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Let (X,Y ) be an X × R valued random variable, where X ⊂ R p . We generalize to a nonlinear framework the sufficient dimension reduction approach, followed by Cadre and Dong (2010), for estimating the regression function

In classical sufficient dimension reduction, H may be considered as a particular set of matrices. Here, H is considered to be a general and possibly nonparametric class of functions. In this context, we define the reduced dimension d associated with H as the smallest ℓ such that there exists h ∈ H satisfying the former equality and such that h(X ) spans a subspace of dimension ℓ. Then, we construct an estimate r of r that is proved to achieve the optimal rate of convergence as if the predictor X where d-dimensional.

Introduction

In a general setting, regression analysis deals with the problem of retrieving information about the conditional distribution of a real-valued response variable Y given an X -valued predictor X, where X ⊂ R p , and is often understood as a study of the regression function r(x) := E (Y |X = x) .

(1.1) 1

It is well known that the estimation of the regression function faces the curse of dimensionality which, roughly speaking, means that the expected rate of convergence of a given estimate slows down as the dimension of the predictor X increases. This statement is usually understood in terms of optimal rates of convergence. For instance, if the regression function r is assumed to be Lipschitz, the optimal rate of convergence for the estimation of r is n -2/(2+p) . For more details on optimal rates of convergence, the reader is referred to [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF]; [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]; [START_REF] Kohler | Optimal global rates of convergence in nonparametric regression with unbounded data[END_REF] or any other standard textbook on the subject.

To overcome the curse of dimensionality, many authors have considered a model which specifies that the conditional mean of Y given X depends on X only through its projection on an unknown number d < p of unknown orthonormal vectors α 1 , . . . , α d ∈ R p , so that

E (Y |X) = E Y |α ′ 1 X, . . . , α ′ d X (1.2)
(see e.g. [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivative[END_REF][START_REF] Li | Sliced inverse regression for dimension reduction (with discussions)[END_REF]Cook, 1998, and the references therein). In this approach, provided d and the α i 's may be estimated, it is nat- urally expected that the rate of convergence of an estimate of the regression function should depend only on d since the p-dimensional predictor X may be replaced by the d-dimensional predictor (α ′ 1 X, . . . , α ′ d X). Many methods have been introduced in the litterature to estimate d and the α i 's, among which we men- tion average derivative estimation (ADE) [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivative[END_REF], sliced inverse regression (SIR) [START_REF] Li | Sliced inverse regression for dimension reduction (with discussions)[END_REF], principal Hessian directions (PHD) [START_REF] Li | On principal hessian directions for data visualization and dimension reduction: another application of steins lemma[END_REF], sliced average variance estimation (SAVE) [START_REF] Cook | Discussion of sliced inverse regression for dimension reduction[END_REF], kernel dimension reduction (KSIR) [START_REF] Fukumizu | Kernel dimension reduction in regression[END_REF] and more recently the optimal transformation procedure [START_REF] Delyon | Optimal transformation: a new approach for covering the central subspace (to appear)[END_REF]. Discussions, improvements and other relevant papers can be found in [START_REF] Cook | Dimension reduction for conditional mean in regression[END_REF]; [START_REF] Fung | Dimension reduction based on canonical correlation[END_REF]; [START_REF] Xia | An adaptive estimation of dimension reduction space[END_REF]; [START_REF] Cook | Sufficient dimension reduction via inverse regression: a minimum discrepancy approach[END_REF]; [START_REF] Yin | Successive direction extraction for estimating the central subspace in a multiple-index regression[END_REF] and the references therein. Recently, [START_REF] Cadre | Dimension reduction in regression estimation with nearest neighbor[END_REF] have used these methods to prove that, in the context of this model, one could construct an estimate of the regression function which converges at the rate n -2/(2+d) .

In the present article, we generalize the approach followed by [START_REF] Cadre | Dimension reduction in regression estimation with nearest neighbor[END_REF] and consider a nonlinear extension of the previous model motivated by the following observation. Assume there exists some function h : X → R p such that dim S(h) < p, where S(h) stands for the subspace spanned by h(X ), and such that

E (Y |X) = E (Y |h(X)) .
(1.3)

Then, the heuristic approach described in the previous paragraph still applies and it is expected that, provided h can be estimated, a carefully chosen estimate of r should converge at a rate depending only on dim S(h). In particular, the fact that h is linear does not appear necessary. The general model that will be considered in this paper is therefore described by the following assumption.

Basic assumption -We assume given a class H of functions h : X → R p such that equation (1.3) holds for at least one h ∈ H .

Many models may be generated by this general formulation. In particular, when H is chosen to be the class of all square matrices (β

1 • • • β s 0 • • • 0) ′ of order p such that s ≤ p, such that the β i 's belong to R p and such that β ′ i β j = δ i, j
, one recovers the model described by (1.2) since the matrix

(α 1 • • • α d 0 • • • 0) ′ belongs to H .
Other examples may be constructed in the following way. If Φ denotes a class of functions φ : X → R (such as polynomials), one may consider H to be the class of all functions h(x) = (φ 1 (x), . . . , φ s (x), 0, . . . , 0) such that s ≤ p and such that the φ i 's belong to Φ. The estimation procedure of r presented in this article will be based on the nearest neighbors method and on the existence of a function h ∈ H which satisfies (1.3) and which minimizes dim S(h) among all functions in H which satisfy (1.3). The value of dim S(h) for such an optimal h ∈ H depends on H , will be referred to as the reduced dimension and denoted d. It will be proved that the rate of convergence of a proper estimate of r depends only on the reduced dimension. In the existing literature, similar nonlinear generalizations of model (1.2) have been introduced (see e.g. [START_REF] Cook | Fisher lecture: Dimension reduction in regression[END_REF] and much effort has already been made for the estimation of an optimal h in the nonlinear context (see e.g. [START_REF] Wu | Kernel sliced inverse regression with applications on classification[END_REF][START_REF] Wang | A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse mave[END_REF]Yeh et al., 2009, and the references therein). As far as we know, the estimate of the reduced dimension introduced here is new as well as the method derived to estimate r.

