∈out(ent)(s, q0ψ )

– for every q ∈ Qψ 6= q0ψ and for every ent ∈ ∆, τψ(q, ent) = τψ1(q, ent)

– If Accψ1 = (Fψ1

1 , . . . Fψ1

k1
) then Accψ = (Fψ1

1 , . . . Fψ1

k1
∪ {q0ψ})

• The case ψ = ψ1Uψ2 is resolved by use of the equivalence (ψ1Uψ2)↔ ψ1 ∨ (ψ2 ∧X(ψ1Uψ2)).

Given that automata for ψ1 and ψ2 are de�ned, automaton for ψ returns the Boolean combination

by help of function τ , and the subformula X(ψ1Uψ2)) induces the initial state looping on itself.

To prevent the run from looping inde�nitely on the initial state q0ψ , q0ψ is included in the �rst

set of the parity acceptance condition. Precisely, if AMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉 and AMψ2

=

〈Qψ2 , q0ψ2
, τψ2

,Accψ2
〉 then AMψ = 〈Qψ, q0, τψ,Accψ〉 where:

– Qψ = {qoψ} ∪Qψ1 ∪Qψ2 and qo /∈ Qψ1 ∪Qψ2

– for every ent ∈ ∆, τψ(q0ψ , ent) = τψ2
(q0ψ2

, ent) ∨ (τψ1
(q0ψ1

, ent ∧
∧
s∈out(ent)(s, q0ψ ))

– for every q ∈ Qψ1 ∪Qψ2 and for every ent ∈ ∆, τψ(q, ent) =
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UPDATABLE STRATEGY LOGIC RESEARCH REPORT 19

∗ τψ1(q, ent) if q ∈ Qψ1

∗ τψ2(q, ent) if q ∈ Qψ2

– IfAccψ1
= (Fψ1

1 , . . . Fψ1

k1
) andAccψ2

= (Fψ2

1 , . . . Fψ2

k2
), max({k1, k2}) = ki and min({k1, k2}) =

kj then Accψ = ({q0ψ} ∪ F
ψ1

1 ∪ Fψ2

1 , . . . , {q0ψ} ∪ F
ψ1

kj
∪ Fψ2

kj
, {q0ψ} ∪ F

ψi
kj+1, . . . {q0ψ} ∪

Fψiki−1, Qψ).

• The case for ψ = (A B x)ψ1 only consists in a transformation of the transition function, so that it

is equal to the transition in automaton for ψ1 in which entry the choices along x made by A would

be added. If AMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉, then AMψ = 〈Qψ1

, q0ψ1
, τψ,Accψ1

〉 where for every

q ∈ Qψ1
and for every (s, ac, κ) ∈ ∆, τψ1

(q, (s, ac, κ)) = τψ(q, (s, ac, κ[A→ x]))).

• The case for ψ = (A 7 x)ψ1 again only consists in a transformation of the transition function. It is

so that the new transition function is equal to the transition in automaton for ψ1 in which entry

the choices along x made by A would be deleted. If AMψ1
= 〈Qψ1 , q0ψ1

, τψ1 ,Accψ1〉 , then AMψ =

〈Qψ1
, q0ψ1

, τψ,Accψ1
〉 where, for every q ∈ Qψ1

and for every (s, ac, κ) ∈ ∆, τψ1
(q, (s, ac, κ)) =

τψ(q, (s, ac, κ[A9 x])).

• For the case ψ = 〈〈x〉〉ψ, the transition function of the automaton for ψ gives the disjunction of

all possible transitions corresponding to each decision given by possibles strategy instantiating x
after each track. This operation is performed for NPTs , so that we need �rst to nondeterminise

the automaton for ψ1. If AMψ1
= 〈Qψ1

, q0ψ1
, τψ1

,Accψ1
〉 is an 〈M,∆〉 − APT , then by lemma

77, there is an 〈M,∆〉 − NPT A′Mψ1
= 〈Q′ψ1

, q′0ψ1
, τ ′ψ1

,Acc′ψ1
〉 accepting the same language, and

s.t. |A′Mψ1
| = 2©(|AMψ1

|.idAMψ1

.log(|AMψ1
|)) and idA′Mψ1

= ©(|AMψ1
|.idAMψ1

.log(|AMψ1
|)). For the

projection we de�ne the 〈M,∆〉−NPTAMψ = 〈Q′ψ1
, q′0ψ1

, τψ,Acc
′
ψ1
〉where for every (s, ac, κ) ∈

∆, τψ(q, (s, ac, κ)) =
∨

Dcs∈DCs τ ′ψ1
(q, (s, acdcs, κ), where acdcs = ac[x→ Dcs].

