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Abstract

Given an R
p ×R valued random variable (X ,Y ), we investigate a new and

nonparametric dimension reduction approach for estimating the regression

function r(x) = E(Y |X = x) when p is large. We assume given a class F of

functions ϕ : Rp → R
p such that there exists ϕ ∈ F with

E(Y |ϕ(X)) = E(Y |X).

In classical sufficient dimension reduction, one considers linear transforma-

tions of the predictor variable X that preserve the conditional expectation.

Extending this approach, the class F is considered here to be a general

and possibly nonparametric class of functions. In this context, we introduce

the reduced dimension dF associated with F , defined as the dimension of

the lowest dimensional subspace of Rp spanned by the range of a function

ϕ ∈F satisfying the former equality. Then, we define an estimate r̂ of r and

we prove that r̂ achieves the optimal rate of convergence as if the predictor

X where dF -dimensional.

Index Terms — Dimension reduction, regression, empirical risk minimiza-

tion, nearest neighbor.

AMS 2000 Classification – 62H12, 62G08.

1 Introduction

In a general setting, regression analysis deals with the problem of retrieving in-

formation about the conditional distribution of a real-valued response variable Y
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given an R
p-valued predictor X and is often understood as a study of the regres-

sion function

r(x) := E(Y |X = x).

Estimation of the regression function faces the curse of dimensionality which

means that the expected rate of convergence of a given estimate slows down as

the dimension of the predictor X increases. This statement is usually understood

in terms of optimal rates of convergence. Given a class M of functions Rp → R,

the optimal rate of convergence associated to M is basically the best rate of con-

vergence one can expect for an estimate r̂ of r assuming only that r belongs to M .

For instance, if L > 0 is fixed, the optimal rate of convergence associated with

the class of L-Lipschitz functions Rp → R is n−2/(2+p), under some technical as-

sumptions (see e.g. Theorem 3.2 in the book by Györfi et al, 2002).

Therefore, the only way to circumvent the curse of dimensionality, in terms

of optimal rates of convergence, is to consider a model M that encodes structural

assumptions on the regression function in addition to the regularity assumptions.

For more details on rates of convergence, we refer the reader to the book by Györfi

et al (2002) or Ibragimov and Khasminskii (1981) and the references therein.

Methods to overcome the curse of dimensionality are usually referred to as

dimension reduction methods. These methods usually consist in two fundamental

steps. Based on structural assumptions on the regression function, the first step

aims at finding an appropriate lower dimensional predictor variable and the sec-

ond step focuses on using this predictor variable to build an estimate r̂ of r. In this

approach, it is naturally expected that the rate of convergence then only depends

on the reduced dimension, namely the dimension of the new predictor variable.

An efficient approach to reach this first step is sufficient dimension reduction.

Sufficient dimension reduction is a body of theory and methods that aim at re-

placing the predictor variable X by its projection PV X onto a lower dimensional

subspace V without loss of information or in other words such that the conditional

distribution of Y given PV X is equal to the conditional distribution of Y given X

(see Li, 1991, 1992 and Cook and Weisberg, 1991). Under some mild condi-

tions on the conditional distribution of Y given X , there exists a subspace SY |X
of minimum dimension such that the former equality holds. When it exists, it is

refered to as the central subspace and becomes in that context an important is-

sue for dimension reduction (see Cook and Li, 2002). Many methods have been
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introduced to estimate this subspace, among which we mention average deriva-

tive estimation (ADE; Härdle and Stoker, 1989), sliced inverse regression (SIR;

Li, 1991), sliced average variance estimation (SAVE; Cook and Weisberg, 1991),

kernel dimension reduction (Fukumizu et al, 2009) and more recently the optimal

transformation procedure (Delyon and Portier, 2012). When focus is made on the

regression function r instead of the conditional law of Y given X , it is sufficient to

consider the central mean subspace SE(Y |X) ⊂ SY |X that is, the subspace of min-

imum dimensionality among those V satisfying E(Y |PV X) = E(Y |X). Estimation

of SE(Y |X) has been extensively studied; we mention for instance principal Hes-

sian direction (pHd; Li, 1992) or minimum average variance estimation (MAVE;

Xia et al, 2002). Discussions, improvements and other relevant papers can be

found in Ye and Weiss (2003), Cook and Ni (2005), Zhu and Zeng (2006) or De-

lyon and Portier (2012).

Using sufficient dimension reduction methods, Cadre and Dong (2010) have

constructed an estimate of the regression function with improved rate of conver-

gence. They proved that given a matrix Λ that spans the central subspace SY |X
and given a proper estimate Λ̂ of Λ one may construct an estimate r̂ of r such that

E(r(X)− r̂(X))2 = O
(

n−2/(2+d)
)
,

where d stands for the dimension of SY |X , thus recovering the optimal rate of

convergence should the predictor X be d-dimensional.

The motivation for our paper is that better performances may be expected

when not only projections, or linear transformations, of the predictor X are con-

sidered but general transformations belonging to some prescribed and possibly

nonparametric class F . In the spirit of classical sufficient dimension reduction

methods, we assume that the class F contains a function ϕ : Rp → R
p such that

the following equality holds:

E(Y |ϕ(X)) = E(Y |X). (1.1)

In this context, we introduce the reduced dimension associated with F , denoted

dF , defined as the dimension of lowest dimensional subspace of Rp spanned by

the range of a function ϕ ∈F , satisfying equation (1.1). Provided such a function

ϕ may be estimated, it is shown in this paper that an estimate r̂ of r may be defined,

and which converges at the optimal rate of convergence should the predictor be of
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dimension dF , i.e. such that

E(r(X)− r̂(X))2 = O
(

n−2/(2+dF )
)
.

Our main result, Theorem 4.1, holds for all n ≥ 1 and involves explicit constants.

Other important contributions in the field of nonlinear dimension reduction or

nonlinear feature extraction can be found in Wu (2008), Yeh et al (2009) and Li et

al (2011).

The paper is organized as follows. The model and tools for dimension reduc-

tion on a class F are defined in section 2. Section 3 is devoted to the study of

an estimate of the reduced dimension dF based on empirical risk minimization.

In Section 4 we study an estimate of the regression function based on the Near-

est Neighbors procedure. Section 5 is devoted to the study of some examples of

classes of functions F , including the linear setting, i.e. when only projections of

the predictor are considered. In Section 6 we present a simulation study. Proofs

of the main results are presented in Section 7 and technical results are collected in

Section 8.

2 Model and tools for dimension reduction

Let (X ,Y ) be an X ×R-valued random variable of distribution P, where X ⊂R
p,

and denote for all x ∈ X

r(x) := E(Y |X = x).

Let F be a class of functions ϕ : X →R
p satisfying the following basic assump-

tion.