The paper is organized as follows. In Section 2 we give a specific representation of the reduced dimension d. Section 3 is devoted to the study of an estimate of the reduced dimension d based on empirical risk minimization. In Section 4 we construct an estimate r of r, based on the nearest neighbors method, which satisfies

E (r(X) -r(X)) 2 = O n -2/(2+d) .
Section 5 is devoted to some examples. In Section 6 we present a small simulation study. Proofs of the main results are presented in Section 7 and technical results are collected in Section 8.

Reduced dimension

According to our basic assumption, there exists a function h ∈ H and a function g : R p → R such that r = g • h. In addition to the basic assumption, we fix a class G and use the assumption that such a function g can only belong to G .

Assumption (A1) -For all h ∈ H satisfying (1.3), any function g : R p → R that verifies r = g • h belongs to G .

An explicit choice for the class G will be specified in Section 3. The consequence of this assumption is that r belongs to the class

F := {g • h : g ∈ G , h ∈ H } .
Now, we proceed to giving a more tractable representation of the reduced dimension. For all ℓ ∈ {1, . . . , p}, let

H ℓ := {h ∈ H : dim S(h) ≤ ℓ} ,
and define

F ℓ := {g • h : g ∈ G , h ∈ H ℓ } .
The F ℓ 's form a nested family of models, that is

F 1 ⊂ F 2 ⊂ • • • ⊂ F p = F .
The reduced dimension is defined by

d := min {ℓ : r ∈ F ℓ } .
Denoting µ the distribution of the predictor X, we will use the following assumption.

Assumption (A2) -For all ℓ ∈ {1, . . . , p}, the class F ℓ is compact in L 2 (µ).

Now, let R ℓ be the risk defined by

R ℓ := inf f ∈F ℓ E(Y -f (X)) 2 . (2.1)
Since the F ℓ 's are nested, the function ℓ ∈ {1, . . . , p} → R ℓ is nonincreasing. Then, using Assumption (A2), we deduce that

d = min ℓ : R ℓ = R p . (2.2)
Consequently, for all 0 < δ < ∆, we have

d = min ℓ : R ℓ ≤ R p + δ , (2.3)
where ∆ is defined by

∆ := min R ℓ -R p : R ℓ > R p ,
with the convention min / 0 = +∞. Observe that ∆ > 0 and that, when d ≥ 2, ∆ corresponds to the distance from r to F d-1 in L 2 (µ), that is

∆ = inf f ∈F d-1 f -r 2 µ .
(2.4) Equations (2.2) and (2.4) are proved in Appendix A. For an illustration of equation ( 2.3), we refer the reader to Figure 1.
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Figure 1: Illustration of ∆ and δ . In this example d = 5, 0 < δ < ∆ and the smallest ℓ for which R ℓ ≤ R p + δ is equal to the reduced dimension d as in equation (2.3). Notice that if δ ≥ ∆, then the smallest ℓ for which R ℓ ≤ R p + δ is at most d -1.

Estimation of the reduced dimension

Construction of the estimate

Consider a sample of n i.i.d. random variables (X 1 ,Y 1 ), . . . , (X n ,Y n ) with same distribution P as (X,Y ) and independent from (X,Y ). Let

Rℓ := inf f ∈F ℓ 1 n n ∑ i=1 (Y i -f (X i )) 2
be the empirical version of the risk R ℓ given in equation (2.1). Our estimation procedure is inspired by the representation given by equation (2.3). For all δ ≥ 0, we define the estimate d(δ ) of the reduced dimension d by d(δ ) := min ℓ : Rℓ ≤ Rp + δ .

(3.1)

Notations and assumptions

For ℓ ∈ {1, . . . , p} and m : X → R ℓ we denote by m ∞ its supremum norm defined by

m ∞ = sup x∈X m(x) ,
where . stands for the Euclidean norm in R ℓ . Given a class M of functions m : X → R ℓ , we recall that the ε-covering number N(ε, M ) of M with respect to . ∞ is defined as the minimal number of . ∞ -balls of radius ε that are needed to cover M .

Assumption (A3) -Let R > 0 be fixed. The class H is totally bounded with respect to . ∞ and every h ∈ H satisfies h ∞ < R.
Our next assumption specifies that all functions in G have minimum regularity.

For g : R p → R, we denote

g Lip := sup u |g(u)| + sup u =u ′ |g(u) -g(u ′ )| u -u ′ .
Assumption (A4) -Let L > 0 be fixed. All functions g ∈ G satisfy g Lip ≤ L.

The result Theorem 3.1 Suppose that |Y | ≤ B and that assumptions (A1) to (A4) are satisfied. Then, the following statements hold.

