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Abstract - Today, industry has not fully embraced the matrix 

converter solution. One important reason is its high control 

complexity. It is therefore relevant to propose a simpler but 

efficient modulation scheme, similar as three phase VSI 

modulators with the well-known symmetrical carrier-based ones. 

The modulation presented in this paper is equivalent to a 

particular Space Vector Modulation (SVM) and takes into account 

harmonics and unbalanced input voltages, with the same 

maximum voltage transfer ratio (86%). The aim of this work is to 

propose a simple and general pulse-width-modulation method 

using carrier-based modulator for an easier matrix converter 

control. Furthermore, a simple duty cycle calculation method is 

used, based on a virtual matrix converter. Finally, simulations and 

experimentations are presented to validate this simple, original and 

efficient modulation concept equivalent to matrix converter SVM.  

Index Terms - Matrix converter, power conversion, AC–AC, 

AC-AC conversion, power converter, pulse-width-modulated 

power converters, pulse-width modulation, PWM, DPWM. 

I. INTRODUCTION 

he Matrix Converter, shown in Fig. 1, is a direct three-

phase to three-phase forced-commuted power converter 

which directly connects the mains power supply (r, s, t) to the 

motor (u, v, w) through nine fully controlled bidirectional 

switches. The input network (r-in, s-in, t-in) is connected to the 

matrix converter through an L-C input filter as shown in Fig.1. 

This converter, which can be decomposed in three “cells” as 

shown in Fig. 1, generates variable frequency and amplitude 

output voltages (limited to 86% of the input voltage amplitude 

with over-voltage modulation) with any three-phase electrical 

network. This converter is able to produce sinusoidal input 

currents, which limits the volume of the L-C input filter.  
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This converter has a high power density and a potentially high 

reliability since electrolytic storage capacitors are not required. 

Thus, it could become a compact industrial solution for 

adjustable speed drive applications feeding induction motors. 
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Fig. 1. The Matrix Converter scheme 

The more useful and interesting modulations are the Space 

Vector Modulation (SVM) [1]-[4] and the Rectifier and Inverter 

Vector Modulation (RIV) [5], [6]. These modulations are based 

on graphical representation methods, duty cycle calculations, and 

sequenced states application to create the Pulse-Width 

Modulation (PWM). An 86% voltage ratio (RMS fundamental 

output voltage divided by the RMS input voltage) is obtained 

with these methods. In fact, both modulations are equivalent and 

able to produce sinusoidal output voltages, even when there is 

unbalance or harmonics in the mains voltages. Since current 

references of the mains are chosen proportional to the input 

voltages, input currents are balanced and sinusoidal as long as the 

mains power supply is a perfect sinusoidal source. A PWM that 

limits the number of switchings during the modulation period has 

also been introduced with the SVM representation, using the 

calculated duty cycles and a defined switching table [7]-[8]. 

These matrix converter modulations are efficient, but complex to 

understand, to synthesize compared to the three phase voltage 

source inverter (VSI) modulations, and thereby heavy to implement 

in digital processors. The carrier based modulations proposed in the 

literature are complex to implement into industrial process, by 

using a discontinuous carrier wave modulator [9], [10] or an 

asymmetrical one which needs to sum some duty cycles [11],[12]. 

Hysteresis control methods and Direct Torque Control (DTC) for 

matrix converter are other interesting alternatives [1],[13],[14]. 

However, drawbacks still exist such as torque ripple in the low speed 

region or switching frequency variation according to the change of 

the motor speed. Thus, industrial applications still focus on 

controlled-frequency PWM, and especially carrier-based solutions.  

Today, industry has not fully embraced the matrix converter 

solution, mainly due to its high control complexity (modulation, 

switching control…) and implementation in a digital processor 
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[15]. It is therefore relevant to propose simple, but efficient 

modulation schemes like the three phase VSI modulation, with 

the well-known symmetrical carrier-based modulation. Thus, an 

interesting scientific and industrial approach is to propose a 

symmetrical carrier based modulation to greatly simplify this 

implementation and its understanding.   

Moreover, an interesting approach has been introduced by 

Ishiguro in [16] for the matrix duty cycle calculation, as it limits 

the number of duty cycle calculations, but it does not propose a 

satisfying carrier-based modulator. 