Basic assumption – There exists a function ϕ ∈ F such that

E(Y |ϕ(X)) = E(Y |X). (2.1)

This assumption generalizes the assumption made in sufficient dimension reduc-

tion where it is assumed that there exists a matrix Λ ∈ Mp(R) of rank less than

p such that E(Y |ΛX) = E(Y |X). Here, we allow the class F to be a general,

possibly nonparametric, class of functions, allowing therefore equation (2.1) to be

satisfied for functions ϕ that may not be linear.
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To assess the dimension reduction potential of F , we introduce the reduced

dimension associated with F given by

dF := min
{

dimS(ϕ) : ϕ ∈ F , E(Y |ϕ(X)) = E(Y |X)
}
,

where S(ϕ) stands for the linear subspace of Rp spanned by the set ϕ(X )⊂ R
p.

A first part of our work is the estimation of dF and Section 3 is devoted to this

task. We will often write d instead of dF keeping in mind the dependency on F .

According to equation (2.1), there exists ϕ ∈ F and a measurable function

f : Rp → R such that r = f ◦ϕ . At this stage, no specific information on function

f is made available. To circumvent this drawback, we make a slightly stronger

assumption in the spirit of our basic assumption. Let L be a given class of func-

tions Rp → R.

Assumption (A1) – The regression function r belongs to model M defined by

M :=
{

f ◦ϕ : f ∈ L , ϕ ∈ F

}
. (2.2)

Equation (2.2) allows the estimation of the regression function throughout the

estimation of both a function f in L and a function ϕ in F in a way that will be

described in Section 4. Now we proceed to giving a more tractable representation

of the reduced dimension. For all ℓ∈{1, . . . , p}, let Fℓ be the class of all functions

ϕ ∈ F such that S(ϕ) is at most ℓ-dimensional, i.e.

Fℓ :=
{

ϕ ∈ F : dimS(ϕ)≤ ℓ
}
,

and Mℓ ⊂ M the submodel given by

Mℓ :=
{

f ◦ϕ : f ∈ L , ϕ ∈ Fℓ

}
.

The Mℓ’s form a nested family of models, that is

M1 ⊂ M2 ⊂ ·· · ⊂ Mp = M ,

and under assumption (A1), the reduced dimension may be written as

d = min
{
ℓ= 1, . . . , p : r ∈ Mℓ

}
. (2.3)
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In other words, the reduced dimension d is the smallest ℓ for which there exists

a function ϕ ∈ Fℓ and a function f ∈ L such that r = f ◦ϕ . Going one step

further, we give a representation of d in terms of risk which will be considered in

the sequel. If for all ℓ ∈ {1, . . . , p}, we denote by

Rℓ := inf
m∈Mℓ

E(Y −m(X))2, (2.4)

then (2.3) reveals that

d = min
{
ℓ= 1, . . . , p : Rℓ = Rp

}
. (2.5)

We refer the reader to Figure 1 for an illustration of equation (2.5).

1 2 3 4 5

Dimension ℓ

p· · ·

d = 5

Risk Rℓ

Figure 1: Illustration of the dependence of the risk Rℓ on the dimension ℓ. In

this example, the reduced dimension d is equal to 5.

3 Estimation of the reduced dimension

In this section, we focus on the estimation of the reduced dimension d. Consider

a sample of n i.i.d. random variables (X1,Y1), . . . ,(Xn,Yn) with distribution P,
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independent from (X ,Y ). For all ℓ ∈ {1, . . . , p}, we denote by

R̂ℓ := inf
m∈Mℓ

1

n

n

∑
i=1

(Yi −m(Xi))
2,

the empirical version of the risk Rℓ given in equation (2.4). Our estimation proce-

dure is inspired by the representation given by equation (2.5). Define the last drop

of the risk by

γ(M ) := min
{

Rℓ−Rp : Rℓ > Rp, ℓ= 1, . . . , p
}
,

with the convention min /0 = +∞. Note that the case where γ(M ) = +∞ corre-

sponds to d = 1. Then, choosing 0 ≤ γ < γ(M ) leads to

d = min
{
ℓ= 1, . . . , p : Rℓ ≤ Rp + γ

}
. (3.1)

Accordingly, we define for all γ ≥ 0 the estimate d̂(γ) of the reduced dimension d

by

d̂(γ) := min
{
ℓ= 1, . . . , p : R̂ℓ ≤ R̂p + γ

}
. (3.2)

An illustration of equation (3.1) is provided in Figure 2.

Let us introduce some notations. For all ℓ ∈ {1, . . . , p}, let ‖.‖ℓ be the Euclidean

norm in R
ℓ. For z ∈ R

ℓ, we denote by Bℓ(z,ε) the open Euclidean ball in R
ℓ with

center z and radius ε . When no confusion may arise, we denote ‖.‖ = ‖.‖p and

B(u,ε) = Bp(u,ε) for u ∈R
p. For all ℓ ∈ {1, . . . , p} and any function h : X →R

ℓ

we denote by ‖h‖∞ its supremum norm defined by

‖h‖∞ = sup
x∈X

‖h(x)‖ℓ.

Next, we describe the specific choice made in this paper for the class L . First,

we require F to be totally bounded with respect to the supremum norm ‖.‖∞.

Assumption (A2) – F is totally bounded with respect to the supremum norm

‖.‖∞ and we let R > 0 be such that ‖ϕ‖∞ < R for all ϕ ∈ F .

This assumption on F implies that the elements of F can be approximated by a

finite number of functions in a way that is described in Section 4.
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1 2 3 4 5

Dimension ℓ

p· · ·

d = 5

γ(M )

Rp + γ

Risk Rℓ

Figure 2: Illustration of the last drop of the risk γ(M ) and of the impact of

the choice of the parameter γ . In this example, 0 < γ < γ(M ) and the smallest

ℓ for which Rℓ ≤ Rp + γ is equal to the reduced dimension d as in equation

(3.1). Notice that if γ > γ(M ), then the smallest ℓ for which Rℓ ≤ Rp + γ is at

most d −1.

We denote B := Bp(0,R) in the sequel. We assume that L is composed of uni-

formly bounded Lipschitz functions. Precisely, for a fixed L > 0, we assume that

L ⊂
{

f ∈ C (B,R) : ‖ f‖Lip ≤ L
}
, (3.3)

where C (B,R) stands for the space of continuous functions f : B →R and where

‖ f‖Lip := sup
u
| f (u)|+ sup

u 6=u′

| f (u)− f (u′)|
‖u−u′‖ . (3.4)

From now on, it will be understood that L is chosen as in equation (3.3).

Remark 3.1. For computational reasons one may have to choose L as a finite

or countable set satisfying (3.3). This choice has no significative impact in the

following results and we decide to consider a general class L for reasons of

ease.
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We shall need the following assumption in order to control the concentration

of the empirical risk R̂ℓ around Rℓ.

Assumption (A3) – There exists B > 0 such that for all m ∈ M : |Y −m(X)| ≤ B

almost surely.

Given ℓ ∈ {1, . . . , p} and a set G of functions h : X → R
ℓ, recall that the ε-

covering number of G with respect to ‖.‖∞, denoted N(G ,‖.‖∞,ε), is defined as

the minimal number of ‖.‖∞-balls of radius ε needed to cover G .

Theorem 3.2. Suppose assumptions (A1), (A2) and (A3) are satisfied. Then, the

following statements hold.

