
HAL Id: hal-00785659
https://hal.science/hal-00785659v1

Preprint submitted on 6 Feb 2013 (v1), last revised 9 Apr 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Updatable Strategy Logic
Christophe Chareton, Julien Brunel, David Chemouil

To cite this version:
Christophe Chareton, Julien Brunel, David Chemouil. Updatable Strategy Logic. 2013. �hal-
00785659v1�

https://hal.science/hal-00785659v1
https://hal.archives-ouvertes.fr

UPDATABLE STRATEGY LOGIC

CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Abstract. In this technical report, we present a temporal multi-agent logic called Updatable Strategy Logic

(USL) which subsumes the main propositions in this area, such as ATL-ATL*, ATLsc and SL. These logics

allow to express the capabilities of agents to ensure the satisfaction of temporal properties. USL mainly

di�ers from SL in two ways. Semantically, the notion of strategy composition is extended to enable an agent

to update (or re�ne) its own strategy without revoking it. Syntactically, a new operator, called unbinder, is

introduced: it allows an agent to explicitly revoke a strategy, whereas it is implicitly done according to SL

semantics.

We show that USL allows to express the notion of sustainable capability for an agent, i.e., a capability

that still holds even after it has been employed. This makes USL strictly more expressive than SL. We also

show that the model-checking problem for USL is decidable (but non-elementary as for SL), and that it is

PSPACE-complete for its memory-less version.

1. Introduction

Multi-agent logics are receiving growing interest in contemporary research. Since the seminal work

of R. Alur, Th. A. Henzinger, and O. Kupferman [AHK02AHK02], increasing e�orts have been made to formalize

agent interactions and strategies in semantic games.

Basically, multi-agent logics enable to formulate assertions about the ability of agents to ensure

temporal properties. Thus, ATL-ATL
∗

appears as a generalization of CTL-CTL
∗

in which the path

quanti�ers E and A are replaced by strategy quanti�ers. Strategy quanti�ers (the existential 〈〈A〉〉 and the

universal JAK) have a (coalition of) agent(s) as parameter. 〈〈A〉〉ϕ means that agents in A can act so as to

ensure the satisfaction of the temporal formula ϕ. It is interpreted in Concurrent Game Structures (CGSs),
where agents make choices in�uencing the execution of the system. Formula 〈〈A〉〉ϕ is true if agents in A
have a strategy s.t. if they play this strategy, they force the system execution to satisfy ϕ, whatever the

other agents do.

Since these logics allow to reason about agent interactions, the ability to express strategy composition,

which comes to nesting strategy quanti�ers in a formula, is a major issue. In order to illustrate this

aspect, let us consider the following ATL formula involving two agents a1 and a2:

(1) 〈〈a1〉〉�(ϕ1 ∧ 〈〈a2〉〉�ϕ2)

where �ϕ is the classical temporal operator meaning ϕ is always true. In ATL-ATL
∗

semantics, the

operator 〈〈a2〉〉 drops the strategies introduced by any earlier quanti�er (here 〈〈a1〉〉). So during the

evaluation of �ϕ2, the strategy adopted by a1 is not taken into account. Note that here and in the

remaining of this article, we use a lower case to denote a single agent and a capital letter to denote a

coalition (set) of agents.

ATLsc [BDCLM09BDCLM09, DCL11DCL11], while keeping the ATL syntax, adapts the semantics in order to interpret

formulas in a context which stores strategies introduced by earlier quanti�ers.

Strategy Logic (SL [MMV10MMV10, MMPV11MMPV11, CHP10CHP10]) is another interesting proposition, in which the ATL

operator 〈〈a〉〉 is split into two di�erent operators: an existential quanti�er over strategies 〈〈x〉〉, where x
is a strategy variable, and a binder (a, x), which stores into a context the information that a plays along

the strategy instantiating variable x (we write σx such a strategy in the remaining of this paper). In

1

2 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

order to illustrate the SL syntax, consider the following SL formula that is equivalent to formula 11 when

the latter is considered as an ATLsc formula:

(2) 〈〈x1〉〉(a1 , x1)Jx2K(a2 , x2) . . . Jxk K(ak , xk)�(ϕ1 ∧ 〈〈x2〉〉(a2 , x2)�ϕ2)

where JxK is the universal quanti�er over strategy variables (dual of 〈〈x〉〉) and {a1 , . . . ak } is the set of

agents in the system under consideration.

In SL, the composition of strategies is de�ned in a quite natural way (as far as the strategies concern

distinct agents) through the semantics of the nesting of binders. For instance, in formula 22, when

evaluating �ϕ2, a1 remains bound to strategy σx1
except if a1 and a2 are the same agent. In which case

the binder (a, x2) unbinds a from σx1
before binding her to σx2

. Indeed, when evaluating a binder (a, x),

if agent a is bound to a strategy in the current context, she automatically revokes it to play along σx .

By automatically revoking an agent’s strategy before binding her to a new one, SL prevents from

reasoning about an agent re�ning its own strategy. In particular, it is not possible to express what we

call sustainable capability, i.e. an agent’s capability which remains active even when already employed

by this very agent. (We also say that an agent having the sustainable capability to enforce both logical

values of a given property has sustainable control on this property.) This will be described more precisely

in the next section.

In this paper, we present Updatable Strategy Logic (USL), a logic obtained from SL by making two

main evolutions. Semantically, the notion of strategy composition is extended to enable an agent to

update (or re�ne) its own strategy without revoking it. Syntactically, in addition to the binder (a B x),
which keeps track of the strategies previously bound to agent a (note our notation slightly di�ers from

SL), a new operator (a 7 x), called unbinder, allows an agent to explicitly revoke a strategy.

Incidentally, USL does not have the following syntactic constraint that holds in SL: all the agents need

to be explicitly bound to a strategy before evaluating a temporal formula. Because of this constraint, the

agents that were not mentioned in ATL formula 11 are bound to a universally-quanti�ed strategy in SL

formula 22. In addition to the unnecessary important size of formulas, this raises the problem of modular

speci�cations: a single informal speci�cation can give rise to various formulas depending on the number

of agents of the system that are not mentioned in the speci�cation. In USL, thanks to a �exible treatment

of contexts, we avoid this constraint. As an illustration, if agents a1 and a2 are not the same, the SL

formula 22 would be speci�ed as the following equivalent USL formula, which does not depend on the

number of agents:

(3) 〈〈x1〉〉(a1 B x1)�(ϕ1 ∧ 〈〈x2〉〉(a2 B x2)�ϕ2)

The remaining of this paper is organized as follows: Sect. 22 informally introduces USL operators and

semantics. It also further explains the notions of sustainable capability and control. Sect. 33 gives the

syntax and the semantics of USL, and a restricted semantics with memory-less strategies (we call the

resulting logic USL
0
). Sect. 44 studies the expressive power of USL relatively to SL. Sect. 55 provides the

following results about model-checking: for USL it is non-elementarily decidable, and for USL
0

it is

PSPACE-complete.

2. Updatable Strategy Logic (USL)

Let us consider the natural language property a can always ensure p in the next state. In SL, if a is the

only agent, it is expressed by formula 44:

(4) 〈〈x1〉〉(a, x1)�(〈〈x2〉〉(a, x2)Xp)

where X is the temporal operator meaning in the next state. Let us compare formula 44 with the similar

formula in USL:

(5) 〈〈x1〉〉(a B x1)�(〈〈x2〉〉(a B x2)Xp)

UPDATABLE STRATEGY LOGIC 3

In formula 44, subformula 〈〈x2〉〉(a, x2)Xp states that a can adopt a strategy σx2
that ensures Xp, even

if σx2
is in contradiction with σx1

and makes her lose her ability to ensure Xp later on. In other words,

formula 44 means that a can ensure Xp once, and decides the moment she will. On the contrary, USL

requires that σx1
and σx2

can be composed. So the strategy σx2
does not revoke σx1

, according to which

a has the capability to ensure Xp later on in the execution. Thus, formula 55 expresses that a is able to

ensure Xp as many times as she wants.

The USL formula that is equivalent to formula 44 is actually formula 66, in which a is explicitly unbound

from σx1
and then bound to σx2

:

(6) 〈〈x1〉〉(a B x1)�(〈〈x2〉〉(a 7 x1)(a B x2)Xp)

This formula holds in state s0 of model M1 illustrated by Fig. 11. The transitions are labelled the

following way: let s, s′ be two states and c a choice, then the transition from s to s′ is labelled with c i�

a can force it by playing choice c. Indeed, by playing strategy always-play-c1, a remains in a position

where she can ensure p. However, as soon as she ensures p, she loses her capability. She can achieve

Xp when she wants, but only once: her capability is not sustainable. For this reason, formula 55, which

expresses the capability to ensure p as many times as agent a wants, does not hold in state s0 ofM1.

s0

¬p
s1p

s2

¬pc2 c1 , c2

c1 c1 , c2

Figure 1. ModelM1

Let us now consider the modelM2 from Fig.22. Again, choices from a label the compatible transitions.

Note that they are not deterministic: from a given state, a choice may not decide on the successor, even

in a model with one single agent. In USL indeed, when all the agents give their choices in the current

state, it does not uniquely determine the successor state.

s0

¬p
s1p

s2

¬p

c1 , c2

c1 , c3

c3

c1 , c3 c1 , c2

c1 , c2 , c3

Figure 2. ModelM2

InM2, formula 55 is true at s0 with the strategy always-play-c1 instantiating x1. Indeed, this strategy

can be re�ned by making the additional choice c2 (which ensures Xp) at any time. With this strategy, a
always remains capable of ensuring Xp, as many times as she wants: her capability to do so is sustainable.

A speci�c kind of sustainable capability arises for agent a when she is sustainably capable of deciding

whether or not a property ψ holds. We speak of sustainable control: a sustainably controls the value of ψ.

Formula 77 expresses that a has sustainable control on atomic proposition p.

(7) 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xp ∧ 〈〈y〉〉(a B y)X¬p)

We show in Sect. 44 that the USL formula 77 cannot be satis�ed in the class of SL models (because of their

determinism). Furthermore, even with a natural extension of SL semantics to non-deterministic models,

formula 77 is not expressible in SL.