(i) If 0 < δ < ∆, we have P d(δ ) < d ≤ 4N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 and P d(δ ) > d ≤ 4N δ 12(B+L) , F exp -nδ 2 18(B+L) 4 . (ii) If δ > ∆, we have P d(δ ) = d ≥ 1 -4N δ -∆ 12(B+L) , F exp -n(δ -∆) 2 18(B+L) 4 .
We can easily deduce from Theorem 3.1 that provided 0 < δ < ∆, we have

d(δ ) -→ n→+∞ d, a.s.
4 Fast-rate estimation of r Formal description of the estimate of r

For each function h ∈ H , we denote r h the regression function defined for all u ∈ R p by r h (u

) := E(Y |h(X) = u). (4.1)
Under assumption (A1) and by definition of the reduced dimension d, there exists

h * ∈ H d such that r = r h * • h * and r h * ∈ G . (4.2)
The estimation procedure presented here is inspired by this representation of r and consists in two steps. First, for all h ∈ H , we estimate r h using the k-nearest neighbors (k-NN) method. In a second step, we estimate h * through the minimization of an empirical criterion.

Estimate of r h

Consider a second data set of i.i.d. copies

(X n+1 ,Y n+1 ), . . . , (X 2n ,Y 2n ) of (X,Y ) independent from the first data set (X 1 ,Y 1 ), . . . , (X n ,Y n ) introduced in Section 3. Denote D 1 := {(X 1 ,Y 1 ), . . . , (X n ,Y n )} , D 2 := {(X n+1 ,Y n+1 ), . . . , (X 2n ,Y 2n )} ,
and fix a real number δ > 0. We describe the k-NN procedure in our context (for more information on the k-NN method, we refer the reader to Chapter 6 of the monography by [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]. For all h ∈ H and all i ∈ {n + 1, . . . , 2n}, we let

X h i := h(X i ). If u ∈ R p , we reorder the transformed data X h n+1 ,Y n+1 , . . . , X h 2n ,Y 2n accord- ing to increasing values of X h i -u , i = n + 1, . . . , 2n . The reordered data se- quence is denoted X h (1) (u),Y h (1) (u) , X h (2) (u),Y h (2) (u) , . . . , X h (n) (u),Y h (n) (u) ,
which means that

X h (1) (u) -u ≤ X h (2) (u) -u ≤ • • • ≤ X h (n) (u) -u .
In this approach, X h (i) (u) is called the i-th NN of u. Note that if X h i and X h j are equidistant from u, i.e. X h iu = X h ju , then we have a tie. As usual, we then declare X h i closer to u than X h j if i < j. For any i ∈ {n + 1, . . . , 2n} and k ∈ {1, . . . , n}, we define

W i [k](h, u) = 1/k if X h i is among the k-NN of u in X h n+1 , .
. . , X h 2n ; 0 elsewhere.

Observe that we have

∑ 2n i=n+1 W i [k](h, u) = 1. We define the estimate rh [k] of r h for all u ∈ R p by rh [k](u) = 2n ∑ i=n+1 W i [k](h, u)Y i = 1 k k ∑ i=1 Y h (i) (u).

Estimate of h *

Now we focus on the estimation of h * through minimization of an empirical criterion over a finite covering of H . To this aim, for ρ > 0 and ℓ ∈ {1, . . . , p}, let H ℓ (ρ) be a ρ-covering of H ℓ of minimum cardinality (recall that by Assumption (A3), the class H is totally bounded). We set H(ρ) := ∪ ℓ H ℓ (ρ) and we denote

N(ρ) := |H(ρ)|. Now define ĥℓ [k, ρ] := arg min h∈H ℓ (ρ) 1 n n ∑ i=1 (Y i -rh [k](h(X i ))) 2 .
A natural estimate of h * defined by (4.2) is then ĥ

[k, ρ] := ĥ d(δ ) [k, ρ],
where d(δ ) is the estimate of the reduced dimension introduced by equation (3.1).

Estimate of r

Following equation (4.2), a natural estimate of r is given by r

[k, ρ] := rĥ [k,ρ] [k] • ĥ[k, ρ].
Next, we describe a data driven choice of the number k of neighbors and of the radius ρ of the covering H(ρ). For all ℓ ∈ {1, . . . , p}, denote

υ n (ℓ) := n -2/(2+ℓ) , (4.3) and let k := υ -1 n d(δ ) , ρ := υ n d(δ ) , (4.4)
where ⌊x⌋ stands for the greatest integer smaller than x. Finally, for all x ∈ X , let r(x) := r k, ρ (x).

(4.5)

Results

We will use the following assumption which roughly means that r h is close to r h * provided h is close to h * .

Assumption (A5) -Let K > 0 be fixed. For all h ∈ H and all u ∈ R p we have

|r h (u) -r h * (u)| ≤ K h -h * ∞ .
Theorem 4.1 Suppose that |Y | ≤ B, that assumptions (A1) to (A5) are satisfied and that d ≥ 3. For all 0 < δ < ∆ there exists a constant C > 0 such that for all n ≥ 1 we have

E (r(X) -r(X)) 2 ≤ Cn -2/(2+d) +CR n , where R n := n -d/(2+d) N n -1/(2+d) , H exp -n (d-2)/(2+d) C .
Remark 4.2 When d ≤ 2, under the additional conditions of Problem 6.7 in the book by [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF], a slight adaptation of the proof of Theorem 4.1 enables us to derive the same convergence rate.

In Theorem 4.1, the quadratic risk of the estimator r is bounded by a sum of two terms. The first term Cn -2/(2+d) , goes to 0 at the optimal rate of convergence associated with the class of Lipschitz functions R d → R. The second term

CR n ,
is induced by our dimension reduction procedure. Therefore, the rate of convergence of r depends on that of term R n . The next assumption consists in a restriction on the complexity of H and is known to be satisfied by many examples as described in Section 5.