The aim of this paper is to propose a scalar matrix converter 

modulation equivalent to the SVM ones in order to obtain the 

same electrical characteristics (same logic state at each time, same 

constraints, same efficiency…), with a simple approach. Firstly, 

this modulation method calculates duty cycles and generates the 

conversion matrix [M], by using the principle presented in [16] 

limiting the number of calculations and introducing a virtual 

matrix converter for better understanding and computing of the 

matrix modulation. Then, the proposed symmetrical carrier-based 

PWM, equivalent to the SVM, creates, without any additional 

calculation, the nine logic control signals of the matrix converter 

switches by using the matrix [M]. This modulation process can be 

extended to other PWM strategies. 

II. SPACE VECTOR MODULATION (SVM) FOR MATRIX 

CONVERTER 

In this part, the basic knowledge of the SVM applied to 

matrix converter is introduced to highlight the proposed 

modulation objectives. The well-known matrix converter 

Space Vector Modulation (SVM) [1]-[4] approach leads to 

define three vector families: 

- First family: 6 rotating vectors (each phase input is 

connected to a different phase output). 

- Second family: 3 null vectors (free wheeling ie a switches 

configuration leading to zero voltage on the load) called Oi 

with i = 1, 2 or 3. 

- Third family (the remaining ones): 18 active vectors called 

Aj (with a fixed angular position, and proportional to one input 

phase-to-phase voltage), where j is an integer between 1 and 18. 

Matrix SVM modulations use only the two last families to 

create output voltages and input currents [17], [18], as the first 

one has a vector position varying with the time, which is not 

useful for building the references with the space vector approach. 

The general matrix SVM sequence, shown in Fig. 2, uses 

four active vectors Ak (among the six vectors nearest to the 

output voltage reference vector), and one to three null states 

Ok to complete the PWM period. This specific sequence 

allows having only one switching when a vector is changed.  
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Fig. 2. General SVM sequence for the matrix converter 

In classical SVM methods, only the two greatest phase-to-

phase input voltages (U1 and U2 in Fig. 2) and also a null 

voltage (free-wheeling state) are connected to outputs (u, v, w) 

during a PWM period (T) [19]-[21].  

The null vector O2 automatically involves at the output the 

common potential to U1 and U2, which is in fact the highest 

input phase potential in absolute value. A particular modulation 

can be defined by only using this null state O2, which generates 

a discontinuous modulation (DPWM) [19]. This terminology is 

proposed here, as this specific choice allows blocking one of the 

three “switching cells” of the matrix converter, in the same way 

as one inverter leg is blocked when using discontinuous PWM 

in VSI. This particular modulation, presented in Fig. 3, 

reduces the number of switching and increases the converter 

efficiency compared to the general SVM sequence (Fig.2.).  
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Fig. 3. DPWM SVM sequence for the matrix converter 

To generate this DPWM SVM, it is necessary to 

- use the two greatest phase-to-phase input voltages to build 

the output voltages, 

- use only the null state connected to the highest input phase 

potential in absolute value. In the SVM sequence, this particular 

null state is necessarily positioned in the medium part of the 

half PWM period. 

The aim of the article is to propose a carrier based 

modulation method to obtain the SVM DPWM sequence, 

involving less calculation and thereby a simpler solution 

compared to the classical SVM implementation. 

III. COMPUTING THE DPWM CONVERSION MATRIX [M] 

 The calculation method of the conversion matrix [M], 

involving the DPWM and based on a virtual matrix converter 

concept, is presented in this part. 
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In order to avoid any short circuit of the input voltage 

sources and open circuit output currents, the sum of duty 

cycles for each cell must be equal to 1: 

1 tkskrk mmm , k є u, v, w (2) 

A. Conversion matrix [M] calculation 

A general relation [16] for producing two output phase-to-

phase voltages with the three input phase-to-phase ones is 

defined in (3). Since the three phase-to-phase voltages are 

equal to zero, the third output voltage is automatically 

deducted from (3). 











rrrrststrtrtrsrsuw

rrrrststrtrtrsrsuv

ucucucucu

ububububu
 (3) 

bij is a duty cycle that connects uij to uuv. Indirectly, brs 

controls the 4 switches that can connect r or s to u or v. cij is 

associated to the output voltage uuw. Since coefficients bij and 

cij are duty cycles, they are automatically bounded between 

zero and one. 
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With the aim of producing an equivalent modulation to 

the SVM, only the two largest input phase-to-phase voltages 

(U1 and U2) must be introduced as explained earlier. In order 

to simplify the calculation of the conversion matrix [M], [16] 

has proposed to calculate the duty cycles of [M] with particular 

values of input voltages and output voltage references, as shown 

in Fig. 4.  
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Fig. 4. Particular  area choice of voltage values to calculate [M] 