4 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Note that reasoning about strategies that can be revoked by later introduced strategies can be useful

and �ts well with the classical interpretation of branching-time operators in CTL-CTL
∗
, where quanti�ers

do not restrain the possible execution but delimit those of the states and paths that are under focus. As

noticed in [ÅGJ07ÅGJ07], it corresponds to revocable strategies, where agents are not committed to strategies

but are free to change them. In USL, we propose a concept of strategy composition that does not

automatically revoke previous strategies in order to express sustainable capabilities, and unify it with

the classical branching-time mechanisms of strategies revocation thanks to the unbinder operator: in

USL, strategies are both updatable and revocable.

The following section gives the syntax and the semantics of USL.

3. Syntax and semantics

In this section we present the syntax and semantics of USL, together with the related de�nitions they

require.

3.1. Syntax.

De�nition 1. Let Ag be a set of agents, At a set of propositions and X a set of variables, USL (Ag,At , X)
is given by the following grammar:

• State formulas:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (A B x)ψ | (A 7 x)ψ

• Path formulas:
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψUψ | Xψ

where p ∈ At , A ⊆ Ag, x ∈ X . Propositional connective ∨ and constants > and ⊥ are de�ned as usual.
We also use the common temporal abbreviations ^ and �, de�ned as follows: ^ϕ , >Uϕ and �ϕ , ¬^¬ϕ.

A formula where each bound variable is previously quanti�ed is called a sentence. We de�ne the set of

subformulas of a formula ϕ as usual and we call its length |ϕ| the number of its subformulas. We de�ne

inductively a notion of free variables Fv(ϕ) as follows:

• Fv(p) = ∅, for p ∈ At
• Fv(¬ϕ) = Fv(Xϕ) = Fv((A 7 x)ϕ) = Fv(ϕ)
• Fv(ϕ1 ∧ ϕ2) = Fv(ϕ1Uϕ2) = Fv(ϕ1) ∪ Fv(ϕ2)
• Fv(〈〈x〉〉ϕ) = Fv(ϕ) − {x}
• Fv((A B x)ϕ) = Fv(ϕ) ∪ {x}

A sentence is a state formula ϕ s.t. Fv(ϕ) = ∅.

3.2. Semantics. In this section we de�ne the models of USL, which extends classical models of ATL

and SL with non-determinism. We also de�ne the related semantic notions.

De�nition 2. A Non-deterministic Alternating Transition System (NATS) is a tupleM = 〈Ag, M,At , v ,
Ch〉 where:

• M is a set of states, called the domain of the NATS, At is the set of atomic propositions and v is a
valuation function, from M to P (At).

• Ch: Ag × M → P (P (M)) is a choice function mapping a pair 〈agent , state〉 to a non-empty family
of choices of possible next states. It is such for every state s ∈ M and for every agent a1 and a2 in
Ag, for every c1 ∈ Ch(a1 , s) and c2 ∈ Ch(a2 , s), c1 ∩ c2 , ∅.

We call a �nite sequence of states in M a track τ. The last element of a track τ is denoted by last(τ).
The set of tracks that are possible inM is denoted by trackM : τ = s0s1 . . . sk ∈ trackM i� for every

i < k , for every a ∈ Ag, there is ca ∈ P (M) s.t. ca ∈ Ch(a, si) and si+1 ∈ ca . Similarly, an in�nite

sequence of states that are possible inM (all its pre�xes are in trackM) is called a path (inM). Let λ

UPDATABLE STRATEGY LOGIC 5

be a path, then for every i ∈ N, we write λ i its ith element. We also write λk the path s.t. for every

i ∈ N, λk
i
= λk+i .

A strategy is a function σ from Ag × trackM to P (M) s.t. for every (a, τ) ∈ Ag × trackM , σ(a, τ) ∈
Ch(a, last(τ)). We note Strat the set of strategies in a model. Now, out (s, σ) denotes the set of outcomes

of σ from s, i.e. the set of paths in which the agents have been using σ: let σ be a strategy and

λ = λ0λ1 . . . an in�nite sequence over M , then λ ∈ out(s, σ) i� λ is a path inM, s = λ0 and for every

n ∈ N, λn+1 ∈
⋂

a∈Ag σ(a, λ0 . . . λn).
A context κ is a �nite sequence upon (P (Ag) × X), representing the active bindings. Let κ1 and κ2 be

two di�erent contexts, then we note κ1 · κ2 their concatenation. A memory µ is a partial function from

X to Strat, mapping quanti�ed strategy variables to the corresponding strategy instantiation. A plan
π is a pair of a memory and a context. Just as a strategy does, a plan de�nes a function from trackM
to P (M). We use the same notation for the plan itself and its induced function. Let κ∅ be the empty

sequence upon (P (Ag) × X), then (µ, κ∅)(τ) = M , (µ, (A, x))(τ) =
⋂

a∈A µ(x)(a, τ) if A , ∅, else M ,

and (µ, κ · (A, x))(τ) = (µ, κ)(τ) ∩ (µ, (A, x))(τ) if this intersection is not empty. Otherwise (which

means the context stores contradictory strategies for the same agent) (µ, κ · (A, x))(τ) = (µ, κ)(τ). Now

we can de�ne the outcomes of a plan π, out (π), as the set of paths derived from π: let λ = λ0 , λ1 , . . .
be an in�nite sequence over M , then λ ∈ out(s, π) i� λ is a path inM, s = λ0 and for every n ∈ N,

λn+1 ∈ π(λ0 . . . λn). Notice that the outcomes of a strategy can be de�ned as the outcomes of a plan that

only represents this strategy: for every strategy σ and state s, out(s, σ) = out
(
s, ((x 7→ σ), (Ag, x))

)
.

De�nition 3 (Strategy and memory translation). Let σ be a strategy and τ be a track. Then στ is the
strategy s.t. for every τ′ ∈ trackM , στ (τ′) = σ(ττ′). The notion is extended to a memory: for every µ, µτ

is the memory with domain equal to that of µ and s.t. for every x ∈ dom(µ), µτ (x) = (µ(x))τ

We also de�ne the following transformations of contexts and memories. Given a context κ, coalitions

A and B, a strategy variable x, a memory µ and a strategy σ:

• κ[A→ x] = κ · (A B x)
• ((B, x) · κ)[A9 x] = (B\A, x) · (κ[A9 x]) and κ∅[A9 x] = κ∅
• µ[x → σ] is the memory with domain dom(µ) ∪ {x} s.t. ∀y ∈ dom(µ)\{x}, µ[x → σ](y) = µ(y)

and µ[x → σ](x) = σ

De�nition 4 (Satisfaction relation). LetM be a NATS, then for every memory µ, context κ, state s and
path λ:

• State formulas:
– M , µ, κ, s |= p i� p ∈ v(s), with p ∈ At
– M , µ, κ, s |= ¬ϕ i� it is not true thatM , µ, κ, s |= ϕ
– M , µ, κ, s |= ϕ1 ∧ ϕ2 i�M , µ, κ, s |= ϕ1 andM , µ, κ, s |= ϕ2

– M , µ, κ, s |= 〈〈x〉〉ϕ i� there is a strategy σ ∈ Strat s.t.M , µ[x → σ], κ, s |= ϕ
– M , µ, κ, s |= (A B x)ϕ i� for every λ in out(µ, κ[A→ x]),M , µ, κ[A→ x], λ |= ϕ
– M , µ, κ, s |= (A 7 x)ϕ i� for all λ in out(µ, κ[A9 x]),M , µ, κ[A9 x], λ |= ϕ

• Path formulas :
– M , µ, κ, λ |= ϕ i�M , µ, κ, λ0 |= ϕ, for every state formula ϕ
– M , µ, κ, λ |= ¬ψ i� it is not true thatM , µ, κ, λ |= ψ
– M , µ, κ, λ |= ψ1 ∧ ψ2 i�M , µ, κ, λ |= ψ1 andM , µ, κ, λ |= ψ2

– M , µ, κ, λ |= Xψ i�M , µλ0 , κ, λ1 |= ψ.
– M , µ, κ, λ |= ψ1Uψ2 i� there is i ∈ N s.t.M , µλ0 ...λi−1 , κ, λ i |= ψ2 and for every 0 ≤ j <

i,M , µλ0 ...λ j−1 , κ, λ j |= ψ1

Let µ∅ be the unique strategy memory with empty domain, κ∅ the empty word upon (Ag × X) and ϕ be
a sentence in USL. ThenM , s |= ϕ i�M , µ∅ , κ∅ , s |= ϕ.

6 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

Let us give the following comment over these de�nitions: for every plan π = (µ, κ), the de�nition of

out (π) ensures that the di�erent binders encoded in π compose their choices together, as far as possible.
In case two contradictory choices from an agent are encoded in the plan, the priority is given to the �rst

binding that was introduced in this plan (the left most binding in the formula). This guarantees that a

formula requiring the composition of two contradictory strategies is false. For example, suppose that

〈〈x1〉〉(a B x1)ϕ1 and 〈〈x2〉〉(a B x2)ϕ2 are both true in a state of a model, and suppose that σx1
and σx2

necessarily rely on contradictory choices of a (this means that a cannot play in a way that ensures both

ϕ1 and ϕ2). Then, 〈〈x1〉〉(a B x1)(ϕ1 ∧ 〈〈x2〉〉(a B x2)ϕ2) is false in the same state of the same model. If

the priority was given to the most recent binding (right most binding in the formula), the strategy σx1

would be revoked and the formula would be satis�ed.

3.3. USL0. USL
0

is the logic obtained by modifying the semantics of USL so that the strategies only

depend on the current state, rather than on a whole track. We call such strategies memory-less strategies.
Many cases of programming and interaction situations can actually be modeled by only using memory-

less strategies.

De�nition 5. A memory-less strategy is a function σ from Ag × M to P (M). It is s.t. for every (a, s) ∈
Ag × M, σ(a, s) ∈ Ch(a, s). We note Strat0 the set of memory-less strategies in a model.

All the semantic de�nitions for USL adapt to USL
0

by simply modifying the clause for 〈〈x〉〉: the

strategy variable ranges over Strat0
instead of Strat in the case of USL

0
.

4. USL and SL

In this section, we compare the expressive power of SL and USL. This comparison is not straightforward

because the models of both logics di�er slightly: in particular SL models, called CGSs, are deterministic

in the sense that given the current state and a choice for every agent, there is only one possible successor

state, which is not the case in USL models (NATS).

The main results of this section are stated as follows:

• In order to show the non-strict inclusion of SL into USL, we provide an embedding of SL models

(Concurrent Games Structures, or CGSs) and formulas into USL models and formulas. Our

embedding preserves the satisfaction relation.