(i) If 0 < γ < γ(M ), we have

P

(
d̂(γ)< d

)
≤ 4 N

(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)
,

P

(
d̂(γ)> d

)
≤ 4 N

(
M ,‖.‖∞,

γ
12(B+2L)

)
exp
(
− nγ2

18B4

)
.

(ii) If γ > γ(M ), we have

P

(
d̂(γ)< d

)
≥ 1−4 N

(
M ,‖.‖∞,

γ−γ(M )
12(B+2L)

)
exp
(
−n(γ−γ(M ))2

18B4

)
.

We can easily deduce from Theorem 3.2 that provided 0 < γ < γ(M ), we have

d̂(γ) −→
n→+∞

d, a.s.

In the next result, we prove that with the choice of class L given by (3.3), the

covering number of model M is controlled in terms of the covering number of

the class F .

Proposition 3.3. If class F satisfies assumption (A2) and if L is chosen as in

(3.3), there exists a constant C depending only on p, R and L such that for all

ε > 0 we have

N
(
M ,‖.‖∞,ε

)
≤ N

(
F ,‖.‖∞,

ε
2L

)
exp
(

C
ε p

)
.

4 Fast-rate estimation of the regression function

In this section we present an estimate of the regression function and give our main

result. For each function ϕ ∈ F , we denote rϕ the regression function defined for
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all u ∈ R
p by

rϕ(u) := E(Y |ϕ(X) = u). (4.1)

Under assumption (A1) and by definition of the reduced dimension d, there exists

ϕ∗ ∈ Fd such that

r = rϕ∗ ◦ϕ∗ and rϕ∗ ∈ L . (4.2)

The function ϕ∗ is assumed fixed in the sequel. The estimation procedure pre-

sented here is inspired by this representation of r and consists in two steps. First,

for all ϕ ∈ F , we estimate rϕ using the k-nearest neighbors (k-NN) method. In

a second step, we estimate ϕ∗ through the minimization of an empirical criterion.

Consider a second data set of i.i.d. copies (Xn+1,Yn+1), . . . ,(X2n,Y2n) of (X ,Y )
independent from the first data set (X1,Y1), . . . ,(Xn,Yn) introduced in Section 3.

Denote

D1 := {(X1,Y1), . . . ,(Xn,Yn)} and D2 := {(Xn+1,Yn+1), . . . ,(X2n,Y2n)} ,

and fix a real number γ > 0.

We start with the estimation of rϕ and recall the k-NN procedure in this con-

text. For all ϕ ∈ F and all i ∈ {n+1, . . . ,2n}, we let

X
ϕ
i := ϕ(Xi).

If u ∈ R
p, we reorder the transformed data

(
X

ϕ
n+1,Yn+1

)
, . . . ,

(
X

ϕ
2n,Y2n

)
accord-

ing to increasing values of
{
‖X

ϕ
i −u‖, i = n+1, . . . ,2n

}
. The reordered data se-

quence is denoted

(
X

ϕ
(1)
(u),Y

ϕ
(1)
(u)
)
,
(

X
ϕ
(2)
(u),Y

ϕ
(2)
(u)
)
, . . . ,

(
X

ϕ
(n)
(u),Y

ϕ
(n)
(u)
)
,

which means that

‖X
ϕ
(1)
(u)−u‖ ≤ ‖X

ϕ
(2)
(u)−u‖ ≤ · · · ≤ ‖X

ϕ
(n)
(u)−u‖.

In this approach, X
ϕ
(i)
(u) is called the i-th NN of u. Note that if X

ϕ
i and X

ϕ
j are

equidistant from u, i.e. ‖X
ϕ
i − u‖ = ‖X

ϕ
j − u‖, then we have a tie. As usual, we

then declare X
ϕ
i closer to u than X

ϕ
j if i < j. For any i ∈ {n+ 1, . . . ,2n} and

k ∈ {1, . . . ,n}, we define

Wi[k](ϕ,u) =

{
1/k if X

ϕ
i is among the k-NN of u in

{
X

ϕ
n+1, . . . ,X

ϕ
2n

}
;

0 elsewhere.

10



Observe that we have ∑
2n
i=n+1Wi[k](ϕ,u) = 1. For all k ∈ {1, . . . ,n}, we define the

estimate r̂ϕ [k] of rϕ for all u ∈ R
p by

r̂ϕ [k](u) =
2n

∑
i=n+1

Wi[k](ϕ,u)Yi =
1

k

k

∑
i=1

Y
ϕ
(i)
(u).

For more information on the k-NN method, we refer the reader to Chapter 6 of the

monography by Györfi et al (2002).

Now we focus on the estimation of ϕ∗ through minimization of an empir-

ical criterion over a finite covering of F . To this aim, for all ρ > 0 and all

ℓ ∈ {1, . . . , p}, let Fℓ(ρ) be a ρ-covering of Fℓ of minimum cardinality. We set

F(ρ) := ∪ℓFℓ(ρ) and we denote

N(ρ) := Card F(ρ),

the cardinality of F(ρ). Now, for all ℓ∈ {1, . . . , p}, all k ∈ {1, . . . ,n} and all ρ > 0,

we define

ϕ̂ℓ[k,ρ] := argmin
ϕ∈Fℓ(ρ)

1

n

n

∑
i=1

(
Yi − r̂ϕ [k](ϕ(Xi))

)2
,

and we put

ϕ̂[k,ρ] := ϕ̂
d̂(γ)[k,ρ],

where d̂(γ) is defined by equation (3.2).

For all k ∈ {1, . . . ,n} and all ρ > 0, we define the estimate r̂[k,ρ] of the re-

gression function r by

r̂[k,ρ] := r̂ϕ̂[k,ρ][k]◦ ϕ̂[k,ρ].

Next, we describe a data driven choice of the number k of neighbors and of

the radius ρ of the covering F(ρ). For all ℓ ∈ {1, . . . , p}, denote

υn(ℓ) = n−2/(2+ℓ). (4.3)

Note that υn(ℓ) is the optimal rate of convergence corresponding to the class of

L-Lipschitz functions Rℓ → R. Then, let

k̂ :=
⌊
υ−1

n

(
d̂(γ)

)⌋
and ρ̂ := υ

1/2
n

(
d̂(γ)

)
, (4.4)
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where ⌊x⌋ stands for the greatest integer smaller than x. Finally, for all x ∈ X , let

r̂(x) := r̂
[
k̂, ρ̂
]
(x). (4.5)

We will assume that F satisfies the following property which roughly means that

rϕ is close to rϕ∗ provided ϕ is close to ϕ∗.

Assumption (A4) – For all ϕ ∈ F and all u ∈ R
p we have

|rϕ(u)− rϕ∗(u)| ≤ L‖ϕ −ϕ∗‖∞,

where rϕ and ϕ∗ have been defined in (4.1) and (4.2).