Assumption (A6) -

There exists A > 0 and 0 < s < d -2 such that for all ε > 0 log N (ε, H ) ≤ Aε -s .
Under this assumption, we have 2+d) , which leads to the following result.

R n ≤ n -d/(2+d) exp An s/(2+d) -n (d-2)/(2+d) C = O n -2/(
Corollary 4.3 Under the assumptions of Theorem 4.1 and under assumption (A6), we have 2+d) .

E (r(X) -r(X)) 2 = O n -2/(
In other words, our estimate reaches the optimal rate of convergence, should X be taking its values in R d .

Examples

In this section, we study two examples and illustrate our main assumptions in different settings. The linear case is studied first. The second example studies a case where the class F is nonparametric.

Linear dimension reduction

Linear dimension reduction techniques have proven effective in a large class of examples and practical situations (see e.g. [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivative[END_REF][START_REF] Li | Sliced inverse regression for dimension reduction (with discussions)[END_REF][START_REF] Cadre | Dimension reduction in regression estimation with nearest neighbor[END_REF][START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]. We illustrate how this topic fits into our framework.

Assume X is the open Euclidean ball of center the origin and radius R in R p . For any subspace V of R p , denote by π V : R p → R p the orthogonal projector onto V and P V : X → R p the restriction of π V to X . Now consider the following model. Let d < p, let V 0 be a subspace of R p of dimension d and suppose that for x ∈ X we have r(x) := g(P V 0 x), x ∈ X .

Note that this model is described by equation (1.2) when V 0 is the subspace spanned by the vectors α 1 , . . . , α d . We assume furthermore that g is L-Lipschitz for some L > 0. Then, denote H := P V : V subspace of R p and let G be the set of all L-Lipschitz functions from R p to R. In this context, Assumption (A4) is satisfied. The class H satisfies assumption (A3) since for all V ⊂ R p :

P V ∞ < R.
Therefore, H may be seen as a subset of the open Euclidean ball with center 0 and radius R in R p 2 and it follows that

log N (ε, H ) ≤ C log 1 ε ,
for a constant C depending only on p and R (see e.g. Proposition 5 in Cucker and Smale, 2001). Hence, Assumption (A6) is also satisfied in this case. Therefore, provided Assumptions (A2) and (A5) are also satisfied, Corollary 4.3 implies that 2+d) .

E (r(X) -r(X)) 2 = O n -2/(

Smooth functions

In this example we show that one may consider classes F much wider than the class of projectors or even a more general parametric class. The class H introduced here consists in a nonparametric class of smooth functions. Fix two constants R, α > 0. Denote by ⌊α⌋ the greatest integer strictly smaller than α and C ⌊α⌋ (X ) the space of ⌊α⌋-times continuously differentiable functions φ : X → R. For all φ ∈ C ⌊α⌋ (X ) we define

φ α := max |s|≤⌊α⌋ sup x ∂ s φ (x) + max |s|=⌊α⌋ sup x =y ∂ s φ (x) -∂ s φ (y) x -y α-⌊α⌋ ,
where, for all multi-index s = (s 1 , . . . , s p ) ∈ N p , we have denoted |s| := ∑ i s i and

∂ s := ∂ s 1 1 • • • ∂ s p
p . Now we may define

H := φ ∈ C ⌊α⌋ (X ) : φ α ≤ R ⊗p ,
where for any set Φ of functions from X to R, Φ ⊗p stands for the set of functions from X to R p such that each coordinate function belongs to Φ. By definition of . α , assumption (A3) is satisfied. Now consider that there exists h ∈ H such that r = g • h for some L-Lipschitz function and let d be the reduced dimension associated to this choice of class H . Then, provided X is compact, there exists a constant C depending only on α, p and the diameter of X such that for all ε > 0 log N (ε, H ) ≤ Cε -p/α

(see e.g. Theorem 2.7.1 in van der [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF]. Hence, provided α > p/(d -2), assumption (A6) is satisfied. Therefore, provided Assumptions (A2) and (A5) are also satisfied, Corollary 4.3 implies that 2+d) .

E (r(X) -r(X)) 2 = O n -2/(

A small simulation study

Here, we illustrate the improvement that our dimension reduction step induces compared to the classical NN approach, for a simple model. We let p = 4 and generate our data as follows. We let X = (X (1) , . . . , X (4) ) be a 4-dimensional vector uniformly distributed over the unit open Euclidean ball B in R 4 and let Y = X (1) X (4) + X (2) X (3) + σ ε. In this setting, σ > 0 and ε is a real random variable independent from X with standard normal distribution.