• In the case of one single agent (USL
1

and SL
1
) the embedding is trivial. In this case, we show that:

– Sustainable control is not expressible under deterministic models, neither in USL nor in SL.

Then one needs the non-determinism of NATSs to express it.

– Sustainable control expressed by formula 77 is not expressible under a natural extension of

SL semantics to NATSs.

4.1. Embedding of SL into USL. The embedding of SL into USL consists in a parallel transformation

from SL models and formulas to USL models and formulas. This transformation preserves the satisfaction

relation. Let us �rst bring the necessary de�nitions related to SL:

4.1.1. SL. This paragraph only gives a brief presentation of SL syntax and semantics. The non familiar

reader may refer to [MMPV11MMPV11] for a complete presentation of this framework.

De�nition 6 (SL syntax). Given a set Ag of agents, a set At of atomic propositions and a set X of strategy
variables, the syntax of SL is de�ned by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | 〈〈x〉〉ϕ | JxKϕ | (a, x)ϕ

where a is an agent and x ranges over a �nite set X of strategy variables. The sentences of SL are the
formulas with no free variable and s.t. every temporal subformula (of type Xψ1 , ψ1Uψ2 or ψ1Rψ2) is in the
scope of at least one binder (a, x) for each agent a.

Here is the de�nition of CGSs:

UPDATABLE STRATEGY LOGIC 7

De�nition 7. A CGS is a tuple G = 〈Ag, M,At , v ,Ac, Tr〉 where :
• Ag, M,At and v are as in CGSs.
• Ac is a set of actions.
• Let DC = AcAg be the set of decisions, i.e. the set of total functions from agents to actions. Then
Tr : M × DC → M is the transition function.

Note that, modulo the interpretation of actions as the set of successors compatible with each agent

playing them (for every a ∈ Ag, for every ac ∈ Ac, the choice corresponding to (a, ac) is {Tr (Dc) | Dc ∈
AcAg ,Dc(a) = ac}), CGSs are a particular case of NATSs (the case where a vector of one choice per agent

from a given state uniquely determines a successor).

De�nition 8. Let G be a CGS, the set trackG is the set of paths λ0λ1 . . . s.t. for every n ∈ N there is
Dc ∈ DC s.t. Tr (λn ,Dc) = λn+1. A strategy in CGS G is a partial function from trackG to the set of actions.
We note Strat the set of strategies in a model:

Strat = {σ : trackG → Ac}

We also call s-total a strategy that is de�ned upon the whole set of sequences beginning with s. A strategy
context is a partial function from Ag ∪ X to Strat. It is s-total if it de�nes only s-total strategies and it is
complete if Ag is included in its domain.

Note that strategies for SL have tracks as single parameter, so that a strategy binds each agent of a

coalition to the same actions. Then the set of possible strategies for a coalition A does not match the

product of the sets of possible strategies for agents in A. This is the main reason why the embedding

from SL to USL is not trivial.

The semantics of SL is given as a relation between a formula and a triple (G , κ, s) where:

• G is a CGS.

• κ is a strategy context over G.

• s is a state in M , the domain of G.

The transition function Tr being de�ned over the set of decisions, a strategy context must be complete

and s-total to determine a transition from a given state s. Under this condition we can write (κ, s)n the

pair de�ned by:

• (κ, s)0 = (κ, s)
• for every i ∈ N, (κ, s)i+1 = (κi+1 , si+1) = (κsi

i
, Tr (si+1 , κi (Ag)))

where the notation κτ , for κ a strategy context and τ a track, is as in Def. 33. Again, the de�nition for the

semantics of SL proceeds in two steps:

De�nition 9 (Satisfaction relation for SL). Let G be a CGS, κ a strategy context for G and s a state in it.
Then:

(1) G , κ, s |=SL p i� p ∈ λ(s), with p ∈ At.
(2) For every formula ϕ, ϕ1 and ϕ2 :

(a) G , κ, s |=SL ¬ϕ i� it is not true that G , κ, s |=SL ϕ.
(b) G , κ, s |=SL ϕ1 ∧ ϕ2 i� G , κ, s |=SL ϕ1 and G , κ, s |=SL ϕ2.
(c) G , κ, s |=SL ϕ1 ∨ ϕ2 i� G , κ, s |=SL ϕ1 or G , κ, s |=SL ϕ2.

(3) For every variable x and formula ϕ :
(a) G , κ, s |=SL 〈〈x〉〉ϕ i� there is an s-total strategy f s.t. G , κ[x → f], s |=SL ϕ.
(b) G , κ, s |=SL JxKϕ i� for every s-total strategy f, G , κ[x → f], s |=SL ϕ.

(4) For every agent a, variable x and formula ϕ, G , κ, s |=SL (a, x)ϕ i�
G , κ[κ(x)\κ(a)], s |=SL ϕ.

(5) If κ is a complete strategy context, then for every formula ϕ, ϕ1 and ϕ2 :
(a) G , κ, s |=SL Xϕ i� G , (κ, s)1 |=SL ϕ.

8 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

(b) G , κ, s |=SL ϕ1Uϕ2 i� there is i ∈ N s.t. G , (κ, s)i |=SL ϕ2 and, for every index j ∈ N s.t.
0 ≤ i < j , G , (κ, s) j |=SL ϕ1.

(c) G , κ, s |=SL ϕ1Rϕ2 i� for every index i ∈ N, it holds that G , (κ, s)i |=SL ϕ2 or there is an index
j ∈ N s.t. 0 ≤ j ≤ i, G , (κ, s) j |=SL ϕ1

Where κ[κ(x)\κ(a)] is obtained from κ by giving for a the value κ(x).

De�nition 10 (Satisfaction of a sentence in a state of a model).
Let G be a CGS and s a state in its domain. Let also ϕ be a formula in SL. ϕ is true in G at s, we note

G , s |=SL ϕ, if and only if G , κ∅ , s |=SL ϕ, where κ∅ is the context with empty domain.

The required de�nitions being given, we can assert the existence of our embedding:

Theorem 1. There is a transformation which maps each CGS G to a NATSMG and each formula ϕ in SL
to a formula ϕUSL in USL s.t. for every CGS G and for every ϕ ∈ SL, G |= ϕ i�MG |= ϕUSL. Furthermore, if
we consider a single agent in the languages, the transformation of models reduces to the interpretation of
actions as choices.

The proof of theorem 11 is detailed in in the following paragraphs. The di�erences between SL and

USL lie both in the de�nition of strategies in SL semantics and in the di�erences of interpretation for the

binding operator. We treat successively these two points: �rst we de�ne an internal transformation for

SL, by which the constraints of agents playing the same choices are expressed in the syntax. Then we

de�ne a new operator in USL that is equivalent to SL binding, and we show the equivalence.

4.1.2. About the constraints of uniform strategy playing. First, we de�ne both the syntactical and seman-

tical transformations that enable to express, by help of new atomic symbols, the constraints of agents

playing uniform strategies.

• Syntax: transform ϕ to ϕ′. The transformation consists in identifying, in the syntax of the

formula, those of the coalitions that have to play along the same strategy. It enables to represent

a part of the information hold by the current context in every subformula.

– First erase all ∨, JxK and R operators from ϕ, by use of the equivalences ψ1 ∨ ψ2 i� ¬(¬ψ1 ∧

¬ψ2), JxKψ i� ¬〈〈x〉〉¬ψ and ψ1Rψ2 i� ¬(¬ψ1U¬ψ2).
– Let ≡ be the equivalence relation over AcAg = DC given by: for every κ, κ′ ∈ DC , κ ≡
κ′ i� ∀a, b ∈ Ag, (κ(a) = κ(b)) i� (κ′(a) = κ′(b)). Let also [DC]≡ be the partition of DC
over ≡. Then for every P ∈ [DC]≡ , add a new proposition P in the language.

– For each subformula ψ of ϕ:

∗ If ψ := Xψ1 change it for X(ψ1 ∧ Pψ1
) where Pψ1

is given by the set of binders ψ is in

the scope of (because ϕ is a sentence they completely de�ne Pψ1
).

∗ If ψ := ψ1Uψ2 change it for ψ2 ∨ X(ψ1 ∧ Pψ2
)U(ψ2 ∧ Pψ2

)
∗ Else do not change ψ.

• Semantics: change G to G′. Intuitively, we make a di�erent copy of the domain M for each

p ∈ DC. Then for each agent a, the choices of a in the new CGS are the set of outcomes of the

function Tr times the set of copies of M where a plays ac, for each ac ∈ Ac. Formally:

Let G = 〈Ag, M,At , v ,Ac, Ch〉. Then G′ is the CGS 〈Ag, M′ ,At′ , v′ ,Ac, Tr′〉 where:

– M′ = M × DC
– At′ = At ∪ {P | P ∈ [DC]≡}

– for every (s,Dc) ∈ M′ , v′(s,Dc) = v(s) ∪ {[Dc]≡}, where [Dc]≡ is the element of [DC]≡

induced by Dc.
– for every (s,Dc) ∈ M′, for every Dc′ ∈ AcAg , Tr′((s,Dc),Dc′) = (Tr (s,Dc′),Dc′).

Then we have the following lemma:

Lemma 1.
G |=SL ϕ i� G′ |=SL ϕ′

UPDATABLE STRATEGY LOGIC 9

Proof. One simply replaces every subformula of type ψ1Uψ2 in ϕ by ψ2∨X(ψ1Uψ2). Then the equivalence

is obtained by induction over ϕ complexity. �

The next intermediary step is to consider G′ as a NATS and use a semantics for SL in NATS. Viewing

G′ as a NATS only consists in interpreting each 3-uple (a, s, ac) of an agent, a state and an action as the

set of potential successor states when a performs ac from s. The semantics for SL in NATSs holds the

following case for (a, x): G′ , µ, κ, s |=NATS (a, x)ψ i� G′ , µ, κ[κ(x)\κ(a)], s |= (a, x)ψ. Since we are

using it only in the model G′ with deterministic choices, |=NATS does not need further de�nition so far.

An extension of |=NATS for every NATSs for languages with one agent is given in sub-section 4.34.3. Both

semantics are obviously equivalent for the evaluation of ϕ in G′. Now, we can come to the translation of

SL binder. To achieve this, we de�ne a new operator in USL.

