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Abstract

Let (X ,Y ) be an X ×R valued random variable, where X ⊂R
p. We gener-

alize to a nonlinear framework the sufficient dimension reduction approach,

followed by Cadre and Dong (2010), for estimating the regression function

r(x) = E(Y |X = x). We assume given a class H of functions h : X → R
p

such that there exists h ∈ H with

E(Y |X) = E(Y |h(X)) .

In classical sufficient dimension reduction, H may be considered as a par-

ticular set of matrices. Here, H is considered to be a general and possibly

nonparametric class of functions. In this context, we define the reduced di-

mension d associated with H as the smallest ℓ such that there exists h ∈H

satisfying the former equality and such that h(X ) spans a subspace of di-

mension ℓ. Then, we construct an estimate r̂ of r that is proved to achieve

the optimal rate of convergence as if the predictor X where d-dimensional.

Index Terms — Dimension reduction, regression estimation, empirical risk

minimization, nearest neighbor estimator.

AMS 2000 Classification – 62H12, 62G08.

1 Introduction

In a general setting, regression analysis deals with the problem of retrieving in-

formation about the conditional distribution of a real-valued response variable Y

given an X -valued predictor X , where X ⊂ R
p, and is often understood as a

study of the regression function

r(x) := E(Y |X = x) . (1.1)
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It is well known that the estimation of the regression function faces the curse

of dimensionality which, roughly speaking, means that the expected rate of con-

vergence of a given estimate slows down as the dimension of the predictor X

increases. This statement is usually understood in terms of optimal rates of con-

vergence. For instance, if the regression function r is assumed to be Lipschitz, the

optimal rate of convergence for the estimation of r is n−2/(2+p). For more details

on optimal rates of convergence, the reader is referred to Ibragimov and Khas-

minskii (1981); Györfi et al. (2002); Kohler et al. (2009) or any other standard

textbook on the subject.

To overcome the curse of dimensionality, many authors have considered a model

which specifies that the conditional mean of Y given X depends on X only through

its projection on an unknown number d < p of unknown orthonormal vectors

α1, . . . ,αd ∈ R
p, so that

E(Y |X) = E
(

Y |α ′
1X , . . . ,α ′

dX
)

(1.2)

(see e.g. Härdle and Stoker, 1989; Li, 1991; Cook, 1998, and the references

therein). In this approach, provided d and the αi’s may be estimated, it is nat-

urally expected that the rate of convergence of an estimate of the regression func-

tion should depend only on d since the p-dimensional predictor X may be re-

placed by the d-dimensional predictor (α ′
1X , . . . ,α ′

dX). Many methods have been

introduced in the litterature to estimate d and the αi’s, among which we men-

tion average derivative estimation (ADE) (Härdle and Stoker, 1989), sliced in-

verse regression (SIR) (Li, 1991), principal Hessian directions (PHD) (Li, 1992),

sliced average variance estimation (SAVE) (Cook and Weisberg, 1991), kernel di-

mension reduction (KSIR) (Fukumizu et al., 2009) and more recently the optimal

transformation procedure (Delyon and Portier, 2013). Discussions, improvements

and other relevant papers can be found in Cook and Li (2002); Fung et al. (2002);

Xia et al. (2002); Cook and Ni (2005); Yin et al. (2008) and the references therein.

Recently, Cadre and Dong (2010) have used these methods to prove that, in the

context of this model, one could construct an estimate of the regression function

which converges at the rate n−2/(2+d).

In the present article, we generalize the approach followed by Cadre and Dong

(2010) and consider a nonlinear extension of the previous model motivated by the

following observation. Assume there exists some function h : X → R
p such that

dimS(h)< p, where S(h) stands for the subspace spanned by h(X ), and such that

E(Y |X) = E(Y |h(X)) . (1.3)

Then, the heuristic approach described in the previous paragraph still applies and

it is expected that, provided h can be estimated, a carefully chosen estimate of r
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should converge at a rate depending only on dimS(h). In particular, the fact that h

is linear does not appear necessary. The general model that will be considered in

this paper is therefore described by the following assumption.

Basic assumption – We assume given a class H of functions h : X → R
p such

that equation (1.3) holds for at least one h ∈ H .

Many models may be generated by this general formulation. In particular, when

H is chosen to be the class of all square matrices (β1 · · ·βs 0 · · ·0)′ of order p such

that s ≤ p, such that the βi’s belong to R
p and such that β ′

i β j = δi, j, one recovers

the model described by (1.2) since the matrix (α1 · · ·αd 0 · · ·0)′ belongs to H .

Other examples may be constructed in the following way. If Φ denotes a class

of functions φ : X → R (such as polynomials), one may consider H to be the

class of all functions h(x) = (φ1(x), . . . ,φs(x),0, . . . ,0) such that s ≤ p and such

that the φi’s belong to Φ. The estimation procedure of r presented in this article

will be based on the nearest neighbors method and on the existence of a function

h ∈ H which satisfies (1.3) and which minimizes dimS(h) among all functions

in H which satisfy (1.3). The value of dimS(h) for such an optimal h ∈ H de-

pends on H , will be referred to as the reduced dimension and denoted d. It will

be proved that the rate of convergence of a proper estimate of r depends only on

the reduced dimension. In the existing literature, similar nonlinear generalizations

of model (1.2) have been introduced (see e.g. Cook, 2007) and much effort has al-

ready been made for the estimation of an optimal h in the nonlinear context (see

e.g. Wu, 2008; Wang and Yin, 2008; Yeh et al., 2009, and the references therein).

As far as we know, the estimate of the reduced dimension introduced here is new

as well as the method derived to estimate r.

The paper is organized as follows. In Section 2 we give a specific representation

of the reduced dimension d. Section 3 is devoted to the study of an estimate

of the reduced dimension d based on empirical risk minimization. In Section 4

we construct an estimate r̂ of r, based on the nearest neighbors method, which

satisfies

E(r(X)− r̂(X))2 = O
(

n−2/(2+d)
)

.

Section 5 is devoted to some examples. In Section 6 we present a small simulation

study. Proofs of the main results are presented in Section 7 and technical results

are collected in Section 8.
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2 Reduced dimension

According to our basic assumption, there exists a function h ∈ H and a function

g : Rp → R such that r = g◦h. In addition to the basic assumption, we fix a class

G and use the assumption that such a function g can only belong to G .