In this particular time area, urs and urt are the two greatest 

and positive input phase-to-phase voltages. They are used to 

create outputs uuv and uuw, which are, in this time range, two 

positive phase-to-phase voltage references. “u” is the common 

potential of these two positive references, which will always 

be connected to “r”, the common potential of the two positive 

input voltage urs and urt. According to this specific choice, the 

converter builds the two greatest phase-to-phase output 

voltage references with the help of the two greatest phase-to-

phase input voltages. As a consequence, the highest voltage 

capability of the converter is necessarily reached in these 

conditions (voltage ratio equal to 86%). 
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 (4) 

As the output potential “u” is always connected to the input 

phase “r”, the “u” cell is necessarily blocked.  

The duty cycles used in equation (4) are defined in (5) and 

derived from [14], considering that: 

- all duty cycles are chosen proportional to the input voltage 

in order to have input current proportional to the input voltage, 

as explained in the appendix and in [16], [22]-[23].  

- The u cell is blocked.  

This way, duty cycles and then the conversion matrix [M] 

can be defined (5). This solution has the advantage of only 

requesting the calculation of four duty cycles. 
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(5) 

In the case of asymmetric components and/or harmonics 

contained in input voltages, the matrix [M] defined in (5) 

automatically compensates input voltage disturbances [17]. 

This propriety will be presented and validated in the 

simulation of the conversion matrix part (III.C).  

B. Matrix-Based Type  

The [M] matrix defined in (5) is simple to compute but 

cannot be used directly for all input and output voltages 

values. This section defines how this principle can be 

extended to obtain [M] in any case. 

In order to use always the greatest matrix converter input 

phase-to-phase voltages and to block one of the three 

switching cells, it is necessary to permanently connect the 

greatest absolute input voltage to the greatest output voltage 

with the same sign as the input one, as showed in Fig. 5. This 

way, the modulation is created by the variation of the two 

other output potentials which have to be sorted in value and 

sign (+, 0, 0+, 0-, -), with: 

+: highest potential  

0: intermediary potential, with a positive value (0+), with a 

negative value (0-) 

-: lowest potential 
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Fig. 5. The 2 possibilities of classified voltage 

The choice of the blocked switching cell and of its “ON 

switch” is dependent on the greatest values of the input 

voltages (r, s, t) and of the output voltage references (u, v, w), 

which changes with the time. Two selectors (Fig.6.) have been 

introduced to realize these inputs and outputs voltage 

classifications. 

In order to be able to use at any time the same matrix-based 

duty cycle (5), a “virtual matrix converter” (Fig. 6) is 

introduced with classified input (r’, s’ and t’) and output (u’, 

v’ and w’) made by both selectors. This virtual converter 

always has its first virtual cell (u’ cell) blocked as shown in 

Fig. 6. Consequently, the duty cycle mr’u’ is always equal to 1, 

and other duty cycles of the first cell (ms’u’ and mt’u’) are 

always equal to zero.  
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Fig. 6.  Virtual matrix converter concept with its two selectors 

The states of the input selector and of the output selector 

have to be defined according to the input and output voltage 

values. Input potential and output reference potential levels 
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can be classified, with “+” defining the greatest, “-’’ the 

lowest and “0” the intermediary one. Thus, selectors have 

been defined with the following principles: 

- The aim of the input selector is to connect the two positive 

and greatest input phase-to-phase voltages to (r’, s’) and (r’, 

t’) inputs of the virtual converter. For this, the input potential 

with the largest absolute input value (input potential with the 

opposite sign to the other two) is always connected to r'.  

- The output selector connects to u' the output which has the 

largest voltage reference with the same sign as r' input,  

- This modulation method needs to compute, at any moment, 

the same four duty cycles (ms’v’, ms’w’, mt’v’ and mt’w’), using 

equation (4) as shown in (6). The two other input potential 

assignments (s' and t') and the two other output potential 

assignments (v' and w') are initially arbitrary. The allocation 

choice of these input and output potentials generates a 

permutation of the two last rows (for s' and t' assignment) and 

two last columns (for v' and w' assignment) in the conversion 

matrix [MVirtual] defined in (6). A choice has been done to be 

able to determine the conversion matrix [M].  
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(6) 

The final conversion matrix ([M]) is defined by relation (7). 