In this example, the class G is the class of functions g of the form g(u 1 , . . . , u 4 ) = a 1 u 1 + • • • + a 4 u 4 where a i ∈ {-10, -9.9, . . . , 9.9, 10}. The class H is the class of all functions h : x ∈ B → (φ 1 (x), . . . , φ 4 (x)) where the φ i 's belong to Φ :

= {(x 1 , . . . , x 4 ) ∈ R 4 → x k x ℓ ∈ R : k, ℓ ∈ {1, . . . , 4}}. In this context, the reduced dimension is d = 2.
First, we study the performance of the estimate d(δ ) of d defined in (3.1) and describe an empirical procedure to select δ . We take a data set D 1 := {(x i , y i ) : i = 1, . . . , 1600} generated by our model. We divide D 1 into 40 sets of 40 data points and for j = 1, . . . , 40 we denote when γ ranges over {κ/2000 : κ = 0, 1, . . . , 1000}. We select δ using the following heuristic approach. For small values of γ > 0 and when the number of data points is large enough, the probability that d(γ) = ℓ should be close to 1 for ℓ = d and close to 0 for ℓ = d according to Theorem 3.1. Therefore, the value of ℓ for which p ℓ (γ) is close to 1 for the small values of γ should correspond to the reduced dimension. Then, for this fixed value of ℓ, we select δ as the smallest maximizer γ of p ℓ (γ). In our example, this heuristic applies successfully as we can see in Figure 2 that p 2 (γ) > 0.9 for 0 < γ < 0.04. Here we select δ = 0.01.

S j := {(x i , y i ) : i = ( j -1)n + 1, . . . , ( j -1)n + 40}.
For the estimation of the regression function we consider two additional independent data sets D 2 := {(x i , y i ) : i = 1601, ..., 3200} and D MC := {(x i , y i ) : i = 3201, ..., 4800} generated by our model for σ = 0.1, 0.5 and 0.9. For each i = 3201, ..., 4800 we compute our estimates r(x i ) based on the subsample D := D 1 ∪ D 2 with our methods as in (4.5) with δ = 0.01 and with the classical NNmethod. Finally, we estimate E(r(X) -E(Y |X)) 2 from the Monte-Carlo approximation

1 1600 4800 ∑ i=3201 (r(x i ) -E(Y |X = x i )) 2 = 1 1600 4800 ∑ i=3201 r(x i ) -x (1) i x (4) i -x (2) i x (3) i 2 ,
where x ( j) i denotes the j-th coordinate of x i . The obtained results are given in Table 1 and the variance of each experiment is given in parenthesis. As expected from our main theorem, our method performs better than the classical 4-dimensional NN method.

Our meth.

4-dim NN-meth. σ = 0.1 0.027(8.4e -05) 0.039(1.2e -04) σ = 0.5 0.216(7.3e -03) 0.336(8.4e -03) σ = 0.9 0.720(4.7e -02) 0.898(4.9e -02) Proof of (i) -Since the function ℓ → Rℓ is non increasing, one has for all integer q ∈ {1, . . . , p} and every δ ≥ 0

min ℓ = 1, . . . , p : Rℓ -Rp ≤ δ ≤ q ⇔ Rq -Rp ≤ δ . Now assume 0 < δ < ∆. Using R d-1 -R p = ∆
and the equivalence above, we have

P d(δ ) < d = P min ℓ = 1, . . . , p : Rℓ -Rp ≤ δ ≤ d -1 = P Rd-1 -Rp ≤ δ = P Rd-1 -R d-1 + ∆ + R p -Rp ≤ δ ≤ P | Rd-1 -R d-1 | ≥ ∆-δ 2 + P | Rp -R p | ≥ ∆-δ 2 ≤ 4N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 ,
where the last inequality follows from Lemma 8.1. Next, using R d = R p , we obtain similarly that

P d(δ ) > d = P min ℓ = 1, . . . , p : Rℓ -Rp ≤ δ > d = P Rd -Rp > δ = P Rd -R d + R p -Rp > δ ≤ P | Rp -R p | ≥ δ 2 + P | Rd -R d | ≥ δ 2 ≤ 4N δ 12(B+L) , F exp -nδ 2 18(B+L) 4 .
Proof of (ii) -Now assume δ > ∆. We have

P d(δ ) = d ≥ P d(δ ) < d = P min ℓ = 1, . . . , p : Rℓ -Rp ≤ δ ≤ d -1 = P Rd-1 -Rp ≤ δ = P Rd-1 -R d-1 + ∆ + R p -Rp ≤ δ = 1 -P Rd-1 -R d-1 + R p -Rp > δ -∆ ≥ 1 -P | Rd-1 -R d-1 | ≥ δ -∆ 2 -P | Rp -R p | ≥ δ -∆ 2 ≥ 1 -4N δ -∆ 12(B+L) , F exp -n(δ -∆) 2 18(B+L) 4 ,
by Lemma 8.1 once again.

Proof of Theorem 4.1

First, we give an intermediate result.

Proposition 7.1 Suppose that |Y | ≤ B, that assumptions (A1) to (A5) are satisfied and that d ≥ 3. Then for all 0 < δ < ∆, for all k ∈ {1, . . . , n} and for all ρ > 0 we have

E (r(X) -r[k, ρ](X)) 2 ≤ C 1 1 k + k n 2/d +C 1 D n (δ ) + T n (ρ) + 1 √ n ,
where

D n (δ ) := N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 , T n (ρ) := ρ 2 + υ n (d) + p nυ n (d) N (ρ, H ) exp - nυ 2 n (d) C 1
, and where

C 1 := max 1; 8B 4 ; 8B 2 √ 2π; 4(B + L) 2 ; 10(K 2 + L 2 ) ; 96L 2 R 2 4 1/d d-2 2 4/d . Proof of Proposition 7.1 -Fix k ∈ {1, . . . , n}, ρ > 0 and a function h ∈ H d (ρ) such that h -h * ∞ ≤ ρ.
We have

E (r(X) -r[k, ρ](X)) 2 = E (r(X) -r[k, ρ](X)) 2 1 d(δ ) < d + E (r(X) -r[k, ρ](X)) 2 1 d(δ ) ≥ d =: T 1 + T 2 .
By assumption, we have |Y | ≤ B. Hence, from the construction of r[k, ρ], we have |r[k, ρ](X)| ≤ B, and so