Assumption (A1) – For all h ∈ H satisfying (1.3), any function g : Rp → R that

verifies r = g◦h belongs to G .

An explicit choice for the class G will be specified in Section 3. The consequence

of this assumption is that r belongs to the class

F := {g◦h : g ∈ G , h ∈ H } .

Now, we proceed to giving a more tractable representation of the reduced dimen-

sion. For all ℓ ∈ {1, . . . , p}, let

Hℓ := {h ∈ H : dimS(h)≤ ℓ} ,

and define

Fℓ := {g◦h : g ∈ G , h ∈ Hℓ} .
The Fℓ’s form a nested family of models, that is F1 ⊂ F2 ⊂ ·· · ⊂ Fp = F . The

reduced dimension is defined by

d := min{ℓ : r ∈ Fℓ} .

Denoting µ the distribution of the predictor X , we will use the following assump-

tion.

Assumption (A2) – For all ℓ ∈ {1, . . . , p}, the class Fℓ is compact in L
2(µ).

Now, let Rℓ be the risk defined by

Rℓ := inf
f∈Fℓ

E(Y − f (X))2. (2.1)

Since the Fℓ’s are nested, the function ℓ ∈ {1, . . . , p} 7→ Rℓ is nonincreasing.

Then, using Assumption (A2), we deduce that

d = min
{

ℓ : Rℓ = Rp

}

. (2.2)

Consequently, for all 0 < δ < ∆, we have

d = min
{

ℓ : Rℓ ≤ Rp +δ
}

, (2.3)
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where ∆ is defined by

∆ := min
{

Rℓ−Rp : Rℓ > Rp

}

,

with the convention min /0 = +∞. Observe that ∆ > 0 and that, when d ≥ 2, ∆

corresponds to the distance from r to Fd−1 in L
2(µ), that is

∆ = inf
f∈Fd−1

‖ f − r‖2
µ . (2.4)

Equations (2.2) and (2.4) are proved in Appendix A. For an illustration of equation

(2.3), we refer the reader to Figure 1.

1 2 3 4 5

Dimension ℓ

p· · ·

d = 5

∆

Rp +δ

Rℓ

Figure 1: Illustration of ∆ and δ . In this example d = 5, 0 < δ < ∆ and the

smallest ℓ for which Rℓ ≤ Rp + δ is equal to the reduced dimension d as in

equation (2.3). Notice that if δ ≥ ∆, then the smallest ℓ for which Rℓ ≤ Rp+δ

is at most d −1.

3 Estimation of the reduced dimension

Construction of the estimate

Consider a sample of n i.i.d. random variables (X1,Y1), . . . ,(Xn,Yn) with same

distribution P as (X ,Y ) and independent from (X ,Y ). Let

R̂ℓ := inf
f∈Fℓ

1

n

n

∑
i=1

(Yi − f (Xi))
2
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be the empirical version of the risk Rℓ given in equation (2.1). Our estimation

procedure is inspired by the representation given by equation (2.3). For all δ ≥ 0,

we define the estimate d̂(δ ) of the reduced dimension d by

d̂(δ ) := min
{

ℓ : R̂ℓ ≤ R̂p +δ
}

. (3.1)

Notations and assumptions

For ℓ ∈ {1, . . . , p} and m : X → R
ℓ we denote by ‖m‖∞ its supremum norm de-

fined by

‖m‖∞ = sup
x∈X

‖m(x)‖,

where ‖.‖ stands for the Euclidean norm in R
ℓ. Given a class M of functions

m : X → R
ℓ, we recall that the ε-covering number N(ε,M ) of M with respect

to ‖.‖∞ is defined as the minimal number of ‖.‖∞-balls of radius ε that are needed

to cover M .

Assumption (A3) – Let R > 0 be fixed. The class H is totally bounded with

respect to ‖.‖∞ and every h ∈ H satisfies ‖h‖∞ < R.

Our next assumption specifies that all functions in G have minimum regularity.

For g : Rp → R, we denote

‖g‖Lip := sup
u
|g(u)|+ sup

u6=u′

|g(u)−g(u′)|
‖u−u′‖ .

Assumption (A4) – Let L > 0 be fixed. All functions g ∈ G satisfy ‖g‖Lip ≤ L.

The result

Theorem 3.1 Suppose that |Y | ≤ B and that assumptions (A1) to (A4) are satis-

fied. Then, the following statements hold.

(i) If 0 < δ < ∆, we have

P
(

d̂(δ )< d
)

≤ 4N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

and

P
(

d̂(δ )> d
)

≤ 4N
(

δ
12(B+L) ,F

)

exp
(

− nδ 2

18(B+L)4

)

.

(ii) If δ > ∆, we have

P
(

d̂(δ ) 6= d
)

≥ 1−4N
(

δ−∆
12(B+L) ,F

)

exp
(

− n(δ−∆)2

18(B+L)4

)

.

We can easily deduce from Theorem 3.1 that provided 0 < δ < ∆, we have

d̂(δ ) −→
n→+∞

d, a.s.
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4 Fast-rate estimation of r

Formal description of the estimate of r

For each function h ∈ H , we denote rh the regression function defined for all

u ∈ R
p by

rh(u) := E(Y |h(X) = u). (4.1)

Under assumption (A1) and by definition of the reduced dimension d, there exists

h∗ ∈ Hd such that

r = rh∗ ◦h∗ and rh∗ ∈ G . (4.2)

The estimation procedure presented here is inspired by this representation of r

and consists in two steps. First, for all h ∈ H , we estimate rh using the k-nearest

neighbors (k-NN) method. In a second step, we estimate h∗ through the minimiza-

tion of an empirical criterion.

Estimate of rh

Consider a second data set of i.i.d. copies (Xn+1,Yn+1), . . . ,(X2n,Y2n) of (X ,Y )
independent from the first data set (X1,Y1), . . . ,(Xn,Yn) introduced in Section 3.