4.1.3. Translation into USL. Let X ′ ⊆ X be a set of variables, and let us abbreviate by (A 7 X ′) the

sequence of operators (A 7 x1), . . . , (A 7 xn) where X ′ = {x1 , . . . xn }, for any coalition A (note that the

semantics of the sequence (A 7 x1), . . . , (A 7 xn) is invariant upon the ordering of the xis). We de�ne the

new operator [A B x] by : for any formula ϕ, coalition A and variable x, [A B x]ϕ , (A 7 X)(A B x)ϕ.

Then [A B x] is the counterpart for the binder in SL: A is unbound from all its current strategies and

then bound to the sole strategy σx . (Note that by use of a macro for (Ag 7 X) (A B x), an ATL-like

capability operator is also de�nable for USL).

Now we replace inductively, from innermost to outermost subformulas, all subformulas (a B x)ψ of

ϕ′ by [a B x] ψ, and we call ϕUSL the resulting formula. We have:

Lemma 2.
G′ |=NATS ϕ

′ i� G′ |= ϕUSL

Proof. Straightforward, since [a B x] in USL is interpreted the same way as (a,x) in SL. �

The two preceding lemmas prove theorem 11.

4.2. Sustainable control is not expressible over deterministicmodels. Let us recall the embedding

used for proof of theorem 11 applied from SL with one agent (SL
1
) to USL with one agent (USL

1
):

• For the syntactical part, formula ϕ is turned into formula ϕUSL obtained by, for every subformula

of ϕ of type (a, x)ψ:

– If (a, x)ψ is not itself a subformula of another subformula of this type in ϕ, then doing

nothing.

– Otherwise, replacing (a, x)ψ by (a 7 x1) . . . (a 7 xk)(a B x)ψ′, where {x1 , . . . xk } is the

set of variables in the language.

• For the semantical part: let G = 〈{a}, M,At , v ,Ac, Tr〉, we use it as the NATSMG = 〈{a}, M,At ,
v , Ch〉 s.t. for every s ∈ M, Ch(a, s) = {{Tr (s, 〈(a, ac)〉)}}ac∈Ac .

Since for SL
1

the transformation of models from SL to USL reduces to the interpretation of actions as

choices, elements of comparisons can be given between the expressive powers of SL
1

and USL
1
.

In the following paragraphs we show that deterministic models cannot satisfy a formula of sustainable

control either in SL
1

or in USL
1
. So, the non-determinism of NATSs is necessary. We also show that the

extension of SL
1

semantics to non deterministic models does not enable to express sustainable control:

such properties also need the composition of choices introduced in USL
1
.

Let us designate by DNATS1
a NATS with one agent and with deterministic choices: a NATSM =

〈{a}, M,At , v , Ch〉 is a DNATS1
i� for every s ∈ M , for every c ∈ Ch(a, s), c is a singleton.

Modulo the interpretation of actions as choices, CGSs for one agent are DNATS1s, s.t. we can directly

interpret SL
1

in DNATS1s.

Let us now consider the formula expressing sustainable control of a over property p:

θ∞ := 〈〈x〉〉(a B x)�(〈〈y〉〉(a B y)Xp ∧ 〈〈y〉〉(a B y)X¬p)

10 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

We have the following lemma:

Lemma 3. for every DNATS1 M, for every s ∈ M M , s 2 θ∞

Proof. Suppose that there is a DNATS1 M and a state s s.t.M , s |= θ∞ . Then there is a strategy σx s.t.

M , 〈(x → σx)〉, (a, x), s |= �(〈〈y〉〉(a B y)Xp ∧ 〈〈y〉〉(a B y)X¬p). BecauseM is a DNATS1
, a playing

σx determines an unique path out(s, 〈(x → σx)〉, (a, x)) = λ = λ0λ1 . . . inM.

Now, next steps in the evaluation ofM , s |= θ∞ require, for every i ∈ N, thatM , 〈(x → σx)〉, (a, x),
λ i |= 〈〈y〉〉(a B y)Xp andM , 〈(x → σx)〉, (a, x), λ i |= 〈〈y〉〉(a B y)X¬p. And the following steps require

for every i ∈ N, that there are strategies σy1
and σy2

s.t.M , 〈(x → σx)(y → σy1
)〉, (a, x) · (a, y), λ i+1 |=

p andM , 〈(x → σx)(y → σy2
)〉, (a, x) · (a, y), λ i+1 |= ¬p.

But, for every y, out(λ i , 〈(x → σx), (y → σyk)〉, (a, x) · (a, yk)) is a non-empty set of paths included

in {λ i+1}, so it is equal to {λ i+1} itself. Eventually, the satisfaction requires that, for every i ∈ N, p ∈ v(λ i+1)
and p < v(λ i+1), which gives a contradiction. �

We deduce from the previous lemma that sustainable control is not expressible by SL
1

formalism:

suppose it is expressible by Θ ∈ SL
1
, then there is a CGS G with state s s.t. G , s |=SL Θ. ThenMG , s |=

ΘUSL, soMG , s |= θ∞ , in contradiction with lemma 33.

4.3. Sustainable control is not expressible in SL1 over NATSs. From preceding paragraphs we have

that sustainable control is not expressible under deterministic models. Here we show that the non-

determinacy of NATSs is not su�cient to express it. One also needs the compositional interpretation of

binders as de�ned for USL semantics.

The following argument uses an extension of SL
1

semantics to NATSs. We already have a straightfor-

ward interpretation of SL
1

over DNATS1s. The generalization to NATSs needs to de�ne an interpretation

of the speci�cations of non determined transitions. Indeed, the di�erence between DNATS1s and NATSs
lies in the fact that under DNATS1s, a plan π de�ning a strategy for a induces an unique possible path λ,

so that evaluating temporal formula ϕ in DNATS1s follows the classical de�nition for semantics of LTL

under paths. Under NATSs, π induces a non-empty set of paths with possibly more than one element. We

generalize the semantics by following the semantics of LTL under Kripke models, taking the universal

quanti�cation over paths in out(s, π). We get the following de�nition:

De�nition 11 (Semantics for SL
1

under NATSs). LetM be a NATS for a language with one agent, s a
state inM, (µ, κ) a plan forM and ϕ, ϕ1 and ϕ2 formulas in SL 1 language, then:

• M , µ, κ, s |=NATS p i� p ∈ v(s), with p ∈ At.
• M , µ, κ, s |=NATS ¬ϕ i� it is not true thatM , µ, κ, s |=NATS ϕ.
• M , µ, κ, s |=NATS ϕ1 ∧ ϕ2 i�M , µ, κ, s |=NATS ϕ1 andM , µ, κ, s |=NATS ϕ2.
• M , µ, κ, s |=NATS ϕ1 ∨ ϕ2 i�M , µ, κ, s |=NATS ϕ1 orM , µ, κ, s |=NATS ϕ2.
• M , µ, κ, s |=NATS 〈〈x〉〉ϕ i� there is a strategy σ ∈ Strat s.t.M , µ[x → σ], κ, s |=NATS ϕ.
• M , µ, κ, s |=NATS JxKϕ i� for every strategy σ ∈ Strat ,
M , µ[x → σ], κ, s |=NATS ϕ.

• M , µ, κ, s |=NATS (a, x)ϕ i�M , µ, κ[x\κ(a)], s |=NATS ϕ.
• M , µ, κ, s |=NATS Xϕ i� for every λ ∈ out(s, (µ, κ)),M , µλ0 , κ, λ1 |=NATS ϕ.
• M , µ, κ, λ |=NATS ϕ1Uϕ2 i� for every λ ∈ out(s, (µ, κ)), there is i ∈ N s.t. M , µλ0 ...λi−1 , κ,
λ i |=NATS ϕ2 and for all 0 ≤ j ≤ i,M , µλ0 ...λi−1 , κ, λ j |=NATS ϕ1.

• M , µ, κ, λ |=NATS ϕ1Rϕ2 i� for every λ ∈ out(s, (µ, κ)),M , µλ0 ...λi−1 , κ, λ i |=NATS ϕ2 or there is
j ≤ i s.t.M , µλ0 ...λi−1 , κ, λ i |=NATS ϕ2.

• If the principal operator in ϕ is not in {X,U,R},M , µ, κ, λ |=NATS ϕ i�M , µ, κ, λ0 |=NATS ϕ.
where κ[x\κ(a)] designates the context obtained from κ by replacing every (a, y) in it by (a, x).

Now we can give the following lemma:

Lemma 4. θ∞ is not expressible in SL1 over NATSs.

UPDATABLE STRATEGY LOGIC 11

To prove that lemma, we proceed the following way: �rst, we show that if there is a formula Θ ∈ SL,

equivalent to θ∞ under |=NATS , then it can be written with help of the operator �, but without JxK nor

U nor R. Then we show, under convenient restrictions, that the related fragment of SL satis�ability

reduces to the satis�ability for �rst order logic. Then, a compactness argument can be applied and shows

that Θ cannot be a formula in SL.

We �rst consider the set of formulas {θi }i∈N, each one asserting that a is inde�nitely capable to decide

whether p holds or not in next state and can use this ability at least i + 1 times. We de�ne θi by induction

over i:

• θ0 := 〈〈x〉〉(a, x)�(〈〈x〉〉(a, y)Xp ∧ 〈〈x〉〉(a, x)X¬p)
• θ1 := 〈〈x〉〉(a, x)�(〈〈x〉〉(a, x)X(p ∧ �(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p))

∧〈〈x〉〉(a, x)X(¬p ∧ �(〈〈x〉〉(a, x)Xp ∧ 〈〈x〉〉(a, x)X¬p)))
• for every i ∈ N,

θi + 1 := θi[p∧�(〈〈x〉〉(a, x)Xp∧〈〈x〉〉(a, x)X¬p\p][¬p∧�(〈〈x〉〉(a, x)Xp∧〈〈x〉〉(a, x)X¬p)\¬p]

where the notation ψ1[ψ2\ψ3] designates the formula obtained from ψ1 by replacing any occurrence of

subformula ψ3 in it by ψ2.

We have that θ∞ under USL is equivalent to {θi }i∈N. Let us suppose that Θ exists and suppose, w.l.o.g,

it is s.t. the negations in Θ are reduced to atoms (by use of the convenient equivalences in SL). We call

a non-trivial universal subformula in Θ a subformula (a, x)ϕ s.t. ¬ϕ is satis�able and x is universally

quanti�ed in Θ. We call Σ1-SL the set of formulas in SL without non-trivial universal subformula. We

call SL
1

R
the fragment of Σ1-SL without U nor R and with �.