[M]= [M Input Selector]x[M Virtual]x[M Output Selector] (7) 

Finally, the conversion matrix [M] is obtained with a lines 

and columns specific rotation of the virtual converter 

conversion matrix [M Virtual].  

C. Simulations of the conversion matrix 

This method for generating the conversion matrix [M] has been 

implemented in Matlab-Simulink® software. Fig. 7 shows the 

matrix converter input and output voltages and currents without 

PWM with a 50-Hz input frequency and maximal voltage input 

network equal to 325V. The output reference is created with 

30Hz and 195V maximal voltage values. The matrix converter 

operates at 10kVA R-L load with a power factor of 0.86 (4.9Ω; 

15.5mH). The 195V at 30Hz voltage applied to this three phases 

load generates a 34,2A maximum value of the output currents. In 

order to conserve the input and output active power equality, the 

maximal input currents should be equal to 17,6A. Fig. 7 validates 

this modulation approach as the electrical outputs and inputs have 

the expected values.  
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Fig.7. Simulation of the matrix converter with the average model  

(a) Input network voltages (imposed by the grid) 

(b) Input network currents generated by the modulation 

(c) Output voltages generated by the modulation 

(d) Output currents generated in the R-L load 

Fig. 8 shows the u cell duty cycles (mru, msu, mtu). One of these 

three duty cycle is equal to one and the two others to zero when 

vun’ is the largest output reference with the same sign as the largest 

absolute input voltage, which illustrates the DPWM. 
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Fig.8. Simulation of the matrix converter with average model  

(a) Input network voltages (imposed by the grid) 

(b) Output voltages generated by the modulation 

(d) 3 duty cycle evolution in the “u cell” of the matrix converter  

This modulation has also been successfully validated by 

simulation with variable input and output constraints 

(variations of the frequency, of the input voltages and variable 

voltage transfer ratio limited to 86%), and under 

unbalanced/disturbed conditions. Fig.9 shows simulation 

results of the proposed modulation in this case. One input 

voltage is increased by 10% and an homopolar component is 

added in the network voltage (5% of the rms network voltage 

at 500Hz). The output reference is created with 30Hz and 195V 

values. The matrix converter operates at 10kVA R-L load with a 

power factor of 0.86. 
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Fig.9. Simulation of the matrix converter with the average model in the case 

of disturbed network 

(a) Input network voltages (imposed by the grid) 

(b) Input network currents generated by the modulation 

(c) Output voltages generated by the modulation 

(d) Output currents due to (c) on the R-L load 

It generates the same output voltages and consequently the 

same output current as the balanced ones. Only input currents 

are modified according to the control principle [16]. Therefore, 

the proposed matrix calculation of [M], based on the “virtual 

matrix converter concept”, is validated.  

IV. MATRIX CONVERTER PWM MODULATOR 

These nine duty cycles (mjk) have to be transformed into 

logical signals adapted for the control of the nine switches 

(Sjk), generating the connection matrix [S] (8), with the help of 

a carrier-based PWM. 

  


















twtvtu

swsvsu

rwrvru

sss

sss

sss

S  (8) 

A. Carrier Based Switching Cell Modulator. 

Each switching cell (u, v, w) is composed of three switches, 

with only one “ON” switch in each cell at any time (9).  

 

1SSS

1SSS

1SSS

twswrw

tvsvrv

tusuru







    (9) 

With Sij=1 when the switch Sij is ON, Sij=0 when it is OFF. 

The principle of the modulator, for each switching cell, is to 

compare one duty cycle to a triangle carrier wave and a second 

one to this carrier wave complemented to 1. The logic control 

of the last switch is created by the complement to 1 of the sum 

of the two previous logic signals as shown in Fig. 10.  

Carrier Wave

Complement

Carrier Wave

1

Sru

Ssu=

Stu

1

mtu= 0.21

mru= 0.65

Complement

To 1 of  Sru+Stu

 
Fig. 10. The based switching cell modulator (ex where Ssu is complemented) 

According to this description, the ON switching signal 

created by the “sum complement to 1” appears automatically 

in the middle of each slope (Ssu in Fig. 10), and the two other 

ON switch signals, at the beginning and the end of the carrier 

slope (Sru and Stu in Fig. 10). 