Denote

D1 := {(X1,Y1), . . . ,(Xn,Yn)} , D2 := {(Xn+1,Yn+1), . . . ,(X2n,Y2n)} ,

and fix a real number δ > 0. We describe the k-NN procedure in our context (for

more information on the k-NN method, we refer the reader to Chapter 6 of the

monography by Györfi et al., 2002). For all h ∈H and all i ∈ {n+1, . . . ,2n}, we

let

Xh
i := h(Xi).

If u ∈ R
p, we reorder the transformed data

(

Xh
n+1,Yn+1

)

, . . . ,
(

Xh
2n,Y2n

)

accord-

ing to increasing values of
{

‖Xh
i −u‖, i = n+1, . . . ,2n

}

. The reordered data se-

quence is denoted

(

Xh
(1)(u),Y

h
(1)(u)

)

,
(

Xh
(2)(u),Y

h
(2)(u)

)

, . . . ,
(

Xh
(n)(u),Y

h
(n)(u)

)

,

which means that

‖Xh
(1)(u)−u‖ ≤ ‖Xh

(2)(u)−u‖ ≤ · · · ≤ ‖Xh
(n)(u)−u‖.

In this approach, Xh
(i)(u) is called the i-th NN of u. Note that if Xh

i and Xh
j are

equidistant from u, i.e. ‖Xh
i − u‖ = ‖Xh

j − u‖, then we have a tie. As usual, we
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then declare Xh
i closer to u than Xh

j if i < j. For any i ∈ {n + 1, . . . ,2n} and

k ∈ {1, . . . ,n}, we define

Wi[k](h,u) =

{

1/k if Xh
i is among the k-NN of u in

{

Xh
n+1, . . . ,X

h
2n

}

;

0 elsewhere.

Observe that we have ∑
2n
i=n+1Wi[k](h,u) = 1. We define the estimate r̂h[k] of rh

for all u ∈ R
p by

r̂h[k](u) =
2n

∑
i=n+1

Wi[k](h,u)Yi =
1

k

k

∑
i=1

Y h
(i)(u).

Estimate of h∗

Now we focus on the estimation of h∗ through minimization of an empirical cri-

terion over a finite covering of H . To this aim, for ρ > 0 and ℓ ∈ {1, . . . , p}, let

Hℓ(ρ) be a ρ-covering of Hℓ of minimum cardinality (recall that by Assumption

(A3), the class H is totally bounded). We set H(ρ) := ∪ℓHℓ(ρ) and we denote

N(ρ) := |H(ρ)|.

Now define

ĥℓ[k,ρ] := argmin
h∈Hℓ(ρ)

1

n

n

∑
i=1

(Yi − r̂h[k](h(Xi)))
2 .

A natural estimate of h∗ defined by (4.2) is then

ĥ[k,ρ] := ĥ
d̂(δ )[k,ρ],

where d̂(δ ) is the estimate of the reduced dimension introduced by equation (3.1).

Estimate of r

Following equation (4.2), a natural estimate of r is given by

r̂[k,ρ] := r̂
ĥ[k,ρ][k]◦ ĥ[k,ρ].

Next, we describe a data driven choice of the number k of neighbors and of the

radius ρ of the covering H(ρ). For all ℓ ∈ {1, . . . , p}, denote

υn(ℓ) := n−2/(2+ℓ), (4.3)

and let

k̂ :=
⌊

υ−1
n

(

d̂(δ )
)⌋

, ρ̂ :=
√

υn

(

d̂(δ )
)

, (4.4)
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where ⌊x⌋ stands for the greatest integer smaller than x. Finally, for all x ∈ X , let

r̂(x) := r̂
[

k̂, ρ̂
]

(x). (4.5)

Results

We will use the following assumption which roughly means that rh is close to rh∗

provided h is close to h∗.

Assumption (A5) – Let K > 0 be fixed. For all h ∈ H and all u ∈ R
p we have

|rh(u)− rh∗(u)| ≤ K‖h−h∗‖∞.

Theorem 4.1 Suppose that |Y | ≤ B, that assumptions (A1) to (A5) are satisfied

and that d ≥ 3. For all 0 < δ < ∆ there exists a constant C > 0 such that for all

n ≥ 1 we have

E(r(X)− r̂(X))2 ≤Cn−2/(2+d)+CRn,

where

Rn := n−d/(2+d)N
(

n−1/(2+d),H
)

exp
(

−n(d−2)/(2+d)

C

)

.

Remark 4.2 When d ≤ 2, under the additional conditions of Problem 6.7 in the

book by Györfi et al. (2002), a slight adaptation of the proof of Theorem 4.1 en-

ables us to derive the same convergence rate.

In Theorem 4.1, the quadratic risk of the estimator r̂ is bounded by a sum of two

terms. The first term

Cn−2/(2+d),

goes to 0 at the optimal rate of convergence associated with the class of Lipschitz

functions Rd → R. The second term

CRn,

is induced by our dimension reduction procedure. Therefore, the rate of conver-

gence of r̂ depends on that of term Rn. The next assumption consists in a restric-

tion on the complexity of H and is known to be satisfied by many examples as

described in Section 5.

Assumption (A6) – There exists A > 0 and 0 < s < d −2 such that for all ε > 0

logN (ε,H )≤ Aε−s.

Under this assumption, we have

Rn ≤ n−d/(2+d) exp
(

Ans/(2+d)− n(d−2)/(2+d)

C

)

= O
(

n−2/(2+d)
)

,

which leads to the following result.
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Corollary 4.3 Under the assumptions of Theorem 4.1 and under assumption (A6),
we have

E(r(X)− r̂(X))2 = O
(

n−2/(2+d)
)

.

In other words, our estimate reaches the optimal rate of convergence, should X be

taking its values in R
d .

5 Examples

In this section, we study two examples and illustrate our main assumptions in dif-

ferent settings. The linear case is studied first. The second example studies a case

where the class F is nonparametric.

Linear dimension reduction

Linear dimension reduction techniques have proven effective in a large class of

examples and practical situations (see e.g. Härdle and Stoker, 1989; Li, 1991;

Cadre and Dong, 2010; Györfi et al., 2002). We illustrate how this topic fits into

our framework.