Theorem 4.1. Suppose that assumptions (A1) to (A4) hold and that d ≥ 3. For

any 0 < γ < γ(M ) and all n ≥ 1 we have

E

[
(r(X)− r̂(X))2

]
≤ 5C1n−2/(2+d)+C1

{
2An(γ)+Bn +

1√
n

}
,

where

An(γ) := N
(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)

+ N
(
M ,‖.‖∞,

γ
12(B+2L)

)
exp
(
− nγ2

18B4

)
,

Bn :=
p

nd/(2+d)
N
(
F ,‖.‖∞,n

−1/(2+d)
)

exp
(
−n(d−2)/(2+d)

C1

)
,

and where

C1 := max
{

1; 8(B+L)2; 8(B+L)4; 20L2; 96L2R241/d
(

d−2
2

)4/d
}
.

Remark 4.2. When d ≤ 2, under the additional conditions of Problem 6.7 in

the book by Györfi et al (2002), a slight adaptation of the proof of Theorem 4.1

enables us to derive the same convergence rate.

In Theorem 4.1, the quadratic risk of the estimator r̂ is bounded by a sum of

two terms. The first term

5C1n−2/(2+d),

goes to 0 at the optimal rate of convergence associated with the class of L-Lipschitz

functions Rd → R. The second term

C1

{
2An(γ)+Bn +

1√
n

}
,
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is induced by our dimension reduction procedure. An important observation here

is that since 0 < γ < γ(M ) and d ≥ 3, we have

An(γ) = O
(

n−2/(2+d)
)

and
1√
n
= O

(
n−2/(2+d)

)
.

Therefore, the rate of convergence of r̂ depends on that of term Bn. The next

assumption consists in a restriction on the complexity of F and is known to be

satisfied by many examples as described in Section 5.

Assumption (A5) – There exists A > 0 and 0 < β < d −2 such that for all ε > 0

logN (F ,‖.‖∞,ε)≤ Aε−β .

Under this assumption, we have

Bn ≤
p

nd/(2+d)
exp
(

Anβ/(2+d)− n(d−2)/(2+d)

C1

)
= O

(
n−2/(2+d)

)
,

which leads to the following result.

Corollary 4.3. Under the assumptions of Theorem 4.1 and under assumption

(A5), we have

E

[
(r(X)− r̂(X))2

]
= O

(
n−2/(2+d)

)
.

In other words, our estimator reaches the optimal rate of convergence, should X

be taking its values in R
d .

5 Examples

In this section, we study three examples and illustrate our main assumptions in

different settings. The linear case is studied first. In a second example, we give

a simple regression model for which linear dimension reduction is ineffective and

for which our method applies. The third example provides an example where the

class F is a non-parametric class composed with smooth functions.

5.1 Linear dimension reduction

Linear dimension reduction techniques (i.e. techniques that involve linear trans-

formations of the predictor variable X) have proven effective in a large class of
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examples and practical situations (see e.g. Cadre and Dong, 2010 or Chapter 22

of the book by Györfi et al, 2002). In classical sufficient dimension reduction for

instance, one considers orthogonal projections of X .

Assume X ⊂ B where B has been defined in Section 3. For any subspace V

of Rp (abreviated V ⊂R
p), denote by πV : Rp →R

p the orthogonal projector onto

V and PV : X → R
p the restriction of πV to X . Define

F :=
{

PV : V ⊂ R
p
}
.

The class F satisfies assumption (A2) since for all V ⊂ R
p

‖PV‖∞ = sup
x∈X

‖PV (x)‖= sup
x∈X

‖πV (x)‖ ≤ sup
x∈X

‖πV‖.‖x‖= sup
x∈X

‖x‖< R.

Therefore, F may be seen as a subset of the Euclidean ball with center 0 and

radius R in R
2p and it follows that

logN (F ,‖.‖∞,ε)≤C log
(

1
ε

)
,

for a constant C depending only on p and R (see e.g. Proposition 5 in Cucker and

Smale, 2001). Hence, assumption (A5) is also satisfied in this case. The fact that

assumptions (A1), (A3) and (A4) are satisfied depends on the joint distribution P

of (X ,Y ).

5.2 Radial functions

Assume that X is uniformly distributed over Bp(0,1). Let K : R+ → R be non-

constant, and assume the regression function r is given for all x ∈ X by

r(x) = K
(
‖x‖2

)
.

Then, it may be easily verified that every matrix Λ ∈ Mp(R) \ {0} satisfying

E(Y |X) = E(Y |ΛX) is of rank p. Therefore, in the case where the regression

function is modeled by a radial function, dimension reduction using a class of

linear transformations is ineffective. However, our general approach applies effi-

ciently.

Let F be the class of functions with polynomial coordinate functions whose

coefficients are bounded by 1 and degree at most 2. The function ϕ defined by
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ϕ(x) :=
(
∑i x2

i ,0, . . . ,0
)

belongs to F and the regression function r satisfies r =
f ◦ϕ for f (u) := K (u1) which is Lipschitz if so is K. Hence assumption (A1)
is satisfied in this context. Furthermore, one may verify easily that assumptions

(A2) and (A5) are also verified. The general approach studied in this paper proves

that one can find an estimate r̂ of r such that

E(r̂(X)− r(X))2 = O(n−2/3),

since the reduced dimension is here d = 1, and under the additional assumptions

(A3) and (A4).

5.3 Smooth functions

In this example we show that one may consider classes F much wider than the

class of projectors or the parametric class introduced in the previous example.

The class F introduced here consists in a nonparametric class of smooth func-

tions. Fix two constants R,α > 0. Denote by ⌊α⌋ the greatest integer strictly

smaller than α and C ⌊α⌋(X ,R) the space of ⌊α⌋-times continuously differen-

tiable functions h : X → R. For all h ∈ C ⌊α⌋(X ,R) we define

‖h‖α := max
|s|≤⌊α⌋

sup
x
‖∂ sh(x)‖+ max

|s|=⌊α⌋
sup
x 6=y

‖∂ sh(x)−∂ sh(y)‖
‖x− y‖α−⌊α⌋ ,

where, for all multi-index s = (s1, . . . ,sp) ∈ N
p, we have denoted |s| := ∑i si and

∂ s := ∂ s1

1 · · ·∂ sp
p . Now we may define

F :=
{

h ∈ C
⌊α⌋(X ,R) : ‖h‖α ≤ R

}⊗p

,

where for any set G of functions X → R, G⊗p stands for the set of functions

X → R
p such that each coordinate function belongs to G . By definition of ‖.‖α ,

assumption (A2) is satisfied. Now provided X is compact, there exists a constant

C depending only on α , p and the diameter of X such that for all ε > 0

logN(F ,‖.‖∞,ε)≤Cε−p/α

(see e.g. Theorem 2.7.1 in van der Vaart and Wellner, 1996). Hence, provided

α > p/(d −2), assumption (A5) is also satisfied.
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6 A small simulation study

Here, we illustrate the improvement that our dimension reduction step induces

compared to the classical NN approach, for a simple model. We let p = 4 and

generate our data as follows. We let X =(X (1), . . . ,X (4)) be a 4-dimensional vector

uniformly distributed over the unit open Euclidean ball B in R
4 and let

Y = X (1)X (4)+X (2)X (3)+σε.