Now, the proof of lemma 44 proceeds by an absurdum argument. It is in two parts: �rst we show that

Θ, if it exists, must be equivalent to a formula in SL
1

R
. Then we show that it cannot be in SL

1

R
.

4.3.1. Θ is in SL1

R. First we prove that Θ, if it exists, is in Σ1-SL. Let us consider the modelU with domain

{sI }I∈{0,1}∗ , with valuation v(p) = {sI ·1}I∈{0,1}∗ and s.t. for every I ∈ {0, 1}∗ , Ch(a, sI) = {{sI ·0}{sI ·1}}.
One checks that θ∞ is true in every states ofU . One also checks that for any satis�able LTL formula ϕ,

〈〈x〉〉(a, x)ϕ holds at any state si ofU . Then the innermost subformula (a, x)ϕ of Θ s.t. x is universally

quanti�ed inΘ is s.t. ¬ϕ is unsatis�able. SoΘ is equivalent toΘ[ϕ′[p∨¬p\(a, x)ϕ]\〈〈x〉〉ϕ′]. By iterating

this transformation, one eliminates from Θ all its universal quanti�ers, so as to obtain a Σ1-SL formula.

Now we can delete the operators U and R in Θ.

Lemma 5. Θ can be written without U nor R.

Proof. One observes thatΘ is true only in models where a can force the execution to states where she can

ensure any satis�able formula at next state. In particular, if she can ensure ψ1Uψ2, ψ2 is satis�able and

she can ensure it at next state. Formally, Θ is equivalent to the formula Θ′ obtained from it by replacing

any subformula ψ = ψ1Uψ2 by

∨
0≤k≤|Θ| (Xkψ2 ∧

∧
0≤i<k Xiψ1), where Xk

stands for a sequence of Xs
of length k . In the introduced subformula, the disjunction

∨
0≤k≤|Θ| ensures that a can achieve, in at

most |Θ| transitions, up to |Θ| possibly contradictory state properties. The deletion of the R operator

proceeds the similar way, by use of the equivalence ϕ1Rϕ2 ↔ (ϕ2U(ϕ1 ∧ ϕ2)) ∨ �ϕ1. �

4.3.2. Θ′ is not in SL1

R. To prove that Θ′ is not in SL
1

R
, we use a compactness argument over formulas

{θi }i∈N. To proceed so, we give both an axiomatization of at-most-binary trees (that are trees in which

every node has one or two successors) and a translation from SL
1

R
to Σ1

1
, the fragment of second-order-logic

with only existential quanti�ers over sets.

12 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

First, a modelM being an at-most-binary tree rooted in r is axiomatized by:

BT(R, R∗ , r) :=

∀s(s , r → (∃=1s′R(s′ , s)) ∧ ¬R(s, r)

∧ (R∗ (r, s)) ∧ ∃≤2s′(R(s, s′)))

∧ ∀s, s′(R∗ (s, s′) ↔ (¬R∗ (s′ , s))

∧ (R(s, s′) ∨ ∃s′′(R(s, s′′) ∧ R∗ (s′′ , s′))))

The translation uses the property, for a set of states S, to de�ne a strategy from s. It means that S is a

sub-tree inM rooted in s. It is axiomatized the following way :

Strat(S, s) := S(s) ∧ ∀s′ , s(S(s′) ↔

(R∗ (s, s′) ∧ ∃s′′(S(s′′) ∧ R(s′ , s′′))

∧ ∀s′′(R∗ (s, s′′) ∧ R∗ (s′′ , s′) → S(s′′))))

Now we can translate Σ1-SL into Σ1

1
under at-most-binary trees:

[q]S (s) := q(s)(for every atom q)

[ϕ1 ∨ ϕ2]S (s) := [ϕ1]S (s) ∨ [ϕ2]S (s)
[ϕ1(s) ∧ ϕ2]S (s) := [ϕ1]S (s) ∧ [ϕ2]S (s)
[¬ϕ]S (s) := ¬[ϕ]S (s)
[(a, x)ϕ]S (s) := [ϕ]Sx

(s)
[〈〈x〉〉ϕ]S (s) := ∃Sx (Strat(Sx , s) ∧ [ϕ]S (s))
[Xϕ]S (s) := ∀s′((S(s′) ∧ S(s, s′)) → [ϕS](s′))
[�ϕ]S (s) := ∀s′((S(s′) ∧ S∗ (s, s′)) → [ϕS](s′))

Let us notice that if ϕ is a sentence, then the translated [ϕ]S (s) does not depend on S, so that we can

consider the formula with one free variable of state [ϕ](s).
Then, each θi is equivalent to a formula ϕi := ∃Sx1

, . . . ∃SXn
φi (X1 , . . . Xn) where φi (X1 , . . . Xn) is

a �rst-order formula. So ϕi is satis�able if and only if φi (X1 , . . . Xn) is. Since the SAT-problem for Σ1

1

reduces to the SAT problem for �rst-order logic, we can apply the compactness theorem: for every

i ∈ N, consider the following class of models Ti : up to rank i, each member is the binary tree with left

direction going to p and right direction going to ¬p, and each state loops on itself. After rank i each

node has a single successor. Each transition from state s to s′ corresponds to a choice for a in s. For

each i, θi is true in every member of Ti . Now let I be a �nite set of indexes. For any i ∈ I , θi is true in

any member of Tmax (I)+1 and θ∞ is false in some of these models. If Θ′ is in Σ1-SL then, for any �nite

{θi }i∈I ⊂ {θi }i∈N , {BT(R, R∗ , r)} ∪ {θi }i∈I ∪ {¬Θ′} is satis�able. Then {BT(R, R∗ , r)} ∪ {θi }i∈N ∪ {¬Θ′}
is satis�able, which is a contradiction. So Θ′ is not SAT-equivalent to a �rst-order formula, it is not in

SL
1

R
.

In conclusion, if Θ′ exists, it must and cannot be in SL
1

R
. Then Θ′ does not exist, neither does Θ, and

the formula θ∞ is not expressible in SL, which achieves the proof of theorem 44.

5. Model-checking

In this section we discuss the model checking of USL and USL
0
. The model-checking problem for

USL has the same complexity as for SL and ATLsc, which are non-elementarily decidable. Nevertheless,

the problem for USL
0

is much more tractable, since we get a PSPACE completeness result, similar to that

for ATLsc under memoryless strategies.

UPDATABLE STRATEGY LOGIC 13

5.1. USL. The model-checking for USL with full memory strategies is non-elementarily decidable. The

embedding of SL into USL provides the hardness part. The upper bound requires the e�ective construction

of an algorithm to perform model-checking.

Theorem 2. Let us call USL[k-alt] the set of USL formulas with at most k quanti�er alternations, then the
model-checking problem for USL[k-alt] is k-EXPSPACE hard.

Proof. Let k ∈ N and let MC-SL[k-alt](M , s, ϕ) be the problem of deciding the truth of an SL [k-alt]

sentence ϕ at state s of a CGSM. It is k − EXPSPACE-hard. By theorem 11 it reduces to the problem

MC-USL (GA , s, ϕUSL). The transformation preserves the number of quanti�er alternations. It also

brings a model with domain of size |M| × XΣ . And it brings a formula ϕ′ with size bounded by 3 × |ϕ|.
So it is in linear space with regard to the size of ϕ and it does not a�ect the k-EXPSPACE lower bound

for its model-checking. �

The e�ective existence of a non-elementary algorithm for the model-checking of USL is obtained

by construction of a non-deterministic parity automaton N
M ,s
ϕ for any formula ϕ, NATSM, and state

s ofM. This automaton recognizes a language L(NM ,s
ϕ) encoding plans π with empty contexts s.t.

M , π, s |= ϕ. In case ϕ is a sentence,M , π, s |= ϕ is equivalent to the emptiness of L(NM ,s
ϕ) The proof

is adapted from [MMPV11MMPV11, DLM10DLM10, DCL11DCL11].

Let us �rst give the necessary preliminary de�nitions about trees and automata:

5.1.1. Trees.

De�nition 12. Let ∆ and S be two �nite sets. A ∆-labelled S-tree is a pair T = 〈T, l〉 where:
• T ⊆ S∗ is a non empty set of �nite words upon alphabet S, satisfying the following property: for
every non empty word n = m.s ∈ T s.t. m ∈ S∗ and s ∈ S, we have that m ∈ T

• l : T → ∆ is a labelling function

Let T = 〈T, l〉 be such a tree. Let n ∈ T , the set of directions in T from n is the set dirn (T) = {s ∈ S |
n.s ∈ T }. The set of in�nite paths of T is the set pathT = {s0.s1 · · · ∈ Sω | ∀i ∈ N, s0.s1 . . . si ∈ T }. Let

ρ = (si)i∈N , then l (ρ) denotes the in�nite sequence (l (si))i∈N, and Inf(l (ρ)) is the set of characters in

∆ appearing in�nitely often in l (ρ).
Now, let ∆ = ∆1 × ∆2, and let T = 〈T, l〉 be a ∆-labelled S-tree. Then for n ∈ T , we write l (n) =

(l1(n), l2(n)) with l1(n) ∈ ∆1 and l2(n) ∈ ∆2. Furthermore, for i ∈ {1, 2}, we denote by Proj∆i
(T) the

∆i -labelled tree Ti = 〈T, li〉.

5.1.2. Alternating-tree automata. Alternating-tree automata are a generalization of nondeterministic

tree automata (their closure under complementation). The de�nition of the transition function for these

automata previously requires the de�nition of positive boolean formulas:

De�nition 13. Let P be a set of atomic propositions, the set of positive boolean formulas upon P (PBF(P))
is generated by the following grammar:

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | > | ⊥
where p ∈ P

The satisfaction of a positive boolean formula is de�ned recursively in the common way, under a

valuation v : P → {>,⊥}. We write that a subset P′ of P satis�es a positive boolean formula ϕ i� the

valuation vP′ de�ned by vP′ (p) = > i� p ∈ P′ does.

De�nition 14. Let S and ∆ be two �nite sets. An Alternating S-automaton upon ∆ (〈S,∆〉 −ATA for short),
is a 4−tuple A = 〈Q, q0 , τ,Acc〉 where:

• Q is a �nite set of states,

14 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

• q0 ∈ Q is the initial state,
• τ : (Q × ∆) →PBF(S × Q) is the transition function,
• Acc : Qω → {>,⊥} is an acceptation function.