�

4.1.7. Conclusion of the Proof. A last lemma is needed for concluding the proof, so as to ensure that the M
component of labelling for the nodes of the state-context encoding is coherent with the node itself:

Lemma 9 (direction projection [1111]). LetN be an 〈M,M×∆〉-NPT and s0 ∈M . Then there is an 〈M,∆〉-
NPT N s0

s.t. for every ∆-labelledM -tree T = 〈T, v〉, T ∈ L(N s0) i� T ′ ∈ L(N ), where T ′ = 〈T ′, v′〉 is
theM ×∆-labelledM -tree s.t. v′(t) = (last(s0.t), v(t)), for every t ∈ T . Moreover, |N s0 | = |∆|.|N | and
idN s0 = idN .

Now we can prove the e�ective non-elementary decidability of the model-checking for USL:

Theorem 3. The model-checking problem for USL can be run in NonElementary with regard to the size of

the formula.

Proof. As seen in lemma 88, for any NATSM, state s ∈ M and context χ forM, the problem MC-USL

(M, s, χ, ϕ) of model-checking formula ϕ in state s and context χ forM reduces to the question whether

T ∈ L(AMϕ ), where T is the state-context encoding forχ. Furthermore,AMϕ is a 〈M,M×Ac×K0〉−APT .

By lemma 77, there is a 〈M,Ac ×K0〉−NPT NMϕ accepting the same language as AMϕ , and s.t. | NMϕ |=

2
©(|AMϕ |.idAMϕ .log(|AMϕ |))

and idNMϕ =©(|AMϕ |.idAMϕ .log(|AMϕ |)).

By lemma 99 applied on NMϕ , we have an 〈M,Ac × κ0〉-NPT NM,s
ϕ accepting exactly encodings of

contexts χ s.t.M, χ, s |= ϕ.

One easily checks that, ϕ being a sentence, for every context χ with empty context, M, χ, s |= ϕ
i� and onlyM, χ∅, κ∅, s |= ϕ. ThenM, s |= ϕ i� L(NM,s

ϕ ) is not empty. The emptiness problem for
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20 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

nondeterministic automata with n states and index k is solvable in©(nh) [1010]. Let us note |ϕ| the length

of formula ϕ. Each step of building for NMϕ increases the size of the current automatonM at most from

|M| to 2©(|M|idM.log(|M|))
and its index from idM to©(|M|idM.log(|M|) and there are at most |ϕ|+ 1

such steps. The step from NMϕ to NM,s
ϕ increases its size by factor |M|. Then NM,s

ϕ has size at most

|A| · et(m, 2,m) and index at most et(m, 2,m), were m =©(|ϕ|.log(|ϕ|) and et(n1, n2, n3) is de�ned,

for every n2, n3 ∈ N, by:

• et(0, n2, n3) = n2

• for every n1 ∈ N, et(n1 + 1, n2, n3) = n
et(n1,n2,n3)
3

Whence theorem 22, the model-checking for USL is decidable in time©(|M|.et(m, 2,m)). �

4.2. USL0. Here we present results of Pspace-completeness for the model-checking of USL
0
:

4.2.1. MC-USL
0
is Pspace-hard. This result is obtained by reduction of QBFSatk to MC-USL

0
, for every

k ∈ N. The proof is inspired by [33, 44].

Lemma 10. For every k ≥ 0, QBFSatk reduces to MC-USL
0
.

Proof. For k ∈ N, we consider the Σk-hard problem QBFSatk , that is the satis�ability problem of a formula

∃X1∀X2∃X3 . . . QkXk ϕ(X1, X2, X3, . . . Xk) where Qk is ∀ if k is even and ∃ otherwise, and where ϕ is

a Boolean formula in Conjunctive Normal Form (CNF) ϕ =
∧
j=1,...,n Cj , so that each Cj is a disjunctive

clause on the set of variables {X1, X2, X3, . . . , Xk}.
From an instance I of this problem we build the NATS GI = 〈AgI ,MI ,AtIvI ,ChI〉 represented without

label on Fig.33: it is turned base, so that the transition from any vl with l ≥ k is decided by agent al between

¬xl+1 and xl+1 and from ¬xl or xl it goes necessarily to vl. Any transition from vk+1 loops back to vk+1:

• MI =
⋃

0≤i≤k{xi,¬xi, vi} ∪ {vk+1}
• For l, i ∈ [1, . . . , k],ChI(ai, vl) =

– {{xl}{¬xl}} if l = i
– M if l 6= i

• For l ∈ [1, . . . , k],ChI(ai, xl) = ChI(ai,¬xl) = {{vl+1}}
• ChI(ai, vk+1) = {{vk+1}}

We label the states so as to make true, in each state xl or ¬xl, the set of clauses Cj ∈ ϕ compatible with

the corresponding truth value for Xl. That is:

• ∀1 ≤ l ≤ k, Lab(xl) = {Cj | Xl ∈ Cj}
• ∀1 ≤ l ≤ k, Lab(¬xl) = {Cj | ¬Xl ∈ Cj}

Since each player al e�ciently plays once for all and plays by deciding whether Xl holds or not, a

strategy for al corresponds to a truth value for the variable Xl. Indeed, the formula 〈〈xl〉〉(al B x)♦ψ (resp.

¬〈〈xl〉〉(al B x)♦ψ) means that there exists a truth value for Xl s.t. (resp. for every truth value of for Xl,)

ψ stands.

Now, consider the following USL formula:

ϕ := 〈〈x1〉〉(a1 B x1)(¬〈〈x2〉〉(a2 B x2)¬(

〈〈x〉〉(a3 B x)(. . . (¬k〈〈xk〉〉(ak B xk)¬k(
∧

j∈1,...,J

♦Cj)) . . . )

where for any integer l such that 1 ≤ l ≤ k,¬l is equal to ¬ if l is odd and empty if l is even. It holds

at v1 i� ∃X1∀X2∃X3 . . . QkXkϕ(X1, X2, X3, . . . Xn), is satis�able, that is if I is a positive instance of

QBFSatk . Then for every k ∈ N, QBFSatk reduces to the model-checking of the fragment of USL
0

with k
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v1

¬x1

x1

v2

¬x2

x2

v3

¬xk

xk

vk+1

Figure 3. GI : an illustration of QBFSatk as a problem of model- checking for memory-less USL

alternations of quanti�ers. Because unbounded QBFSat is Pspace complete then, we get the lower bound

for the full model-checking of memory-less USL.

�

4.2.2. MC-USL
0
is Pspace-Complete. The algorithm for MC-USL

0
proceeds recursively, enumerating

strategies in a �rst time, then using the Pspace-complete model-checking for LTL in Kripke models.

Let us �rst de�ne the restriction of a NATS.

De�nition 23 (Mχ). Let M = 〈Ag ,M,At , v ,Ch〉 be a NATS and let χ = (α, κ) be a context over

memory-less strategies inM. ThenMχ = 〈Ag ,M,At , v ,Chχ〉 is the NATS de�ned by: for every (a, s) ∈
Ag ×M,Chχ(a, s) = {χ(s) ∩ c i� it is not empty, else χ(a, s)}c∈Ch(a,s).

Now, we introduce the notations enabling to consider a path formula as an LTL formula over its state

subformulas (that is its subformulas of type 〈〈x〉〉ψ, (a B x)ψ or (a 7 x)ψ) . For a formula ϕ, let us write

Q(ϕ) the set of its outermost state subformulas , and LTLTϕ the formula obtained from ϕ by replacing in it

every subformula ψ in Q(ϕ) by a new atom ψ.

LetM be a NATS and ϕ an LTL formula. Then MC-LTL(M, s, ϕ) designates the model-checking for

universal satisfaction of ϕ at state s in the Kripke modelM′ de�ned by:

• The domain M and the valuation function v are those ofM.

• The transition relation R is: for every s, s′ ∈ M,R(s, s′) i� ∀a ∈ Ag ,∃s ∈ M, ∃c ∈ Ch(a, s) s.t.

s′ ∈ c.
With these notations, the procedure is described by Alg.11.

Note that a strategy can be stored in space©(|Ag | × |Q|). Since the labelling of the states in M is linear

over the size of ϕ and since the algorithm used as oracle in Alg.11 (MC-LTL) is Pspace-complete, we have

that Alg.11 runs in Pspace.

5. Related work

Several directions have already been explored for extensions of ATL-ATL
∗

considering the strategies

played by di�erent coalitions of agents. Table 11 sums up the main mechanisms at stake in this article and

their occurrences in related works.

In the logic ATLES [1616], the ATL operator 〈〈·〉〉 is replaced with an operator 〈〈·〉〉ρ that takes an unquanti�ed

strategy term ρ as parameter. These prede�ned strategy terms are interpreted as semantic strategies, and the

fact to refer to strategies in the syntax is not convenient in practice. This logic has a Ptime model-checking.