(r(X) -r[k, ρ](X)) 2 ≤ (B + L) 2 .
Therefore

T 1 ≤ (B + L) 2 P d(δ ) < d .
Using Theorem 3.1, we deduce that

T 1 ≤ 4(B + L) 2 N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 .
15 Next, we have

T 2 = E (r(X) -r[k, ρ](X)) 2 1 d(δ ) ≥ d = E E (r(X) -r[k, ρ](X)) 2 D 1 d(δ ) ≥ d = E E (Y -r[k, ρ](X)) 2 D -E (Y -r(X)) 2 1 d(δ ) ≥ d =: E (I 1 + I 2 + I 3 ) 1 d(δ ) ≥ d ,
where I 1 , I 2 and I 3 are defined by

I 1 = E (Y -r[k, ρ](X)) 2 |D - 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 , I 2 = 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -rh [k](h(X))) 2 |D , I 3 = E (Y -rh [k](h(X))) 2 |D -E (Y -r(X)) 2 .
By taking a = υ n (d) in Lemma 8.2, we obtain

E I 1 1 d(δ ) ≥ d ≤ E I 1 ≤ C ′ υ n (d) + N(ρ) nυ n (d) exp - nυ 2 n (d) C ′
, where we recall that υ n (d) has been defined in equation ( 4.3) and where C ′ = max{1; 8B 4 }. From the construction of H(ρ), we deduce that

E I 1 1 d(δ ) ≥ d ≤ C ′ υ n (d) + pN (ρ, H ) nυ n (d) exp - nυ 2 n (d) C ′ . (7.1)
Now on the event d(δ ) ≥ d , we have the inclusion

H d (ρ) ⊂ H d(δ ) (ρ), and therefore 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 ≤ 1 n n ∑ i=1 (Y i -rh [k](h(X i ))) 2 .
We conclude that on the event d(δ ) ≥ d we have

I 2 ≤ J 2 := 1 n n ∑ i=1 (Y i -rh [k](h(X i ))) 2 -E (Y -rh [k](h(X))) 2 |D = 1 n n ∑ i=1 (Y i -rh [k](h(X i ))) 2 -E (Y -rh [k](h(X))) 2 |D 2 ,
where in the last inequality we have used the fact that for all h ∈ H , rh

[k] is con- structed on D 2 = {(X i ,Y i ); i = n + 1, . . . , 2n}. Conditionally to D 2 , the variables (Y -rh [k](h(X))) 2 and (Y i -rh [k](h(X i ))) 2 , i = 1, . . . , n,
are i.i.d. and bounded by 4B2 . Hence, for all ε > 0, Hoeffding's inequality yields

P |J 2 | > ε D 2 ≤ 2 exp -nε 2 8B 4 . Therefore E I 2 1 d(δ ) ≥ d ≤ E |J 2 |1 d(δ ) ≥ d ≤ E J 2 = +∞ 0 P |J 2 | > ε dε = +∞ 0 E P |J 2 | > ε|D 2 dε ≤ 2 +∞ 0 exp -nε 2 8B 4 dε = 4B 2 √ n +∞ 0 exp -τ 2 2 dτ = 2B 2 √ 2π √ n ≤ C ′′ √ n , (7.2) 
where C ′′ := 8B 2 √ 2π. Finally, we have (7.3) where the last inequality follows from Lemma 8.3 an where constant C ′′′ can be taken equal to max 2(B + L) 2 ; 10(K 2 + L 2 ) ; 96L 2 R 2 4 1/d d-2 2 4/d . Combining (7.1), (7.2) and (7.3) and denoting

E I 3 1 d(δ ) ≥ d = E E (r(X) -rh [k](h(X))) 2 |D 1 d(δ ) ≥ d ≤ E (r(X) -rh [k](h(X))) 2 ≤ C ′′′ 1 k + k n 2/d + ρ 2 ,
C 1 := max 1; 8B 4 ; 8B 2 √ 2π; 4(B + L) 2 ; 10(K 2 + L 2 ) ; 96L 2 R 2 4 1/d d-2
we conclude that

T 2 ≤ C 1 1 k + k n 2/d +C 1 T n (ρ) + 1 √ n ,
where

T n (ρ) := ρ 2 + υ n (d) + pN (ρ, H ) nυ n (d) exp - nυ 2 n (d) C 1 .
As a result, we obtain

E (r(X) -r[k, ρ](X)) 2 ≤ T 1 + T 2 ≤ C 1 1 k + k n 2/d +C 1 D n (δ ) + T n (ρ) + 1 √ n , where D n (δ ) := N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 , as desired.
Proof of Theorem 4.1 -By assumption we have |Y | ≤ B. Hence, from the construction of r, we have |r(X)| ≤ B, and so

(r(X) -r(X)) 2 ≤ (B + L) 2 . Therefore E (r(X) -r(X)) 2 = E (r(X) -r(X)) 2 1 d(δ ) = d + E (r(X) -r(X)) 2 1 d(δ ) = d = E (r(X) -r(X)) 2 1 d(δ ) = d + E r(X) -r ⌊υ -1 n (d)⌋, υ 1/2 n (d) (X) 2 1 d(δ ) = d ≤ (B + L) 2 P d(δ ) = d + E r(X) -r ⌊υ -1 n (d)⌋, υ 1/2 n (d) (X) 2 , =: U 1 +U 2 . (7.4)
According to Theorem 3.1 we have