Here, σ > 0 and ε is a real random variable independent from X with standard nor-

mal distribution. We assume we have enough information about the phenomenon

under study to know that the regression function is of the form f ◦ϕ for f ∈ L

and ϕ ∈ F where L and F are known and taken as follows. The class L is

the class of functions f of the form f (u1, . . . ,u4) = a1u1 + · · ·+ a4u4 where ai ∈
{−10,−9.9, . . . ,9.9,10}. The class F is the class of functions ϕ = (ϕ1, . . . ,ϕ4)
where ϕi(x1, . . . ,x4) = xi,axi,b and where xi,a, xi,b ∈ {x1, . . . ,x4}. In this context,

the reduced dimension is d = 2.

First, we study the performance of the estimate d̂(γ) of d defined in (3.2) and

describe an empirical procedure to select γ . We take a data set D1 := {(xi,yi) : i =
1, . . . ,1600} generated by our model. We divide D1 into 40 sets of 40 data points

and for j = 1, . . . ,40 we denote

S j := {(xi,yi) : i = ( j−1)n+1, . . . ,( j−1)n+40}.

For all j = 1, . . . ,40 and all γ ∈ {κ/2000 : κ = 0,1, . . . ,1000} we compute the

estimate d̂ j(γ) of d based on the subsample S j as in (3.2). Then, for ℓ= 1,2,3,4

we plot in Figure 3 the proportion of d̂ j(γ) that are equal to ℓ, i.e.

pℓ(γ) :=
1

40

40

∑
j=1

1
{

d̂ j(γ) = ℓ
}
,

when γ ranges over {κ/2000 : κ = 0,1, . . . ,1000}. We select γ using the fol-

lowing heuristic approach. For small values of γ > 0 and when the number of

data points is large enough, the probability that d̂(γ) = ℓ should be close to 1 for

ℓ = d and close to 0 for ℓ 6= d according to Theorem 3.2. Therefore, the value

of ℓ for which pℓ(γ) is close to 1 for the small values of γ should correspond to

the reduced dimension. Then, for this fixed value of ℓ, we select γ as the smallest

maximizer of pℓ(γ). In our example, this heuristic applies successfully as we can
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Figure 3: Plot of pℓ(γ) as a function of γ ∈ (0,0.5] for ℓ= 1,2,3,4.
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see in Figure 3 that p2(γ)> 0.9 for 0 < γ < 0.04. Here we select γ = 0.01.

For the estimation of the regression function we consider two additional in-

dependent data sets D2 := {(xi,yi) : i = 1601, ...,3200} and DMC := {(xi,yi) :

i = 3201, ...,4800} generated by our model for σ = 0.1, 0.5 and 0.9. For each

i = 3201, ...,4800 we compute our estimates r̂(xi) based on the subsample D :=
D1 ∪D2 with our methods as in (4.5) with γ = 0.01 and with the classical NN-

method. Finally, we estimate E(r̂(X)−E(Y |X))2 from the Monte-Carlo approxi-

mation

1

1600

4800

∑
i=3201

(r̂(xi)−E(Y |X = xi))
2 =

1

1600

4800

∑
i=3201

(
r̂(xi)− x

(1)
i x

(4)
i − x

(2)
i x

(3)
i

)2

,

where x
( j)
i denotes the j-th coordinate of xi. The obtained results are given in Table

1 and the variance of each experiment is given in parenthesis. As expected from

our main theorem, our method performs better than the classical 3-dimensional

NN method.

Our meth. 3-dim NN-meth.

σ = 0.1 0.027(8.4e−05) 0.039(1.2e−04)
σ = 0.5 0.216(7.3e−03) 0.336(8.4e−03)
σ = 0.9 0.720(4.7e−02) 0.898(4.9e−02)

Table 1: Estimated mean squared error. The variance of the MC approxima-

tion is given in parenthesis.

7 Proofs

7.1 Proof of Theorem 3.2

Proof of (i) – Since the function ℓ 7→ R̂ℓ is non increasing, one has for all integer

q ∈ {1, . . . , p} and every γ ≥ 0

min
{
ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ γ

}
≤ q ⇔ R̂q − R̂p ≤ γ.
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Now assume 0 < γ < γ(M ). Using Rd−1 − Rp = γ(M ) and the equivalence

above, we have

P

(
d̂(γ)< d

)
= P

(
min

{
ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ γ

}
≤ d −1

)

= P

(
R̂d−1 − R̂p ≤ γ

)

= P

((
R̂d−1 −Rd−1

)
+ γ(M )+

(
Rp − R̂p

)
≤ γ
)

≤ P

(
|R̂d−1 −Rd−1| ≥ γ(M )−γ

2

)
+P

(
|R̂p −Rp| ≥ γ(M )−γ

2

)

≤ 4N
(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)
,

where the last inequality follows from Lemma 8.1. Next, using Rd = Rp, observe

that

P

(
d̂(γ)> d

)
= P

(
min

{
ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ γ

}
> d
)

= P

(
R̂d − R̂p > γ

)

= P

((
R̂d −Rd

)
+
(
Rp − R̂p

)
> γ
)

≤ P

(
|R̂p −Rp| ≥ γ

2

)
+P

(
|R̂d −Rd| ≥ γ

2

)

≤ 4N
(
M ,‖.‖∞,

γ
12(B+2L)

)
exp
(
− nγ2

18B4

)
,

where again the last inequality follows from Lemma 8.1.

Proof of (ii) – Now assume γ > γ(M ). We have

P

(
d̂(γ) 6= d

)
≥ P

(
d̂(γ)< d

)

= P

(
min

{
ℓ= 1, . . . , p : R̂ℓ− R̂p ≤ γ

}
≤ d −1

)

= P

(
R̂d−1 − R̂p ≤ γ

)

= P

((
R̂d−1 −Rd−1

)
+ γ(M )+

(
Rp − R̂p

)
≤ γ
)

= 1−P

((
R̂d−1 −Rd−1

)
+
(
Rp − R̂p

)
> γ − γ(M )

)

≥ 1−P

(
|R̂d−1 −Rd−1| ≥ γ−γ(M )

2

)
−P

(
|R̂p −Rp| ≥ γ−γ(M )

2

)

≥ 1−4N
(
M ,‖.‖∞,

γ−γ(M )
12(B+2L)

)
exp
(
−n(γ−γ(M ))2

18B4

)
,
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by Lemma 8.1 once again.�

7.2 Proof of Proposition 3.3

Fix ε > 0 and denote N := N
(
F ,‖.‖∞,

ε
2L

)
. By definition, there exists functions

ϕ1, . . . ,ϕN ∈ F such that the ‖.‖∞-balls with radius ε
2L

and centers the ϕi’s cover

F . For all i ∈ {1, . . . ,N}, define

Ni := N
(
L ◦ϕi,‖.‖∞,

ε
2

)
.

Then, for all i ∈ {1, . . . ,N}, there exists functions fi,1, . . . , fi,Ni
such that for every

f ∈ L there is at least one j ∈ {1, . . . ,Ni} with

‖ f ◦ϕi − fi, j ◦ϕi‖∞ ≤ ε

2
.