Assume X is the open Euclidean ball of center the origin and radius R in R
p. For

any subspace V of Rp, denote by πV : Rp → R
p the orthogonal projector onto V

and PV : X →R
p the restriction of πV to X . Now consider the following model.

Let d < p, let V0 be a subspace of Rp of dimension d and suppose that for x ∈ X

we have

r(x) := g(PV0
x), x ∈ X .

Note that this model is described by equation (1.2) when V0 is the subspace

spanned by the vectors α1, . . . ,αd . We assume furthermore that g is L-Lipschitz

for some L > 0. Then, denote H :=
{

PV : V subspace of Rp
}

and let G be the set

of all L-Lipschitz functions from R
p to R. In this context, Assumption (A4) is sat-

isfied. The class H satisfies assumption (A3) since for all V ⊂ R
p : ‖PV‖∞ < R.

Therefore, H may be seen as a subset of the open Euclidean ball with center 0

and radius R in R
p2

and it follows that

logN (ε,H )≤C log
(

1
ε

)

,

for a constant C depending only on p and R (see e.g. Proposition 5 in Cucker and

Smale, 2001). Hence, Assumption (A6) is also satisfied in this case. Therefore,

provided Assumptions (A2) and (A5) are also satisfied, Corollary 4.3 implies that

E(r(X)− r̂(X))2 = O
(

n−2/(2+d)
)

.
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Smooth functions

In this example we show that one may consider classes F much wider than the

class of projectors or even a more general parametric class. The class H in-

troduced here consists in a nonparametric class of smooth functions. Fix two

constants R,α > 0. Denote by ⌊α⌋ the greatest integer strictly smaller than α and

C ⌊α⌋(X ) the space of ⌊α⌋-times continuously differentiable functions φ : X →
R. For all φ ∈ C ⌊α⌋(X ) we define

‖φ‖α := max
|s|≤⌊α⌋

sup
x
‖∂ sφ(x)‖+ max

|s|=⌊α⌋
sup
x 6=y

‖∂ sφ(x)−∂ sφ(y)‖
‖x− y‖α−⌊α⌋ ,

where, for all multi-index s = (s1, . . . ,sp) ∈ N
p, we have denoted |s| := ∑i si and

∂ s := ∂ s1

1 · · ·∂ sp
p . Now we may define

H :=
{

φ ∈ C
⌊α⌋(X ) : ‖φ‖α ≤ R

}⊗p

,

where for any set Φ of functions from X to R, Φ⊗p stands for the set of functions

from X to R
p such that each coordinate function belongs to Φ. By definition of

‖.‖α , assumption (A3) is satisfied.

Now consider that there exists h ∈ H such that r = g ◦ h for some L-Lipschitz

function and let d be the reduced dimension associated to this choice of class H .

Then, provided X is compact, there exists a constant C depending only on α , p

and the diameter of X such that for all ε > 0

logN (ε,H )≤Cε−p/α

(see e.g. Theorem 2.7.1 in van der Vaart and Wellner, 1996). Hence, provided

α > p/(d − 2), assumption (A6) is satisfied. Therefore, provided Assumptions

(A2) and (A5) are also satisfied, Corollary 4.3 implies that

E(r(X)− r̂(X))2 = O
(

n−2/(2+d)
)

.

6 A small simulation study

Here, we illustrate the improvement that our dimension reduction step induces

compared to the classical NN approach, for a simple model. We let p = 4 and

generate our data as follows. We let X =(X (1), . . . ,X (4)) be a 4-dimensional vector

uniformly distributed over the unit open Euclidean ball B in R
4 and let

Y = X (1)X (4)+X (2)X (3)+σε.
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Figure 2: Plot of pℓ(γ) as a function of γ ∈ (0,0.5] for ℓ= 1,2,3,4.

In this setting, σ > 0 and ε is a real random variable independent from X with

standard normal distribution.

In this example, the class G is the class of functions g of the form g(u1, . . . ,u4) =
a1u1 + · · ·+ a4u4 where ai ∈ {−10,−9.9, . . . ,9.9,10}. The class H is the class

of all functions h : x ∈ B 7→ (φ1(x), . . . ,φ4(x)) where the φi’s belong to Φ :=
{(x1, . . . ,x4) ∈ R

4 7→ xkxℓ ∈ R : k, ℓ ∈ {1, . . . ,4}}. In this context, the reduced

dimension is d = 2.

First, we study the performance of the estimate d̂(δ ) of d defined in (3.1) and

describe an empirical procedure to select δ . We take a data set D1 := {(xi,yi) : i =
1, . . . ,1600} generated by our model. We divide D1 into 40 sets of 40 data points

and for j = 1, . . . ,40 we denote

S j := {(xi,yi) : i = ( j−1)n+1, . . . ,( j−1)n+40}.
For all j = 1, . . . ,40 and all γ ∈ {κ/2000 : κ = 0,1, . . . ,1000} we compute the

estimate d̂ j(γ) of d based on the subsample S j as in (3.1). Then, for ℓ= 1,2,3,4
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we plot in Figure 2 the proportion of d̂ j(γ) that are equal to ℓ, i.e.

pℓ(γ) :=
1

40

40

∑
j=1

1
{

d̂ j(γ) = ℓ
}

,

when γ ranges over {κ/2000 : κ = 0,1, . . . ,1000}. We select δ using the fol-

lowing heuristic approach. For small values of γ > 0 and when the number of

data points is large enough, the probability that d̂(γ) = ℓ should be close to 1 for

ℓ = d and close to 0 for ℓ 6= d according to Theorem 3.1. Therefore, the value

of ℓ for which pℓ(γ) is close to 1 for the small values of γ should correspond to

the reduced dimension. Then, for this fixed value of ℓ, we select δ as the small-

est maximizer γ of pℓ(γ). In our example, this heuristic applies successfully as

we can see in Figure 2 that p2(γ)> 0.9 for 0 < γ < 0.04. Here we select δ = 0.01.