P d(δ ) = d ≤ N ∆-δ 12(B+L) , F exp -n(∆-δ ) 2 18(B+L) 4 + N δ 12(B+L) , F exp -nδ 2 18(B+L) 4 =: A n (δ ).
Hence 

U 1 ≤ (B + L) 2 A n (δ ). ( 7 
U 2 ≤ C 1 1 ⌊υ -1 n (d)⌋ + ⌊υ -1 n (d)⌋ n 2/d + C 1 D n (δ ) + T n (υ 1/2 n (d)) + 1 √ n ,
where C 1 , D n (δ ) and T n (ρ) have been defined in Proposition 7.1. Since x -1 < ⌊x⌋ ≤ x, for all positive number x, we deduce that

1 ⌊υ -1 n (d)⌋ + ⌊υ -1 n (d)⌋ n 2/d ≤ 1 υ -1 n (d) -1 + υ -1 n (d) n 2/d = 1 υ -1 n (d) -1 - 1 υ -1 n (d) + 1 υ -1 n (d) + υ -1 n (d) n 2/d = 1 (υ -1 n (d) -1)υ -1 n (d) + 2υ n (d)
≤ 3υ n (d).

(7.6)

From the definitions, it is clear that

D n (δ ) ≤ A n (δ ). (7.7)
Next, we have

T n (υ 1/2 n (d)) = 2υ n (d) + pN υ 1/2 n (d), H nυ n (d) exp - nυ 2 n (d) C 1 =: 2υ n (d) + B n . (7.8)
From inequalities (7.6), (7.7) and (7.8), we deduce that

U 2 ≤ 5C 1 υ n (d) +C 1 A n (δ ) + B n + 1 √ n . (7.9)
As a consequence, we conclude from (7.4), (7.5) and (7.9) that

E (r(X) -r(X)) 2 ≤ U 1 +U 2 ≤ (B + L) 2 A n (δ ) + 5C 1 υ n (d) +C 1 A n (δ ) + B n + 1 √ n ≤ 5C 1 υ n (d) +C 1 2A n (δ ) + B n + 1 √ n , since (B + L) 2 ≤ C 1 .
To conclude the proof, we need only to observe that we have

A n (δ ) = O n -2/(2+d) ,
and that since d ≥ 3, we have 2+d) .

1 √ n = O n -2/(

Technical results

Lemma 8.1 Suppose |Y | ≤ B and suppose assumptions (A1) to (A4) hold. Then, for all ℓ ∈ {1, . . . , p} and for all ε > 0, we have

P | Rℓ -R ℓ | ≥ ε ≤ 2N ε 6(B+L) , F ℓ exp -2nε 2 9(B+L) 4 .
PROOF -First, we have

P | Rℓ -R ℓ | ≥ ε = P inf f ∈F ℓ 1 n n ∑ i=1 (Y i -f (X i )) 2 -inf f ∈F ℓ E(Y -f (X)) 2 ≥ ε ≤ P sup f ∈F ℓ 1 n n ∑ i=1 (Y i -f (X i )) 2 -E(Y -f (X)) 2 ≥ ε . For all f ∈ F ℓ we denote m f : (x, y) ∈ X × [-B, B] → (y -f (x)) 2 . Then, for all f ∈ F ℓ , we have |m f (X,Y )| ≤ (B + L) 2 .
Therefore, according to Lemma 9.1 in [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF] we have

P | Rℓ -R ℓ | ≥ ε ≤ 2N ε 3 , m f : f ∈ F ℓ exp -2nε 2 9(B+L) 4 . (8.1)
Then, for any two functions f , f ′ ∈ F ℓ , we have for all (x, y) ∈ X × [-B, B]

|m f (x, y) -m f ′ (x, y)| = |(y -f (x)) 2 -(y -f ′ (x)) 2 | = |(2y -f (x) -f ′ (x))( f (x) -f ′ (x))| ≤ 2(B + L)| f (x) -f ′ (x)|.
Hence, for all ε > 0, we have

N ε, m f : f ∈ F ℓ ≤ N ε 2(B+L) , F ℓ . (8.2)
Combining (8.1) and (8.2) yields the expected result.

Lemma 8.2 Suppose that assumptions (A1) to (A3) hold. Then, for all k ∈ {1, . . . , n}, all ρ > 0 and all a > 0, we have

E 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 D ≤ C a + N(ρ) na exp -na 2 C , where C := max{1; 8B 4 }. Proof -Fix k ∈ {1, . . . , n}, ρ > 0 and a > 0. Denote H(ρ) = h j : j = 1, . . . , N(ρ) . Since (X,Y ) is independent from D, since rh [k] • h depends only on the subsample D 2 = {(X i ,Y i ); i = n + 1, . . . , 2n} 
for all h ∈ H and since ĥ [k, ρ] takes its values in H(ρ), we have

E (Y -r[k, ρ](X)) 2 D = E Y - N(ρ) ∑ j=1 rh j [k](h j (X))1 ĥ[k, ρ] = h j 2 D = E N(ρ) ∑ j=1 Y -rh j [k](h j (X)) 2 1 ĥ[k, ρ] = h j D = N(ρ) ∑ j=1 E Y -rh j [k](h j (X)) 2 |D 1 ĥ[k, ρ] = h j = N(ρ) ∑ j=1 E Y -rh j [k](h j (X)) 2 |D 2 1 ĥ[k, ρ] = h j .
Therefore, denoting E j := ĥ[k, ρ] = h j , we obtain