However, its expressiveness is strictly higher that ATL but incomparable with ATL
∗
.
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22 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Algorithm 1 MC-USL (M, χ, s, ϕ)

Require: A NATSM, a context χ = (κ, χ), s0 ∈M and an USL path formula ϕ
Ensure: YES i�M, χ, s |= ϕM′ =Mχ

for all ψ ∈ Q(ϕ) do
for all s′ ∈M do
if ψ = 〈〈x〉〉ψ′ then
for all σ ∈ Strat do
if MC-USL (M′, (κ, χ[x→ σ]), s′, ψ) then

label s′ with ψ
end if

end for
else if ψ = (A B x)ψ′ then
if MC-USL (M′, (κ[A→ x], χ), s, ψ) then

label s′ with ψ
end if

else if ψ = (A 7 x)ψ′ then
if MC-USL (M′, (κ[A9 x], χ), s, ψ) then

label s′ with ψ
end if

end if
end for

end for
return MC-LTL(M′, s, LTLTϕ)

In BSIL [1717], an operator explicitly mentions that a strategy bound to a coalition can be composed with

the context. In terms of expressiveness, it extends ATL but is incomparable with ATL
∗
. It is subsumed by

SL and ATLsc (and therefore by USL) but has “only” a Pspace-complete model-checking problem.

The overwriting of strategies is also questioned in IATL [11]. In this proposition, the authors make a

distinction between ATL- and SL-style revocable strategies and irrevocable strategies. They propose a

formalism for the latter. We believe that USL strategies o�er an adequate synthesis between both views

because they can be modi�ed later and hold, at the same time, some de�nitive commitments from agents.

The work presented here deeply refers to SL [88, 1111, 1212], which fully enables to compose the di�erent

strategies followed by agents in a context. Nevertheless, the composition of several strategies for one agent

is not possible in that formalism, since an agent overwrites her previous strategy when she is bound to a

new one.

Incidentally, SL also bears a syntactic constraint that is not present in USL: all agents must be explicitly

bound to a strategy before evaluating a temporal formula. In addition to the unnecessary important size of

formulas, this raises the more fundamental problem of (lack of) modularity: a single informal speci�cation

may give rise to di�erent SL formulas depending on the number of agents of the system not mentioned in

the speci�cation.

The idea of agents explicitly unbound from their current strategies is also present in ATLsc [44, 99] with

the operator ·〉A〈·. Yet, strategies are also automatically revoked in case a given agent is bound to several

strategies: it is not possible for an agent to re�ne her strategy.

All these formalisms enrich the composition of strategies de�ned in ATL with a notion of strategy

context. But they only compose strategies if they concern distinct agents. We �gure USL as a further step
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Table 1. Strategy contexts, revocation and re�nement in multi-agent temporal logics (p

stands for “partial support”).

Strategy Explicit No systematic Revocable Re�nable Sustainable

contexts revocation revocation strategies strategies capabilities

ATL ×
ATLES p p ×
BSIL p p ×
IATL p ×
SL × ×
ATLsc × × ×
USL × × × × × ×

in this contextualisation. In USL, binding an agent to a strategy commits her to play this strategy. This

strategy can then be re�ned, and its possible revocation must be explicit.

6. Conclusion

In this article we de�ned the logic USL, in which we can reason about agents re�ning or revoking their

strategies. This uni�es a rich composition of strategies that allows strategies re�nement with the usual

revocation of strategies developed in the literature. USL strictly extends SL, and is in particular able to

express what we called sustainable capabilities. The syntax of USL is also more �exible than that of SL,

and is better adapted to modular speci�cations. Its model-checking problem is NonElementary but it is

Pspace-complete for its memory-less restriction.

As future work, we plan to study applications of USL. In particular, as we already noticed in [55], temporal

multi-agents logics can be useful to investigate goal- and agent-oriented requirements engineering problems.

We will investigate on the possibilities o�ered by USL for the veri�cation of requirements engineering

models.

We will also study further the expressiveness o�ered by unbinders. In this article we exclusively discussed

the meaning of unbinding an agent before she is herself bound again. The expressiveness given by unbinding

some agents before binding others should also be analysed.

Finally, we want to compare USL with the logic QDµ [1515]. The latter formalism enables to express

�xed-point properties about strategies and subsumes SL. Since the concept of sustainable capabilities, which

seems to characterise well USL expressiveness, is close to a �xed point, we think that this comparison may

yield interesting results.
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