Under these notations we call S the set of directions of automaton A. Non-deterministic S-automata upon
∆ (〈S,∆〉 − NTAs for short) can be de�ned as particular cases of 〈S,∆〉 − ATAs: a NTA is an ATA in which
each conjunction in the transition function (written in disjunctive normal form) τ has exactly one move
associated with each direction in S. Formally, an NTA is an ATA in which for all state q and for every letter
d ∈ ∆, the transition τ(q, d) has shape:

τ(q, d) =
∨

i∈I (q)

(
∧
s∈S

(s, qi ,s))

where I (q) is a �nite set of indices and the qi ,s are states in Q.

5.1.3. Runs and parity acceptance conditions.

De�nition 15. Let A = 〈Q, q0 , τ,Acc〉 be an 〈S,∆〉 − ATA, and T = 〈T, l〉 a ∆-labelled S-tree. A run of
A on T is a S × Q-treeU = 〈U, p〉 s.t. for every node u ∈ U s.t. u = (t , q) = (t0t1 . . . tn , q0q1 . . . qn) we
have that:

• t ∈ T
• The set diru (U) = {(s0 , q′0), (s1 , q′1), . . . , (sn , q′n)} ⊆ S × Q satis�es τ(q, p(t)).

A runU is accepting if Acc(v) = > for every in�nite path v ∈ (S × Q)ω in pathU . A tree T is accepted
by A i� there is an accepting run of A upon T .

In the remaining of this proof we use parity acceptance conditions. A parity acceptance condition for

automaton A is identi�ed by a chain of subsets included in the set Q of states in A: F1 ⊆ · · · ⊆ Fk = Q
where k ∈ N. The acceptance condition is given by Acc(v) = > i�:

min({l ≤ k | Fk ∩ Inf(ProjQ (v)) is even)}

Under these notations, number k is called the index of the automaton. For automaton A it is denoted by

idA. And the size ofA, |A| is given by the number of its states. An ATA with such acceptation condition

is called an alternating-parity tree automaton, that we abbreviate by APT . Similarly, an NTA with a

parity acceptance condition is an NPT .

5.1.4. Preliminary lemmas. The remaining of the proof mainly consists in building, for every NATS
M, state s inM and formula ϕ ∈ USL, an APT AMϕ

accepting exactly the encodings of plans π s.t.

M , π, s |= ϕ. The used encoding is formally de�ned Def.1616. AMϕ
is built in induction upon ϕ complexity.

We �rst give the di�erent lemmas that are used to pass the inductive steps in this construction.

Basically, the steps for boolean operators correspond to the intersection and complementation op-

eration for APTs. The case for temporal operators X and U are treated the usual way for temporal

logics.

The case for existential operators uses the operation of existential projection for NTAs. Then, passing

an existential step requires the nondeterminization of the APT . A lemma for nondeterminization of

APTs will be needed at this point. It is given as lemma 77. The building of the APT for ϕ goes through an

alternation between APTs for treating the complementation cases and NPTs for treating the existential

projection.

Let us �rst give the needed lemmas and their references:

Lemma 6 (Intersection and complementation). [MS87MS87,MS95MS95] LetA be an 〈S,∆〉−APT accepting language
A and B be a 〈S,∆〉-APT accepting language B.

• There is an 〈S,∆〉 − APT C accepting language A ∩ B. The size |C| of C is bounded by |A| + |B|
and its index is bounded by max(idA , idB).

UPDATABLE STRATEGY LOGIC 15

• There is an 〈S,∆〉 − APT D accepting language A, the complementary of language A. Its size and
index are the same as those of A. More precisely, if A = 〈Q, q0 , τ,Acc〉, then D = 〈Q, q0 , τ,Acc〉
where for every (q, d) ∈ Q × ∆, τ(q, d) = ¬τ(q, d) and Acc is the complementary condition of
Acc.

Lemma 7 (Nondeterminization). [MS95MS95] LetA be an 〈S,∆〉 − APT. There is a 〈S,∆〉 − NPT A accepting
the same language as A, and s.t. |N | = 2

©(|A | .idA .log (|A |)) and idN = ©(|A|.idA .log(|A|)).

5.1.5. Inputs of the automata. The inputs for the automata checking the satisfaction of formulas by a

plan are composed by an encoding of a plan together with a state data. From Def. 1212, the input must be

from a �nite set. However, USL semantics de�nes choices by help of a plan π = (µ, κ), where context κ
stands for any word upon (Σ × X). So its domain is in�nite.

Nevertheless, the context registers data only about the previously evaluated binders. Then its size is

actually bound by the maximal number of binders in the formula under evaluation, so that its domain

can be made �nite. Let ϕ be an USL formula and let ψ be one of its subformulas. We write bd(ψ; ϕ) the

binder depth of ψ in ϕ. The notion is de�ned that way: bd(ψ; ϕ) is the number of ϕ’s subformulas of

type θ := (A B x)θ′ s.t. ψ is a subformula of θ. Now, let Kk
be the set of �nite words over (Σ × X)∗ of

length k . Then the de�nition of our automaton uses Kbd(ψ;ϕ)
.

Furthermore, let s be a state in a NATS. We call a decision from s (Dcs) a function from Σ to P (M) s.t.

for every a ∈ Σ,Dcs (a) ∈ Ch(a, s).
We write DCs

the set of decisions from s. We want to use it as an uniform set over the di�erent

states. So we need to delete the parameter s in the writing of DCs
: for every s ∈ M , we enumerate by

[1, . . . , ds] the di�erent decisions from s. And we note es the corresponding function from [1, . . . , ds] to

DCs
. Let dmax be the maximal such ds for s ∈ M . Then, for every s ∈ M , we complete es s.t. for every

ds ≤ i ≤ dmax, es (i) = es (ds). We designate by D the set n ∈ [0, . . . dmax]. Now, let us write Ac and call

actions the set of partial functions from X to D.

The input of trees we examine are taken in S×Ac×Kbd(ψ;ϕ)
. Let (s, α, κ) ∈ S×Ac×Kbd(ψ;ϕ)

, it de�nes

as its outcome an unique out(s, α, κ) ⊆ M : out(s, α, (A, x)) =
⋂

a∈A es (α(x))(a) and out(s, α, κ ·
(A, x)) = out(s, α, κ) ∩

⋂
a∈A es (α(x))(a) if it is not empty, else out(s, α, κ).

Before coming to the e�ective building of the APT , we de�ne a state-plan Encoding:

De�nition 16. LetM be a NATS, s a state in M , π a plan forM and j ∈ N. Then a M × Ac × K j -labelled
M-tree T = 〈T, l〉, where T ⊆ trackM , is the state-plan Encoding for π = (µ, κ) i� it holds that for every
t ∈ T , l (t) = (last(t), α, κ), where α is s.t. elast(t) (α) = {µ(a, t)}a∈Σ . If T is the plan-state encoding for π,
we call ProjAc×K j (T) the plan encoding for π.

5.1.6. Checking a state-plan encoding. Now we can give the main step lemma of that proof. It states that

given a NATSM and a formula ϕ in USL, one can build an automaton accepting exactly those trees that

are state-plan encodings of plans satisfying ϕ inM.

Lemma 8. LetM be a NATS with domain M and ϕ an USL formula. Then, there is an 〈M, M × Ac ×
K0〉 − APT AMϕ s.t. for all states s ofM and plans π with context ∈ K0 forM, it holds thatM , π, s |= ϕ
i� T ∈ L(AMϕ), where T is the state-plan encoding for π.

Proof. The proof of the lemma is led by e�ective building of AMϕ . The building is inductive upon ϕ
complexity and the induction hypothesis is: for every subformula ψ of ϕ, there is an 〈M, M × Ac ×
Kbd(ψ;ϕ)〉 − APT AMψ s.t. for every state s ofM and plan π ∈ Kbd(ψ;ϕ)

, it holds thatM , π, s |= ψ i�

T ∈ L(AMψ), where T is the state-plan encoding for π.

In the following we write ∆ for M × Ac × Kbd(ψ;ϕ)
.

• Case ψ is an atomic proposition: the only thing to check is that the state at the root of the tree

given in entry satis�es ψ. ThenAMψ = 〈{ψ}, ψ, τψ , ({}{ψ})〉 s.t. for every ent ∈ ∆, τψ (ψ, ent) = >
if ψ ∈ v(s) and τψ (ψ, (P, s)) = ⊥ otherwise.

16 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

• Case ψ = ¬ψ1. If AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

, then by lemma 66, AMψ = 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉.

• Case ψ = ψ1 ∧ ψ2. If AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉 and AMψ2

= 〈Qψ2
, q0ψ2

, τψ2
,Accψ2

〉 then

AMψ = 〈Qψ , q0 , τψ ,Accψ〉 where:

– Qψ = {qoψ } ∪Qψ1
∪Qψ2

and qo < Qψ1
∪Qψ2

– for every ent ∈ ∆, τψ (q0ψ , ent) = τψ1
(q0ψ1

, ent) ∧ τψ2
(q0ψ2

, ent)
– for every q ∈ Qψ1

∪Qψ1
and for every ent ∈ ∆, τψ (q, ent) =

∗ τψ1
(q, ent) if q ∈ Qψ1

∗ τψ2
(q, ent) if q ∈ Qψ2

– If Accψ1
= (Fψ1

1
, . . . Fψ1

k1

) and Accψ2
= (Fψ2

1
, . . . Fψ2

k2

), max({k1 , k2}) = ki and min({k1 , k2}) =

k j then Accψ = (Fψ1

1
∪ Fψ2

1
, . . . , Fψ1

k j
∪ Fψ2

k j
, Fψi

k j+1
, . . . Fψi

ki−1
,Qψ).

• The resolution of case ψ = Xψ1 consists in a run of the automaton for ψ on the successors of the

root of the tree given in entrance. These successors are given by the outcomes of the label at the

root. Concretely, if AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉 then AMψ = 〈Qψ , q0ψ , τψ ,Accψ〉 where:

– Qψ = {qoψ } ∪Qψ1
and qo < Qψ1

– for every ent ∈ ∆, τψ (q0ψ , ent) =
∧

s∈out(ent) (s, q0ψ)
– for every q ∈ Qψ , q0ψ and for every ent ∈ ∆, τψ (q, ent) = τψ1

(q, ent)
– If Accψ1

= (Fψ1

1
, . . . Fψ1

k1

) then Accψ = (Fψ1

1
, . . . Fψ1

k1

∪ {q0ψ })
• The case ψ = ψ1Uψ2 is resolved by use of the equivalence (ψ1Uψ2) ↔ ψ1 ∨ (ψ2 ∧ X(ψ1Uψ2)).