For the estimation of the regression function we consider two additional inde-

pendent data sets D2 := {(xi,yi) : i = 1601, ...,3200} and DMC := {(xi,yi) : i =
3201, ...,4800} generated by our model for σ = 0.1, 0.5 and 0.9. For each i =
3201, ...,4800 we compute our estimates r̂(xi) based on the subsample D :=
D1 ∪D2 with our methods as in (4.5) with δ = 0.01 and with the classical NN-

method. Finally, we estimate E(r̂(X)−E(Y |X))2 from the Monte-Carlo approxi-

mation

1

1600

4800

∑
i=3201

(r̂(xi)−E(Y |X = xi))
2 =

1

1600

4800

∑
i=3201

(

r̂(xi)− x
(1)
i x

(4)
i − x

(2)
i x

(3)
i

)2

,

where x
( j)
i denotes the j-th coordinate of xi. The obtained results are given in Table

1 and the variance of each experiment is given in parenthesis. As expected from

our main theorem, our method performs better than the classical 4-dimensional

NN method.

Our meth. 4-dim NN-meth.

σ = 0.1 0.027(8.4e−05) 0.039(1.2e−04)
σ = 0.5 0.216(7.3e−03) 0.336(8.4e−03)
σ = 0.9 0.720(4.7e−02) 0.898(4.9e−02)

Table 1: Estimated mean squared error. The variance of the MC approxima-

tion is given in parenthesis.
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7 Proofs

7.1 Proof of Theorem 3.1

Proof of (i) – Since the function ℓ 7→ R̂ℓ is non increasing, one has for all integer

q ∈ {1, . . . , p} and every δ ≥ 0

min
{

ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ δ
}

≤ q ⇔ R̂q − R̂p ≤ δ .

Now assume 0 < δ < ∆. Using Rd−1 −Rp = ∆ and the equivalence above, we

have

P
(

d̂(δ )< d
)

= P
(

min
{

ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ δ
}

≤ d −1
)

= P
(

R̂d−1 − R̂p ≤ δ
)

= P
((

R̂d−1 −Rd−1

)

+∆+
(

Rp − R̂p

)

≤ δ
)

≤ P

(

|R̂d−1 −Rd−1| ≥ ∆−δ
2

)

+P

(

|R̂p −Rp| ≥ ∆−δ
2

)

≤ 4N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

,

where the last inequality follows from Lemma 8.1. Next, using Rd = Rp, we

obtain similarly that

P
(

d̂(δ )> d
)

= P
(

min
{

ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ δ
}

> d
)

= P
(

R̂d − R̂p > δ
)

= P
((

R̂d −Rd

)

+
(

Rp − R̂p

)

> δ
)

≤ P

(

|R̂p −Rp| ≥ δ
2

)

+P

(

|R̂d −Rd| ≥ δ
2

)

≤ 4N
(

δ
12(B+L) ,F

)

exp
(

− nδ 2

18(B+L)4

)

.

Proof of (ii) – Now assume δ > ∆. We have

P
(

d̂(δ ) 6= d
)

≥ P
(

d̂(δ )< d
)

= P
(

min
{

ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ δ
}

≤ d −1
)

= P
(

R̂d−1 − R̂p ≤ δ
)

= P
((

R̂d−1 −Rd−1

)

+∆+
(

Rp − R̂p

)

≤ δ
)

= 1−P
((

R̂d−1 −Rd−1

)

+
(

Rp − R̂p

)

> δ −∆
)

≥ 1−P

(

|R̂d−1 −Rd−1| ≥ δ−∆
2

)

−P

(

|R̂p −Rp| ≥ δ−∆
2

)

≥ 1−4N
(

δ−∆
12(B+L) ,F

)

exp
(

− n(δ−∆)2

18(B+L)4

)

,

by Lemma 8.1 once again.�
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7.2 Proof of Theorem 4.1

First, we give an intermediate result.

Proposition 7.1 Suppose that |Y | ≤ B, that assumptions (A1) to (A5) are satis-

fied and that d ≥ 3. Then for all 0 < δ < ∆, for all k ∈ {1, . . . ,n} and for all ρ > 0

we have

E(r(X)− r̂[k,ρ](X))2 ≤C1

{

1

k
+

(

k

n

)2/d
}

+C1

{

Dn(δ )+Tn(ρ)+
1√
n

}

,

where

Dn(δ ) := N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

,

Tn(ρ) := ρ2 +υn(d)+
p

nυn(d)
N (ρ,H )exp

(

−nυ2
n (d)
C1

)

,

and where

C1 := max
{

1; 8B4; 8B2
√

2π; 4(B+L)2; 10(K2 +L2) ; 96L2R241/d
(

d−2
2

)4/d
}

.

Proof of Proposition 7.1 – Fix k ∈ {1, . . . ,n}, ρ > 0 and a function h ∈ Hd(ρ)
such that ‖h−h∗‖∞ ≤ ρ . We have

E(r(X)− r̂[k,ρ](X))2 = E

[

(r(X)− r̂[k,ρ](X))2
1
{

d̂(δ )< d
}

]

+ E

[

(r(X)− r̂[k,ρ](X))2
1
{

d̂(δ )≥ d
}

]

=: T1 +T2.

By assumption, we have |Y | ≤ B. Hence, from the construction of r̂[k,ρ], we have

|r̂[k,ρ](X)| ≤ B, and so

(r(X)− r̂[k,ρ](X))2 ≤ (B+L)2.

Therefore

T1 ≤ (B+L)2
P

(

d̂(δ )< d
)

.

Using Theorem 3.1, we deduce that

T1 ≤ 4(B+L)2N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

.
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Next, we have

T2 = E

[

(r(X)− r̂[k,ρ](X))2
1
{

d̂(δ )≥ d
}

]

= E

[

E

[

(r(X)− r̂[k,ρ](X))2
∣

∣D

]

1
{

d̂(δ )≥ d
}

]

= E

[{

E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]

−E

[

(Y − r(X))2
]}

1
{

d̂(δ )≥ d
}

]

=: E

[

(I1 + I2 + I3)1
{

d̂(δ )≥ d
}

]

,

where I1, I2 and I3 are defined by

I1 =

{

E

[

(Y − r̂[k,ρ](X))2 |D
]

− 1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2

}

,

I2 =

{

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂h[k](h(X)))2 |D
]

}

,

I3 =

{

E

[

(Y − r̂h[k](h(X)))2 |D
]

−E(Y − r(X))2

}

.