Now, for any two functions f ∈ L and ϕ ∈ F , there exists two integers k ∈
{1, . . . ,N} and j ∈ {1, . . . ,Nk} such that

‖ϕ −ϕk‖∞ ≤ ε

2L
and ‖ f ◦ϕk − fk, j ◦ϕk‖∞ ≤ ε

2
.

Therefore, we have

‖ f ◦ϕ − fk, j ◦ϕk‖∞ ≤ ‖ f ◦ϕ − f ◦ϕk‖∞ +‖ f ◦ϕk − fk, j ◦ϕk‖∞

≤ L‖ϕ −ϕk‖∞ +
ε

2

≤ L
ε

2L
+

ε

2
= ε,

since, according to (3.4), every function in L is L-Lipschitz. We have proved that

N
(
M ,‖.‖∞,ε

)
≤

N

∑
i=1

Ni.

To complete the proof, we need only to show that there exists a constant C de-

pending only on p,R and L such that

logNi ≤
C

ε p
,
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for all i ∈ {1, . . . ,N}. For that purpose, observe that for any function ϕ ∈ F and

any ε > 0 we have

N
(
L ◦ϕ,‖.‖∞,ε

)
≤ N

(
L ,‖.‖∞,ε

)
,

since for any two functions f , f ′ ∈ L

‖ f ◦ϕ − f ′ ◦ϕ‖∞ ≤ ‖ f − f ′‖∞.

Now according to Theorem 2.7.1 in van der Vaart and Wellner (1996), there exists

a constant C depending only on p,R and L such that

logN
(
L ,‖.‖∞,ε

)
≤ C

ε p
.

Hence, for all i ∈ {1, . . . ,N} and all ε > 0

logNi = logN
(
L ◦ϕi,‖.‖∞,ε

)
≤ logN

(
L ,‖.‖∞,ε

)
≤ C

ε p
,

which yields the desired result.�

7.3 Proof of Theorem 4.1

First, we give an intermediate result.

Proposition 7.1. Suppose assumptions (A1) to (A4) hold. Suppose d ≥ 3 and

0 < γ < γ(M ). Then for all k ∈ {1, . . . ,n} and all ρ > 0 we have

E

[
(r(X)− r̂[k,ρ](X))2

]
≤C1

{
1

k
+

(
k

n

)2/d
}
+C1

{
Dn(γ)+Tn(ρ)+

1√
n

}
,

where

Dn(γ) := N
(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)
,

Tn(ρ) := ρ2 +υn(d)+
p

nυn(d)
N (F ,‖.‖∞,ρ)exp

(
−nυ2

n (d)
C1

)
,

and where

C1 := max
{

1; 8(B+L)2; 8(B+L)4; 20L2; 96L2R241/d
(

d−2
2

)4/d
}
.
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Proof of Proposition 7.1 – Fix k ∈ {1, . . . ,n}, ρ > 0 and a function ϕ ∈ Fd(ρ)
such that ‖ϕ −ϕ∗‖∞ ≤ ρ . We have

E

[
(r(X)− r̂[k,ρ](X))2

]
= E

[
(r(X)− r̂[k,ρ](X))2

1
{

d̂(γ)< d
}]

+ E

[
(r(X)− r̂[k,ρ](X))2

1
{

d̂(γ)≥ d
}]

=: T1 +T2.

Under assumptions (A1) and (A3), we have |Y − r(X)| ≤ B. Since the functions

in L are uniformly bounded by L by definition, r is uniformly bounded by L and

|Y | ≤ |Y − r(X)|+ |r(X)| ≤ B+ L. Hence, from the construction of r̂[k,ρ], we

have |r̂[k,ρ](X)| ≤ B+L, and so

(r(X)− r̂[k,ρ](X))2 ≤ (B+2L)2.

Therefore

T1 ≤ (B+2L)2
P

(
d̂(γ)< d

)
.

Using Theorem 3.2, we deduce that

T1 ≤ 4(B+2L)2N
(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)
.

Next, we have

T2 = E

[
(r(X)− r̂[k,ρ](X))2

1
{

d̂(γ)≥ d
}]

= E

[
E

[
(r(X)− r̂[k,ρ](X))2

∣∣D
]
1
{

d̂(γ)≥ d
}]

= E

[{
E

[
(Y − r̂[k,ρ](X))2

∣∣D
]
−E

[
(Y − r(X))2

]}
1
{

d̂(γ)≥ d
}]

=: E

[
(I1 + I2 + I3)1

{
d̂(γ)≥ d

}]
,

where I1, I2 and I3 are defined by

I1 =

{
E

[
(Y − r̂[k,ρ](X))2 |D

]
− 1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2

}
,

I2 =

{
1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[(
Y − r̂ϕ [k](ϕ(X))

)2 |D
]}

,

I3 =

{
E

[(
Y − r̂ϕ [k](ϕ(X))

)2 |D
]
−E(Y − r(X))2

}
.
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By taking a = υn(d) in Lemma 8.2, we obtain

E

[
I11
{

d̂(γ)≥ d
}]

≤ E

[∣∣I1

∣∣
]
≤ C′

{
υn(d)+

N(ρ)

nυn(d)
exp
(
−nυ2

n (d)
C′

)}
,

where we recall that υn(d) has been defined in equation (4.3) and where C′ =
max{1; 8(B+L)2; 8(B+L)4}. From the construction of F(ρ), we deduce that

E

[
I11
{

d̂(γ)≥ d
}]

≤C′
{

υn(d)+
pN (F ,‖.‖∞,ρ)

nυn(d)
exp
(
−nυ2

n (d)
C′

)}
. (7.1)

Now on the event
{

d̂(γ)≥ d
}

, we have the inclusion Fd(ρ)⊂F
d̂(γ)(ρ), and there-

fore
1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 ≤ 1

n

n

∑
i=1

(
Yi − r̂ϕ [k](ϕ(Xi))

)2
.

We conclude that on the event
{

d̂(γ)≥ d
}

we have

I2 ≤ J2 :=

{
1

n

n

∑
i=1

(
Yi − r̂ϕ [k](ϕ(Xi))

)2 −E

[(
Y − r̂ϕ [k](ϕ(X))

)2 |D
]}

=

{
1

n

n

∑
i=1

(
Yi − r̂ϕ [k](ϕ(Xi))

)2 −E

[(
Y − r̂ϕ [k](ϕ(X))

)2 |D2

]}
.

Recall that, for all ϕ ∈F , r̂ϕ [k] is constructed on D2 = {(Xi,Yi); i = n+1, . . . ,2n}.