Given that automata for ψ1 and ψ2 are de�ned, automaton for ψ returns the boolean combination

by help of function τ, and the subformula X(ψ1Uψ2)) induces the initial state looping on itself.

To prevent the run from looping inde�nitely on the initial state q0ψ , q0ψ is included in the

�rst set of the parity acceptance condition. Precisely, if AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉 and

AMψ2

= 〈Qψ2
, q0ψ2

, τψ2
,Accψ2

〉 then AMψ = 〈Qψ , q0 , τψ ,Accψ〉 where:

– Qψ = {qoψ } ∪Qψ1
∪Qψ2

and qo < Qψ1
∪Qψ2

– for every ent ∈ ∆, τψ (q0ψ , ent) = τψ2
(q0ψ2

, ent) ∨ (τψ1
(q0ψ1

, ent ∧
∧

s∈out(ent) (s, q0ψ))
– for every q ∈ Qψ1

∪Qψ2
and for every ent ∈ ∆, τψ (q, ent) =

∗ τψ1
(q, ent) if q ∈ Qψ1

∗ τψ2
(q, ent) if q ∈ Qψ2

– If Accψ1
= (Fψ1

1
, . . . Fψ1

k1

) and Accψ2
= (Fψ2

1
, . . . Fψ2

k2

), max({k1 , k2}) = ki and min({k1 , k2}) =

k j thenAccψ = ({q0ψ }∪Fψ1

1
∪Fψ2

1
, . . . , {q0ψ }∪Fψ1

k j
∪Fψ2

k j
, {q0ψ }∪Fψi

k j+1
, . . . {q0ψ }∪Fψi

ki−1
,Qψ).

• The case for ψ = (A B x)ψ1 only consists in a transformation of the transition function, so that

it is equal to the transition in automaton for ψ1 in which entry the choices along x made by A
would be added. If AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉, then AMψ = 〈Qψ1
, q0ψ1

, τψ ,Accψ1
〉 where for

every q ∈ Qψ1
and for every (s, α, µ) ∈ ∆, τψ1

(q, (s, α, κ)) = τψ (q, (s, α, κ[A→ x]))).
• The case for ψ = (A 7 x)ψ1 again only consists in a transformation of the transition function. It

is so that the new transition function is equal to the transition in automaton for ψ1 in which entry

the choices along x made by A would be deleted. If AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉 , then AMψ =

〈Qψ1
, q0ψ1

, τψ ,Accψ1
〉 where, for every q ∈ Qψ1

and for every (s, α, κ) ∈ ∆, τψ1
(q, (s, α, κ)) =

τψ (q, (s, α, κ[A9 x])).
• For the case ψ = 〈〈x〉〉ψ, the transition function of the automaton for ψ has gives the disjunction

of all possible transitions corresponding to each decision given by possibles strategy instantiating

x after each track. This operation is performed for NPTs, so that we need �rst to nondeterminize

the automaton for ψ1. If AMψ1

= 〈Qψ1
, q0ψ1

, τψ1
,Accψ1

〉 is an 〈M,∆〉 − APT , then by lemma 77,

there is an 〈M,∆〉 − NPT A′Mψ1

= 〈Q′ψ1

, q′
0ψ1

, τ′ψ1

,Acc′ψ1

〉 accepting the same language, and s.t.

|A′
M
ψ1

| = 2
© (|AMψ1

|.id
A
M
ψ1

.log(|AMψ1

|)) and id
A′
M
ψ1

= ©(|AMψ1

|.id
A
M
ψ1

.log(|AMψ1

|)). For the

UPDATABLE STRATEGY LOGIC 17

projection we de�ne the 〈M,∆〉 − NPTAMψ = 〈Q′ψ1

, q′
0ψ1

, τψ ,Acc′ψ1

〉 where for all (s, α, κ) ∈
∆, τψ (q, (s, α, κ)) =

∨
Dcs∈DCs τ′ψ1

(q, (s, αdcs , κ)), where αdcs is the minimal α s.t. (es (k) =
es (α)[x → Dcs]).

�

5.1.7. Conclusion of the proof. A last lemma is needed for concluding the proof, so as to ensure that the

M component of labelling for the nodes of the state-plan encoding is coherent with the node itself:

Lemma 9 (direction projection [MMPV11MMPV11]). Let N be an 〈M, M × ∆〉-NPT and s0 ∈ M . Then there is
an 〈M,∆〉-NPT N s0 s.t. for every ∆-labelled M-tree T = 〈T, v〉, T ∈ L(N s0) i� T ′ ∈ L(N), where
T ′ = 〈T ′ , v′〉 is the M × ∆-labelled M-tree s.t. v′(t) = (v(t), last(sO .t)), for every t ∈ T . Moreover,
|N s0 | = |∆|.|N | and idN s0 = idN .

Now we can prove the e�ective non-elementary decidability of the model-checking for USL:

Theorem 3. The model-checking problem for USL can be run in NONELEMENTARY with regard to the
size of the formula.

Proof. As seen in lemma 88, for any NATS M, state s ∈ M and plan π for M, the problem MC-USL

(M , s, π, ϕ) of model-checking formula ϕ in state s and plan π forM reduces to the question whether

T ∈ L(AMϕ), where T is the state-plan encoding for π. Furthermore,AMϕ is a 〈M, M ×Ac × K0〉−APT .

By lemma 77, there is a 〈M,Ac × K0〉−NPT NMϕ accepting the same language as AMϕ , and s.t. | NMϕ |=

2

©(|AMϕ | .idAMϕ
.log(|AMϕ |))

and id
N
M
ϕ
= ©(|AMϕ |.idAMϕ .log(|AMϕ |)).

By lemma 99 applied on NMϕ , we have an 〈M,Ac × κ0
-NPT NM ,s

ϕ accepting exactly encodings of

plans π s.t.M , π, s |= ϕ.

One easily checks that, ϕ being a sentence, for every plan π with empty context,M , π, s |= ϕ i�

and onlyM , µ∅ , κ∅ , s |= ϕ. ThenM , s |= ϕ i� L(NM ,s
ϕ) is not empty. The emptiness problem for

non-deterministic automata with n states and index k is solvable in ©(nh) [KV98KV98]. Let us note |ϕ| the

length of formula ϕ. Each step of building for NMϕ increases the size of the current automatonM at

most from |M| to 2
©(|M |idM .log (|M |))

and its index from idM to ©(|M|idM .log(|M|) and there are

at most |ϕ| + 1 such steps. The step fromNMϕ toN
M ,s
ϕ increases its size by factor |M|. ThenN

M ,s
ϕ has

size at most |A| · et(m, 2,m) and index at most et(m, 2,m), were m = ©(|ϕ|.log(|ϕ|) and et(n1 , n2 , n3)
is de�ned, for every n2 , n3 ∈ N, by:

• et(0, n2 , n3) = n2

• for every n1 ∈ N, et(n1 + 1, n2 , n3) = net(n1 ,n2 ,n3)
3

Whence theorem 33, the model-checking for USL is decidable in time ©(|M|.et(m, 2,m)). �

5.2. USL0. Here we present a result of PSPACE-completeness for the model-checking of USL
0
:

Theorem 4. The model-checking problem for USL0 is PSPACE complete.

This result reaches the similar result for ATL
0

sc [BDCLM09BDCLM09]. The hardness part is inspired by

[BDCLM09BDCLM09, BBGK07BBGK07]. It consists, for any integer k , in the reduction of the satis�ability problem for

Quanti�ed Boolean Formulas with k alternations of quanti�ers (QBFSATl) into the model-checking for

USL
0

with memory-less strategies.

We establish the upper bound by giving a PSPACE algorithm for MC-USL
0
. It is largely inspired

from [BDCLM09BDCLM09]. The leading idea is that the data of a memory-less plan over a NATS de�nes a

restriction of that NATS, that can be seen itself as a NATS. In this model one can use the model checking

of LTL for path formulas, provided that its state subformulas are replaced by new atomic propositions.

18 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

5.2.1. MC-USL 0 is PSPACE-hard. This result is obtained by reduction of QBFSATk to MC-USL
0
, for

every k ∈ N:

Lemma 10. For every k ≥ 0, QBFSATk reduces to MC-USL0.

Proof. For k ∈ N, we consider the Σk -hard problem QBFSATk , that is the satis�ability problem of a

formula ∃X1∀X2∃X3 . . .Qk Xk ϕ(X1 , X2 , X3 , . . . Xk) where Qk is ∀ if k is even and ∃ otherwise, and

where ϕ is a boolean formula in Conjunctive Normal Form (CNF) ϕ =
∧

j=1, ... ,n Cj , so that each Cj is a

disjunctive clause on the set of variables {X1 , X2 , X3 , . . . , Xk }.

From an instance I of this problem we build the NATS GI = 〈Ag I , MI ,At I , vI , ChI 〉 represented

without label on Fig.33: it is turned base, so that the transition from any vl with l ≥ k is decided by agent

al between ¬xl+1 and xl+1 and from ¬xl or xl it goes necessarily to vl . Any transition from vk+1 loops

back to vk+1:

• MI =
⋃

0≤i≤k {xi ,¬xi , vi } ∪ {vk+1}

• For l , i ∈ [1, . . . , k], ChI (ai , vl) =
– {{xl }{¬xl }} if l = i
– M if l , i

• For l ∈ [1, . . . , k], ChI (ai , xl) = ChI (ai ,¬xl) = {{vl+1}}

• ChI (ai , vk+1) = {{vk+1}}

We label the states so as to make true, in each state xl or ¬xl , the set of clauses Cj ∈ ϕ compatible

with the corresponding truth value for Xl . That is:

• ∀1 ≤ l ≤ k , Lab(xl) = {Cj | Xl ∈ Cj }

• ∀1 ≤ l ≤ k , Lab(¬xl) = {Cj | ¬Xl ∈ Cj }

v1

¬x1

x1

v2

¬x2

x2

v3

¬xk

xk

vk+1

Figure 3. GI : an illustration of QBFSATk as a problem of model- checking for

memory-less USL

Since each player al e�ciently plays once for all and plays by deciding whether Xl holds or not, a

strategy for al corresponds to a truth value for the variable Xl . Indeed, the formula 〈〈xl 〉〉(al B x)^ψ
(resp. ¬〈〈xl 〉〉(al B x)^ψ) means that there exists a truth value for Xl s.t. (resp. for every truth value of

for Xl ,) ψ stands.