B. Matrix Converter Carrier-Based Modulator 

In order to reproduce the DPWM SVM modulation, each 

duty cycle of a matrix line must be assigned in “real time”, 

with the help of “selector concept” (Fig. 6), to the same 

control allocation (comparison to the carrier wave, to its 

complement to 1 or equal to the sum of both previous duty 

cycles complemented to 1). According to “ON signal” 

positions (Fig. 10), it can be noted that the line complemented 

to one creates the “ON” state automatically in the “medium 

part” of each slope, similarly to the position of the null vector 

O2 in the DPWM SVM modulation (Fig 3).  

The null vector O2 line in the DPWM SVM modulation must 

be detected in the conversion matrix [M]. It is necessarily the 

one with a duty cycle equal to 1 (blocked cell). Then, to the 

two other lines must be assigned to carriers as shown in Fig. 

11. Therefore, the control allocation changes during time 

(“selector concept”). In example (Fig. 12), the second line has 

the duty cycle equal to one (msv). Therefore the carriers 

control is affected here to the first and third lines.  Fig. 12 also 

illustrates both the active vectors Ak and the null vector O2, 

connected here to the “s” input. The second cell (v cell) is 

blocked (DPWM) and is always connected to the “s” input. 
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Fig. 11. “Real time” Concept of Matrix duty cycle line assignment. 
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Fig. 12. Illustration of DPWM modulator and equivalent SVM vector 

sequence.  

This carrier-based modulator is simple to implement and 

needs only the calculation of the four duty cycles of [M]. It 

can be applied, with same results, on the virtual converter or 

on the real matrix converter (fig. 13.) according to the good 

choice of the line “complemented to one”. The output of 

modulator is the connexion matrix [S].  

PWM[MVirtual]

Real

Virtual

Real

Virtual Real

Virtual

Real

Virtual

[S]

Input 

voltages

Output 

references  
 

or 
 

PWM[MVirtual]

Real

Virtual

Real

Virtual Real

Virtual

Real

Virtual

[S]

Input 

voltages

Output 

references
 

Fig. 13. Carrier wave-based Modulator implementation. 

This feature allows making a more flexible modulator and 

facilitates its implementation in an industrial application. 

C. Simulations 

This carrier-based modulator has been implemented in Matlab-

Simulink® software with the same balanced conditions as in the 

previous part and with a 10-kHz carrier wave frequency. This 

modulation technique has been compared to the classical SVM 

modulation and gives the same value of the connexion matrix [S] 

for both modulations in each sampling time. Fig. 14 shows the 

DPWM simulation of the matrix converter. As they are chopped 

(PWM) and balanced, only one input current (ir) and one output 

voltage (vun’) are represented to facilitate reading and 

understanding. As in previous simulations (with the average 

model), input network parameters are set to 50Hz and 325V, output 

voltage reference parameters are set to 30Hz and 195V.  The matrix 

converter operates at 10kVA R-L load with a power factor of 0.86.  

The motor voltage (vun’), chopped sinusoidal voltage at 30Hz, is 

presented. It has the expected fundamental RMS value since the 

three motor currents iu, iv, iw are sinusoidal and balanced with the 

same RMS value compared to simulations shown in Fig. 7. Input 

currents are chopped and in phase with their respective input 

voltages. As an example here, only ir is presented and its 

respective input voltage vrn is shown in continuous bold line. 
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Fig.14. Simulation of the matrix converter with the instantaneous model  

(a) Input network voltages (imposed by the grid) 

(b) Input network currents generated by the modulation 

(c) Output voltages generated by the modulation 

(d) Output currents generated in the R-L load 

Fig. 15 shows simulation results of one output voltage (vun) and the 

common mode voltage vnn’. The vun voltage illustrates the blocking 

state (DPWM) of the “u cell” when vun’ is the largest output 

reference, with the same sign as the largest absolute input voltage. 

  
Fig.15. Simulation of the matrix converter with the instantaneous model  

(a) Input network voltages (imposed by the grid) 

(b)vun (output voltage) generated by the modulation  

(c) vn’n (homopolar voltage) induced by the modulation 

V. EXPERIMENTATION 

A matrix converter prototype as shown in Fig. 16 has been 

developed with FF200R12KT3_E IGBT and ARCAL2210 driver 

modules to test this original modulation method, implemented 

here into a DSP from Texas Instrument (TMS320F2812) and a 

CPLD from Altera (DB3256-144).  