1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 |D = N(ρ) ∑ j=1 1 n n ∑ i=1 Y i -rh j [k](h j (X i )) 2 -E Y -rh j [k](h j (X)) 2 |D 2 1 E j .
Now for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , N(ρ)}, let

Z i, j := Y i -rh j [k](h j (X i )) 2 -E Y -rh j [k](h j (X)) 2 |D 2 .
Using the fact that the events E j are pairwise disjoint, we deduce that for all ε > 0

P 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 |D ≥ ε = P N(ρ) ∑ j=1 1 n n ∑ i=1 Z i, j 1 E j ≥ ε = P max j=1,...,N(ρ) 1 n n ∑ i=1 Z i, j ≥ ε ≤ N(ρ) max j=1,...,N(ρ) P 1 n n ∑ i=1 Z i, j ≥ ε ,
where the last inequality follows from the union bound. Now, conditionally to D 2 , and for all j ∈ {1, . . . , N(ρ)}, the variables Yrh j [k](h j (X))

2 and Y irh j [k](h j (X i ))

2 , i ∈ {1, . . . , n} are i.i.d. an bounded by 4B 2 . By Hoeffding's inequality, it follows that for all j ∈ {1, . . . , N(ρ)} This leads to

P 1 n n ∑ i=1 Z i, j ≥ ε D 2 ≤ 2 exp -nε 2 8B 4 . Therefore E 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 D = +∞ 0 P 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 D ≥ ε dε ≤ a + +∞ a P 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 D ≥ ε dε ≤ a + N(
E 1 n n ∑ i=1 (Y i -r[k, ρ](X i )) 2 -E (Y -r[k, ρ](X)) 2 D ≤ a + 8B 4 N(ρ) an exp -na 2 8B 4 ≤ C a + N(ρ) an exp -na 2 C ,
with C := max{1; 8B 4 }, as desired.

Lemma 8.3 Suppose that |Y | ≤ B and that assumptions (A1) to (A5) are satisfied. Then, for all k ∈ {1, . . . , n}, for all ρ > 0 and for all h ∈ H d (ρ) satisfying hh * ∞ ≤ ρ, we have

E (r(X) -rh [k](h(X))) 2 ≤ C 1 k + k n 2/d +Cρ 2 ,
where C := max 2(B + L) 2 ; 10(K 2 + L 2 ) ; 96L 2 R 2 4 1/d d-2 2 4/d .

The proof of Lemma 8.3 is very similar to that of Theorem 6.2 in [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF] or Theorem 2.2 in [START_REF] Cadre | Dimension reduction in regression estimation with nearest neighbor[END_REF]. Therefore, it has been reported in the supplementary material.

A Reduced dimension d and parameter ∆

In this appendix, we prove equations (2.2) and (2.4). First, observe that since F ℓ is compact in L 2 (µ) and since r ∈ F , we have

r ∈ F ℓ ⇔ inf f ∈F ℓ E ( f (X) -r(X)) 2 = 0 ⇔ inf f ∈F ℓ E (Y -f (X)) 2 -E (Y -r(X)) 2 = 0 ⇔ inf f ∈F ℓ E (Y -f (X)) 2 -inf f ∈F E (Y -f (X)) 2 = 0 ⇔ R ℓ = R p .
Therefore, since the function ℓ ∈ {1, . . . , p} → R ℓ is non-increasing, we deduce that d := min ℓ : r ∈ F ℓ = min ℓ : R ℓ = R p , which proves equation (2.2). Using (2.2) and the fact that r ∈ F we obtain that

∆ = min R ℓ -R p : R ℓ > R p = R d-1 -R p = inf f ∈F d-1 E (Y -f (X)) 2 -inf f ∈F E (Y -f (X)) 2 = inf f ∈F d-1 E (Y -f (X)) 2 -E (Y -r(X)) 2 = inf f ∈F d-1 E ( f (X) -r(X)) 2 = inf f ∈F d-1 f -r 2 µ ,

Figure 2 :

 2 Figure 2: Plot of p ℓ (γ) as a function of γ ∈ (0, 0.5] for ℓ = 1, 2, 3, 4.

For

  all j = 1, . . . , 40 and all γ ∈ {κ/2000 : κ = 0, 1, . . . , 1000} we compute the estimate d j (γ) of d based on the subsample S j as in (3.1). Then, for ℓ = 1, 2, 3, 4 we plot in Figure2the proportion of d j (γ) that are equal to ℓ, i.e. p ℓ (γ)

  Proposition 7.1 applied with k = ⌊υ -1 n (d)⌋ and ρ = υ

Table 1 :

 1 Estimated mean squared error. The variance of the MC approximation is given in parenthesis.

  ρ)

				a	+∞	max j=1,...,N(ρ)	P	1 n	n ∑ i=1	Z i, j ≥ ε dε
	= a + N(ρ)	a	+∞	max j=1,...,N(ρ)	E P	1 n	n ∑ i=1	Z i, j ≥ ε D 2	dε
	≤ a + 2N(ρ)		a	+∞	exp -nε 2 8B 4 dε.
	Now, using the fact that for all x > 0	
					x	+∞	exp -τ 2 2 dτ ≤	1 x	exp -x 2 2 ,
	we obtain								
	a	+∞	exp -nε 2 8B 4 dε =	2B 2 √ n	+∞ √ n 2B 2 a	exp -τ 2 2 dτ
									≤	4B 4 an	exp -na 2 8B 4 .

4/d ,
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which proves (2.4).
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