Now, consider the following USL formula:

ϕ := 〈〈x1〉〉(a1 B x1)(¬〈〈x2〉〉(a2 B x2)¬(〈〈x〉〉(a3 B x)(. . . (¬k 〈〈xk 〉〉(ak B xk)¬k (
∧

j∈1, ... ,J

^Cj)) . . .)

where for any integer l ,¬l is equal to ¬ if l is odd and empty if l is even. It holds at v1 i�

∃X1∀X2∃X3 . . .Qk Xkϕ(X1 , X2 , X3 , . . . Xn) is satis�able, that is if I is a positive instance of QBFSATk .

Then for every k ∈ N, QBFSATk reduces to the model-checking of the fragment of USL
0

with k

UPDATABLE STRATEGY LOGIC 19

alternations of quanti�ers. Because unbounded QBFSAT is PSPACE complete then, we get the lower

bound for the full model-checking of memory-less USL.

�

5.2.2. MC-USL 0 is PSPACE-complete. The algorithm for MC-USL
0

proceeds recursively, enumerating

strategies in a �rst time, then using the PSPACE-complete model-checking for LTL in Kripke models.

Let us �rst de�ne the restriction of a NATS by a plan:

De�nition 17 (Mπ). LetM = 〈Ag, M,At , v , Ch〉 be a NATS and let π = (κ, µ) be a plan over memory-
less strategies inM. ThenMπ = 〈Ag, M,At , v , Chπ〉 is the NATS de�ned by: for every (a, s) ∈ Ag ×
M, Chπ (a, s) = {π(a, s) ∩ c i� it is not empty, else π(a, s)}c∈Ch(a ,s) .

Now, we introduce the notations enabling to consider a path formula as an LTL formula over its state

subformulas. For a formula ϕ, let us write Q(ϕ) the set of its outermost properly state subformulas (i.e.
of form 〈〈x〉〉ψ, (a B x)ψ or (a 7 x)ψ) and LTLTϕ the formula obtained from ϕ by replacing in it every

subformula ψ in Q(ϕ) by a new atom ψ.

LetM be a NATS and ϕ an LTL formula. Then MC-LTL(M , s, ϕ) designates the model-checking for

universal satisfaction of ϕ at state s in the Kripke modelM′ de�ned by:

• The domain M and the valuation function v are those ofM.

• The transition relation R is: for every s, s′ ∈ M, R(s, s′) i� ∀a ∈ Ag, ∃s ∈ M, ∃c ∈ Ch(a, s) s.t.

s′ ∈ c.

With these notations, the procedure is described by Alg.11.

Algorithm 1 MC-USL (M , π, s, ϕ)

Require: A NATSM, a plan π = (κ, µ), s0 ∈ M and an USL path formula ϕ
Ensure: YES i�M , π, s |= ϕM′ =Mπ

for all ψ ∈ Q(ϕ) do
for all s′ ∈ M do
if ψ = 〈〈x〉〉ψ′ then
for all σ ∈ Strat do
if MC-USL (M′ , (κ, µ[x → σ]), s′ , ψ) then

label s′ with ψ
end if

end for
else if ψ = (A B x)ψ′ then
if MC-USL (M′ , (κ[A→ x], µ), s, ψ) then

label s′ with ψ
end if

else if ψ = (A 7 x)ψ′ then
if MC-USL (M′ , (κ[A9 x], µ), s, ψ) then

label s′ with ψ
end if

end if
end for

end for
return MC-LTL(M′ , s, LTLTϕ)

Note that a strategy can be stored in space ©(|Ag | × |Q |). Since the labelling of the states in M is

linear over the size of ϕ and since the algorithm used as oracle in Alg.11 (MC-LTL) is PSPACE-complete,

we have that Alg.11 runs in PSPACE.

20 CHRISTOPHE CHARETON, JULIEN BRUNEL, AND DAVID CHEMOUIL

6. Related works

Several directions have already been explored for extensions of ATL-ATL
∗
. The work presented here

deeply refers to SL [MMV10MMV10].

CTL.STIT [Bro10Bro10] takes inspiration from stit-framework, which originates in philosophy, in order to

extend ATL with expression of what agents do in addition to what they can ensure. The aim is to improve

ATL expressiveness in terms of veri�cation properties. In particular, it allows assumption-guarantee

reasoning. However, the reasoning about strategies and their composition is not improved.

Other formalims have been presented, such as Alternating-Time Temporal Logic with Explicit Strate-

gies (ATLES [WvdHW07WvdHW07]). Rather quanti�ed strategy variables, In ATLES syntax, the ATL operator

〈〈·〉〉 is replaced with an operator 〈〈·〉〉ρ that takes an unquanti�ed strategy term ρ as parameter. ATLES

has a PTIME model-checking. However, the reference in the syntax to an e�ective strategy, which is a

semantic object, is not convenient in practice.

As in the present work, the revocation of strategies is questioned in [ÅGJ07ÅGJ07]. In their proposition,

the authors distinguish between revocable strategies as they are de�ned in SL and ATL, and irrevocable

strategies. We believe that strategies in USL o�er an adequate synthesis between both views, because

they can be later modi�ed and at the same time hold some de�nitive commitments from the agents.

The idea of unbinding agents from their current strategies is also present in ATLsc [DCL11DCL11,BDCLM09BDCLM09]

with the operator ·〉A〈·. Yet, strategies are also automatically revoked in case a given agent is bound to

several strategies: it is not possible for an agent to re�ne its strategy.

7. Conclusion

In this article we de�ned the logic USL, in which we can reason about agents re�ning or revoking

their strategies. This uni�es a rich composition of strategies that allows strategies re�nement with the

usual revocation of strategies developed in the literature. USL strictly extends SL, and is in particular

able to express what we called sustainable capabilities. USL syntax is also more �exible than SL syntax,

and is better adapted to modular speci�cations. Its model checking problem is NONELEMENTARY but

for its memory-less restriction the model checking is PSPACE-complete.

As future work, we plan to study applications of USL. In particular, as we already noticed in [CBC11CBC11],

temporal multi-agents logics can be useful to investigate requirement engineering problems. We need to

investigate on the possibilities USL o�ers in the validation of requirement engineering models.

We also want to study further the expressiveness o�ered by unbinders. In this article we exclusively

discussed the meaning of unbinding an agent before she is herself bound again. The expressiveness

given by unbinding some agents before binding others should also be analyzed.

Another aspect we want to study is the comparison of USL with the logic QDµ [Pin07Pin07]. This

formalism enables to express �xed-point properties about strategies and subsumes SL. Since the concept

of sustainable capabilities, which seems to characterize well USL expressiveness, is close to a �x point,

we think that this comparison is interesting to investigate.

References

[ÅGJ07] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time temporal logics with irrevocable

strategies. In Theoretical aspects of rationality and knowledge, pages 15–24, 2007.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J. ACM, 49(5):672–713,

2002.

[BBGK07] C. Baier, T. Brazdil, M. Grosser, and A. Kucera. Stochastic game logic. In Quantitative Evaluation of Systems., pages

227 –236, 2007.

[BDCLM09] T. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts and bounded memory. Logical
Foundations of Computer Science, pages 92–106, 2009.

[Bro10] J.M. Broersen. CTL.STIT: enhancing ATL to express important multi-agent system veri�cation properties. In Proc. of
the ninth international joint conference on Autonomous agents and multiagent systems (AAMAS 2010), pages 683–690,

New York, NY, USA, 2010. ACM.

UPDATABLE STRATEGY LOGIC 21

[CBC11] Christophe Chareton, Julien Brunel, and David Chemouil. A formal treatment of agents, goals and operations using

alternating-time temporal logic. In SBMF, pages 188–203, 2011.

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inf. & Comp., 208(6):677–693, 2010.

[DCL11] Arnaud Da Costa Lopes. Propriétés de jeux multi-agents. Phd thesis, École normale supérieure de Cachan, September

2011.

[DLM10] Arnaud Da Costa, François Laroussinie, and Nicolas Markey. ATL with strategy contexts: Expressiveness and model

checking. In IARCS Annual Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 8, pages 120–132, 2010.

[KV98] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree automata emptiness. In ACM Symposium
on Theory of computing, pages 224–233, 1998.

[MMPV11] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about strategies: On the model-

checking problem. CoRR, abs/1112.6275, 2011.

[MMV10] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies. In IARCS Annual Conf. on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 8, pages 133–144, 2010.

[MS87] ED Muller and PE Schupp. Alternating automata on in�nite trees. Theor. Comp. Sci., 54(2-3):267–276, October 1987.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondeterministic automata: New

results and new proofs of the theorems of rabin, mcnaughton and safra. Theor. Comp. Sci., 141(1–2):69 – 107, 1995.

[Pin07] Sophie Pinchinat. Quanti�ed mu-calculus with decision modalities for concurrent game structures. Technical report,

Dept. of Computer Science, Faculty of Engineering and Information Technology, Australian National University,

2007.

[WvdHW07] Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-time temporal logic with explicit strategies.

In Theoretical aspects of rationality and knowledge (TARK 07), pages 269–278. ACM, 2007.

Onera/Dtim, 2, avenue Édouard Belin, BP74025,, 31055 Toulouse Cedex 4, France

E-mail address: firstname.lastname@onera.fr

Onera/Dtim, 2, avenue Édouard Belin, BP74025,, 31055 Toulouse Cedex 4, France

E-mail address: firstname.lastname@onera.fr

Onera/Dtim, 2, avenue Édouard Belin, BP74025,, 31055 Toulouse Cedex 4, France

E-mail address: firstname.lastname@onera.fr

	1. Introduction
	2. Updatable Strategy Logic (USL)
	3. Syntax and semantics
	3.1. Syntax
	3.2. Semantics
	3.3. USL0

	4. USL and SL
	4.1. Embedding of SL into USL
	4.2. Sustainable control is not expressible over deterministic models
	4.3. Sustainable control is not expressible in SL1 over NATSs

	5. Model-checking
	5.1. USL
	5.2. USL0

	6. Related works
	7. Conclusion
	References