Therefore, conditionally to D2, the variables

(
Y − r̂ϕ [k](ϕ(X))

)2
and

(
Yi − r̂ϕ [k](ϕ(Xi))

)2
, i = 1, . . . ,n,

are i.i.d. and bounded by 4(B+L)2. Hence, for all ε > 0, Hoeffding’s inequality

yields

P

(
|J2|> ε

∣∣D2

)
≤ 2exp

(
− nε2

8(B+L)4

)
.
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Therefore

E

[
I21
{

d̂(γ)≥ d
}]

≤ E

[
|J2|1

{
d̂(γ)≥ d

}]

≤ E

[∣∣J2

∣∣
]

=
∫ +∞

0
P

(
|J2|> ε

)
dε

=
∫ +∞

0
E

[
P

(
|J2|> ε|D2

)]
dε

≤ 2

∫ +∞

0
exp
(
− nε2

8(B+L)4

)
dε

=
4(B+L)2

√
n

∫ +∞

0
exp
(
− τ2

2

)
dτ

=
2
√

2π(B+L)2

√
n

≤ C′′
√

n
, (7.2)

where C′′ := 8(B+L)2. Finally, we have

E

[
I31
{

d̂(γ)≥ d
}]

= E

[
E

[(
r(X)− r̂ϕ [k](ϕ(X))

)2 |D
]

1
{

d̂(γ)≥ d
}]

≤ E

[(
r(X)− r̂ϕ [k](ϕ(X))

)2
]

≤ C′′′
{

1

k
+

(
k

n

)2/d

+ρ2

}
, (7.3)

where the last inequality follows from Lemma 8.3 an where constant C′′′ can be

taken equal to max
{

2B2; 20L2 ; 96L2R241/d
(

d−2
2

)4/d
}

. Combining (7.1), (7.2)

and (7.3) and denoting

C1 := max
{

1; 8(B+L)2; 8(B+L)4; 20L2; 96L2R241/d
(

d−2
2

)4/d
}
,

we conclude that

T2 ≤C1

{
1

k
+

(
k

n

)2/d
}
+C1

{
Tn(ρ)+

1√
n

}
,
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where

Tn(ρ) := ρ2 +υn(d)+
pN (F ,‖.‖∞,ρ)

nυn(d)
exp
(
−nυ2

n (d)
C1

)
.

As a result, we obtain

E

[
(r(X)− r̂[k,ρ](X))2

]
≤ T1 +T2

≤ C1

{
1

k
+

(
k

n

)2/d
}
+C1

{
Dn(γ)+Tn(ρ)+

1√
n

}
,

where

Dn(γ) := N
(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)
,

as desired. �

Proof of Theorem 4.1 – Under assumptions (A1) and (A3), we have |Y −r(X)| ≤
B. Since the functions in L are uniformly bounded by L by definition, r is uni-

formly bounded by L and so |Y | ≤ |Y − r(X)|+ |r(X)| ≤ B+L. Hence, from the

construction of r̂, we have |r̂(X)| ≤ B+L, and so

(r(X)− r̂(X))2 ≤ (B+2L)2.

Therefore

E

[
(r(X)− r̂(X))2

]
= E

[
(r(X)− r̂(X))2

1
{

d̂(γ) 6= d
}]

+ E

[
(r(X)− r̂(X))2

1
{

d̂(γ) = d
}]

= E

[
(r(X)− r̂(X))2

1
{

d̂(γ) 6= d
}]

+ E

[(
r(X)− r̂

[
⌊υ−1

n (d)⌋,υ1/2
n (d)

]
(X)
)2

1
{

d̂(γ) = d
}]

≤ (B+2L)2
P

(
d̂(γ) 6= d

)

+ E

[(
r(X)− r̂

[
⌊υ−1

n (d)⌋,υ1/2
n (d)

]
(X)
)2 ]

,

=: U1 +U2. (7.4)

According to Theorem 3.2 we have

P

(
d̂(γ) 6= d

)
≤ N

(
M ,‖.‖∞,

γ(M )−γ
12(B+2L)

)
exp
(
−n(γ(M )−γ)2

18B4

)

+ N
(
M ,‖.‖∞,

γ
12(B+2L)

)
exp
(
− nγ2

18B4

)

=: An(γ).
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Hence

U1 ≤ (B+2L)2An(γ). (7.5)

Now, by Proposition 7.1 applied with k = ⌊υ−1
n (d)⌋ and ρ = υ

1/2
n (d), we have

U2 ≤ C1

{
1

⌊υ−1
n (d)⌋

+

(⌊υ−1
n (d)⌋

n

)2/d
}

+ C1

{
Dn(γ)+Tn(υ

1/2
n (d))+

1√
n

}
,

where C1, Dn(γ) and Tn(ρ) have been defined in Proposition 7.1. Since x− 1 <
⌊x⌋ ≤ x, for all positive number x, we deduce that

1

⌊υ−1
n (d)⌋

+

(⌊υ−1
n (d)⌋

n

)2/d

≤ 1

υ−1
n (d)−1

+

(
υ−1

n (d)

n

)2/d

=

(
1

υ−1
n (d)−1

− 1

υ−1
n (d)

)
+

1

υ−1
n (d)

+

(
υ−1

n (d)

n

)2/d

=
1

(υ−1
n (d)−1)υ−1

n (d)
+2υn(d)

≤ 3υn(d). (7.6)

From the definitions, it is clear that

Dn(γ)≤ An(γ). (7.7)

Next, we have

Tn(υ
1/2
n (d)) = 2υn(d)+

pN
(
F ,‖.‖∞,υ

1/2
n (d)

)

nυn(d)
exp
(
−nυ2

n (d)
C1

)

=: 2υn(d)+Bn. (7.8)

From inequalities (7.6), (7.7) and (7.8), we deduce that

U2 ≤ 5C1υn(d)+C1

{
An(γ)+Bn +

1√
n

}
. (7.9)

26



As a consequence, we conclude from (7.4), (7.5) and (7.9) that

E

[
(r(X)− r̂(X))2

]
≤ U1 +U2

≤ (B+2L)2An(γ)+5C1υn(d)+C1

{
An(γ)+Bn +

1√
n

}

≤ 5C1υn(d)+C1

{
2An(γ)+Bn +

1√
n

}
,

since (B+2L)2 ≤C1. �

8 Technical results

Lemma 8.1. Suppose assumptions (A1) to (A3) hold. Then, for all ℓ∈ {1, . . . , p}
and all ε > 0, we have:

P

(
|R̂ℓ−Rℓ| ≥ ε

)
≤ 2N

(
Mℓ,‖.‖∞,

ε
6(B+2L)

)
exp
(
−2nε2

9B4

)
.

Proof – First, we have

P

(
|R̂ℓ−Rℓ| ≥ ε

)
= P

(∣∣∣ inf
m∈Mℓ

1

n

n

∑
i=1

(Yi −m(Xi))
2 − inf

m∈Mℓ

E(Y −m(X))2
∣∣∣≥ ε

)

≤ P

(
sup

m∈Mℓ

∣∣∣1
n

n

∑
i=1

(Yi −m(Xi))
2 −E(Y −m(X))2

∣∣∣≥ ε

)
.

Then, notice that |Y | ≤ |Y − r(X)|+ |r(X)| ≤ B + L. For all m ∈ Mℓ, denote

gm : (x,y) ∈ X × [−B−L,B+L] 7→ (y−m(x))2 and define

M̃ℓ :=
{

gm : m ∈ Mℓ

}
.