The matrix converter input filter is composed of a 0.6mH 

inductor, which has a 4.7mΩ internal resistance, and a 10μF 

capacitor. Experimental results shown in the Fig.17 to Fig.19 

have been obtained with an input voltage equal to 120V RMS 

at 50Hz. The matrix converter has been connected to a three 

phases R-L load with a 0.63 power factor (R=11.85Ω; 

L=7.7mH). The ratio q (RMS output voltage divide by the 

RMS input voltage) is set to 0.8, the output voltage is 96V 

RMS and the output frequency is defined at 30Hz. The 

triangle carrier wave frequency has been set to 10 kHz.  

For secure commutations, gate transistor signals of Matrix 
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converter require proper sequences as presented in [4],[24]-[27]. 

The commutation sequence used in our experiment is either two 

step current commutation sequences technique or four step 

voltage commutation sequences ones. A clamp circuit [1],[25] 

has also been introduced in the matrix converter prototype, as a 

safety system, in order to prevent any commutation failure. 

 
Fig.16. Matrix converter prototype. 

Fig. 17 shows the input voltage vrn and the filtered input current 

ir. The input RMS current value is equal to 2.54A for this test. A 

slight phase shift between voltage and current and a distortion is 

introduced by the L-C input filter. The harmonic frequency of 2 

kHz appearing in the input current is a consequence of the 

resonance frequency of the input filter [25].  

ir-in

vrn

 
Fig.17. Experimental results: Line current (ir-in) and line voltage (vrn) 

 Fig. 18 shows an output voltage (vun’) and the three load 

currents (iu, iv, iw). These three load currents are perfectly 

sinusoidal and balanced (5.1A RMS).  

iv

Vun’

iu

iw

 
Fig.18. Experimental results: Load currents and vun’ voltage. 

As presented in the Fig. 19, the vun voltage exhibits several 

none chopped time area. It illustrates the u cell blocking of the 

matrix converter, which validates the DPWM operation of the 

proposed modulation method.  

iv

vun

iu

iw

 
Fig.19. Experimental results: Load currents and vun voltage. 

The input and output power are approximately equal to 

925W. These input and output waveform allows validating the 

operation of the proposed matrix converter modulation.  

VI. CONCLUSION 

This paper has presented an original carrier-based modulator 

for matrix converters based on a “virtual matrix converter” 

concept.  The proposed modulation concept is illustrated with 

the DPWM which blocks one of the three switching cell. This 

choice limits to four the number of duty cycle calculations. The 

proposed carrier-based modulator creates the same 

instantaneous connexion matrix [S] as the SVM or the RIV (in 

the DPWM specific case here), but with less calculation and 

with a more synthesized and systematic approach. Therefore, 

this modulation is easier to implement compared to the 

previous ones and has been patented [28], [29].  

Furthermore, the basic modulation concept, illustrated in 

this paper with the DPWM, can be extended in a simple way 

to other modulation choices. A future paper will present the 

general modulation process taking into account the different 

null states possibilities (freedom degrees) in order to obtain 

better converter performances (losses, EMC, input currents 

and output voltages THD….).  

Afterwards, it should be an interesting work to compare the 

efficiency and the electrical characteristics of the proposed 

modulation methods with the DTC modulation. Then, we 

should get a global overview of matrix modulation solutions 

and performances for industry applications. 

 Finally, the proposed modulation cannot tune the input 

power factor. In future work, it would be an interesting trend 

to introduce this parameter in the proposed method to be able 

to compensate the slight phase shift introduced by the L-C input 

filter between voltage and current [30] and/or generate reactive 

power flow for ancillary services in electrical grid (wind turbine 

applications….).  
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APPENDIX 

The input currents are chosen to be in phase with their 

respective input voltages. Each input current is proportional to 

the respective input voltage. The input reactive power must be 

null as shown in (10). 
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We can define (11) by the general matrix Kirchhoff’s laws  
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(11) 

 In this example the ir current is detailed and leads to 

relation (12). 
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The input power must be equal to the load power since no 

storage is used on the matrix converter. 
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The easiest solution for the equation (13) is shown in (14) 
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(14) 

A simple and evident solution to define switches duty 

cycles is to have proportionality with input voltages. 

The calculation method [5] uses the phase-to-phase voltage. 

This proportionality must be verified with the combination 

switches duty cycles (bij, cij). 
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The uuv voltage can be decomposed into three input voltages 

and switch duty cycles.  
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(16) 

The easiest solution for equations (15) and (16) is shown in (17). 
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It is therefore possible to conclude that switch duty cycles 

combination (bij, cij) can be proportional to their input phase-

to-phase voltage. 
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