By taking a = υn(d) in Lemma 8.2, we obtain

E

[

I11
{

d̂(δ )≥ d
}

]

≤ E

[

∣

∣I1

∣

∣

]

≤ C′
{

υn(d)+
N(ρ)

nυn(d)
exp
(

−nυ2
n (d)
C′

)

}

,

where we recall that υn(d) has been defined in equation (4.3) and where C′ =
max{1; 8B4}. From the construction of H(ρ), we deduce that

E

[

I11
{

d̂(δ )≥ d
}

]

≤C′
{

υn(d)+
pN (ρ,H )

nυn(d)
exp
(

−nυ2
n (d)
C′

)

}

. (7.1)

Now on the event
{

d̂(δ )≥ d
}

, we have the inclusion Hd(ρ) ⊂ H
d̂(δ )(ρ), and

therefore
1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 ≤ 1

n

n

∑
i=1

(Yi − r̂h[k](h(Xi)))
2 .

We conclude that on the event
{

d̂(δ )≥ d
}

we have

I2 ≤ J2 :=

{

1

n

n

∑
i=1

(Yi − r̂h[k](h(Xi)))
2 −E

[

(Y − r̂h[k](h(X)))2 |D
]

}

=

{

1

n

n

∑
i=1

(Yi − r̂h[k](h(Xi)))
2 −E

[

(Y − r̂h[k](h(X)))2 |D2

]

}

,
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where in the last inequality we have used the fact that for all h ∈ H , r̂h[k] is con-

structed on D2 = {(Xi,Yi); i = n+1, . . . ,2n}. Conditionally to D2, the variables

(Y − r̂h[k](h(X)))2
and (Yi − r̂h[k](h(Xi)))

2 , i = 1, . . . ,n,

are i.i.d. and bounded by 4B2. Hence, for all ε > 0, Hoeffding’s inequality yields

P

(

|J2|> ε
∣

∣D2

)

≤ 2exp
(

− nε2

8B4

)

.

Therefore

E

[

I21
{

d̂(δ )≥ d
}

]

≤ E

[

|J2|1
{

d̂(δ )≥ d
}

]

≤ E

[

∣

∣J2

∣

∣

]

=
∫ +∞

0
P

(

|J2|> ε
)

dε

=
∫ +∞

0
E

[

P

(

|J2|> ε|D2

)]

dε

≤ 2

∫ +∞

0
exp
(

− nε2

8B4

)

dε

=
4B2

√
n

∫ +∞

0
exp
(

− τ2

2

)

dτ

=
2B2

√
2π√

n

≤ C′′
√

n
, (7.2)

where C′′ := 8B2
√

2π . Finally, we have

E

[

I31
{

d̂(δ )≥ d
}

]

= E

[

E

[

(r(X)− r̂h[k](h(X)))2 |D
]

1
{

d̂(δ )≥ d
}

]

≤ E

[

(r(X)− r̂h[k](h(X)))2
]

≤ C′′′
{

1

k
+

(

k

n

)2/d

+ρ2

}

, (7.3)

where the last inequality follows from Lemma 8.3 an where constant C′′′ can be

taken equal to max
{

2(B+L)2; 10(K2 +L2) ; 96L2R241/d
(

d−2
2

)4/d
}

. Combin-

ing (7.1), (7.2) and (7.3) and denoting

C1 := max
{

1; 8B4; 8B2
√

2π; 4(B+L)2; 10(K2 +L2) ; 96L2R241/d
(

d−2
2

)4/d
}

,
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we conclude that

T2 ≤C1

{

1

k
+

(

k

n

)2/d
}

+C1

{

Tn(ρ)+
1√
n

}

,

where

Tn(ρ) := ρ2 +υn(d)+
pN (ρ,H )

nυn(d)
exp
(

−nυ2
n (d)
C1

)

.

As a result, we obtain

E

[

(r(X)− r̂[k,ρ](X))2
]

≤ T1 +T2

≤ C1

{

1

k
+

(

k

n

)2/d
}

+C1

{

Dn(δ )+Tn(ρ)+
1√
n

}

,

where

Dn(δ ) := N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

,

as desired. �

Proof of Theorem 4.1 – By assumption we have |Y | ≤ B. Hence, from the con-

struction of r̂, we have |r̂(X)| ≤ B, and so

(r(X)− r̂(X))2 ≤ (B+L)2.

Therefore

E

[

(r(X)− r̂(X))2
]

= E

[

(r(X)− r̂(X))2
1
{

d̂(δ ) 6= d
}

]

+ E

[

(r(X)− r̂(X))2
1
{

d̂(δ ) = d
}

]

= E

[

(r(X)− r̂(X))2
1
{

d̂(δ ) 6= d
}

]

+ E

[(

r(X)− r̂
[

⌊υ−1
n (d)⌋,υ1/2

n (d)
]

(X)
)2

1
{

d̂(δ ) = d
}

]

≤ (B+L)2
P

(

d̂(δ ) 6= d
)

+ E

[(

r(X)− r̂
[

⌊υ−1
n (d)⌋,υ1/2

n (d)
]

(X)
)2 ]

,

=: U1 +U2. (7.4)

According to Theorem 3.1 we have

P

(

d̂(δ ) 6= d
)

≤ N
(

∆−δ
12(B+L) ,F

)

exp
(

− n(∆−δ )2

18(B+L)4

)

+ N
(

δ
12(B+L) ,F

)

exp
(

− nδ 2

18(B+L)4

)

=: An(δ ).
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Hence

U1 ≤ (B+L)2An(δ ). (7.5)

Now, by Proposition 7.1 applied with k = ⌊υ−1
n (d)⌋ and ρ = υ

1/2
n (d), we have

U2 ≤ C1

{

1

⌊υ−1
n (d)⌋

+

(⌊υ−1
n (d)⌋

n

)2/d
}

+ C1

{

Dn(δ )+Tn(υ
1/2
n (d))+

1√
n

}

,

where C1, Dn(δ ) and Tn(ρ) have been defined in Proposition 7.1. Since x− 1 <
⌊x⌋ ≤ x, for all positive number x, we deduce that