For all m ∈ Mℓ, we have |gm(X ,Y )| ≤ B2. Therefore, according to Lemma 9.1 in

Györfi et al (2002) we have

P

(
|R̂ℓ−Rℓ| ≥ ε

)
≤ 2N

(
M̃ℓ,‖.‖∞,

ε
3

)
exp
(
−2nε2

9B4

)
. (8.1)

Then, for any two functions m,m′ ∈ Mℓ, we have

|gm(x,y)−gm′(x,y)| = |(y−m(x))2 − (y−m′(x))2|
= |(2y−m(x)−m′(x))(m(x)−m′(x))|
≤ 2(B+2L)|m(x)−m′(x)|,
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for all (x,y) ∈ X × [−B−L,B+L]. Therefore, for all ε > 0, we have

N
(
M̃ℓ,‖.‖∞,ε

)
≤ N

(
Mℓ,‖.‖∞,

ε
2(B+2L)

)
. (8.2)

Combining (8.1) and (8.2) yields the expected result. �

Lemma 8.2. Suppose that assumptions (A1) to (A3) hold. Then, for all k ∈
{1, . . . ,n}, all ρ > 0 and all a > 0, we have

E

[∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2

∣∣D
]∣∣∣
]
≤C

{
a+

N(ρ)

na
exp
(
−na2

C

)}
,

where we can take C := max{1; 8(B+L)2; 8(B+L)4}.

Proof – Fix k∈{1, . . . ,n}, ρ > 0 and a> 0. Denote F(ρ)=
{

ψ j : j = 1, . . . ,N(ρ)
}

.

Since (X ,Y ) is independent from D , since for all ϕ ∈ F , r̂ϕ [k]◦ϕ depends only

on D2 = {(Xi,Yi); i = n+1, . . . ,2n}, and since ϕ̂[k,ρ] takes its values in F(ρ), we

have

E

[
(Y − r̂[k,ρ](X))2

∣∣D
]

= E

[(
Y −

N(ρ)

∑
j=1

r̂ψ j
[k](ψ j(X))1

{
ϕ̂[k,ρ] = ψ j

}
)2 ∣∣∣∣D

]

= E

[
N(ρ)

∑
j=1

(
Y − r̂ψ j

[k](ψ j(X))
)2

1
{

ϕ̂[k,ρ] = ψ j

}∣∣∣∣D
]

=
N(ρ)

∑
j=1

E

[(
Y − r̂ψ j

[k](ψ j(X))
)2 |D

]
1
{

ϕ̂[k,ρ] = ψ j

}

=
N(ρ)

∑
j=1

E

[(
Y − r̂ψ j

[k](ψ j(X))
)2 |D2

]
1
{

ϕ̂[k,ρ] = ψ j

}
.

Therefore, denoting E j :=
{

ϕ̂[k,ρ] = ψ j

}
, we obtain

1

n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2 |D

]

=
N(ρ)

∑
j=1

{
1

n

n

∑
i=1

(
Yi − r̂ψ j

[k](ψ j(Xi))
)2 −E

[(
Y − r̂ψ j

[k](ψ j(X))
)2 |D2

]}
1
{

E j

}
.
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Now for all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,N(ρ)}, let

Zi, j :=
(
Yi − r̂ψ j

[k](ψ j(Xi))
)2 −E

[(
Y − r̂ψ j

[k](ψ j(X))
)2 |D2

]
.

Using the fact that the events E j are pairwise disjoint, we deduce that for all ε > 0

P

(∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2 |D

]∣∣∣≥ ε

)

= P

(∣∣∣
N(ρ)

∑
j=1

{
1

n

n

∑
i=1

Zi, j

}
1
{

E j

}∣∣∣≥ ε

)

= P

(
max

j=1,...,N(ρ)

∣∣∣1
n

n

∑
i=1

Zi, j

∣∣∣≥ ε

)

≤ N(ρ) max
j=1,...,N(ρ)

P

(∣∣∣1
n

n

∑
i=1

Zi, j

∣∣∣≥ ε

)
,

where the last inequality follows from the union bound. Now, conditionally to D2,

and for all j ∈ {1, . . . ,N(ρ)}, the variables

(
Y − r̂ψ j

[k](ψ j(X))
)2

and
(
Yi − r̂ψ j

[k](ψ j(Xi))
)2
, i ∈ {1, . . . ,n}

are i.i.d. an bounded by 4(B+L)2. By Hoeffding’s inequality, it follows that for

all j ∈ {1, . . . ,N(ρ)}

P

(∣∣∣1
n

n

∑
i=1

Zi, j

∣∣∣≥ ε
∣∣∣D2

)
≤ 2exp

(
− nε2

8(B+L)4

)
.
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Therefore

E

[∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2

∣∣D
]∣∣∣
]

=
∫ +∞

0
P

(∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2

∣∣D
]∣∣∣≥ ε

)
dε

≤ a+
∫ +∞

a
P

(∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2

∣∣D
]∣∣∣≥ ε

)
dε

≤ a+N(ρ)
∫ +∞

a
max

j=1,...,N(ρ)
P

(∣∣∣1
n

n

∑
i=1

Zi, j

∣∣∣≥ ε

)
dε

= a+N(ρ)
∫ +∞

a
max

j=1,...,N(ρ)
E

[
P

(∣∣∣1
n

n

∑
i=1

Zi, j

∣∣∣≥ ε
∣∣∣D2

)]
dε

≤ a+2N(ρ)
∫ +∞

a
exp
(
− nε2

8(B+L)4

)
dε.

Now, using the fact that for all x > 0

∫ +∞

x
exp
(
− τ2

2

)
dτ ≤ 1

x
exp
(
− x2

2

)
,

we obtain

∫ +∞

a
exp
(
− nε2

8(B+L)4

)
dε =

2(B+L)2

√
n

∫ +∞

a
√

n

2(B+L)2

exp
(
− τ2

2

)
dτ

≤ 4(B+L)4

an
exp
(
− na2

8(B+L)2

)
.

This leads to

E

[∣∣∣1
n

n

∑
i=1

(Yi − r̂[k,ρ](Xi))
2 −E

[
(Y − r̂[k,ρ](X))2

∣∣D
]∣∣∣
]

≤ a+
8(B+L)4N(ρ)

an
exp
(
− na2

8(B+L)2

)

≤ C

{
a+

N(ρ)

an
exp
(
−na2

C

)}
,

with C := max{1; 8(B+L)2; 8(B+L)4}, as desired. �
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Lemma 8.3. Suppose assumptions (A1) to (A4) hold. Then, for all k ∈ {1, . . . ,n},

all ρ > 0 and all ϕ ∈ Fd(ρ) satisfying ‖ϕ −ϕ∗‖∞ ≤ ρ , we have

E

[(
r(X)− r̂ϕ [k](ϕ(X))

)2
]
≤C

{
1

k
+

(
k

n

)2/d
}
+Cρ2,

where C := max
{

2B2; 20L2 ; 96L2R241/d
(

d−2
2

)4/d
}

.

The proof of Lemma 8.3 is very similar to that of Theorem 2.2 in Cadre and

Dong (2010) and has therefore been reported in the supplementary material Paris

(2012).
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