1

⌊υ−1
n (d)⌋

+

(⌊υ−1
n (d)⌋

n

)2/d

≤ 1

υ−1
n (d)−1

+

(

υ−1
n (d)

n

)2/d

=

(

1

υ−1
n (d)−1

− 1

υ−1
n (d)

)

+
1

υ−1
n (d)

+

(

υ−1
n (d)

n

)2/d

=
1

(υ−1
n (d)−1)υ−1

n (d)
+2υn(d)

≤ 3υn(d). (7.6)

From the definitions, it is clear that

Dn(δ )≤ An(δ ). (7.7)

Next, we have

Tn(υ
1/2
n (d)) = 2υn(d)+

pN
(

υ
1/2
n (d),H

)

nυn(d)
exp
(

−nυ2
n (d)
C1

)

=: 2υn(d)+Bn. (7.8)

From inequalities (7.6), (7.7) and (7.8), we deduce that

U2 ≤ 5C1υn(d)+C1

{

An(δ )+Bn +
1√
n

}

. (7.9)
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As a consequence, we conclude from (7.4), (7.5) and (7.9) that

E

[

(r(X)− r̂(X))2
]

≤ U1 +U2

≤ (B+L)2An(δ )+5C1υn(d)+C1

{

An(δ )+Bn +
1√
n

}

≤ 5C1υn(d)+C1

{

2An(δ )+Bn +
1√
n

}

,

since (B+L)2 ≤C1. To conclude the proof, we need only to observe that we have

An(δ ) = O
(

n−2/(2+d)
)

,

and that since d ≥ 3, we have

1√
n
= O

(

n−2/(2+d)
)

.

�

8 Technical results

Lemma 8.1 Suppose |Y | ≤ B and suppose assumptions (A1) to (A4) hold. Then,

for all ℓ ∈ {1, . . . , p} and for all ε > 0, we have

P
(

|R̂ℓ−Rℓ| ≥ ε
)

≤ 2N
(

ε
6(B+L) ,Fℓ

)

exp
(

− 2nε2

9(B+L)4

)

.

PROOF – First, we have

P
(

|R̂ℓ−Rℓ| ≥ ε
)

= P

(

∣

∣

∣
inf

f∈Fℓ

1

n

n

∑
i=1

(Yi − f (Xi))
2 − inf

f∈Fℓ

E(Y − f (X))2
∣

∣

∣
≥ ε

)

≤ P

(

sup
f∈Fℓ

∣

∣

∣

1

n

n

∑
i=1

(Yi − f (Xi))
2 −E(Y − f (X))2

∣

∣

∣
≥ ε

)

.

For all f ∈ Fℓ we denote m f : (x,y) ∈ X × [−B,B] 7→ (y− f (x))2. Then, for

all f ∈ Fℓ, we have |m f (X ,Y )| ≤ (B+L)2. Therefore, according to Lemma 9.1

in Györfi et al. (2002) we have

P

(

|R̂ℓ−Rℓ| ≥ ε
)

≤ 2N
(

ε
3
,
{

m f : f ∈ Fℓ

})

exp
(

− 2nε2

9(B+L)4

)

. (8.1)
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Then, for any two functions f , f ′ ∈ Fℓ, we have for all (x,y) ∈ X × [−B,B]

|m f (x,y)−m f ′(x,y)| = |(y− f (x))2 − (y− f ′(x))2|
= |(2y− f (x)− f ′(x))( f (x)− f ′(x))|
≤ 2(B+L)| f (x)− f ′(x)|.

Hence, for all ε > 0, we have

N
(

ε,
{

m f : f ∈ Fℓ

})

≤ N
(

ε
2(B+L) ,Fℓ

)

. (8.2)

Combining (8.1) and (8.2) yields the expected result. �

Lemma 8.2 Suppose that assumptions (A1) to (A3) hold. Then, for all k ∈
{1, . . . ,n}, all ρ > 0 and all a > 0, we have

E

[

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]∣

∣

∣

]

≤C

{

a+
N(ρ)

na
exp
(

−na2

C

)

}

,

where C := max{1; 8B4}.

Proof – Fix k∈{1, . . . ,n}, ρ > 0 and a> 0. Denote H(ρ)=
{

h j : j = 1, . . . ,N(ρ)
}

.

Since (X ,Y ) is independent from D , since r̂h[k]◦h depends only on the subsample

D2 = {(Xi,Yi); i = n+1, . . . ,2n} for all h ∈ H and since ĥ[k,ρ] takes its values

in H(ρ), we have

E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]

= E

[(

Y −
N(ρ)

∑
j=1

r̂h j
[k](h j(X))1

{

ĥ[k,ρ] = h j

}

)2
∣

∣

∣

∣

D

]

= E

[

N(ρ)

∑
j=1

(

Y − r̂h j
[k](h j(X))

)2
1
{

ĥ[k,ρ] = h j

}

∣

∣

∣

∣

D

]

=
N(ρ)

∑
j=1

E

[

(

Y − r̂h j
[k](h j(X))

)2 |D
]

1
{

ĥ[k,ρ] = h j

}

=
N(ρ)

∑
j=1

E

[

(

Y − r̂h j
[k](h j(X))

)2 |D2

]

1
{

ĥ[k,ρ] = h j

}

.

Therefore, denoting E j :=
{

ĥ[k,ρ] = h j

}

, we obtain

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2 |D
]

=
N(ρ)

∑
j=1

{

1

n

n

∑
i=1

(

Yi − r̂h j
[k](h j(Xi))

)2 −E

[

(

Y − r̂h j
[k](h j(X))

)2 |D2

]

}

1
{

E j

}

.
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Now for all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,N(ρ)}, let

Zi, j :=
(

Yi − r̂h j
[k](h j(Xi))

)2 −E

[

(

Y − r̂h j
[k](h j(X))

)2 |D2

]

.

Using the fact that the events E j are pairwise disjoint, we deduce that for all ε > 0

P

(

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2 |D
]∣

∣

∣
≥ ε

)

= P

(

∣

∣

∣

N(ρ)

∑
j=1

{

1

n

n

∑
i=1

Zi, j

}

1
{

E j

}

∣

∣

∣
≥ ε

)

= P

(

max
j=1,...,N(ρ)

∣

∣

∣

1

n

n

∑
i=1

Zi, j

∣

∣

∣
≥ ε

)

≤ N(ρ) max
j=1,...,N(ρ)

P

(

∣

∣

∣

1

n

n

∑
i=1

Zi, j

∣

∣

∣
≥ ε

)

,

where the last inequality follows from the union bound. Now, conditionally to D2,

and for all j ∈ {1, . . . ,N(ρ)}, the variables

(

Y − r̂h j
[k](h j(X))

)2
and

(

Yi − r̂h j
[k](h j(Xi))

)2
, i ∈ {1, . . . ,n}

are i.i.d. an bounded by 4B2. By Hoeffding’s inequality, it follows that for all

j ∈ {1, . . . ,N(ρ)}

P

(

∣

∣

∣

1

n

n

∑
i=1

Zi, j

∣

∣

∣
≥ ε
∣

∣

∣
D2

)

≤ 2exp
(

− nε2

8B4

)

.
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Therefore

E

[

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]∣

∣

∣

]

=
∫ +∞

0
P

(

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]∣

∣

∣
≥ ε

)

dε

≤ a+
∫ +∞

a
P

(

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]∣

∣

∣
≥ ε

)

dε

≤ a+N(ρ)
∫ +∞

a
max

j=1,...,N(ρ)
P

(

∣

∣

∣

1

n

n

∑
i=1

Zi, j

∣

∣

∣
≥ ε

)

dε

= a+N(ρ)
∫ +∞

a
max

j=1,...,N(ρ)
E

[

P

(

∣

∣

∣

1

n

n

∑
i=1

Zi, j

∣

∣

∣
≥ ε
∣

∣

∣
D2

)]

dε

≤ a+2N(ρ)
∫ +∞

a
exp
(

− nε2

8B4

)

dε.

Now, using the fact that for all x > 0

∫ +∞

x
exp
(

− τ2

2

)

dτ ≤ 1

x
exp
(

− x2

2

)

,

we obtain

∫ +∞

a
exp
(

− nε2

8B4

)

dε =
2B2

√
n

∫ +∞

a
√

n

2B2

exp
(

− τ2

2

)

dτ

≤ 4B4

an
exp
(

− na2

8B4

)

.

This leads to

E

[

∣

∣

∣

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[

(Y − r̂[k,ρ](X))2
∣

∣D

]∣

∣

∣

]

≤ a+
8B4N(ρ)

an
exp
(

− na2

8B4

)

≤ C

{

a+
N(ρ)

an
exp
(

−na2

C

)

}

,

with C := max{1; 8B4}, as desired. �

23



Lemma 8.3 Suppose that |Y | ≤ B and that assumptions (A1) to (A5) are satis-

fied. Then, for all k ∈ {1, . . . ,n}, for all ρ > 0 and for all h ∈ Hd(ρ) satisfying

‖h−h∗‖∞ ≤ ρ , we have

E

[

(r(X)− r̂h[k](h(X)))2
]

≤C

{

1

k
+

(

k

n

)2/d
}

+Cρ2,

where C := max
{

2(B+L)2; 10(K2 +L2) ; 96L2R241/d
(

d−2
2

)4/d
}

.

The proof of Lemma 8.3 is very similar to that of Theorem 6.2 in Györfi et al.

(2002) or Theorem 2.2 in Cadre and Dong (2010). Therefore, it has been reported

in the supplementary material.

A Reduced dimension d and parameter ∆

In this appendix, we prove equations (2.2) and (2.4). First, observe that since Fℓ

is compact in L
2(µ) and since r ∈ F , we have

r ∈ Fℓ ⇔ inf
f∈Fℓ

E( f (X)− r(X))2 = 0

⇔ inf
f∈Fℓ

E(Y − f (X))2 −E(Y − r(X))2 = 0

⇔ inf
f∈Fℓ

E(Y − f (X))2 − inf
f∈F

E(Y − f (X))2 = 0

⇔ Rℓ = Rp.

Therefore, since the function ℓ ∈ {1, . . . , p} 7→ Rℓ is non-increasing, we deduce

that

d := min
{

ℓ : r ∈ Fℓ

}

= min
{

ℓ : Rℓ = Rp

}

,

which proves equation (2.2). Using (2.2) and the fact that r ∈ F we obtain that

∆ = min
{

Rℓ−Rp : Rℓ > Rp

}

= Rd−1 −Rp

= inf
f∈Fd−1

E(Y − f (X))2 − inf
f∈F

E(Y − f (X))2

= inf
f∈Fd−1

E(Y − f (X))2 −E(Y − r(X))2

= inf
f∈Fd−1

E( f (X)− r(X))2

= inf
f∈Fd−1

‖ f − r‖2
µ ,
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which proves (2.4).
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M. Kohler, A. Krzyżak, and H. Walk. Optimal global rates of convergence in

nonparametric regression with unbounded data. Journal of Statistical Planning

and Inference, 123:1286–1296, 2009.

K.C. Li. Sliced inverse regression for dimension reduction (with discussions).

Journal of the American Statistical Association, 86:316–342, 1991.

K.C. Li. On principal hessian directions for data visualization and dimension

reduction: another application of steins lemma. Journal of the American Sta-

tistical Association, 87:1025–1039, 1992.

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes.

Springer, New York, 1996.

Q. Wang and X. Yin. A nonlinear multi-dimensional variable selection method

for high dimensional data: Sparse mave. Computational Statistics and Data

Analysis, 52:4512–4520, 2008.

H.M. Wu. Kernel sliced inverse regression with applications on classification.

Journal of Computational and Graphical Statistics, 17:590–610, 2008.

Y. Xia, H. Tong, W.K. Li, and L.-X. Zhu. An adaptive estimation of dimension

reduction space. Journal of the Royal Statistical Society (B), 64:1–28, 2002.

Y.-R. Yeh, S.-Y. Huang, and Y.-Y. Lee. Nonlinear dimension reduction with ker-

nel sliced inverse regression. IEEE Transactions on Knowledge and Data En-

gineering, 21:1590–1603, 2009.

X. Yin, B. Li, and R.D. Cook. Successive direction extraction for estimating

the central subspace in a multiple-index regression. Journal of Multivariate

Analysis, 99:1733–1757, 2008.

26


